The field of market basket analysis, the search for meaningful associations in customer purchase data, is one of the oldest areas of data mining. The typical solution involves the mining and analysis of association rules, which take the form of statements such as ‘‘people who buy diapers are likely to buy beer’’. It is well-known, however, that typical transaction datasets can support hundreds or thousands of obvious association rules for each interesting rule, and filtering through the rules is a non-trivial task.One may use an interestingness measure to quantify the usefulness of various rules, but there is no single agreed-upon measure and different measures can result in very different rankings of association rules. In this work, we take a different approach to mining transaction data. By modeling the data as a product network, we discover expressive communities (clusters) in the data, which can then be targeted for further analysis. We demonstrate that our network based approach can concisely isolate influence among products, mitigating the need to search through massive lists of association rules. We develop an interestingness measure for communities of products and show that it isolates useful, actionable communities. Finally, we build upon our experience with product networks to propose a comprehensive analysis strategy by combining both traditional and network-based techniques. This framework is capable of generating insights that are difficult to achieve with traditional analysis methods.

Market basket analysis

Verma, Nikhil
2017/2018

Abstract

The field of market basket analysis, the search for meaningful associations in customer purchase data, is one of the oldest areas of data mining. The typical solution involves the mining and analysis of association rules, which take the form of statements such as ‘‘people who buy diapers are likely to buy beer’’. It is well-known, however, that typical transaction datasets can support hundreds or thousands of obvious association rules for each interesting rule, and filtering through the rules is a non-trivial task.One may use an interestingness measure to quantify the usefulness of various rules, but there is no single agreed-upon measure and different measures can result in very different rankings of association rules. In this work, we take a different approach to mining transaction data. By modeling the data as a product network, we discover expressive communities (clusters) in the data, which can then be targeted for further analysis. We demonstrate that our network based approach can concisely isolate influence among products, mitigating the need to search through massive lists of association rules. We develop an interestingness measure for communities of products and show that it isolates useful, actionable communities. Finally, we build upon our experience with product networks to propose a comprehensive analysis strategy by combining both traditional and network-based techniques. This framework is capable of generating insights that are difficult to achieve with traditional analysis methods.
2017-07-06
File in questo prodotto:
File Dimensione Formato  
855183-1204233.pdf

accesso aperto

Tipologia: Altro materiale allegato
Dimensione 6.05 MB
Formato Adobe PDF
6.05 MB Adobe PDF Visualizza/Apri

I documenti in UNITESI sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14247/22414