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Abstract 

Metonymy is a figure of speech that allows the use of a concept to refer to another 

concept closely related to the previous. It is used by the speakers to facilitate but 

at the same time better express the meaning as they intend it. The aim of this 

thesis is to test the performance of some pre-trained language models, such as 

BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019), on metonymy resolution. 

Metonymy resolution is a task that aim at finding the correct “hidden” referent 

behind a metonymic expression and consists of two parts, namely the recognition 

and the interpretation of such type of expression (Markert & Nissim, 2007). Since 

previous research dealt with metonymy resolution as a classification task, the 

main contribution of this thesis is investigating what these models can infer about 

metonymic expressions, i.e. whether they can understand the plausible referents 

of said expressions. The task has been performed on a dataset of 509 metonymic 

sentences (Pedinotti & Lenci, 2020) and each sentence returned five alternative 

solutions for each metonymic occurrence. The accuracy of the answers was then 

judged based on hypernym-hyponym relations as encoded on WordNet 

(Fellbaum, 2010). Moreover, the contextualized embeddings were considered to 

understand at what level the models manage to better understand metonymy. 

The results of this research contribute to advance the understanding of the 

mechanisms of models like BERT and what kind of semantic information related 

to the pragmatic use of the human language they are able to process. 
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I. Introduction 

 

Metonymy is a rhetoric device, which has several advantages: it usually requires 

little effort both in production and in comprehension (if the right circumstances 

are granted), and, therefore, is quite often exploited. Examples of such figure of 

speech can be found in everyday conversation, but they are often employed in 

several other contexts as well. The following quote can be considered as an 

example of a metonymic expression used in literature: 

“Friends, Romans, countrymen, lend me your ears.” 

- William Shakespeare, Julius Caesar 

In this famous citation, the expression “lend me your ears” is indeed to be 

interpreted figuratively as a metonymy. The reason is that, if we consider the 

literal meaning, the sentence would loose meaning since a body part can hardly 

be lent, but if we interpret the expression “lend me your ears” as “give me your 

attention” given the intuitive connection between “ears” and “listening”/“paying 

attention” , then the quote is meaningful.  As can be seen in this example, it could 

have been possible to substitute the metonymic expression with its literal 

meaning since their meanings are equivalent. Nonetheless, using the metonymic 

version has a whole other effect since it accentuates the action of giving the 

complete attention to what someone is saying and, therefore, in this occurrence 

it creates a more theatrical effect. This feature is one of the purposes of 

metonymy, but, as it will be discussed, there are other reason why said rhetoric 

figure is so often employed even in normal conversations. 

 However, even if metonymic expressions can be found in most linguistic 

exchanges, this phenomenon has received little attention in the computational 

linguistics, or Natural Language Processing (NLP), field. Hence, this thesis aims to 

further explore this topic, in order to better understand if machines can deal with 

the comprehension of metonymy with an accuracy comparable to the 
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performance of the human mind. Specifically, the aim of this thesis is to further 

explore a type of task that transformers, a type of deep learning model, are not 

usually asked to perform: so far metonymy resolution has often been dealt with 

as a classification task, while the project for this thesis is to employ said 

transformers to infer some plausible interpretations of metonymic expressions. 

The transformers included in this research are four: BERT (Devlin et al., 2018), in 

its base and large versions, and RoBERTa (Liu et al., 2019), also in its base and large 

version. All four models were asked to process a dataset (Pedinotti & Lenci, 2020) 

of 509 metonymies, subdivided into six categories: CONTAINER-FOR-CONTENT, 

PRODUCER-FOR-PRODUCT, PRODUCT-FOR-PRODUCER, LOCATION-FOR-LOCATED, 

CAUSER-FOR-RESULT, and POSSESSED-FOR-POSSESSOR.  In the following table an 

example of a sentence containing a metonymic expression, taken from the 

dataset, is provided for each of these categories to better clarify what these types 

correspond to.  

 

Metonymic type Example 

CONTAINER-FOR-CONTENT The gentlemen had somehow spilled his glass. 

PRODUCER-FOR-PRODUCT The children memorized the poet. 

PRODUCT-FOR-PRODUCER The actress thanked the magazine. 

LOCATION-FOR-LOCATED The church was singing the hymns. 

CAUSER-FOR-RESULT The woman heard the smoke detector. 

POSSESSED-FOR-POSSESSOR The regime assassinated dissenting voices. 

 

Through the resolution of a masked element contained in a prompt sentence, each 

of these models returned five alternative referents for each metonymic entry in 

the dataset. The obtained results were firstly judged on the basis of the 

hypernyms-hyponyms relations, as encoded on WordNet (Fellbaum, 1998), using 

three different strategies: the first strategy consists in checking the presence of 

the lemma produced by the transformer in the lemma lists generated by the 
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hypernyms; the second strategy created a semantic space for each metonymic 

type consisting of the synsets contained in the hypernyms and all the synsets of 

the answer returned by the transformer were given a 0 or 1 score based on their 

absence or presence in the semantic space and then the average score was 

computed; lastly, the third strategy checked for the presence of the most frequent 

synset, i.e. the first synset, of the target lemma in the same semantic space of the 

previous strategy.  By applying the three different strategies, an overview of the 

overall performances and the performances according to metonymic type was 

created in order to judge which of the models dealt best with metonymy 

resolution. 

For the second experiment RoBERTa large was chosen since it was the model that 

overall performed slightly better compared to the other and was used to 

investigate the process this model implements in order to solve the task of 

interpreting metonymic occurrences. More specifically, the output of each layer 

of RoBERTa was analysed to establish at which of the 24 layers the transformer 

seems to better understand and process metonymy. To do so, for each entry in 

the dataset three instances were taken into consideration, namely a sentence 

where the target word was used metonymically, a sentence where the target word 

was used literally, and lastly a sentence that contained a plausible paraphrase of 

the metonymic target word. Then, the contextual embeddings of the target words 

of these three instances were extracted and compared at each hidden state of 

RoBERTa. For each entry in the dataset, a measure calculated on the basis of the 

difference between the cosine similarity of the metonymic target word and its 

paraphrase and the cosine similarity of the metonymic and literal expressions 

normalised for the cosine similarity of the literal target word and the metonymic 

paraphrase was generated at each layer of RoBERTa. The 24 measures thus 

obtained represent the trend of the level of understanding of RoBERTa when 

dealing with metonymy. 

On the basis of the findings from the two experiments, the conclusions were that 

transformer language models do not seem to perform on metonymy as well as 
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they do on literal language given their generally low accuracy in the first 

experiment. Nonetheless, based on the analysis of the second experiment, it is 

argued that, despite the overall unsatisfactory answers in the first experiment, at 

least RoBERTa large seems to notice in the processing at the last layers that in the 

case of metonymic expression there is more than the apparent literal 

interpretation.  
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II. Linguistic theories: from formal to neurolinguistics 

 

In this chapter, a definition of metonymy will be presented. Subsequently, the 

main theories concerning a formal and cognitive linguistic explanation of 

metonymy will be introduced, as well as the psycholinguistic and neurolinguistic 

perspectives on such figure of speech. 

 

2.1 A definition of metonymy 

Rhetorical devices are devices to add nuances of meaning to utterances. Figures 

of speech are used with little additional effort in everyday communication to 

better convey specific ideas and express how we perceive the world. As defined 

by Kienpointer (2011), figures of speech (also called “rhetorical figures”, 

“rhetorical devices”, or “figures of rhetoric”) are “the output of discourse 

strategies for creating communicatively adequate text”. Given their versatility,  

there is a great variety of figures of speech to fulfil different purposes. The 

downside of using figurative language is that the majority of rhetorical figures 

requires additional effort in order to be produced. Therefore, speakers, as well as 

the other participants in the conversation, are more prone to be consciously aware 

of having employed figurative language in their speech. For example, although 

very useful, metaphor production and comprehension involve a thoughtful and 

creative process (Steen, 2009) and, therefore, both the speaker and the hearer are 

required to increase the effort to successfully deliver the concept expressed in a 

metaphorical expression. However, this is not always the case: other rhetorical 

figures are produced and interpreted almost subconsciously given the fact they 

may involve more spontaneity and automatic processing (Lakoff, 1987; Sperber & 

Wilson, 2002). Among the several rhetorical devices of this latter category, this 

thesis has the aim to analyse a case which is less taken into consideration, while it 

occurs repeatedly in everyday conversation: metonymy. Metonymy can be 
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described as “a process which allows us to use one well-understood aspect of 

something to stand for the thing as a whole, or for some other aspect of it, or for 

something to which it is very closely related” (Gibbs, 1994). For example, in a 

conversation, “the Crown” might be uttered not to refer to the ornamental 

headdress worn by a monarch, but rather to designate the person who wears the 

head ornament. As humans, the participants in said conversation do not usually 

have much trouble understanding this mechanism and can correctly infer the 

meaning as intended by the speaker. Said process is first and foremost a cognitive 

process since it is involved in production, comprehension, and in gaining 

knowledge. As a matter of fact, Kövecses (2006) defines metonymy as “a cognitive 

process in which one conceptual element or entity (thing, event, property), the 

vehicle, provides mental access to another conceptual entity (thing, event, 

property), the target, within the same frame, domain or idealized cognitive 

model”. The reason why Kövecses does not define metonymy as a strictly linguistic 

phenomenon but rather as a broader process, involving abilities other than 

language is that metonymy can be found even in other aspects of everyday life. 

Metonymy can be delivered both verbally and visually, and thus metonymic 

representations are exploited in the most diverse fields, which space from 

literature to art and cinema. Therefore, metonymy could give us some insights into 

how we perceive reality and which communication strategies we employ to 

linguistically or visually convey the connections created in the brain. 

 

2.2 Advantages and disadvantages of metonymy within a conversation 

As it has been analysed by Littlemore (2015), there are several reasons why 

metonymy occurs quite often in ordinary conversations, while one could simply 

refer to the “original” object. Firstly, as argued by Lakoff and Johnson (2008), 

metonymy allows us to better express how we perceive the world; for instance, in 

the case of part-for-whole metonymies, the part we pick to describe the whole 

referent is not random, but it is determined by which part we focus on and, 
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therefore, communicates our perception of said object. For instance, in the 

sentence “the grey beard over there ordered a sandwich” the expression of “grey 

beard” is probably used to indicate a man whose main facial feature was his grey 

beard, and in the sentence said feature is used to indicate the whole person 

because it communicates the first impression that man left to the speaker. 

Secondly, the use of metonymy helps to facilitate and to speed up a conversation. 

As Grice (1975) argued by formulating the four maxims1 of communication, 

speakers tend to formulate their contributions as informative as required for the 

current purpose of the conversation, but they aim at being as brief as possible by 

avoiding unnecessary prolixity as well. In this regard, it could be said that 

metonymy suits said intents. Moreover, metonymy has a third effect which could 

be considered ambivalent, since it supports the creation of a unified identity 

within a community, but at the same time, as it will be discussed later, it creates 

distance between different communities. This is due to the fact that metonymy 

often employs specific references or ways to observe the world which might be 

shared only among people belonging to the same cultural backgrounds, thus 

creating a sense of oneness. For instance, the slang expressions generally used by 

younger generations can be considered as metonymic instances to create a sense 

of belonging: to give an example, “tea” is often used by the youth not to refer to 

the hot beverage made with boiling water and leaves, but rather to indicate some 

kind of gossip. Said expression could be difficult to understand for older 

generation, but a shared slang creates a sense of community among the youth. 

Lastly, since metonymy involves indirectness, it is frequently used both in politics 

and comedy. For instance, a politician may rely on such figure of speech to define 

a position without resulting in harsh statements; on the other hand, a comedian 

could exploit metonymy to create humour and irony given its ability to offer the 

occasion for language play. Generally speaking, it could be said that metonymy is 

 
1 The four maxims suggested by Grice (1975) are as follows: the maxim of quantity, the maxim of 

quality, the maxim of relation, and lastly the maxim of manner. His theory implies that the speakers 

involved in a conversation aim at making their statement exactly as informative as necessary, they 

don’t say anything they believe to be false, they intend to be relevant, and they try to be as clear 

as possible. 
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a useful and powerful tool in language because of its property to enrich a single 

word with additional layers of meaning. 

However, using a figure of speech comes with some risks. The first disadvantage 

is an intrinsic property of metonymy: since its intended meaning is not literal, 

there is the chance that it might be misinterpreted, such as in the case when a 

metonymic expression is interpreted as literal. Furthermore, the interpretation of 

metonymy can be considered successful only if there is sufficient shared common 

ground built between the participants to the conversation so that the hearer can 

correctly infer whether the intended meaning is literal or figurative. Lastly, as 

previously mentioned, metonymies can have as references some cultural aspects 

that might not be shared among different speech communities. Therefore, the risk 

is that the hearer may not be able to understand the underlying reference if the 

required knowledge is not granted. For instance, evidence of the above mentioned 

risk of misinterpretation can be found in the study by Littlemore et al. (2018). In 

their research they investigated the ability of Japanese speakers to interpret 

metonymic expression in English. Lacking the knowledge of some common English 

idioms, the Japanese tried to interpret metonymies, such as “Is there anywhere 

where I can freshen up?”, in a literal manner; however, the literal interpretations 

results in confusing ideas since that was not the intended understanding of the 

expressions.  

 

2.3 Theoretical linguistics: the starting point 

The human language has the property of creativity, meaning that it is always 

possible to formulate new combinations of words according to the expressive 

needs in a conversation. This is also the case with metonymy: the human brain is 

able to form new connections and produce novel cases of metonymic expressions. 

However, throughout the decades researchers have been able to develop several 

schemas in order to categorise and regulate the majority of the metonymic 

examples. In her book “Metonymy”, Littlemore (2015) recapitulates the main 
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models for metonymy, that have so far been proposed. The first taxonomy she 

goes through is the model suggested by Radden and Kövecses (1999). According 

to Littlemore, this taxonomy represents the first hierarchical model which 

provided researchers with a common language to describe the phenomenon of 

metonymy. Radden and Kövecses show that said figure of speech can be divided 

into two types. The first category stands for whole-and-part metonymies, 

indicating the cases where a part of the object we want to mention is being used 

to designate the whole object and vice versa, such as when the term “America” is 

used to define just the United States. The second category, instead, is dedicated 

to the so-called part-and-part metonymies, which relate to the instances where a 

concept is used to refer to another which is related, such as when it is said that 

someone married “money”. In this case, “money” is used to indicate a person; 

however, “money” is not part of a person, but rather it belongs to said person and 

it is considered as a defining feature. These two types of metonymies just 

mentioned represent the major division, but for each of the two, there are 

multiple sub-categories to describe more specifically the various examples of 

metonymy. In the following schema, this further division is best represented. 
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Figure 1 - Radden and Kövecses' taxonomy [source: Littlemore, 2015, pp.22] 

 

The taxonomy presented in Figure 1 shows us that, despite the division in only two 

categories, each of the two types of metonymy present a further division into 

several sub-categories. It is interesting to note that even though all the 

subcategories share a common feature determined by the bigger grouping, they 

represent the most different instances of metonymies. For example, in the part-

and-part metonymies, we can find instances concerned with abstract concept 
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such as effect-for-cause metonymies and other instances involving human 

subjects such as possessed-for-possessor metonymies. What distinguishes the 

different instances of metonymy is the ICM they relate to. An ICM, which stands 

for “idealized cognitive model”, has been defined as “a series of embodied, 

encyclopaedic, abstract, loosely connected and somewhat idiosyncratic 

knowledge networks that we have in our minds” (Lakoff, 1987; Radden and 

Kövecses, 1999).  This kind of knowledge is acquired over time without particular 

effort since it deals with the human experience of the world. Moreover, in the case 

of metonymy it is rare that the knowledge pertaining to one ICM constitutes 

enough information to correctly infer the intended meaning, but rather accessing 

that knowledge requires the activation of several ICMs. To give a general idea of 

how an ICM can be defined, Lakoff (1987) differentiates five types of models: 

propositional, image schema, metaphoric, metonymic and symbolic. For example, 

image schemas represent the building blocks of how human cognition works. 

Image schemas consist of a kind of knowledge which is the first we acquire as 

children, and it represents how we perceive the world and how the objects are 

related to one another. An instance of an image schema could be the container 

schema: through the experience, the realization that some objects can 

accommodate something else inside them is acquired. For example, we 

understand in the very early years of our lives that a glass usually contains some 

kind of liquid that we may drink. Metonymic thinking works in a very similar way: 

the two concepts, the one we utter and the referent, are usually linked in a quite 

evident way. Therefore, taking the same example given for the container image 

schema, if we utter “glass” as a metonymic expression in a sentence, such as “pour 

a glass”, it should be evident to the hearer that the referent of said expression is 

not the glass itself, but rather what it contains. Given this evident connection 

between the referent and the metonymic term, in their paper Radden and 

Kövecses (1999) argue as well that the connection between said concepts is 

determined by some non-casual principles. These principles regulate the choice of 

the vehicle, the metonymic expression, we pick to mention the original referent. 
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All the principles they list fall into five main categories, namely human experience, 

perceptual selectivity, cultural preferences, communicative principles, and 

overriding factors.  More specifically, while selecting a the vehicle of a metonymic 

expression, respecting the human experience principles indicates that human and 

concrete objects are preferred to non-human or abstract subjects; according to 

the perceptual selectivity principles, we may prefer immediate over non-

immediate and dominant over less-dominant; cultural preferences favours the 

selection of ideal and stereotypical ideas; communicative principles consist in 

striving for clarity and relevance in communication; finally, overriding factors can 

be represented by the use of rhetoric figures and social-communicative effects. To 

give some more understandable examples, one principle is the property of 

concreteness: concrete objects are more likely to be picked rather than abstract 

ideas. An example could be the sentence “the clock is ticking” used to mention 

that the time is passing: here the abstract concept of time is replaced with a 

concrete object, the clock, in order to visualise the idea. In addition to this 

example, another principle guiding the choice of metonymic expression is the so-

called “initial or final over middle” principle. According to said assumption, the 

extremes of a concept are more likely to be selected to form a metonymic 

expression than things that fall in the middle. For instance, it is most common to 

hear “from January to December” to designate the whole year rather than “from 

March to February”, even though they are both true and refer to a whole calendar 

year. Regardless of how the connection between the referent and the word used 

to designate it is formed, the fundamental aspect is that the two can be found 

within the same domain. The concept of “domain” has been formally introduced 

by Langacker (1987) and borrowed from Lakoff (1987), and it is similar to the 

concept of ICM in that they both constitute a knowledge structure. However, the 

idea of a “domain” is more concrete and the concepts inside a single domain are 

somehow related. As a matter of fact, ICM contains ideas that are more loosely 

connected and abstract, while a domain is more strictly defined and the range of 

ideas belonging to a domain is not as wide. Some examples could be the domain 
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of TIME, LOVE, SPACE, JOURNEY, and so on. As Lakoff (1987) suggests, metonymy 

involves mapping from one concept to another within a single domain. This 

definition is crucial to distinguish metonymy from metaphor. To explain metaphor 

the concept of domain is again employed, however in metaphor, the mapping is 

across different domains. To clarify the matter of mapping, a pair of sentences can 

be compared to observe such difference. If we consider the expression “that car 

is a dinosaur” to state that the car is indeed very old, we can define the two nouns 

“car” and “dinosaur” as belonging to two different domains, namely the domain 

of VEHICLE and the domain of ANIMAL; in this sentence, however, they are unified 

through the use of a metaphor to compare an old car to an extinct animal and, 

therefore, we map “car” from the domain of VEHICLE to an item, “dinosaur”, in a 

different domain. On this evidence, the mapping is defined as across domains. On 

the other hand, in the case of metonymy the mapping happens within the domain: 

for instance, to refer to the car we might utter “set of wheels” and, since the 

wheels are part of the car, the mapping for the creation of this metonymy is 

conducted within the domain of VEHICLE.  

Despite this seemingly clear-cut distinction between metonymy and metaphor, 

there are borderline cases: Hilper (2006) noticed some instances such as ‘kind-of’ 

relations, which sometimes should be interpreted through metonymy and 

sometimes through metaphor. For instance, two expressions that both belong to 

said category are “to keep an eye on” and “hand in glove” in sentence such as: 

a. Marcus Judge had kept an eye on her finances from the beginning. 

b. The drug barons work hand in glove with the pharmaceutical industry. 

In both sentence, the previously mentioned expression have to be interpreted 

figuratively; however, in sentence a,  since “keep an eye on” means “be attentive” 

and said meaning is a hypernym of “to watch”, the knowledge can still be mapped 

within the same domain, resulting in the expression in a metonymy. The 

expression “hand in glove” in the context of sentence b means “accordant”, which 
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is an hypernym of “physically fitting”; since “accordant” and “physically fitting” do 

not belong to the same domain, this expression should be considered a metaphor. 

 

2.4 Further theoretical linguistic theories 

As mentioned before, the model by Radden and Kövecses (1999) is not the first 

and only model created to schematise metonymy. Not only the other models 

mentioned by Littlemore are relevant to the field, but they are also interesting to 

be analysed and compared given the different perspectives they offer on the topic 

of metonymy. For instance, as it will be analysed more in-depth afterwards, in 

order to classify the different phenomena, some models deal with metonymy 

considering the aim of the metonymic expressions (Warren, 1999; Panther and 

Thomburg, 1998,), others centre the observation on the relation between the 

source and the target domain (Ruiz de Mendoza Ibáñez and Diez Velasco, 2002), 

further other models focus on the kind of contiguity present in each metonymic 

utterance (Peirsman and Geeraerts, 2006).  

Despite having a similar perspective, Warren (1999)’s and Panther and Thornburg 

(1998)’s models differ in the categories they distinguish to schematize the 

different occurrences of metonymy. Warren(1999) argues that there are two main 

types of metonymy, namely referential and propositional metonymy. The 

referential type refers to those occurrences where an entity is related to another, 

such as “Shakespeare” in the sentence  “People are hungry for Shakespeare in 

America” while the propositional type relates to those cases where it’s a 

proposition that relates to another, for instance “raise the eyebrow”  with the 

meaning of “being surprised” in the sentence “Rosalind raised her eyebrows and 

held out her hand”. On the other hand, Panther and Thornburg (1998) suggest two 

different kinds of metonymy. The first category is represented by prepositional 

metonymies, further broken down into referential, which are the same as those 

suggested by Warren (1999), and predicational, which usually involve a link 

between events. The first type is represented by sentences such as “The growing 
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list of countries where the buses are on strike” where “buses” stands for “drivers”; 

while the second type contains phrases like “He was able to tell me that it had 

merely gone into spasm”, where “able to tell” does not really entail an ability but 

rather the fact that the person did communicate the information. The second 

category, instead, contains the illocutionary metonymies, which are generated 

based on pragmatic inferences. An example of illocutionary metonymies can be 

found in a sentence such as “Have you got a fiver? I want to pay the boy for his 

petrol” where the information required by the speaker is not whether the hearer 

is in possession of a fiver but whether the money can be lent. 

A few years later, Ruiz de Mendoza Ibáñez and Diez Velasco (2002) propose 

another hypothesis on how to deal with the phenomenon of metonymy. They 

argue that it is not relevant to distinguish the aims of a metonymic expression, but 

rather to consider the relationship between said expression and the intended 

referent. Consistent with this view, they report two instances of metonymy, 

namely the “target in source” and the “source in target” metonymies. To the first 

class belong those examples where the metonymic word is part of its referent and, 

therefore, the interpretation involves a domain reduction of the metonymic 

expression, while to the second the opposite case, that is the instances where the 

referent is part of the metonymic expression and, therefore, the interpretation 

involves a domain expansion of the metonymic expression. The previous class 

consists of sentences such as “The great contribution that the Pill has made to 

personal choice” where the term “Pill”, which is normally used to indicate any type 

of medicament, refers specifically to the contraceptive pill, making  “Pill” a sub-

domain of the metonymic vehicle, and requires a restriction of the domain PILL; 

while the latter class is represented by sentences like “All hands on deck” where 

“hands” refers to the sailors who are doing hard physical work, making “hands” a 

sub-domain of the referent, and requires an expansion of the domain BODY PART. 

The last theoretical linguistics model reported by Littlemore is Peirsman and 

Geeraerts’ (2006) model. This approach takes a radically different perspective on 

the matter. The distinction between different occurrences of metonymy they 
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suggest is not based on clear-cut, parallel categories. Instead they suggest the idea 

of “radial categories”, which indicate a type of classification that separates the 

prototypical elements from the non-prototypical elements putting them in a 

continuum. For instance, taking the radial category of “pet”, we may find at the 

centre as prototypical elements words such as “cat” and “dog”, while at the 

periphery words such as “snake” or “tiger” could be more likely found. The idea 

that Peirsman and Geeraerts suggest is that metonymy instances should be 

analysed according to the radial category principle as well, defined by the type of 

contiguity between the vehicle, i.e. the metonymic expression, and its referent. 

For example, taking into consideration the sentence “I’ll be able to eat every day 

and have a roof over my head”, we can establish that the metonymic expression 

“a roof over my head” indicates and is part of a house, making this kind of 

metonymy prototypical. An example of a peripheral metonymy, instead, can be 

found in the sentence “Clinton plans a round table discussion”: here “round table” 

refers to the assembly which might be gather around a round table, but not 

necessarily; the assembly cannot be put in contiguity with the round table, thus 

collocating this instance of metonymy at the periphery. 

 

2.5 Cognitive linguistic perspective 

In addition to the prior mentioned models, which have a more theoretical 

linguistic perspective, other studies offer a different view on the matter of 

metonymy, namely the cognitivist approach. Cognitivists argue against Chomsky’s 

theory of Generative Grammar (1988) and suggest instead that language operates 

in the brain according to three cognitive principles. The first of these principles is 

opposed to generative grammar and argues instead that language is not an innate 

cognitive faculty; the second principle is opposed to truth-conditional semantics 

and argues instead that the semantic metalanguage should not be evaluated in 

term of true or false according to a model of the world; lastly, the third principle 

is opposed to reductionist tendencies that support the hypothesis that 
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grammatical form and meaning should be represented in an abstract and generic 

manner and supports instead that “language knowledge emerges from language 

use” (Croft & Cruse, 2004). Moreover, cognitive linguists emphasised the role of 

metaphor and metonymy, recognizing that how language is structured is 

determined by conceptual and pragmatic factors. Concerning metonymic 

expressions, Langacker (1993), for example, suggests a cognitive linguistic theory, 

which states that, for a metonymic expression to be produced, a shift in profile 

has to occur. In other words, the sense of a word changes according to the context 

in which the same word is uttered: the “Parliament” could refer to the building in 

which the assembly is held, but also to the group of people which constitute the 

government. The sense of the expression can only be selected on the base of the 

context and a shift is required in order to be able to adapt the specific meaning to 

the whole sentence. Langacker (1993)’s theory can be included in a cognitivist 

frame since he introduces the concept of “active zone”, the area which gets 

activated from the shift of focus on the different meanings of an expression. This 

shift is allowed by the connections that can be formed in the brain. It is always 

possible to form new connections and, therefore, to create new metonymic links. 

However, Langacker(1993)’s thesis presents a criticism, namely the fact that from 

this perspective, any expression could be interpreted as a metonymy since a 

different focus has to be selected each time to correctly adapt the general idea to 

the specific context. 

To solve said criticism, Barcelona (2003, 2011) proposes the idea that metonymies 

have to be dealt with in a radial category manner. The type of metonymies that lie 

at the core of the diagram are those based on contiguity and are usually 

represented by referential metonymies; they are the so-called prototypical 

metonymies. Then, there is a bigger group that contains the previous case with 

the addition of other examples, namely the typical metonymies, in which the 

target is distinct from the source. Finally, the outer circle, containing the two 

subdivisions, consists of the schematic metonymies: this is the type of metonymy 

as intended by Langacker (1993) and requires domain highlighting. 
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Figure 2 - Barcelona's model. Source: Littlemore, 2015, pg.57 

 

Further development of this theory is provided by Handl (2011). Her model has a 

very similar schema to Barcelona(2003,2011)’s. However, Handl (2011) introduced 

the concept of “underspecification of meaning” and subsequently “underspecified 

metonymies”, which accounts for the intermediate category. The reason why this 

type of metonymy has an underspecified meaning is that both the basic sense of 

the vehicle term and the contextual meaning contribute to the interpretation of 

the metonymic expression. In practice, the brain does not distinguish between the 

referent and the vehicle term, both meanings remain underspecified and are 

joined to form one “functional unit”. Therefore, it is argued that the metonymic 

expression stands for both concepts and cannot be simply considered as a 

replacement for the intended referent. The main strength of Handl (2011)’s theory 

is that is based on the observation of real-world data from the British National 
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Corpus: the examples are not formulated by the author and, therefore, possibly 

biased, but they represent how metonymies are produced in everyday 

conversations. 

 

Figure 3 - Handl's model. Source: Littlemore, 2015, pg.58 

 

2.6 Recent theories 

More recently, other theories with different approaches have been suggested to 

deal with metonymy. Three main examples of such theories can be identified, 

namely the blending theory (Coulson and Oakley, 2003), the relevance theory 

(Sperber and Wilson, 1987, 2004), and the complex system theory (Biernacka, 

2013). What these theses have in common is a less strict approach to outlining 

metonymy. Moreover, the focus of such hypothesis is less on the different types 

of domains previously suggested, but rather on the role this figure of speech has 
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on the influence that context has in the interpretation and production of 

metonymic expressions. 

Coulson and Oakley (2003) are the main proponents of the blending theory, which 

draws inspiration from Fauconnier and Turner (1999) and states that the way the 

meaning of an expression is determined has to do with the previously cited 

concept of idealised cognitive model (ICM) and often requires the combination of 

more than one of such spaces. In the blending theory, metonymy has the role to 

allow the comprehension of the different concepts that happen to be compressed 

into just a few words; from said perspective, distinguishing and understanding the 

elements that compose the concept being uttered grants a better comprehension 

of the different facets of meaning and metonymy proves to be a useful tool to do 

so. 

On the other hand, in the relevance theory metonymy is not considered a tool to 

understand meaning, but a device to foreground the importance of context in the 

comprehension process. In the relevance theory, as formulated by Sperber and 

Wilson (1987, 2004), it is argued that the person involved in the conversation as 

the hearer will take for granted that any information communicated is in some 

way useful to the purpose of the conversation and such knowledge can, therefore, 

be used as a clue to understand what is later said. According to more recent 

theorists, metonymy is interpreted through a mechanism similar to the same 

principle of relevance: world knowledge should be sufficient to correctly deliver 

the intended meaning and determines why some metonymic expressions are 

considered more acceptable than other. For instance, in the case a person calls a 

friend saying “I am parked out back”, there are a two conditions the hearer must 

be aware of in order to correctly infer that the “I” is actually referred to a vehicle, 

probably a car: firstly, there should be a “salient correspondence” between the 

person and the car, namely the person has to be considered the owner of the car 

and that same person has parked out back; secondly, it should be granted that 

communicating this information is useful for the friend because it could be the 

case that the person is giving a lift to the friend. If these presented conditions are 
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respected, then the interpretation of the metonymic sentence “I am parked out 

back” should cause no trouble. 

Lastly, the complex systems theory distances itself from linguistics since it is more 

of a sociological matter. For instance, Larsen-Freeman and Cameron (2008) argue 

that to explain human behaviours it is necessary to consider and comprehend all 

the determining factors that took place before the situation in which such 

behaviours present themselves. The complex systems theory has been applied 

several times to metaphor, but more recently Biernacka (2013) hypothesized that 

it could be applied to metonymies as well. The reason is that, similarly to 

metaphors, by highlighting different aspects metonymies influence the way 

participants understand the conversation. For instance, Van Dijk (1998) analysed 

speeches given by politicians and he found a recurring pattern of using positive 

connotated characteristics to refer a “in-group”, probably the country the 

politician was speaking to, as opposed to negative characteristics to designate the 

“out-groups”. Using such opposite delineations for different countries has the aim 

of influencing the perspective of the citizens, creating a “us-versus-them” rhetoric 

On the basis of this consideration, the linguistic and the social perspective cannot 

be considered as different matters but rather contribute to further explain why 

we say what we say in such specific way. 

 

2.7 Theories on how metonymy is processed in the brain 

Given the fact that metonymies do not represent a purely linguistic phenomenon, 

but they are highly involved in cognitive processes, the study of such rhetoric 

device has been carried out even in the branches of linguistics which are more 

involved in how language is processed in the brain, namely psycholinguistics and 

neurolinguistics. The main interests have been to analyse whether literal language 

and figurative speech are dealt with in the same way or differently (Frisson and 

Pickering, 1999; Annaz et al., 2008), and the role of both context and syntactic 

information in the comprehension and interpretation of metonymy (Lowder and 
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Gordon, 2013). In order to proceed with said analyses, the most common research 

methods involve eye tracking, brain scanning, reaction-time studies, and 

metonymy comprehension tasks.  

As reported by Littlemore (2015), the main studies in this field of research are 

somewhat more recent than in the theoretical linguistic branch. Part of the 

pioneer work is presented by Frisson and Pickering (1999), who conducted two 

eye-tracking experiment. In the first experiment, by using an eye-tracking 

software they registered how long it took the participants to read literal sentences 

and then compared the results with the time require to read sentences with 

conventional metonymies. The scholars aimed at analysing how metonymy is 

processed in the brain compared to the literal meaning. In the second experiment, 

they added to the experiment material less common metonymies and compared 

the performance of the participants when dealing with often recurring 

metonymies or with novel metonymies. Based on their findings, Frisson and 

Pickering (1999) argue against the idea that neither the literal language nor the 

figurative meaning is processed first, while they suggest that initially, the meaning 

remains underspecified and, therefore, both senses can be accessed immediately 

and simultaneously. Only after sufficient context is provided in the conversation, 

the hearer can commit to either meaning. 

One problematic aspect of Frisson and Pickering (1999)’s research is that the 

syntax of the metonymic expression is not considered a variable, which could 

influence the rate at which the meaning is processed. In their study, Lowder and 

Gordon (2013) suggest investigating if and how phraseology plays a role in the 

interpretation of metonymy. On the basis of previous studies that demonstrated 

that the human brain processes at a different depth different parts of a sentence, 

they hypothesised that the position in which the metonymy appears influences 

how much attention we pay to said expression. In order to prove their thesis, they 

repeated Frisson and Pickering (1999)’s experiment, but they divided the dataset 

according to where the metonymic expression would appear, namely either in the 

direct object or in an adjunct phrase. Their results showed that when the 
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metonymy appeared as the direct object the participants required more time to 

process it, probably because they found it more complicated to make sense of the 

expression, while the process was quicker when the metonymy was found in the 

adjunct phrase because the focus was on another part of the sentence. 

Other than the previously mentioned studies which exploit traditional techniques, 

further research has employed more advanced instruments to analyse the process 

of metonymic interpretation. To give an example, in Rapp et al. (2011) functional 

Magnetic Resonance Imaging (fMRI) is utilized to investigate which parts of the 

brain receive activation when dealing with a metonymic expression. To do so, they 

analysed the scans of the brain of fourteen healthy participants and they look for 

which parts of the brain were activated respectively when asked to read literal 

sentences (e.g. “Africa is arid”) , metonymic sentences (e.g. “Africa is hungry”), 

and non-sense sentences (e.g. “Africa is wollen”). They found out that the most 

involved side of the brain is the left middle temporal gyrus, as well as the inferior 

frontal gyrus of both hemispheres. The left middle temporal gyrus is also the part 

responsible for syntactic processing and the interpretation of novel metaphors, 

while the inferior frontal gyrus is involved in the unification of discourse 

information and previously stored knowledge. These results seem to support the 

hypothesis that ICMs play a fundamental role in metonymy comprehension. 

Additional supporting evidence to these previously presented findings comes from 

a meta-analysis conducted by Rapp et al. (2012) on prior MRI experiments 

involving figurative language. All the studies that they took into consideration led 

them to the conclusion that figurative language caused the activation of both sides 

of the inferior frontal gyrus and, more specifically, the right hemisphere is mainly 

responsible for processing novel figurative language. Although this study does not 

focus particularly on metonymy, it is still in line with previous findings and, 

therefore, provides additional evidence. 
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2.8 Developmental studies of metonymy 

Aside from understanding how and where metonymies are processed in the brain, 

it is also relevant to understand when metonymy comprehension and production 

start to develop. The main hypotheses concerning this development are that it 

either depends on age or vocabulary knowledge. Rundblad and Annaz (2010a)’s 

study has the aim to understand when children start to develop the ability to 

comprehend metaphor and metonymy, compare their performance to the adult’s 

and, lastly, determine the role played by vocabulary size. To conduct the 

experiment, the researchers formulated the experiment as a story/picture 

comprehension task: children were asked to observe four pictures accompanied 

by a short capture which contained either a metonymic or a metaphorical 

expression, and then they were asked a comprehension question at the end. The 

results seem to show that the ability to process metonymy precedes the ability to 

process metaphor and it is fully developed by the age of twelve. In addition to that, 

the researchers observed how vocabulary size influenced more strongly 

metonymy rather than metaphor comprehension. Some possible explanations for 

these findings are that the interpretation of metonymy requires fewer cognitive 

patterns, or that most metonymies are recurrent and very similar versions of the 

same metonymic phrase can be found in several languages. 

Not only children are capable of understanding metonymic expressions, but they 

showed great ability at producing metonymies, even novel ones. Through a 

process, which has been defined as “creative metonymical shrinking” (Nerlich et 

al., 1999), children have proved to be able to connect concepts and form, even 

unusual, metonymic phrases in order to express their ideas with less effort. For 

instance, the reasoning behind a child’s utterance such as “Mum, I like being a 

sandwich”, which may seem nonsensical at first, is that there may a group, which 

the child is part of, that usually has sandwich as a snack; the child may particularly 

enjoy being part of said group and, therefore, what he means to say by shrinking 

the two concepts together is that he enjoys being part of the group that usually 

gathers during the break to enjoy their sandwiches together. This result is a highly 
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creative use of metonymy, whose meaning requires more effort in order to be 

unpacked. 

 

2.9 Dealing with metonymy in the case of linguistic impairments 

Another factor affecting language comprehension and production is represented 

by linguistic impairments. The impairments can be due to different causes, such 

as some kind of syndrome or disorder or brain damage. Such cases are often 

investigated because they can provide an explanation on how the mind and its 

processes work. This is the reason why cases of children with linguistic 

impairments are involved also in studies to investigate metonymy: there are a few 

examples where the conditions gave an insight on how metonymy is dealt with 

from a cognitive perspective. 

In the study conducted by Annaz et al. (2008) children with Williams syndrome, 

which is a genetic disorder that affects different part of the body, were involved 

in an experiment to investigate their ability to process metaphoric and metonymic 

expressions. From a cognitive perspective, people with Williams syndrome show 

a mild to moderate intellectual disability, however language abilities are normally 

intact (Burn, 1986). Moreover, people affected by this syndrome usually have 

shown good performances when dealing with everyday language; however, they 

lack pragmatic skills. This shortcoming results in stereotyped replies and missing 

clues on when it is appropriate to intervene in a conversation. Since the 

interpretation of figurative language is not a purely linguistic task, but it also 

involves pragmatic knowledge, the question to analyse was whether the lack of 

pragmatism would result in an inability to comprehend figurative language. 

Thanks to their experiment, which was built the same way as in Rundblad and 

Annaz (2010a), Annaz et al.(2008) showed that children with Williams syndrome 

deal better with metonymy rather than metaphor. Moreover, their ability to 

comprehend metonymy was directly proportional to the children’s vocabulary 

knowledge. Based on such findings, the authors drew the conclusion that, in 
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contrast to metaphor, which requires additional cognitive mechanisms, 

metonymy can be considered comparable to regular language. 

However, the previously presented research failed to take into consideration a 

possibly influential variable, namely novelty versus conformity of the metonymic 

expressions presented to the participants. Having already heard a specific 

expression could facilitate the access a second time to the same item, resulting in 

unreliable experimental evidence. Therefore, in order to solve said criticism, Van 

Herwegen et al. (2013) repeated the same experiment as the previously presented 

study to investigate whether such a variable has an impact on the results. The 

findings show that the development of comprehension skills was delayed in the 

group affected by the Williams syndrome compared to the control group and it 

was not affected by the metonymies being conventional or novel. Therefore, the 

repetition of the experiment seems to prove that the “novelty versus conformity” 

factor is not as impactful as other variables, such as semantic knowledge, for 

example. 

Another impairment often considered in several linguistic experiments is autism. 

Autism is better defined as autism spectrum disorder (ASD) and, since it is a 

spectrum, it is hard to define the general characteristic, which could apply to every 

individual with said condition. This consideration can be applied to linguistic 

abilities: some people with ASD are non-speaking, while others perform at the 

same level as neurotypical people (Lord et al., 2018). Even though language 

abilities can significantly vary across subjects, a common aspect of people with 

ASD is their impairment in pragmatic abilities (Tager-Flusberg, 2006). As already 

mentioned, processing the various rhetorical figures requires not only linguistic 

knowledge but also a certain degree of pragmatism. Therefore, Rundblad and 

Annaz (2010b) compared the performance of children with ASD and typically 

developing children. To do so, they created an experiment which comprehended 

both metaphor and metonymy comprehension and the structure and the 

procedure of the experiment was the same story/picture task as in Rundblad and 

Annaz (2010a). The results showed a remarkably poorer performance regarding 
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both figures of speech in children with ASD compared to the neurotypical subjects. 

Moreover, the results of this experiment with children with autism resemble the 

findings of the experiment with children with Williams syndrome in that the deficit 

in metaphor comprehension is correlated to chronological and mental age, while 

the ability to comprehend metonymy was linked to the vocabulary knowledge of 

the children involved. On the basis of these findings, Rundblad and Annaz (2010b) 

argue that the performance of children with ASD in metaphor and metonymy 

comprehension was significantly affected at all ages. In addition to that, based on 

the different performances when dealing with metaphor or metonymy, they reach 

a similar conclusion as in their previous study: metonymy comprehension proved 

to be more easily faced because it functions similarly to literal language and does 

not require mapping across different domains, like metaphor. 
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III. Computational linguistics 

 

After having described metonymy from the point of view of theoretical and 

psycho-linguistics, in this chapter the approach of computational linguistics will be 

considered. The theories which will be discussed go back to the first experiments 

with metonymy, but also the most recent studies with advanced technologies will 

be included. 

 

3.1 Is it or is it not metonymy? First computational approaches to 

      Metonymy Resolution 

Since the 1950s when the United States started to experiment with automatic 

translation. Computational linguistics had to deal with increasingly complex 

language phenomena, in order to improve performances. Since speaking a 

language involves creativity, which is a property machines are not primarily 

designed to deal with, researchers started to investigate how much computers can 

understand in the case of figurative language. This process involved metonymy as 

well. Since the 1990s, linguists started to experiment with asking machines to 

solve metonymic expressions. Since then, even though it has not received as much 

attention as other linguistic aspects, this area of research has developed. The 

relevance of computationally solving metonymic expressions is demonstrated by 

the many use this kind of task could have: for instance, in the NLP field, metonymy 

resolution tasks are employed in machine translation (Kamei and Wakao, 1992; 

Brdar & Brdar-Szabó, 2013; Zhi, 2020), question answering (Stallard, 1993; 

Harabagiu, 2008), and anaphora resolution (Harabagiu, 1998; Markert and Hahn, 

2002; Zhao, 2014). 

Pioneer studies dealing with metonymy resolution tasks were conducted in the 

1990s, but they were based on small-scale corpora; it was only in the early 2000s 

that scholars started to take a corpus-based approach or to test their models on 
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larger datasets. A key aspect of the models proposed in this era was that 

metonymy resolution was treated as a classification task: most times researchers 

would gather a corpus of one type of metonymies and build models that could 

classify the target expressions as either literal or metonymic expressions, 

sometimes further divided into different categories. One of the first papers to go 

down this newly suggested path was Markert and Nissim (2002). The paper dealt 

with metonymy and suggested a computational algorithm to solve them. In their 

study, they considered a very specific type of metonymy to be analysed, namely 

all the metonymies related to location, subdivided into place-for-people, place-

for-event, and place-for-product groups. After creating a corpus where metonymic 

occurrences were mixed with literal expressions, Nissim and Markert (2002) 

created a classification task to recognize and divide the metonymic phrases into 

different classes. The decision to investigate this linguistic phenomenon as a 

classification was based on the assumption that the interpretation of metonymy 

is a quite regular task, as previously suggested by Lakoff and Johnson (1980), and 

therefore can be treated similarly to a word sense disambiguation (WSD) task. The 

only aspect that distinguishes these two types of tasks is that a WSD task selects a 

limited number of readings for each entry, while metonymy resolution could 

potentially require infinite sets of senses related to each word. In order to solve 

this problem, Nissim and Markert (2002) argued that, even though the senses 

could be infinite, it is also true that all metonymic expressions can be generally 

traced back to broader categories. To conduct the experiment, the researchers 

created a corpus, in which 1000 examples were annotated by hand, and a 

supervised classification algorithm which could differentiate whether the 

expressions to be analysed were alternatively literal phrases, place-for-people, 

place-for-event, place-for-product, mixed or other types of metonymies. In 

addition to this first consideration, since features, such as co-occurrences, 

collocations, and grammatical features are usually influential in WSD tasks, Nissim 

and Markert (2002) included them in the experiment to explore as well the role 

these feature types play in a metonymy resolution task. The results showed that 
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co-occurrences do not impact in any way the performance, while the latter 

features perform well, with the only exception that collocations must be 

generalised to the semantic class the expression belongs to. 

As follow-up research, Nissim and Markert (2003) proposed another more 

efficient algorithm to perform a similar metonymy resolution task. In comparison 

to the previous model, the latter innovation was based on employing the similarity 

among the conventional types of metonymies in order to facilitate their 

classification. More specifically, two types of similarity were considered in the 

experiment, namely the similarity among the target words, also called Possible 

Metonymic Words (PMWs), and the similarity of the context in which said target 

words occur. So, we can consider the following three sentences as examples: 

- Pakistan had won the World Cup. 

- England won the World Cup. 

- Scotland lost the semi-final. 

The similarity was computed through a context reduction step, that simplified the 

sentences above in “Pakistan-subj-of-win”, “England-subj-of-win”, and “Scotland-

subj-of-loose”. Then, it was computed the similarity between the semantic classes 

of “Pakistan”, “England”, and “Scotland”, the similarity of the roles which was 

“subj-of” for all three instances, and finally the head similarity between “win” and 

“loose”. In the following schema, the process is best summarized: 

 

 

Figure 4 - Computation of the similarity between two examples. Source: Nissim & Markert, 2003, pp.2 
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Then, through the study of a corpus, Nissim and Markert (2003) observed that the 

use of a name of a nation to designate its team covered most metonymic instances 

of this kind and, therefore, they managed to demonstrate the key-role played by 

metonymic pattern in metonymy resolution. Thus, the same criteria was used to 

other location metonymies, which did not concern the semantic field of sports but 

rather events or products. Moreover, Nissim and Markert (2003) demonstrated 

the usefulness of considering syntactic head-modifier relations as a feature to 

increase precision, even though they entail data sparseness. In order to solve this 

problem, the researchers introduced a thesaurus in their study that enabled the 

model to draw inferences and generalise between the given example and similar 

lexical heads. This methodology granted a generally better performance of the 

algorithm on metonymy recognition. 

Alternatively to the method suggested by Nissim and Markert (2003), around the 

same time, another approach was proposed: a probabilistic account was brought 

forward by Lapata and Lascarides (2003). In their study, they analysed in particular 

the kind of metonymy called logical. Logical metonymies are those that are 

involved in the verb phrase, where there is a covered event implicitly included in 

the verb, such as in the sentence “I began the book”. It could be intuitively argued 

that the most likely reading is “I began reading the book”, however that is not the 

only plausible meaning, since it could be possible as well that “I began writing the 

book”, “I began editing the book”, and so on. On this basis, Lapata and Lascarides 

(2003) argue that no theory presented until then represented an exhaustive 

account to deal with the multiple readings each occurrence of said type of 

metonymy could present. Therefore, they suggest that the likelihood of the 

possible interpretations should be ranked and a probabilistic model should be built 

on top of the likelihood analysis. In order to computer the likelihood, Lapata and 

Lascarides (2003) retrieved from the British National Corpus (BNC)(Burnard, 1995) 

the co-occurrences of the covered events with the metonymic verbs and with the 

nouns and ranked them according to their frequencies. Based on the frequencies, 

they managed to unify them into a formula, which computed the likelihood, or 
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probability, for the selected covered event. The probabilistic aspect of this kind of 

model results in an unsupervised approach to metonymy resolution, a new 

method which was never attempted before. The results from this statistical 

approach were compared with the judgement of human subjects on the same 

metonymic sentences and the comparison between the results generated by the 

model and the answers returned by the participants proved that the performance 

of the model was overall satisfactory. Thus, the theory suggested by Lapata and 

Lascarides (2003) showed that a probabilistic model could infer semantic 

properties from a corpus even if said corpus is not semantically annotated. 

 

3.2  Inclusion of the distributional approach 

Towards the late 2000s, a new method was applied to metonymy resolution, 

namely the distributional approach (Boleda, 2020). This type of approach was 

based on the Distributional Hypothesis, as formulated by Harris (1954): the 

similarity in meaning of different words entails a similarity in the linguistic 

distribution. Therefore, words that occur in similar contexts have probably similar 

meanings. This hypothesis was the base on which the field of Distributional 

Semantics was built upon. According to the methods employed in this field, the 

words should be considered as a whole with the context in which they appear and 

represented abstractly as vectors. The context influences the direction of such 

vectors: the same word, in fact, could correspond to vectors with different 

directions. For instance, a polysemous word such as “wing” indicated both the 

anatomical part of a bird and a part of a building and to each of these meanings 

corresponds to at a different vector which would have different inclination 

according to the sense of the word we are taking into consideration. 

Metonymy resolution tasks could benefit from said approach because applying the 

distributional approach could facilitate the automatic interpretation of metonymic 

occurrences: if metonymies appear in similar contexts, their referent should be 

similar at least to a degree. 
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One of the first studies in which the distributional approach was employed was 

Brun et al. (2007). In the research, they took into consideration location name and 

company name metonymies and dealt with them similarly to a Named Entity 

Recognition (NER) task, which involves the recognition and extraction of name 

entities with the purpose of information mining. Brun et al.(2007) applied the NER 

task to metonymy resolution but, in order to do so, they had to adapt it to 

figurative language. They hybridize the methodology by unifying a syntactic 

analysis of the sentences and the distributional approach. More specifically, they 

implemented a deep parsing analysis to the metonymic sentences to extract 

syntactic information, which roughly corresponded to the agent-experiencer 

roles. Then, through a corpus study, they identified those instances that presented 

irregularities according to the agent-experiencer role, i.e. the metonymic 

expressions, and, on the basis of the observation of those instances, drew 

inferences such as “if a location name is the subject of a verb referring to an 

economic action, like import, provide, refund, repay, etc., then it is a place-for-

people” (Brun et al., 2007, pp.489). Thus, the parser was adapted with the 

encoding of said additional information. Also the distributional-approach-based 

model they employed was implemented with the syntactic information just 

retrieved: to do so, they instructed the model to take two lexical units at a time 

and add the syntactic information that unifies the two units in order to form a 

triple, such the following for the sentence “provide Albania with food aid”: 

- OBJ-N('VERB:provide','NOUN: Albania'). 

- PREP_WITH('VERB: provide ','NOUN:aid'). 

- PREP_WITH('VERB: provide ','NP:food aid'). 

Then, the context was created for each lexical item, as for instance the following: 

Words:    Contexts: 

VERB:provide    1.VERB: provide. OBJ-N 

 NOUN:Albania   1.VERB: provide.PREP_WITH 

NOUN:aid    2.NOUN: Albania.OBJ-N 
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NP:food aid    2.NOUN: aid. PREP_WITH 

2.NP: food aid. PREP_WITH 

1.VERB:provide.OBJ-N+2.NOUN:aid. 

PREP_WITH 

1.VERB:provide.OBJ-N+2.NP:food aid. 

PREP_WITH 

1.VERB:provide.PREP_WITH 

+2.NO:Albania.OBJ-N 

For each entry in the dataset, it was then created a sub-context, a list of contexts 

in which the lexical unit appears, and a sub-dimension, a list of lexical units which 

co-occur at least once with a given context from the sub-context list. For instance, 

“Albania” is retrieved in 384 different contexts and 54,183 lexical units are 

occurring with at least one of the contexts from the sub-contexts list. On the basis 

of these data, the closeness of the context “VERB:provide.OBJ-N” is computed, 

thus obtaining the attribution of the nation name “Albania” to a place-for-people 

metonymy. The performance of the model created on the basis of the above 

presented method on the train set was adequate, however, it worsened on the 

test set. Therefore, this study was certainly defective, but it is still worth to be 

mentioned since it suggested a new combined approach to solve the problem of 

metonymic interpretation. 

The distributional approach was also adopted by Lenci (2011) to analyse logical 

metonymies. He based his theory on Elman’s assumption (2009) which states that 

the semantically preferred filler of an argument of a verb is determined not only 

by the verb itself but by the other preferred fillers of the verb as well.  Based on 

this statement, Lenci elaborated the Expectation Composition and Update (ECU) 

model, which was able to separately compute the semantic expectations 

determined by the subject and by the verb and afterwards combine them to 

predict the “updated expectation”. To test his theory, he formulated an 

experiment to assess the performance: the model was evaluated on how well it 

calculated the thematic fit between an agent-verb pair and a patient-noun 
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argument of the same verb. The results were satisfactory and therefore the ECU 

model constituted a potentially interesting method to interpret metonymy. 

However, the performance of Lenci (2011)’s model or of any other distributional 

model had not been compared to the other approaches. Therefore, to assess the 

validity of this latter approach, Zarcone et al. (2012) proposed a new research 

paper that would establish which method is better than the other between the 

two previously mentioned approaches. In contrast to the previous studies that 

have employed English as the language of research, this study deals with the 

German language; however, the task resembles the preceding analyses, in that it 

aims at evaluating the possible readings of logical metonymies. More specifically, 

Zarcone, Utt and Padó decided on two alternative meanings for each metonymic 

sentence and asked the model to determine which occurrences were the high 

thematic fit and which occurrences were the low thematic fit. They chose to 

compare the probabilistic model suggested by Lapata and Lascarides (2003) and 

the distributional model proposed by Lenci (2011). Nevertheless, the researchers 

had to modify the ECU model to be adapted to deal with logical metonymy: they 

shifted the focus from the object to the covert event. They conducted the 

experiment and the results showed that the similarity-based model’s performance 

was more convincing because of the better coverage and the higher accuracy 

compared to the probabilistic account. 

After having proven that the distributional approach was a method worth 

considering, Utt, Lenci, Padò and Zarcone (2013) have taken it as a starting point 

to further investigate new processes to identify metonymic occurrences. In their 

study, they investigated whether the measure they called “eventhood” could help 

to infer whether a verb is a metonymic instance or not. The feature of 

“eventhood” determines whether a verb selects more likely an event-denoting 

object or an entity-denoting object. In order to determine the nature of the object-

noun relations, the researchers have used WordNet (Fellbaum, 2010), a large 

database which has encoded semantic relations among English words, to decide 

which nouns had an event sense. The results showed that, even though there are 
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exceptions, a significantly higher eventhood score corresponded to metonymic 

verbs and that the higher the eventhood of a verb is the less likely said verb is to 

select an entity-denoting object. Therefore, on the basis of these findings, the 

research team of Utt, Lenci, Padò and Zarcone (2013) concluded that “eventhood” 

is a feature that can often indicate the occurrence of a metonymic verb and can 

also help to distinguish different types of metonymies. 

 

3.3  Metonymy Resolution in the Deep Learning era 

Neural networks are a fundamental method of machine learning developed to  

mimick the cognitive processes that humans perform on a daily basis and, 

therefore, allowing machines to reproduce the same mechanisms that take place 

in the brain (Guresen & Kayakutlu, 2011). Through machine learning algorithms, 

computers are able to train on large datasets, identify patterns and then, 

reproduce those patterns in order to produce results to solve the most diverse 

tasks (Ray, 2019). The concept of neural networks was created by Warren 

McCulloch and Walter Pitts (1943) and it represented a major area of research for 

both computer and neuro-scientists for more than two decades. Since then, neural 

networks have been going in and out of fashion through the years, but it is not 

until the 2000s that neural networks entered the world of language modeling. 

Previously, other strategies to model languages had been used, such as the models 

cited, but starting to apply neural networks to linguistic tasks was the turning point 

in the process of making it possible to machine to deal with natural language in a 

more accurate but at the same time semi-autonomous manner.  

The first research published using the neural network technique was by Bengio et 

al. (2003). In their study, they created the first neural language model, which was 

a feed-forward model constituted of only three layers: an input layer, a hidden 

layer, and an output layer. Even though the number of hidden layers has been 

progressively increased in the following years, the three layers of Bengio et al. 

(2003)’s network are still the building blocks of any neural model. However, the 



39 

 

layers are not the only element to build a neural network: other than the input 

data and the corresponding targets, i.e. the output label, there are two major 

aspects, namely the loss function and the optimizer. The loss function serves to 

compare the prediction as generated by the network to the targets and then to 

compute a measure to define how accurately the model is working; the optimizer, 

instead, takes the loss value generated by the loss function and, based on that 

measure, updates the weight, thus influencing how the model learns. 

 

Figure 5 - Representation of a neural network. Source: Chollet, F. (2021) 

 

Taking this neural network as a starting point, other models have been created on 

top of it: such kind of neural network has been modified and models like recurrent 

neural networks (RNN) (Mikolov et al., 2010) and long-short term memory 

networks (LSTM) (Graves, 2013). 

In particular, given their ability to store information such as word sequence, LSTMs 

prove to be a useful tool for analysing language sequences and, therefore, 

metonymic occurrences. Hence, neural networks and, more specifically, LSTMs 

started to be employed in order to investigate metonymic sentences. This shift in 

the approach had one main consequence: after the distributional approach which 

treated metonymy resolution as an interpretative task where the model was asked 
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to predict the “missing element” of a metonymic expression, with neural networks 

metonymy resolution began to be treated again like a classification task. For 

instance, Gritta et al. (2017) intended the resolution of location metonymies as a 

classification task, i.e. identifying whether a location name was intended literally 

as the name of a place or figuratively as, for example, the people who find 

themselves in that place. The main contributions of this study are a new dataset 

created purposely for location metonymies (ReLocaR) and a novel predicate 

window (PreWin) method. This method is particularly interesting because, instead 

of considering the whole sentence as the informative source to classify metonymy, 

the PreWin allows to select a smaller and more relevant section of the sentence, 

granting more accurate results. By combining the PreWin method with 

dependency parsing, Gritta et al. (2017) produced convincing results, proving that 

at that state-of-the-art knowledge a minimalistic neural approach worked best for 

location metonymy resolution. 

 

3.4 Transformer Language Models 

A substantial turning point is represented by the appearance of a new type of pre-

trained language models, namely transformers such as BERT (Devlin et al., 2018) 

and RoBERTa (Liu et al., 2019). What differentiates these models from the rest is 

the mechanism of self-attention “heads”, which serves to compute a weighted 

representation of the token, consisting of a key, a value, and query vectors for 

each input token. Each layer of this type of neural network is composed of several 

heads and has to combine the outputs of said heads (Rogers et al., 2021). The main 

advantage of the self-attention heads is that they have a more in-depth 

understanding of the dependencies and influences between the words, in 

comparison with the previous models. As a matter of fact, the weighted 

representation allows distinguishing the most relevant words in long and complex 

sentences: this was the main problem for LSTMs, which were trained to take into 

equal consideration all words, but thus they would start forgetting information 
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rather quickly. The ability of transformers through attention heads to memorise 

the most salient words allows the model to keep track of relevant information and 

therefore to refer to words that appear in previous contexts.  

As previously mentioned, two examples of such transformer models are BERT and 

RoBERTa. BERT, which stands for Bidirectional Encoder Representations from 

Transformers, is a model elaborated by Google AI Language in 2018 and it is able 

to process unlabelled text, extract information from the data based on the left and 

right context of the analysed token (Devlin et al., 2018). BERT was developed in 

two steps: the first step was the semi-supervised training on large amount of texts, 

such as books and Wikipedia, and it was trained on the basis of an unmasking task 

and a next sentence prediction task; the second step consist of the fine-tuning of 

the model for a particular purpose and require a supervised training on labeled 

data.  

 

 

Figure 6 - BERT development: training and fine-tuning. Source: Devlin et al.(2018) 

 

On the other hand, RoBERTa is architecturally the same model as BERT; however, 

BERT was undertrained according to Liu et al. (2019) and therefore they retrained 

the model modifying some aspects of the training process, namely the training 

procedure was made longer over additional data, the next sentence prediction 

task was removed, the training sentences were significantly longer, and it involved 
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dynamic masking instead of static. With this process, they created a new better 

performing model, that they called RoBERTa (Robustly optimized BERT pre-

training Approach). 

BERT, RoBERTa and the other variants of this type of transformers received 

immediate attention and recognition from the NLP community because of their 

impressive performances. The aim of most studies related to transformers is to 

understand how they manage to deal with language so successfully. To do so, 

several researchers tried to comprehend what kind of information BERT is able to 

process and then reproduce. As reported by Rogers et al. (2021), BERT is able to 

learn and represent information similar to syntactic tree structures, parts of 

speech, syntactic chunks, and roles. Nonetheless, even though it has some 

knowledge about semantic roles, BERT seems to struggle with other semantic-

related tasks, like for example name entity replacement (Balasubramanian et al., 

2020). Furthermore, also gaining and applying world knowledge does not seem an 

easy undertaking for this type of transformers, making any type of task where any 

kind of pragmatic knowledge is required rather difficult. 

As discussed at the beginning of this thesis, metonymy interpretation is a multi-

faceted task: in order to correctly infer the referents of a metonymic expression, 

knowledge about the syntactic structure of the sentence, the semantic 

information and, lastly, world knowledge are all required. Given the just discussed 

difficulties BERT has to apply all these skills at the same time, it is indeed 

interesting to evaluate whether this transformer model can perform on a 

metonymy resolution task as well as it does on literal language. The research 

proposed so far goes in two directions, either comparing the performance among 

transformers and with the previous theories or dealing with metonymy resolution 

as a classification task. 

A work that goes in the direction of testing the performance of these newly 

created models is the research by Rambelli et al. (2020). In their study, they 

compared the performance of probabilistic, distributional, and transformer-based 
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models on the task of logical metonymy interpretation.  Specifically, Rambelli et 

al. (2020) considered the probabilistic model by Lapata and Lascarides (2003) for 

the probabilistic account, the Distributional Semantic Models (DSMs) by Zarcone 

et al. (2012) and the Structured Distributional Model (SDM) by Chersoni et al. 

(2019) for the distributional approach, and lastly they chose BERT, RoBERTa, 

XLNet, and GPT-2 as the transformers. The task said models were required to fulfil 

was covert event recovery, meaning that they had to guess which was the implied 

verb in the sentence. The alternative verbs returned by the models were then 

judged on the basis of a plausibility score determined by a <subject, metonymic 

verb, object> triple and this rating was compared to human judgements in order 

to calculate the accuracy of the performance. The findings showed that the model 

that best performed on metonymy resolution was the SDM by Chersoni et al. 

(2019); however, Rambelli et al. (2020) argued that further research may be 

required to attest the performance of the transformers. 

On the other hand, considering the strategy of testing models on a classification 

task, the study conducted by Li et al. (2020) is worth to be mentioned. Their aim 

was to conduct the first classification task experiment on location metonymies 

without the bias of external information, like the knowledge derived from taggers, 

parsers, or annotated dictionaries. The main contribution of this study is the 

inclusion of an interesting feature, namely a technique called target word masking: 

using six datasets, they substituted the target metonymic word with an X token, 

the masking, and let the models, BERT-base and BERT-large, guess whether the 

masked token was a metonymic or literal expression based only on the context 

surrounding said word. They compared the performances of the regular models, 

the models with data augmentation, and with the masking technique. The results 

proved that target word masking significantly improved the accuracy with which 

the models were able to predict metonymies. 

Another research that has employed the technique of target word masking, even 

though with a different aim, is by Pedinotti and Lenci (2020). Their work is worth 

mentioning because they manage to combine both previously mentioned 
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approaches into one study. Their aim was to assess whether BERT has the ability 

to capture the meaning shift that occurs when a literal expression is replaced with 

a metonymic expression; moreover, they also wanted to compare BERT-base’s 

performance with a model inspired by the SDM by Chersoni et al. (2019). This 

second model was based on the Generalized Event Knowledge (GEK) theory, which 

is a theory formulated by McRae and Matsuki (2009), and states that the way a 

sentence is processed gets influenced by expectations about the upcoming 

information determined by conceptual knowledge. In order to test the models, 

they subdivided the experiment into two parts. In the first part, they investigate 

the comprehension of the meaning shift, meaning that for each dataset entry, they 

calculated the contextual embeddings of the target word when used literally and 

when used metonymically, and then they compared both results with the 

contextual embedding of the target referent in the metonymic sentence. In this 

first step of the experiment, Pedinotti and Lenci (2020) also employed the masking 

strategy to observe whether BERT would predict the metonymic expression or the 

intended referent of said metonymy as more likely. In the second experiment, 

instead, the researchers wanted to assess whether the models would be able to 

associate the target word with the corresponding sense. To do so, they further 

divided the task into two parts: Metonymic Matching and Literal Matching. 

Metonymic Matching was correctly performed if the metonymic expression was 

more similar to the metonymic paraphrase than the literal expression to the same 

metonymic paraphrase, while Literal Matching was confirmed in the case of the 

literal paraphrase being more similar to the literal expression than to the 

metonymic expression. Also in the second experiment, masking was included in a 

similar way as in the first experiment: they observed whether the model would 

more likely predict the metonymic interpretation or the literal interpretation. On 

the basis of their findings, Pedinotti and Lenci (2020) argued that BERT struggled 

in the interpretation of the meaning shift that occurs in the case of metonymy, 

however, BERT’s performance was superior to SDM when dealing with matching 

and choosing between two possible interpretations. 
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IV. The Project 

 

After having introduced what the concept of metonymy and seen how it has been 

dealt with from different research fields, the aim of this thesis is suggesting a new 

analysis of how such figure of speech is handled by recent technologies, such as 

transformer language models. 

 

4.1 The background 

Transformers are receiving a lot of attention at the present moment given their 

impressive performances when dealing with language (Zhang et al., 2023; Illina & 

Fohr, 2023; Kadan et al., 2023). They are indeed a powerful tool that could be 

employed in different tasks, from natural language generation (NLG) (Nguyen & 

Tran, 2023) to information extraction (Li et al., 2023) to many others. Their main 

advantage is that transformers are able to operate on unlabelled data, but still 

acquire relevant information. This type of language model has proved to generally 

deal quite well with literal language; however, they showed to encounter some 

trouble with figurative language. Furthermore, the main issue with transformers 

is that researchers still have to figure out how they exactly work. Rogers et al. 

(2021) discussed in their paper which aspects of human language BERT is able to 

process. As they have argued on the basis of previous research (Wu et al., 2019; 

Hewitt and Manning, 2019), BERT seems to have some syntactic understanding, 

but it lacks as far as semantics and pragmatics are concerned. In Chapter 2.1-2 of 

this thesis, it was mentioned that, even though metonymy resolution seems an 

automatic task for humans to perform in everyday communication, in reality 

semantic skills and world knowledge indeed play a fundamental role in the correct 

interpretation of such figure of speech, as the psycholinguistic experiments have 

shown. On the basis of said considerations, the evaluation of what kind of 
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information transformer models are able to process when dealing with metonymy 

resolution is still a matter of discussion. 

As mentioned in the previous chapter, several studies on metonymy resolution 

have been conducted in order to try to answer the question of whether a 

transformer language model such as BERT could distinguish the literal use from 

the metonymic use of an expression. However, to the best of my knowledge, no 

study has so far been proposed to further investigate what transformers can infer 

about the interpretation of referential metonymy, i.e. they have never been asked 

to return possible referent interpretations of a metonymic occurrence. Therefore, 

the first experiment of this thesis aims at exploring if and how well some 

transformers, namely BERT (base and large) and RoBERTa (base and large), can 

predict the intended referents of a corpus of metonymic sentences. To do so, said 

transformers were asked to produce words that could replace the metonymic 

expression, and the accuracy was judged both on the basis of hypernym-hyponym 

relations as encoded on WordNet.  

Furthermore, a second experiment is proposed in order to analyse the 

performance of the models at the different stages and more specifically to 

understand why the accuracy of the answers the models return varies. The model 

that will be analyse is RoBERTa large since it was the transformer which performed 

slightly better than the others in the first part of the project. To investigate the 

trend of the performance of RoBERTa large, the contextual embeddings of target 

words will be considered and compared. The comparison will be between three 

different instances of sentences: metonymic sentences, literal sentences, and 

sentences with a metonymic paraphrase. By comparing the contextual 

embeddings of the target words contained in these sentences it will be possible to 

compute the cosine similarity at each layer of the chosen model. 
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4.2 Experiment 1 

4.2.1 Models, tools, and dataset used in the study 

In my work I considered a total of four models: BERT base, BERT large, RoBERTa 

base, and RoBERTa large. Both BERT and RoBERTa are models built on the base of 

stacked layers of encoders and the difference between the two versions of each 

model is mainly in the different number of layers: the base version of both consists 

of 12 layers, while the large version of 24 layers2. A higher number of layers 

corresponds to a larger quantity of parameters and, therefore, large versions have 

more parameters than the base versions. However, as far as parameters are 

concerned, BERT and RoBERTa differ: BERT base has 110 million parameters, while 

RoBERTa base has 125 million parameters, and BERT large has 340 million 

parameters, while RoBERTa large has 355 parameters. For the purpose of this 

thesis, the above-mentioned transformers were retrieved from the open source 

library Transformers (Wolf et al., 2020) on the Hugging Face website. 

Other than the models, another essential tool was used in the experiment, namely 

WordNet. WordNet is a large electronic lexical database for English (Fellbaum, 

1998), which was created to represent concepts are connected to one another in 

the human brain. WordNet consists of three separate databases: the first database 

is dedicated to nouns, the second is for verb entries, and in the third adjectives 

and adverbs are encoded. For the purpose of this thesis, we will be considering 

and working on only the database dedicated to nouns. Each entry in WordNet 

represents a sense which might encode a list of lemmas, i.e. a synset, and is 

defined by a gloss and some examples of sentences in which said lemmas may 

occur. However, the same lemma could appear in multiple synsets: this is due to 

the lexical ambiguity that may occur, as for instance in the case of polysemous 

words. To explain how WordNet was built, two theories must be considered: 

componential analysis, which states that more generic concepts are “contained” 

 
2 https://huggingface.co/transformers/v2.5.1/pretrained_models.html 
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into specific concepts, and relational semantics, which just relates words without 

highlighting any particular relation between them. As a matter of fact, these 

theories have determined the basic structure of this lexical database: the main 

relations in WordNet are of two types: either IS-A-KIND-OF/IS-A-PART-OF or IS-

AN-ANTONYM-OF/ENTAILS, and their opposites. An example of how a lemma is 

encoded is given with the following image. 

 

 

 

On the basis of these assumptions, working on the two types of relations is the 

method to navigate WordNet: the first approach can be used to investigate the 

hypernym-hyponym relations to understand if a sense is contained in another 

sense, while the second approach allows us to investigate which words share a 

similarity or are instead in opposition.  

The last relevant element used in the experiment was the dataset, which was 

created by Pedinotti and Lenci (2020), and was retrieved from the GitHub website 

of the project3. It was chosen because it is a rather large example of a corpus of 

509 referential metonymies, divided into six types of metonymies: CONTAINER-

 
3 https://github.com/ppedin/MetonymyData 
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FOR-CONTENT, PRODUCER-FOR-PRODUCT, PRODUCT-FOR-PRODUCER, 

LOCATION-FOR-LOCATED, CAUSER-FOR-RESULT, POSSESSED-FOR-POSSESSOR. An 

important aspect to be highlighted is that this corpus is not equally split into the 

six categories: the following table reports how many entries there are for each 

type. 

 

Type of metonymy Number of entries for each type 

CONTAINER-FOR-CONTENT 89 

PRODUCER-FOR-PRODUCT 110 

PRODUCT-FOR-PRODUCER 47 

LOCATION-FOR-LOCATED 94 

CAUSER-FOR-RESULT 92 

POSSESSED-FOR-POSSESSOR 77 

 

Even though some categories contain about the same number of entries, it should 

be noted that PRODUCER-FOR-PRODUCT is a remarkably larger category, while 

PRODUCT-FOR-PRODUCER is the type of metonymy with significantly fewer 

examples. Noting these differences is relevant especially when evaluating the 

performances of the models because they could be an undesired affecting 

variable. For example, even though it may not be the case, there could be a 

category of metonymy which is more “novel” than others, the model could 

therefore struggle to correctly interpret it and, if this category is larger than the 

others, it could have a greater effect on the overall accuracy of the performance 

of the models. However, other than this downside, it is a carefully drafted dataset: 

it contains for each entry four sentences to illustrate how similar words can have 

different senses according to the contexts in which they occur. In fact, a column is 

dedicated to “Metonymic Sentences”, the sentences in which the metonymic 

expression occurs; a second column contains “Literal Sentences”, the sentences in 
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which the same word as in the previous case but this time in its literal meaning is 

included; a third column lists “Sentences with Metonymic Paraphrase”, in which a 

plausible referent of the metonymic sentence is inserted in a sentence; lastly, a 

fourth column consists of “Sentence with Literal Paraphrase”, which are very 

similar to the literal sentence, but the target expressions refer to a possible 

paraphrase of the intended meaning of the metonymic phrase and they are used 

literally. An instance of an entry in the dataset could be as follows: 

- “Metonymic sentence”: the pot bubbled on the fire 

- “Literal Sentence”: the pot reflected the light 

- “Sentence with Metonymic Paraphrase”: the water cools to 25.0 degrees 

- “Sentence with Literal Paraphrase”: the container showed signs of damage 

The association of the metonymic and literal uses of the same word or with a 

plausible referent is useful in order to investigate how the models are performing 

while solving the task through the comparison of the desired target words and 

what kinds of embeddings were obtained from the transformer. 

 

4.2.2 Methodology 

As previously explained, the aim of this study was to understand whether 

transformers such as BERT and RoBERTa are able to trace back a metonymic 

expression to the intended referent or set of referents. Therefore, the first step of 

the experiment was to ask these models to provide five alternative words, which 

should be equal in meaning to the metonymic expression. In order to conduct this 

part of the experiment, the models were asked to interpret the metonymic phrase 

through the masking technique, which was used alongside a prompt. Practically, 

to each entry of the dataset, a second sentence was manually added, which was 

the same for every occurrence of the dataset. This second sentence is defined as 

the prompt, and for BERT base and large it was realized as follows: 
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Sentence with metonymic expression. + “Therefore, the *metonymic 

expression of the previous sentence * is a type of [MASK]” 

For RoBERTa base and large, the prompt used was the same, only the masking was 

changed to:  

Sentence with metonymic expression. + “Therefore, the *metonymic 

expression of the previous sentence* is a type of <mask>” 

This was just due to a difference of the models in how the mask is signalled to 

them as a clue that indicates that that element should be substituted with a word. 

Other than this discrepancy, the mechanism was the same: the models were asked 

to substitute the mask with five alternative words on the basis of the precedent 

context, which was automatically processed; after the sentence with the mask had 

been solved, with a for-loop it was substituted from the next sentence in line until 

all the dataset was processed. The five results for each sentence were stored in a 

CSV file for each model and split into five columns, which correspond to the order 

in which the answers were returned so that the solutions provided as firsts were 

included in the first column, the solutions provided as second in the second 

column and so on, until the fifth and last solution and column. The results were 

then further split according to the type of metonymy the phrase would classify as, 

so six CSV files were created for each model to facilitate the evaluation of said 

results. 

 

4.2.3 Evaluation of the interpretations: three strategies for a more 

comprehensive analysis 
 

The first evaluation process dealt with the accuracy of the interpretations 

produced by the four models. The chosen tool to establish which solutions were 

correct and which were false was WordNet and, more specifically, the first step to 

conduct the evaluation was analysing the hypernym-hyponym relations as 

encoded in WordNet. In the dataset from Pedinotti and Lenci, a column was 
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dedicated to the list of the possible desired referents, one for each metonymic 

sentence. However, only one possible referent was given for each sentence. Thus, 

in order to generalize this list and create some sort of semantic space that would 

determine the correctness of the answers, the referent words from the dataset 

were taken and, with the aim of finding synsets that could contain as many words 

from the target referent list of the dataset as possible, two or three hypernyms for 

each category of metonymy have been searched on WordNet. The idea was that 

the accuracy of BERT’s and RoBERTa’s answers would be judged positively if the 

interpretations the models provided were found in the categories, i.e. the synsets, 

selected.  

It is important to mention that, even though most of the target words were 

included in the selected hypernyms, there were some exceptions which were not 

included in the hypernym selection. To name some, in the CONTAINER-FOR-

CONTENT type of metonymy the target word “book” and “merchandise” were 

excluded, and no hypernym was chosen for them. The reason was that both these 

target referents occur respectively only once in this category of metonymy and, 

given the fact that most metonymies belonging to this category refers to either 

food or drinks, selecting a hypernym that could have included both such as 

“artefact” impacted in an undesired way the count for accuracy. In fact, it was 

observed that some answers produced by the models for CONTAINER-FOR-

CONTENT metonymies could have been found as hyponyms of “artefact”, but it 

would not have been ideal because the answer would have been judged as 

accurate even though it was not. On this ground, I chose to exclude some less-

often-occurring words if finding a hypernym that included them would have meant 

distorting the computation of accuracy. 

Not only it was necessary to select two or three hypernyms for each category, but 

also the correct synset for each hypernym. All the synsets selected are noun 

synsets because all the metonymies in the dataset are referential metonymies. 

The number of the synset was chosen with the same criteria as the selection of 

the hypernyms, namely the synset that could contain the largest number of target 
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referents was preferred. The hypernym synsets selection for each category of 

metonymy ended up as follows: 

 

METONYMY 

TYPE 

SYNSET SYNSET ID LEMMAS OF THE 

SYNSET 

CONTAINER-

FOR-CONTENT 

 

substance.n.07 {04941723} {consistency, 

consistence, 

substance, body} 

food.n.02 {07571428} {food, solid food} 

PRODUCER-FOR-

PRODUCT 

 

artefact.n.01 {00022119} {artifact, 

artefact} 

communication.n.02 {00033319} {communication} 

event.n.01 {00029677} {event} 

PRODUCT-FOR-

PRODUCER 

 

person.n.01 {00007846} {person, 

individual, 

someone, 

somebody, 

mortal, soul} 

group.n.01 {00031563} {group, 

grouping} 

LOCATION-FOR-

LOCATED 

 

person.n.01 {00007846} {person, 

individual, 

someone, 

somebody, 

mortal, soul} 

group.n.01 {00031563} {group, 

grouping} 

CAUSER-FOR-

RESULT 

sound.n.04 {07385893} {sound} 

communication.n.02’ {00033319} {communication} 
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sensation.n.01’ {05720023} {sensation, 

esthesis, 

aesthesis,  

sense 

experience, 

sense 

impression, 

sense datum 

POSSESSED-FOR-

POSSESSOR 

person.n.01 {00007846} {person, 

individual, 

someone, 

somebody, 

mortal, soul} 

 

As it might be noticed from the list, the synset selected is specified through the a 

main lemma determined by WordNet of a synset plus a “n” that indicates that the 

synset refers to a noun and a number which states to which synset we are referring 

to. This latter feature is especially useful in the case of multiple senses associated 

with a single lemma: by defining the synset number, we are selecting the specific 

sense we want to take into consideration. 

Other than the synsets, it was necessary to decide on which method to adopt in 

order to check the presence of the BERT’s and RoBERTa’s answers in the hyponyms 

of the chosen hypernym synsets. Firstly, it was decided to use NLTK (Natural 

Language Toolkit)(Bird et al., 2009), which is a suite of open-source Python 

modules and it allowed to automatically retrieve the synsets used in the 

experiment. Secondly, three different strategies ended up being preferred in order 

to try to make the evaluation of the answers of the models as accurate as possible. 

The first strategy suggested is perhaps the simplest one out of the three: a list for 

each category of metonymy containing all the hyponyms of the selected 
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hypernyms for said category was generated. Afterward, the interpretations 

provided by the four models were iterated in order to check whether they were 

included in the previously created list. Thus, to each word it was attributed either 

a probability of 0 if it was not found in the list and a probability of 1 in case it was 

found. To sum up the results, the accuracy (Manning, 2008) was calculated 

according to the following formula: 

 

�������� =  
��	
�� �
 ������� �����������

����� ��	
�� �
 �����������
 

 

It is relevant to mention that the average accuracy of the solutions was calculated 

at k. This type of measurement of accuracy is often employed in information 

retrieval (Manning, 2008) and fits the purpose of this experiment, given the 

relevance of considering all the generated solutions up to a point (the k-number). 

So, firstly, the average accuracy of the first answers was computed, secondly the 

average accuracy of the second answers was calculated on the basis of the results 

of the first and second answers, and so on until the fifth solution, whose accuracy 

comprehended all the scores. 

The overall accuracy of the models was calculated, as well as the accuracy for each 

category of metonymy in order to take into consideration any possible variation 

according to the type of metonymy. The following plots will show the performance 

of the models when dealing with metonymy resolution judges on the basis of the 

computation of the accuracy. Each plot represents the performance of all four 

models. On the y-axis the interval of the score is reported: the interval for all the 

plots was set to be between 0 and 1 because these are the values given to each 

solution. Ideally, if the models were performing perfectly or at least nearly 

perfectly the results would tend to be shifted towards the 1-score; contrarily, the 

worse the models perform the scores would tend more towards 0. On the x-axis, 
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instead, it is mentioned to which number of solution the averages refers, and 

therefore the numbers 1 to 5 are reported. 

Figure 7 shows the behaviours of the four models according to the first strategy. 

As can be seen, the performances are far from excellent: on average, all four 

models tend to correctly guess the intended referent of a metonymic expression 

only about half of the times. Moreover, BERT base is the model which performs 

slightly worse, while the answers generated by RoBERTa large seems to be the 

most convincing out of the four models. However, given the proximity of all four 

lines at any point, it can be observed that the performance of each model is not 

drastically different from the performances of the other models. Only at the first 

solution, the divergence in the performance seems to be slightly increased, while 

at the last solutions, the scores almost overlap. 

 

 

Figure 7 – Plot of the trend of the overall accuracy of the models. Each line represents the trend of the 

performance of a model according to average score on the y-axis and solution number on the x-axis. 
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type is an affecting variable in the performance of the models, i.e. whether there 

is any remarkable difference in how the models manage to interpret metonymies 

according to the metonymic type they belong to. To do so, the following plots were 

drawn to show the performances of BERT base, BERT large, RoBERTa base, and 

RoBERTa large according to the different categories of metonymic expressions. 

 

 

Figure 8 - Plot of the trend of accuracy for CONTAINER-FOR-CONTENT metonymies according to the first 

strategy of evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 9 - Plot of the trend of accuracy for PRODUCT-FOR-PRODUCER metonymies according to the first 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

 

 

Figure 10 - Plot of the trend of accuracy for PRODUCER-FOR-PRODUCT metonymies according to the first 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 11 - Plot of the trend of accuracy for LOCATION-FOR-LOCATED metonymies according to the first 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

   

 

Figure 12 - Plot of the trend of accuracy for CAUSER-FOR-RESULT metonymies according to the first strategy 

for evaluation. Each line represents the trend of the performance of a model according to average score on 

the y-axis and solution number on the x-axis. 
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Figure 13 - Plot of the trend of accuracy for POSSESSED-FOR-POSSESSOR metonymies according to the first 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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FOR-CONTENT type of metonymy which is more frequent and the relations 

between metonymic expression and intended referent are more fixed and 

probably more sedimented in language use, POSSESSED-FOR-POSSESSOR allows 

for more novel combination of concepts. 

Another remarkable point to highlight is that in most categories of metonymy, the 

compared performances of the models do not show great variability. As already 

mentioned in the analysis of the overall accuracy, on average RoBERTa large seems 

to deal more accurately with metonymy resolution than the other transformers, 

but the divergence is hardly noticeable. However, if we take the plot for the 

accuracy of the solution for CAUSER-FOR-RESULT metonymies shown in Figure 12, 

the difference in the scores is greater than in all other instances of metonymy and, 

even though the difference is more substantial at the first solution, it is maintained 

at each number of solutions. 

With some less relevant exceptions, the other categories are dealt with pretty 

much as expected from the overall evaluation of the models. However, there is 

one aspect that emerges from some of the lines of the previous plots and is 

somewhat unexpected: generally speaking, transformers are trained to return the 

answer that they find to be the most accurate as the first, and then their results 

start to get increasingly worse, but this is not always the case according to the 

analysis of the accuracy conducted in this thesis. If the performances of the models 

had followed this principle, the lines of all plots should have had a progressive 

downward trend with the progression of the number of solutions. As can be seen 

in the majority of the plots, this is hardly the case: the accuracy scores stay either 

more or less the same or it even happens that they increase over time. For 

instance, this aspect is most noticeable in the trend of BERT base performance 

when dealing with PRODUCER-FOR-PRODUCT metonymies: as it can be seen from 

Figure 9, even though the accuracy does not drastically improve, the enhancement 

is still remarkable. 
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Nonetheless, the first strategy to evaluate the performance of the models must 

be considered too forgiving at times. This is due to the fact it is enough for a word 

to be included in the hyponyms list for it to be judged as a completely correct 

match. However, this evaluation does not take into consideration the fact that a 

word may have multiple referents, or senses, and it may be the case that not all 

senses should be evaluated as correct answers from the models. Therefore, a 

second strategy should be formulated in order to correctly judged such cases. 

More specifically, we need to create a list of synsets associated to each lemma 

returned as a solution of the metonymic expression and a list, called semantic 

space, of the synsets included in the previously selected hypernyms, and then 

check which of the synsets of the lemmas returned by the model are included in 

the semantic space generate by the hypernyms. By doing so we take into account 

cases such as “glass”, which was the interpretation of the metonymic sentence 

“the man sips the glass”. This solution is judged with a match by the first strategy, 

therefore completely correct. This is due to the fact that, if we look for the word 

“glass” on WordNet, we would find that there is a synset encoded under the 

lemma “glass”, which represents the sense of “glass” as “an amphetamine 

derivative (trade name Methedrine) used in the form of a crystalline 

hydrochloride; used as a stimulant to the nervous system and as an appetite 

suppressant”. This particular sense, and therefore the lemma “glass”, is indeed 

considered an hyponym of “substance”. Thus, when applying the first strategy to 

check the inclusion of “glass” in the lemma list of the hypernym “substance”, 

“glass” would be found and judged as a correct solution. Even though “glass” 

intended as a drug could technically be a referent for the metonymic expression 

“glass”, intuitively it is an unlikely referent for the metonymic sentence “the man 

sips the glass”, since it is usually some kind of beverage that is sipped.  Thus, the 

second strategy aims at highlighting this evidence: a solution should be considered 

only partially correct if not all the synset connected to the lemma returned by the 

model can be found in the semantic space of hypernyms. On this ground, the 

second strategy measures the accuracy of each solution by attributing a 0 or a 1 
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score to each synset of the lemma on the basis of whether it was included in the 

semantic space or not, and then dividing the sum of all the scores by the number 

of synsets connected to said lemma. Lastly, the average score for each solution 

number was computed like in the first strategy. 

Figure 14 shows the overall accuracy of the four models, computed accordingly to 

this presented method. 

 

 

Figure 14 - Plot of the trend of the overall accuracy of the models according to the second strategy for 

evaluation. Each line represents the trend of the performance of a model according to average score on the 

y-axis and solution number on the x-axis. 
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and, closing the ranking, BERT base. However, even RoBERTa large can hardly be 

defined as a great model for metonymy resolution: particularly with this strategy, 

it emerges that the accuracy is quite low, since it does not reach the 0.3 scores 

even with the most solid solutions. 

As with the previous strategy, also in this second stage the performances of the 

models were considered according to one type of metonymic expression at a time. 

Figures 15 to 20 show the results of the split analysis.  

 

 

Figure 15 - Plot of the trend of accuracy for CONTAINER-FOR-CONTENT metonymies according to the second 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 16 - Plot of the trend of accuracy for PRODUCER-FOR-PRODUCT metonymies according to the second 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

 

  

Figure 17 - Plot of the trend of accuracy for PRODUCT-FOR-PRODUCER metonymies according to the second 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 18 - Plot of the trend of accuracy for LOCATION-FOR-LOCATED metonymies according to the second 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

 

  

Figure 19 - Plot of the trend of accuracy for CAUSER-FOR-RESULT metonymies according to the second 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 20 - Plot of the trend of accuracy for POSSESSED-FOR-POSSESSOR metonymies according to the 

second strategy for evaluation. Each line represents the trend of the performance of a model according to 

average score on the y-axis and solution number on the x-axis. 
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with how such transformers are built to function. Therefore, it might be argued 

that the first method chosen to evaluate the accuracy is not precise to describe 

the behaviour of the transformers when executing metonymy resolution and the 

second strategy might be preferred. 

Even though the second strategy is the most comprehensive to evaluate the 

behaviour of transformers when dealing with metonymy resolution because it 

takes into consideration all the alternative senses of the answers returned by BERT 

and RoBERTa, it is very strict in the sense that the scores are generally very low. 

Such low scores are due to the fact that, except for few lemmas to which 

correspond just one sense, most lemmas have at least two senses or synsets. 

Therefore, the scores determined with the previous strategy must be analysed 

bearing in mind that also less frequent senses are still encoded in WordNet. For 

instance, when deal with PRODUCER-FOR-PRODUCT, “art” should be intuitively 

judged in most cases as a completely plausible answer; however, with the second 

strategy, its score is only 0.75 because of the four synsets there is one that is not 

included in the synsets list of the hypernym “artifact” because that synset encodes 

the less frequent sense of “art” as a skill. Therefore, in such cases the scores are 

falsely diminished because of less common synsets. 

Based on this consideration, a third strategy is suggested. It is suggested that the 

most frequent sense should be the synset investigated; in fact, since it is the most 

likely out of the list of synsets, the assumption is that determining whether it is 

included in the semantic space should probably give us the most probable 

accuracy score, or at least the accuracy of the most probable meaning of that 

word. As stated by Jurafsky and Martin (2023), “senses in WordNet are generally 

ordered from most frequent to least frequent based on their counts in the SemCor 

sense-tagged corpus”. On the basis of this consideration, the third strategy was 

designed: since the assumption that the first synset is usually the most frequent, 

the aim of this method is to observe whether the sense encoded as the first synset 

and therefore considered as the most frequent is the one comprehended in the 

list of synsets determined by the hypernym. This way the accuracy analysis is not 



69 

 

affected by the less frequent synsets and is based solely on the most frequent and 

therefore probable sense of a specific word. 

First, the plots for the analysis of the overall performance according to this third 

strategy will be presented below. 

 

 

Figure 21 - Plot of the trend of the overall accuracy of the models according to the third strategy for 

evaluation. Each line represents the trend of the performance of a model according to average score on the 

y-axis and solution number on the x-axis. 
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Finally, also for the third strategy the results were analysed separately for each 

category of metonymy. The plots showing the performance according to 

metonymy type can be found below. 

 

Figure 22 - Plot of the trend of accuracy for CONTAINER-FOR-CONTENT metonymies according to the third 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

 

 

Figure 23 - Plot of the trend of accuracy for PRODUCER-FOR-PRODUCT metonymies according to the third 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 24 - Plot of the trend of accuracy for PRODUCT-FOR-PRODUCER metonymies according to the third 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

 

 

Figure 25 - Plot of the trend of accuracy for LOCATION-FOR-LOCATED metonymies according to the third 

strategy for evaluation Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 
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Figure 26 - Plot of the trend of accuracy for CAUSER-FOR-RESULT metonymies according to the third strategy 

for evaluation. Each line represents the trend of the performance of a model according to average score on 

the y-axis and solution number on the x-axis. 

 

 

Figure 27 - Plot of the trend of accuracy for POSSESSED-FOR-POSSESSOR metonymies according to the third 

strategy for evaluation. Each line represents the trend of the performance of a model according to average 

score on the y-axis and solution number on the x-axis. 

 

As can be observed in Figures 22 to 27, applying the third strategy to the analysis 

of the performances of the models according to the type of metonymy results in 

very similar evidence as while applying the second strategy. As a matter of fact, 
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there are again some categories that have proven to be generally better dealt with 

by transformers, such as CONTAINER-FOR-CONTENT as shown in Figure 22, and 

categories with which transformers struggle to identify the correct referent, such 

as POSSESSED-FOR-POSSESSOR as shown in Figure 27. Moreover, with few 

exception, the third strategy confirm what the second methodology had shown: 

the improvement over the iteration of the solutions that the first strategy 

highlighted was probably due to a too forgiving evaluation procedure. Both the 

second and third analysis showed that an improvement in the solutions is quite 

unlikely since the accuracy tends to either be maintained or decrease. 

 

4.2.4 Discussion 

The aim of this first experiment was to investigate what semantic information 

transformers, such as BERT and RoBERTa, can understand about an instance of 

figurative language, namely metonymy. More specifically, the experiment was 

built with the goal of gathering information about whether language models are 

able to trace back a metonymic instance to the intended referents. After having 

conducted the experiment and analysed the behaviour of the models through the 

three strategies, it could be observed that the performances of the models are far 

from satisfactory. The three strategies returned slightly different evaluations: in 

particular, the first method judged the model less severely and the accuracy scores 

according to the first strategy are generally higher than the other two procedures. 

Nonetheless, even according to the first strategy, the average overall accuracy 

scores of all four models do not go much beyond 0.5, meaning that their guesses 

for the intended referents of the metonymic expressions are precise just about 

half the times. Said accuracy scores dropped even lower according to the second 

and third strategies.  

Secondly, the comparison among the performances of the four transformers is 

worth to be mentioned. Considering the overall accuracy, on average RoBERTa 

large was the model that performed the best on metonymy resolution; however, 
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its performance according to strategy 2 and strategy 3 almost overlaps with the 

performance of RoBERTa base, meaning that both these models deal with 

metonymy basically in the same way. Following in the ranking RoBERTa base, BERT 

large is the third model, while BERT base is the model that performs the worst 

among the four transformers selected. Nonetheless, it has already been 

mentioned that the difference in the performances according to transformer type 

was not remarkable in most instances. 

The last aspect to be mentioned is the difference in the performance according to 

metonymic type. The second step for each strategy was to consider the evaluation 

according to each category of metonymy as well in order to understand if and how 

the type of metonymic expression affected the performance, i.e. whether some 

kinds of metonymy are more easily processed than others. From the observation 

of the scores split for metonymic type, a quite remarkable difference emerged in 

how precisely different metonymic expressions are dealt with by the transformers. 

In fact, given the higher scores, it could be argued that this kind of language model 

seems to find categories such as CONTAINER-FOR-CONTENT and LOCATION-FOR-

LOCATED metonymies easier to interpret, while the metonymic type that appears 

to be the most ambiguous for transformers is POSSESSED-FOR-POSSESSOR. This 

aspect would require further investigation, maybe involving a psycholinguistic 

experiment in order to study whether this divergence in the performance is 

replicated in the human brain; however, a possible hypothesis could be that the 

first types of metonymic expressions are more easily dealt with because of two 

possible aspects: firstly, both CONTAINER-FOR-CONTENT and LOCATION-FOR-

LOCATED metonymies are more frequent in everyday language and secondly, they 

are somewhat more “fixed” and the image schema, suggested by Lakoff (1987), 

proves to be a useful tool to interpret this kind of metonymic occurrences. 

POSSESSED-FOR-POSSESSOR metonymies, on the other hand, highlight the way 

people perceive the world and, for that, there is no fixed rule; thus, this type of 

metonymy allows for a higher degree of creativity and consequently 

unpredictability. This property may result in a problematic aspect for 
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transformers: even though it may seem that artificial intelligence reached a level 

of linguistic ability comparable to the human mind in most tasks, language models 

are still trained on corpora, that despite their sizes could never cover all the 

instances of natural language, and, moreover, transformers like BERT and 

RoBERTa still struggle to inference meaning in contexts where what is said is not 

to be interpreted literally, but rather requires the intuition to go beyond the literal 

information and interpret it figuratively. 
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4.3 Experiment 2: contextual word embeddings comparison 

Experiment 1 showed that most times BERT and RoBERTa struggle to trace back a 

metonymic expression to its intended referent and, therefore, their performance 

produce in inaccurate results. However, there are also instances where these 

transformers managed to retrieve a possibly correct referent, and, although the 

successful attempts are just a minority, it cannot be stated that it is just a 

coincidence. If that would be the case, the accuracy score on such a relatively large 

corpus as that considered would have been way lower. On the basis of this 

argument and the fact that the hidden mechanisms of BERT and RoBERTa are still 

quite mysterious, what happens “behind the scenes” could be worth the research. 

For this reason, a second experiment is proposed in this thesis with the aim of 

investigating what happens at each of the layer of these transformers when said 

transformers are asked to deal with metonymy resolution. Specifically, RoBERTa 

large was selected since on average it was the model that proved to be the best 

performing on the interpretation of metonymic expressions out of the four 

transformers. 

 

4.3.1 Background 

The inspiration for this second experiment was drawn from the same paper from 

which the dataset of metonymies was retrieved, namely the research by Pedinotti 

and Lenci (2020). As previously mentioned, in their study the researchers 

investigated how well BERT base was able to interpret metonymic expressions. In 

order to do so, in their first experiment they computed the cosine similarity 

between two instances for each entry in the dataset: the first cosine was measured 

between the embeddings of the target word in a metonymic sentence and the 

same target word in a sentence where it was used with its literal meanings 

(��	�	���������⃗ , �������⃗ �), while the second cosine was measured between the embedding 

of the target word in the metonymic sentence again and the embedding of a 
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possible paraphrase of the metonymic expression (��	�	���������⃗ , 	���������������������⃗ �). Then, the 

results were compared: if the first cosine similarity ��	�	���������⃗ , �������⃗ � was greater than  

the second cosine similarity ��	�	���������⃗ , 	���������������������⃗ �, then they argued that it would 

imply that the meaning of the metonymic expression was more similar to the 

literal meaning than to the meaning of the paraphrase and that, therefore, the 

metonymic sentence was not correctly processed by BERT. On the other hand, in 

the case the first cosine was found to be smaller than the second, then it could be 

proved that the transformer was indeed able to correctly interpret metonymic 

instances. Pedinotti and Lenci observed that the cosine similarity between the 

metonymic sentences and the literal sentences was bigger that the cosine 

similarity between metonymic sentences and the corresponding metonymic 

paraphrases and therefore, according to their findings, the researchers argued 

that BERT base was not in fact able to carry out metonymy resolution. 

The reason why a similar experiment is inserted in this thesis is that Pedinotti and 

Lenci’s experiment failed to take into consideration some aspect that could have 

influenced their conclusions. First of all, they took into consideration only BERT 

base as example of a transformer, which is a critical choice given the evidence 

from the first experiment of this thesis, which highlighted that BERT base was the 

worst model of the four taken into consideration in solving metonymic 

expressions. This was the ground on which the choice of RoBERTa large was made: 

observing the behaviour of a model that seems to perform better could potentially 

impact the judgement on the interpretation process. Other than the type of 

transformer chosen for the experiment, the comparison of the cosine similarities 

could be improved. In fact, Pedinotti and Lenci compared the two measures of 

similarity only by defining the success or failure of BERT only on the base of which 

of the two was the larger cosine without considering how great the shift from the 

literal to the metonymic expression was. On this ground, this second experiment 

has the aim of understanding how RoBERTa large works while dealing with 

metonymy by computing a measure that unifies the two cosine as calculated by 

Pedinotti and Lenci but with the addition of a normalisation process, which 
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consisted of calculating the difference between the cosine similarity between the 

embedding of the literal sentence and the embedding of the sentence with the 

metonymic paraphrase and dividing the result of the subtraction by the cosine 

similarity between the literal sentences and the sentences with the metonymic 

paraphrase. Thus, the formula obtained was as follows: 

 

	�����	� ��	���ℎ������ �����  =  
��	�	���������⃗ , 	���������������������⃗ �  −  ��	�	���������⃗ , �������⃗ �

��	(�������⃗ , 	���������������������⃗ )
 

 

By normalizing the difference between the cosine ��	�	���������⃗ , 	���������������������⃗ � and the 

cosine ��	�	���������⃗ , �������⃗ � by the cosine ��	(�������⃗ , 	���������������������⃗ ), the distance between the 

literal meaning of the target word and the paraphrasis of the metonymic sentence 

is taken into consideration as an affecting variable. The normalization steps takes 

into account that the distance between the target word used literally and the 

paraphrase of the target word used metonymically could affect how much the 

model is able to infer about the connection between the target word used 

metonymically and its paraphrase. Too distant vectors can cause trouble in 

understanding the link between the two, as well as confusion in the distinction 

between metonymic and literal used may emerge from too near vectors. 

Therefore, the cosine similarity ��	(�������⃗ , 	���������������������⃗ ) should be considered as an 

affecting variable. 

 

4.3.2 Tools used in the study 

While for the first experiment it was not required much knowledge about the 

architecture and the functioning of transformers in order to understand the 

concepts behind the study, for this second experiment it is essential to spend a 

few words to give a more in-depth explanation of how this kind of language model 
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are able to process texts and what steps must be performed in order to return 

valid results. 

Firstly, it is relevant to mention that neural networks are not able to process raw 

texts because they do not have the linguistic knowledge to understand the 

semantics behind the sentence structure. Therefore, in order to render natural 

language available to machines, the information given in a raw text has to be 

transformed into data that the neural network is able to process and the only 

“language” machines can deal with is numbers. The way we can transform words 

into numbers is by using vectors. Said vectors consist of arrays of numbers and 

provide a way to represent meaning in a high-dimensional space. The number of 

dimensions of space is determined by the number of contexts in which the word 

meaning is considered. Ideally, to get an accurate representation of word 

meaning, the number of contexts should correspond to the size of a vocabulary. 

This, however, comes with a downfall: if all the contexts in which a word could 

appear are considered, a long and sparse4 vector is generated. This kind of vector 

is indeed problematic for machine learning purposes because they would require 

more parameters and the model is at a higher risk of overfitting and, thus, it is 

used only in count models. An ideal vector for machine learning, instead, should 

be short and dense, and this type of vector is also called word embedding.  

Comparing the vectors, given their different angles, is possible by computing the 

cosine similarity. This value is computed based on the dot product between two 

vectors normalised by the product of the lengths of each vector and it ranges from 

-1 if the vectors are in completely opposite direction to 1 if the direction is exactly 

the same for both of them.  

 

��	�� (!⃗, "��⃗ ) =
!⃗  ∙ "��⃗

|!⃗| ∙  |"��⃗ | =  
∑ (!& ∙  "&)�
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'∑ (!&
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& ∙  '∑ ("&
()�

&

 

 
4 A sparse vector is a vector whose dimensions are mostly zeros. 
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As previously mentioned, transformers such as BERT and RoBERTa cannot deal 

with raw text. Thus, the text fed to the models needs to be pre-processed for these 

models to interpret it: this means that the sentences must undergo a tokenization 

step, in which from a complex string the text is deconstructed into its building 

blocks, namely the tokens. In a second step, to each token a vocabulary index is 

attributed. In order to render this value contextualized, the model should be able 

to trace back the token embedding to the sentence it was taken from; to do so, a 

sentence embedding is generated as well. The last element a transformer needs 

to process a contextual embedding is the positional embedding, which indicates 

the position at which the target word occurs in the sentence and correspond to a 

contextualized index. With these three elements, the vocabulary indexes of the 

tokens, the sentence embedding, and the positional embedding, the models are 

able to process the contextual embedding of a target word in a given sentence. 

As just stated, if a transformer is fed with this information, it returns one value 

that corresponds to the output of the model. However, transformers have a 

variable number of hidden layers, which, as the name indicates, cannot be seen, 

but each of them receives in input the output of the previous layer. This means 

that each layer actually produces a result, even though just the output of the last 

layer, which is supposed to be the most accurate result the model was able to 

achieve, is shown. By default, the outputs for layer are not access because they 

are considered irrelevant for the purpose of solving a task since, except for the last 

output, what has been produced in the previous layers is not judged to be an 

accurate solution. Nonetheless, the model can be manually asked to separately 

return the output of each layer: this aspect is of remarkable importance to 

investigate what kind of contextual embedding the transformer was able to 

elaborate at each level. 
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4.3.3 Methodology 

In order to proceed to process the sentences through RoBERTa large, the first was 

to manipulate the dataset because it was necessary to insert a column with the 

target words corresponding to the referred sentence to facilitate the access to the 

positional embedding. So, to the column of “Metonymic Sentence” corresponded 

the column of “Target Word for Metonymic Sentence”, to the “Literal Sentence” 

column corresponded the “Target Word for Literal Sentence” column, and finally, 

to the “Sentence with Metonymic Paraphrase” corresponded the “Metonymic 

Paraphrase”. Moreover, the target words were corrected or reported to 

correspond in number to the term in the referred sentence.  

Afterward, the second step in the pre-processing phase was rendering the 

semantic information contained in the sentences available to the model so that it 

could be processed to return the embeddings. Therefore, through a code which 

was written in Python, the sentences and the target words were imported by using 

a Pandas dataframe (McKinney, 2010). Then, the sentences were tokenised using 

the tokenizer for the English language named Stanza5 (Qi et al., 2020). Based on 

the observation of the result of the tokenization process performed by Stanza, it 

could be said that this tokenizer is a whitespace tokenizer, meaning that the 

tokenizer infers the divisions between words on the basis of the white spaces. The 

reason why it was important to match the target words and the words in the 

context of the sentences in number was thus due to the tokenizer, since the tokens 

are not trace back to their lemma. 

In the second step of pre-processing, the vocabulary indexes of the tokens, the 

sentence embedding, and the positional embedding for each entry in the dataset 

were initiated by working recursively through the sentences. It is relevant to 

mention that the Autotokenizer6 for RoBERTa large was used to retrieve the word 

embeddings, since Stanza does not seem to have this option and it is only able to 

 
5 https://stanfordnlp.github.io/stanza/tokenize.html 
6 https://huggingface.co/docs/transformers/v4.26.0/en/autoclass_tutorial#autotokenizer 
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create an index for the positions of the words in the sentences, i.e. the positional 

embeddings. Moreover, since the sentences were processed recursively through 

a for-loop, the sentence embeddings for all sentences were set to 1. 

With the vocabulary indexes of the tokens, the sentence embedding, and the 

positional embedding of the target token for each sentence, it was possible to 

proceed to the processing of said sentences through RoBERTa large in order to 

generate the contextual embeddings for the target words. The model was fed with 

this information, and it was asked to return all the hidden states, except for the 

first hidden state because it was the input layer, i.e. the original embeddings. The 

remaining 24 hidden states were stored in a separate list for each sentence. 

The last step before computing the cosine similarity was isolating the embeddings 

from each layer of the target word of each sentence. To do so, the embeddings of 

all layers for each sentence were once again worked though recursively, saving in 

a separate list just the 24 embeddings of each target word. Thus, 509 lists of 24 

lists were obtained for each of the three types of sentences, the metonymic 

sentences, the literal sentences, and the sentences with the metonymic 

paraphrase. 

For each triple three cosine similarities were computed: the cosine similarity 

between the target word in a metonymic sentence and the same word in a literal 

context, the cosine similarity between the target word in the metonymic sentence 

and the paraphrase of the corresponding metonymic word, and lastly the cosine 

similarity between the target word used in its literal sense and the metonymic 

paraphrase. All the values were stored in three different Excel files, each 

containing 509 rows corresponding to the entries in the dataset for 24 columns 

corresponding to the layers of RoBERTa large. 

Then, the values of all three files were split according to metonymic type, namely 

CONTAINER-FOR-CONTENT, PRODUCER-FOR-PRODUCT, PRODUCT-FOR-

PRODUCER, LOCATION-FOR-LOCATED, CAUSER-FOR-RESULT, POSSESSED-FOR-
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POSSESSOR, and the average cosine similarity was calculated for each of these 

types. 

The metonymy comprehension score created to compute a measure that could 

sum the meaning of the three cosine similarity was used to establish a single 

method to judge the performance of the model at each hidden state. 

 

4.3.4 Evaluation of the performance of RoBERTa large 

Applying the formula that subtracts from the cosine ��	�	���������⃗ , 	���������������������⃗ � the 

cosine ��	�	���������⃗ , �������⃗ � and normalize the subtraction by the cosine 

��	(�������⃗ , 	���������������������⃗ ) produced values that can be used for the evaluation of the 

performance of RoBERTa large. As already mentioned, each of said values 

correspond to the average measurement of each layer or hidden state of the 

transformer, according to a specific type of metonymy. 

Before, taking into consideration the measurements that put together the three 

values, it is worth to consider the trend of the average cosine similarities for each 

layer for each type of metonymy. From the data obtained, a few observations can 

be made. Ideally, the cosine similarity between metonymic sentences and 

sentences with metonymic paraphrase should tend to values closer to 1 if the 

model managed to understand metonymy. As matter of fact, higher values would 

mean that the embeddings of the metonymic expression and the embeddings of 

its paraphrase are very near in the semantic space and therefore it could be 

possible to argue that the model understood that the metonymic expression and 

its paraphrase have, if not the same, at least very similar referents. As can be 

observed from the data, the values of the cosine similarity between the 

metonymic sentences and the sentences with metonymic paraphrase tend to 

increase and by the last layers of the model the similarities get quite close to 

higher values around 0.9.  
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Based on the final results of the cosine ��	�	���������⃗ , 	���������������������⃗ �, which represent the 

final output of the transformer model, it seems that the model is indeed able to 

understand that a metonymic instance and its referent are the same, given the 

quite impressive performance it achieves by the end of the processing. However, 

if so, the question would be why the results were not as satisfactory in the 

previous experiment, where, even at the best of it the ability, the scores of 

accuracy did not manage to get past 0.6. The answer to this question can be found 

when analysing the values of the cosine similarity between the metonymic 

sentences and the literal sentences. In the case of the similarities ��	�	���������⃗ , �������⃗ �, 

the opposite situation should be desired if we would expect the model to perform 

well on metonymy resolution: the lower the cosine similarity is, the better the 

model would seem to understand that the referent of the metonymic expression 

is not the same referent of that same word but used with its literal meaning. 

Looking at the computed cosine similarities, it can be immediately noticed that 

unfortunately this is not what happens according to the evidence reported in this 

experiment. In fact, the values of the cosine similarities tend to be quite high 

already in the first layers and they are maintained at a high values until the last 

layers. Nonetheless, an interesting feature of these values to pay attention to is 

that the trend is not constant towards higher or lower scores, but it fluctuates 

instead: sometimes the similarity decreases, other times it increases without 

following a specific pattern. This aspect could be meaningless since the fluctuation 

is generally not wide, but it could also signal an uncertainty of the model in the 

prediction of the target word embeddings. 

The high values in both types of cosine similarity are the reason why the 

performances in the first experiment were on average quite poor and the models 

managed to guess the correct referents only about half the time. However, a last 

value should be considered in order to make the judgement as objective as 

possible, namely, as stated at the beginning of this chapter, the cosine similarity 

between the literal sentences and the sentences with metonymic paraphrase. The 

reason why it is relevant to include this variable in the study is that the distance 
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between the target word of the literal sentence and the target word of the 

metonymic paraphrase could possibly affect the performance of the model and 

change in the different layers. If the distance between these two target words was 

greater than expected, it would be harder for the model to understand that the 

intended referents of the metonymic sentences correspond to the metonymic 

paraphrases because the meanings of the two target words would be too further 

apart, but it will cause trouble as well if the distance was too narrow since it would 

cause uncertainty and ambiguity, since the model would not be able to distinguish 

the metonymic from the literal use. 

Observing the cosine similarities obtained, we can see how the trend fluctuates 

also in this case as in the previous one, but similarly to the values of the first 

cosines computed they started a bit lower but by the last layer end up very close 

to 1. Thus, it could be argued that the model is actually more accurate at the 

beginning than at the end of the process because the values at the beginning are 

lower but above zero, so the transformer understands that there is a similarity in 

meaning but not to the point where the meaning is exactly the same, which is the 

conclusion it seems to draw at the end of the cycle, given the fact that a score so 

close to one means that the referent is almost exactly the same.  

After these considerations, the average cosine similarities for metonymic type 

should be combined in a single value in order to generate a representation of how 

the model is performing. To compute said value, the previously mentioned 

formula was employed, and a plot was created in order to represent the trend of 

the performance of the transformer. 
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Figure 28 - Plot of the trend of performance for metonymic type according to the metonymy comprehension 

score (with normalization) on the y-axis and to the number of layer on the x-axis 

 

In Figure 28, each line represents how well the model was performing on a 

particular type of metonymy. As we can observe from this representation, on 

average the model performed worse in the first layers but, even with some 

fluctuations, it improved over the last layers, and by the 24th layer RoBERTa large 

reached the zero score. This result is still far from ideal, and it cannot be stated 

that this language model correctly infers that a metonymic sentence and its 
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paraphrase have the same referent while the target word of a metonymic 

sentence and that same target word used in a literal context have separate 

meanings.  

An ideal result that would prove that the transformer detected the meaning shift 

would have been an at least positive value, keeping in mind that it would not be 

possible to ask RoBERTa to produce results very close to one. The reason why that 

is not realistic is that the value of the cosine ��	�	���������⃗ , 	���������������������⃗ � cannot possibly 

go above one, since the cosine similarity ranges from -1 to 1, and the only way to 

get a result close to 1 from the subtraction between ��	�	���������⃗ , 	���������������������⃗ � and 

��	�	���������⃗ , �������⃗ � would be if the values of the cosine ��	�	���������⃗ , �������⃗ � were very close 

to zero. However, this is again unlikely because the contextual embeddings of the 

same word but used in different contexts, even though they should not be 

corresponding, must be similar to a degree, especially in the case of metonymic 

expression, where the concepts are related. Substantially different embeddings of 

the same word form may be expected only if said word has completely separate 

meanings: for example, the cosine similarity between the contextual embedding 

of “bank” in the sense of the building and the contextual embedding of “bank” in 

the sense, instead, of the slope beside a body of water can be expected to be quite 

low. In the case of metonymy, this phenomenon should not be repeated because 

a fundamental property of such figure of speech is that the term used in the 

metonymic expression and its referent should belong to the same domain, and 

therefore be similar in some regards. This connection implies a similarity in the 

embedding and therefore the cosine similarity between the metonymic sentences 

and the literal sentences cannot be expected as a low value. On the basis of this 

consideration, the expectation of a performance measurement close to one is not 

considered realistic because even if the cosine similarities between the 

metonymic sentences and their paraphrases were close to 1, they would be 

balanced out by the cosine similarity between metonymic and literal sentences. 

On the basis of this reflection on the realistic expectations for a transformer, it 

could be stated that a language model would be evaluated positively if the final 
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values went at least a bit above zero. Said positive values would mean that model 

understood that the similarity between the metonymic sentences and their 

paraphrases was greater that the similarity between the metonymic and literal 

sentences, and therefore predict as more likely the figurative use of a metonymic 

sentence than the literal use. However, as previously argued, this does not seem 

the case with RoBERTa: the values obtained from the difference of the cosine 

similarities showed that not only the model does not predict a greater similarity 

between metonymic sentences and their paraphrase, but, given the negative 

scores in the first layers, at least at the beginning of the process the transformer 

seems to prefer the literal interpretation in the case of metonymic expression, 

given the similarity of the embeddings of the metonymic and the literal target 

word in the sentences.   

Nonetheless, it is remarkable that the performance over the iteration of the 

twenty-four layers noticeably improves. In fact, the performance measurements 

at the first layers are negative, but slowly but steadily they improve over the 

iteration through the layers. Therefore, even though it cannot be stated that the 

performance of RoBERTa large on the task of interpreting metonymy is the most 

effective, this improvement showed that over the process the transformer seems 

to start to better infer the similarity between the metonymic sentences and their 

paraphrases. The problem is that the improvement concerns only the cosine 

similarity between metonymic sentences and their corresponding paraphrases. 

Through the observation of the data, it can be seen that for all metonymic types 

the cosine ��	�	���������⃗ , 	���������������������⃗ � started at values around 0.5-0.6 and then it reaches 

scores around 0.9 by the end of the process; this improvement is significant for a 

positive trend in the performance of the model. The reason why this enhancement 

in the inference of the interpretation of metonymy is not enough for an overall 

positive judgement of the model is because this measurement is balanced out by 

the other two trends: the trend of the cosine similarity between metonymic and 

literal sentences remains almost unvaried during the iterations, while the trend of 

the cosine between literal sentences and metonymic paraphrases shows an 
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undesired increment in the progression through the layers despite some 

uncertainties. The data shows us that by the end of the process, the average values 

of the three cosine similarities is almost the same and for that the performance 

measurements obtained at the 24th layer are close to zero. If the cosine similarity 

between metonymic sentences and their paraphrases had prevailed on the other 

two similarities, as desired, then the measurements would have gone above zero. 

Other than the overall judgement on the trend of the performance of the model, 

it is relevant to analyse how differently RoBERTa large behaves according to 

metonymic type. It has already been reported that by the end of the processing 

the measurements of all metonymic type reach values around the 0-score. 

However, the divergence is remarkable in the first layers: the category that is best 

dealt with is PRODUCT-FOR-PRODUCER, while the metonymic type that seems to 

cause more struggle for the transformer is quite surprisingly CONTAINER-FOR-

CONTENT, whose score at the first layer is placed around -0.7. This evidence is 

unexpected because in the first experiment of this thesis this latter type of 

metonymic expressions was the one processed with most ease by all models. On 

the other hand, the class of POSSESSED-FOR-POSSESSOR, which was connected to 

the worst performance in the previous experiment, is just the second category 

worst interpreted at the first layer. 

The last observation worth to mention is a peculiar characteristic of the trend that 

is repeated in each metonymic category. Even though the trends tend to increase 

over the iteration over the layers, there is a common point where all the 

performances seem to step back, namely between the third and the forth layer 

the measurements decrease to increase again after the forth layer. This step back 

is more marked for some metonymic type, such as CONTAINER-FOR-CONTENT 

metonymies that from -0,31 returns to -0.38, but it is still evident in case where it 

is less steep the decrease curve. The only exception to this phenomenon is the 

category of POSSESSED-FOR-POSSESSOR, whose trend line does not show any 

drop. 
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A last note should be mentioned on the matter of normalization and how it 

impacts the measurement of performance. A second plot was drawn in order to 

show such difference: the measures were this time computed on the sole basis of 

the differences between the cosine ��	�	���������⃗ , 	���������������������⃗ �  and the cosine 

��	�	���������⃗ , �������⃗ �. The results thus obtained are as shown in Figure 29. 

 

 

Figure 29 - Plot of the trend of performance for metonymic type according to the metonymy comprehension 

score (without normalization) on the y-axis and to the number of layer on the x-axis 
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As it can be observed from Figure 29, the measurements starting from the middle 

until the last layers are not really affected by the normalization since they remain 

almost equals to the previous computation. This is due to the fact that the 

difference between the cosine ��	�	���������⃗ , 	���������������������⃗ � and the cosine ��	�	���������⃗ , �������⃗ � 

is approximately close to zero and, therefore, the normalization division does not 

affect the end results. On the other hand, the difference between the cosine 

��	�	���������⃗ , 	���������������������⃗ � and the cosine ��	�	���������⃗ , �������⃗ � is greater given the lower 

similarity between the metonymic sentences and their paraphrase, thus the 

results in the first layers are indeed altered compared to Figure 28, since the values 

are halved. This proves that the distance between the embeddings of the literal 

sense of the metonymy and the paraphrase of the metonymy affects the ease with 

which RoBERTa interprets metonymic expressions. The reason is that the meaning 

shift is not judged as great as expected, since RoBERTa produced contextual 

embeddings for the literal sentences which are quite close to the contextual 

embeddings for the metonymic paraphrases. The normalization takes into 

consideration that the meaning shift is probably not sufficiently wide for the mode 

to correctly distinguish between metonymic and literal instances, and this results 

in confusion while returning the interpretation as process by the model for the 

metonymic expression in the first experiment. 

 

4.3.5 Discussion 

The second experiment confirmed that, even the model that was performing a bit 

better in the first experiment, RoBERTa still has a lot to learn about how to deal 

with the task of metonymy resolution. However, this analysis showed that, even 

though there is still room for improvement, a model, such as RoBERTa large, 

notices that there is something happening to the meaning in the case of 

metonymic expressions which does not correspond to literal language. In fact, as 

the results have demonstrated, the behaviour of the model is changed over the 

course of the iteration of the layers, namely the cosine similarity between the 
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metonymic sentence and the possible paraphrases increases for each metonymic 

type. This enhancement in the interpretation means that the transformer began 

to understand that even though the two target words apparently differ, they have 

instead a common referent. The problem that makes the performance of RoBERTa 

still not satisfactory is that the model does not seem to be able to distinguish when 

the same common target word is embedded in different contexts and this 

determines a difference in the meaning, such as in the case of metonymic 

sentences and literal sentences. In this case, despite the fluctuation in the cosine 

similarities which could potentially signal that the model has some doubts, 

RoBERTa still identifies the two terms with a single referent. This mistake has a 

huge impact on the performance of the language model since it prevents said 

model from detaching the two referents and therefore it does not seem to be able 

to go beyond the literal meaning of the target words. 

A second consideration concerning the trend of the performance is worth to be 

mentioned, namely the comparison of the findings according to the experiment in 

this thesis and the findings according to previous research. As a matter of fact, 

according to Rogers et al. (2020) it was argued that “the final layers of BERT are 

the most task specific” (pp.848). Moreover, Tenney et al. (2019) suggested that 

semantics, contrary to syntax, is processed at all layers and this is evident when 

some examples are incorrectly processed at first but they are better dealt with 

over the iteration of layers. Even though RoBERTa was employed instead of BERT, 

this observation is indeed reflected in the results produced by the second 

experiment since the models are architecturally the same: the metonymy 

comprehension scores were on average higher in the last layers compared to the 

score in the first layers. Thus, it could be hypothesised that the model in the last 

layers better understood the task of metonymy resolution, thanks to a better 

comprehension of the semantic information as well, and therefore started to 

produce, even if not ideal, more accurate results. 
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V. Conclusions 
 

The project of this thesis dealt with the task of metonymy resolution as processed 

by transformer language model. The aim was investigating whether such models 

were able to understand the hidden meaning of a figure of speech such as 

metonymy. In order to analyse if transformers have this ability, four models were 

taken into consideration: BERT base, BERT large, RoBERTa base, and RoBERTa 

large. Moreover, two experiment were built to generate an inclusive evaluation of 

the performance of the previously cited models.  

In the first experiment the performance of these transformers were studied to 

determine whether they were able to generate their own alternative plausible 

referents for a dataset of six different types of metonymic expressions, namely 

CONTENT-FOR-CONTAINER, PRODUCER-FOR-PRODUCT, PRODUCT-FOR-

PRODUCER, LOCATION-FOR-LOCATED, CAUSER-FOR-RESULT, and POSSESSED-

FOR-POSSESSOR. The results were judged against the relations between the 

hypernyms and the hyponyms as encoded in WordNet. The findings of the first 

experiment showed that the ability of these transformers when dealing with 

metonymy resolution is not in fact satisfactory, given the average scores returned 

from the three different analyses. Moreover, it was observed that, even though 

the majority of metonymic expressions was not interpreted correctly by the 

models, the scores were not sufficiently low as well to just determined that the 

correct answers returned were purely a matter of chance.  

On this ground, the second experiment was formulated in order to investigate the 

hidden mechanisms put into action when the task of metonymy resolution was 

asked to be performed. To conduct this study, RoBERTa large, the model that on 

average performed best in the first experiment, was chosen to be analysed. For 

each metonymic type the contextual embeddings of three different instances of 

sentences were extracted from each layer and the cosine ��	�	���������⃗ , 	���������������������⃗ �, the 

cosine ��	�	���������⃗ , �������⃗ �, and the cosine ��	(�������⃗ , 	���������������������⃗ ) were calculated. A formula 
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that subtracted the cosine ��	�	���������⃗ , �������⃗ � from the cosine ��	�	���������⃗ , 	���������������������⃗ � 

normalized by the cosine ��	��������⃗ , 	���������������������⃗ � was generated to create a single 

measure to evaluate the performance at each hidden state. On the basis of the 

results, it was observed that the understanding of metonymy by RoBERTa was 

especially poor in the first layers, while it got better over the iteration of the final 

layers. Nonetheless, the performance was found to be insufficient to be judged 

positively since even in the final layers, the performance measure did not manage 

to go beyond the zero score. Thus, it is understandable why the answers in the 

first experiment were not as accurate as it was desirable. Moreover, it emerged 

from the results that the confusion in indicating the correct referents of said 

metonymic expressions probably arose not because of a lack of understanding the 

semantic similarity between the metonymic sentences and the corresponding 

sentences with metonymic paraphrase, but rather it was due to a too high 

similarity between the metonymic sentences and the literal sentences. It may be 

argued that it could have been possible to obtain better interpretations from 

RoBERTa if said model would have been able to better distinguish the use of 

figurative language from the use of literal language. 

 

5.1 Limitations 

 

Although the results from both experiments show that these models do not seem 

to be able to deal accurately with metonymy resolution and seem to provide 

enough evidence for the evaluation of the selected models, there are a few 

limitations to the present study which should be mentioned. 

First of all, this thesis took into consideration four models, which is a relatively 

large sample given the fact that most research compares the analyses of a pair of 

models at time. However, BERT and RoBERTa belong to the same generation of 

transformers created a few years ago. Even though a few years does not seem 

such a long time ago, in a fast-developing field such as NLP it is still a considerable 
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amount of time. Since the release of BERT and RoBERTa, several new models have 

been shared with the research community that seem to perform way better than 

the previous ones. Therefore, the evidence carried out from this experiment 

cannot be comprehensive evaluation of all language model, but rather should be 

limited to the models taken into consideration. 

Moreover, another problematic aspect was the evaluation of the results produced 

by the transformers in the first experiment. As already mentioned, there is a 

possibly infinite numbers of interpretations of a metonymic expression and this 

aspect turns out to be an obstacle for the judgement of the solutions because of 

the inherent problem of finding a method to determine which answers can be 

considered correct and which wrong that includes the highest number possible of 

correct referents. The methodology used in this project was checking the semantic 

spaces generated by the hypernyms, but it is possible that, since the hypernyms 

were manually selected, the choice was biased and the hypernyms did not include 

possibly correct solutions, the same way they possibly included wrong answers. 

 

5.2 Future work 

This project aimed at beginning the investigation of what some language models 

infer about the interpretation of metonymic instances. However, this study could 

offer a cause of reflections on what future work concerning transformers and 

metonymy could look like. 

Firstly, as mentioned in the limitations of this project, it could be worth to extend 

the investigation on metonymy resolution to other, more advanced models in 

order to observe whether an overall improvement of their ability to process and 

produce natural language includes an improvement as well on how well they are 

able to deal with instances of figurative language, like metonymy.  

Secondly, this project was focused on referential metonymy, but it would be 

interesting to extend the analysis to logical metonymy to evaluate whether 
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transformer struggle more or find easier to process metonymic verbs rather than 

metonymic nouns. 

Thirdly , an aspect worth further exploring is, for instance, the matter of contextual 

embeddings of the solutions returned by the models. In this thesis it has been 

investigated the similarity of the embeddings of pre-formulated sentences, 

meaning that the sentences, and in particular the paraphrases of the metonymic 

expressions, processed by RoBERTa were taken from a human-generated corpus. 

However, since said metonymic sentences were also analysed and interpreted in 

the first experiment of this project, it would make sense to employ the 

paraphrases generated by the model and feed them again to the model in order 

to observe its behaviour. Namely, the embeddings of each of the five returned 

solutions could be firstly compared to the original metonymic sentence and, 

secondly, compared the embeddings among the solutions. 

Other than the computational approach, another feature could be comprehended 

in a similar investigation: the inclusion of a psycholinguistic study in order to 

understand how the human brain interprets metonymic instances could offer 

some insights on which connections between the form in which the metonymic 

expression appears and the intended plausible referents are establish. Then, the 

human performance could be compared to the behaviour of transformer language 

model. 
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Appendix 1 – Accuracy   

Overall accuracy of the models: 

-  strategy 1 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.335952849 0.422396857 0.467583497 0.526522593 

2 0.342829077 0.430255403 0.452848723 0.485265226 

3 0.350360183 0.411918795 0.440733464 0.47151277 

4 0.3521611 0.406679764 0.428290766 0.461689587 

5 0.354420432 0.4 0.420825147 0.458939096 

 

-  strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.127092338 0.194302554 0.246208251 0.260176817 

2 0.140903733 0.190265226 0.239096267 0.239950884 

3 0.149882122 0.1902685 0.233346431 0.22632613 

4 0.15490668 0.189842829 0.226640472 0.222765226 

5 0.158954813 0.187972495 0.225312377 0.221897839 

 

-  strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.123772102 0.218074656 0.294695481 0.310412574 

2 0.13654224 0.211198428 0.28978389 0.286836935 

3 0.143418468 0.209561231 0.27832351 0.266535691 

4 0.151768173 0.205304519 0.265717092 0.260805501 

5 0.157170923 0.204715128 0.258939096 0.253045187 

 

Accuracy for CONTAINER-FOR-CONTENT metonymies: 

- strategy 1 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.505617978 0.662921348 0.752808989 0.606741573 

2 0.533707865 0.685393258 0.702247191 0.556179775 

3 0.573033708 0.666666667 0.666666667 0.498127341 

4 0.575842697 0.643258427 0.637640449 0.480337079 

5 0.564044944 0.62247191 0.615730337 0.46741573 
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- strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.235393258 0.316067416 0.303932584 0.233707865 

2 0.248089888 0.313651685 0.301235955 0.229438202 

3 0.269775281 0.315393258 0.29 0.205842697 

4 0.267022472 0.300730337 0.289044944 0.196938202 

5 0.273191011 0.302337079 0.288561798 0.204921348 

 

- strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.292134831 0.528089888 0.528089888 0.426966292 

2 0.269662921 0.449438202 0.494382022 0.365168539 

3 0.277153558 0.426966292 0.453183521 0.325842697 

4 0.283707865 0.404494382 0.438202247 0.311797753 

5 0.28988764 0.406741573 0.420224719 0.307865169 

 

Accuracy for PRODUCER-FOR-PRODUCT metonymies: 

- strategy 1 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.154545455 0.3 0.372727273 0.472727273 

2 0.209090909 0.345454545 0.381818182 0.427272727 

3 0.23030303 0.345454545 0.366666667 0.427272727 

4 0.231818182 0.359090909 0.35 0.429545455 

5 0.247272727 0.36 0.347272727 0.421818182 

 

- strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.080181818 0.202727273 0.253 0.305818182 

2 0.112909091 0.212363636 0.251772727 0.272590909 

3 0.118090909 0.215090909 0.24930303 0.261393939 

4 0.122772727 0.228431818 0.232409091 0.265545455 

5 0.133745455 0.220436364 0.231109091 0.254927273 

 

- strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 
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1 0.090909091 0.190909091 0.245454545 0.327272727 

2 0.1 0.204545455 0.236363636 0.295454545 

3 0.093939394 0.215151515 0.236363636 0.281818182 

4 0.102272727 0.227272727 0.218181818 0.284090909 

5 0.112727273 0.22 0.214545455 0.270909091 

 

Accuracy for PRODUCT-FOR-PRODUCER metonymies: 

- strategy 1  

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.70212766 0.531914894 0.553191489 0.531914894 

2 0.563829787 0.489361702 0.457446809 0.563829787 

3 0.489361702 0.460992908 0.468085106 0.581560284 

4 0.468085106 0.473404255 0.436170213 0.558510638 

5 0.45106383 0.463829787 0.438297872 0.557446809 

 

- strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.192340426 0.15787234 0.28787234 0.311489362 

2 0.166489362 0.131276596 0.246382979 0.311489362 

3 0.151631206 0.139716312 0.238156028 0.288014184 

4 0.149308511 0.156010638 0.222606383 0.277340426 

5 0.14693617 0.169234043 0.223787234 0.278765957 

 

- strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.063829787 0.085106383 0.234042553 0.29787234 

2 0.074468085 0.063829787 0.20212766 0.319148936 

3 0.070921986 0.070921986 0.212765957 0.304964539 

4 0.074468085 0.095744681 0.20212766 0.303191489 

5 0.080851064 0.106382979 0.217021277 0.285106383 

 

Accuracy for LOCATION-FOR-LOCATED metonymies: 

- strategy 1 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.414893617 0.446808511 0.510638298 0.64893617 
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2 0.414893617 0.478723404 0.5 0.579787234 

3 0.32587234 0.355361702 0.43806383 0.503212766 

4 0.425531915 0.444148936 0.497340426 0.563829787 

5 0.417021277 0.446808511 0.50212766 0.565957447 

 

- strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.182553191 0.223617021 0.328617021 0.36712766 

2 0.191968085 0.220531915 0.306329787 0.310265957 

3 0.24312766 0.268340426 0.351553191 0.369106383 

4 0.21087766 0.199680851 0.29731383 0.2875 

5 0.20387234 0.195212766 0.300829787 0.282659574 

 

- strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.191489362 0.223404255 0.35106383 0.457446809 

2 0.223404255 0.25 0.382978723 0.404255319 

3 0.26793617 0.281787234 0.380212766 0.371957447 

4 0.255319149 0.210106383 0.356382979 0.356382979 

5 0.24893617 0.210638298 0.35106383 0.340425532 

 

Accuracy for CAUSER-FOR-RESULT metonymies 

- strategy 1  

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.206521739 0.369565217 0.445652174 0.608695652 

2 0.206521739 0.342391304 0.451086957 0.538043478 

3 0.217391304 0.322463768 0.423913043 0.518115942 

4 0.230978261 0.298913043 0.407608696 0.505434783 

5 0.245652174 0.289130435 0.386956522 0.506521739 

 

- strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.054130435 0.126847826 0.192934783 0.200326087 

2 0.061086957 0.123369565 0.180380435 0.17875 

3 0.062391304 0.120217391 0.167246377 0.173514493 
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4 0.06798913 0.110706522 0.155896739 0.172690217 

5 0.074543478 0.1055 0.145043478 0.175130435 

 

- strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.054347826 0.130434783 0.27173913 0.184782609 

2 0.065217391 0.135869565 0.239130435 0.184782609 

3 0.061594203 0.137681159 0.217391304 0.188405797 

4 0.0625 0.127717391 0.195652174 0.179347826 

5 0.07173913 0.123913043 0.173913043 0.180434783 

 

Accuracy for POSSESSED-FOR-POSSESSOR metonymies: 

- strategy 1 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.233766234 0.285714286 0.194805195 0.25974026 

2 0.253246753 0.266233766 0.207792208 0.25974026 

3 0.255411255 0.251082251 0.212121212 0.268398268 

4 0.25 0.243506494 0.233766234 0.25 

5 0.25974026 0.236363636 0.231168831 0.254545455 

 

- strategy 2 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.048571429 0.108571429 0.107402597 0.135194805 

2 0.074415584 0.095064935 0.132792208 0.149090909 

3 0.095238095 0.10974026 0.132683983 0.144588745 

4 0.110162338 0.10974026 0.146980519 0.138993506 

5 0.116285714 0.110545455 0.148571429 0.141324675 

 

- strategy 3 

solution BERT_base BERT_large RoBERTa_base RoBERTa_large 

1 0.012987013 0.077922078 0.090909091 0.12987013 

2 0.051948052 0.077922078 0.12987013 0.142857143 

3 0.082251082 0.0995671 0.12987013 0.125541126 
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4 0.097402597 0.097402597 0.146103896 0.123376623 

5 0.103896104 0.098701299 0.150649351 0.124675325 
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Appendix 2 – Cosine similarity and measure of the 

performance 
 

CONTAINER-FOR-CONTENT metonymies 

 

1 2 3 4 5 6 7 8 

met_lit 0.925 0.914 0.913 0.896 0.892 0.892 0.905 0.913 

met_para 0.544 0.65 0.691 0.647 0.686 0.719 0.777 0.82 

lit_para 0.546 0.655 0.696 0.652 0.683 0.714 0.773 0.816 

         

normalised -0.698 -0.403 -0.32 -0.382 -0.302 -0.242 -0.165 -0.115 

not_normal -0.381 -0.264 -0.223 -0.249 -0.207 -0.173 -0.128 -0.094 

 

9 10 11 12 13 14 15 16 

0.920 0.916 0.908 0.905 0.899 0.892 0.88 0.882 

0.853 0.865 0.856 0.857 0.850 0.842 0.825 0.83 

0.852 0.865 0.859 0.86 0.855 0.849 0.841 0.849         

-0.079 -0.058 -0.06 -0.056 -0.057 -0.059 -0.066 -0.061 

-0.067 -0.050 -0.052 -0.048 -0.049 -0.05 -0.055 -0.052 

 

17 18 19 20 21 22 23 24 

0.886 0.885 0.886 0.864 0.848 0.877 0.881 0.979 

0.839 0.841 0.848 0.828 0.807 0.845 0.853 0.975 

0.857 0.86 0.863 0.842 0.813 0.852 0.861 0.977         

-0.055 -0.052 -0.045 -0.043 -0.05 -0.038 -0.033 -0.005 

-0.047 -0.045 -0.039 -0.036 -0.041 -0.032 -0.028 -0.005 

 

PRODUCER-FOR-PRODUCT metonymies 

 

1 2 3 4 5 6 7 8 

met_lit 0.928 0.914 0.915 0.896 0.898 0.906 0.925 0.936 

met_para 0.632 0.699 0.739 0.705 0.719 0.763 0.812 0.857 

lit_para 0.628 0.698 0.737 0.699 0.719 0.767 0.822 0.868          

normalised -0.473 -0.307 -0.238 -0.273 -0.248 -0.186 -0.137 -0.091 

not-normal -0.297 -0.214 -0.176 -0.191 -0.178 -0.143 -0.112 -0.079 

 

9 10 11 12 13 14 15 16 

0.951 0.953 0.952 0.948 0.948 0.947 0.946 0.95 

0.896 0.909 0.91 0.907 0.905 0.9 0.899 0.904 
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0.909 0.923 0.926 0.92 0.921 0.915 0.915 0.919         

-0.062 -0.047 -0.045 -0.045 -0.047 -0.052 -0.052 -0.05 

-0.056 -0.043 -0.042 -0.042 -0.043 -0.047 -0.047 -0.046 

 

17 18 19 20 21 22 23 24 

0.954 0.956 0.956 0.942 0.917 0.945 0.953 0.993 

0.91 0.91 0.909 0.888 0.85 0.89 0.906 0.985 

0.923 0.923 0.92 0.902 0.866 0.897 0.912 0.986         

-0.048 -0.049 -0.051 -0.06 -0.077 -0.062 -0.051 -0.007 

-0.044 -0.045 -0.047 -0.054 -0.067 -0.055 -0.047 -0.007 

 

PRODUCT-FOR-PRODUCER metonymies 
 

1 2 3 4 5 6 7 8 

met_lit 0.872 0.878 0.886 0.869 0.867 0.878 0.898 0.914 

met_para 0.628 0.706 0.742 0.727 0.743 0.782 0.822 0.854 

lit_para 0.622 0.697 0.731 0.713 0.733 0.773 0.812 0.848          

normalised -0.393 -0.248 -0.197 -0.199 -0.169 -0.124 -0.094 -0.07 

not-normal -0.244 -0.173 -0.144 -0.142 -0.124 -0.096 -0.076 -0.06 

 

 

 

 

 

 

17 18 19 20 21 22 23 24 

0.909 0.909 0.911 0.901 0.89 0.909 0.91 0.986 

0.853 0.859 0.868 0.855 0.844 0.873 0.883 0.982 

0.855 0.858 0.865 0.852 0.833 0.871 0.879 0.981         

-0.066 -0.059 -0.049 -0.0534 -0.055 -0.041 -0.031 -0.004 

-0.056 -0.05 -0.043 -0.046 -0.045 -0.036 -0.027 -0.004 

 

LOCATION-FOR-LOCATED metonymies 
 

1 2 3 4 5 6 7 8 

met_lit 0.864 0.873 0.881 0.865 0.868 0.87 0.886 0.897 

9 10 11 12 13 14 15 16 

0.928 0.931 0.925 0.92 0.917 0.912 0.909 0.908 

0.883 0.893 0.886 0.878 0.872 0.865 0.843 0.841 

0.875 0.889 0.88 0.87 0.865 0.861 0.845 0.85 
        

-0.052 -0.042 -0.044 -0.048 -0.052 -0.055 -0.078 -0.079 

-0.045 -0.037 -0.039 -0.042 -0.045 -0.047 -0.066 -0.067 
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met_par

a 

0.5627

96 

0.6607

18 

0.7076

14 

0.6827

45 

0.7111

62 

0.7387

58 

0.7865

16 

0.8176

85 

lit_para 0.608 0.688 0.731 0.711 0.738 0.771 0.814 0.84          

normalis

ed 

-0.495 -0.308 -0.238 -0.256 -0.212 -0.171 -0.122 -0.094 

not-

norm 

-0.301 -0.212 -0.174 -0.182 -0.157 -0.131 -0.099 -0.079 

 

9 10 11 12 13 14 15 16 

0.904 0.905 0.889 0.887 0.877 0.87 0.849 0.846 

0.845 0.86 0.842 0.842 0.834 0.827 0.79 0.785 

0.864 0.877 0.863 0.862 0.851 0.847 0.817 0.813         

-0.068 -0.052 -0.054 -0.052 -0.051 -0.05 -0.072 -0.074 

-0.059 -0.046 -0.047 -0.045 -0.043 -0.043 -0.059 -0.06 

 

17 18 19 20 21 22 23 24 

0.857 0.858 0.864 0.852 0.854 0.865 0.866 0.981 

0.803 0.807 0.817 0.806 0.807 0.833 0.842 0.976 

0.832 0.836 0.842 0.833 0.832 0.847 0.854 0.979         

-0.065 -0.06 -0.056 -0.056 -0.057 -0.038 -0.028 -0.005 

-0.054 -0.05 -0.047 -0.046 -0.047 -0.032 -0.024 -0.004 

 

CAUSER-FOR-RESULT metonymies 
 

1 2 3 4 5 6 7 8 

met_lit 0.912 0.908 0.916 0.904 0.903 0.904 0.912 0.917 

met_para 0.623 0.711 0.744 0.717 0.727 0.754 0.799 0.834 

lit_para 0.626 0.712 0.747 0.722 0.733 0.762 0.805 0.837          

normalised -0.461 -0.276 -0.23 -0.259 -0.24 -0.197 -0.14 -0.1 

not-norm -0.288 -0.196 -0.171 -0.187 -0.176 -0.15 -0.113 -0.084 

 

9 10 11 12 13 14 15 16 

0.922 0.919 0.909 0.907 0.897 0.892 0.88 0.877 

0.854 0.868 0.855 0.852 0.839 0.833 0.815 0.815 

0.858 0.871 0.859 0.857 0.845 0.841 0.825 0.826         

-0.079 -0.058 -0.063 -0.064 -0.07 -0.071 -0.079 -0.076 

-0.068 -0.05 -0.055 -0.055 -0.059 -0.06 -0.065 -0.062 
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17 18 19 20 21 22 23 24 

0.884 0.887 0.889 0.875 0.869 0.88 0.877 0.977 

0.826 0.832 0.838 0.823 0.812 0.84 0.843 0.974 

0.836 0.842 0.847 0.833 0.823 0.845 0.845 0.974         

-0.07 -0.065 -0.06 -0.062 -0.068 -0.048 -0.041 -0.003 

-0.058 -0.055 -0.051 -0.052 -0.056 -0.041 -0.035 -0.003 

 

POSSESSED-FOR-POSSESSOR metonymies 
 

1 2 3 4 5 6 7 8 

met_lit 0.83 0.829 0.845 0.829 0.838 0.84 0.856 0.87 

met_para 0.556 0.648 0.696 0.686 0.714 0.738 0.78 0.807 

lit_para 0.545 0.636 0.689 0.678 0.712 0.746 0.786 0.813          

normalised -0.504 -0.284 -0.216 -0.211 -0.175 -0.136 -0.097 -0.078 

not-norm -0.274 -0.181 -0.149 -0.143 -0.125 -0.102 -0.076 -0.067 

 

9 10 11 12 13 14 15 16 

0.879 0.878 0.865 0.862 0.85 0.84 0.813 0.806 

0.822 0.834 0.816 0.817 0.801 0.794 0.761 0.759 

0.831 0.844 0.828 0.828 0.815 0.809 0.774 0.7         

-0.069 -0.052 -0.059 -0.054 -0.06 -0.057 -0.067 -0.061 

-0.057 -0.044 -0.049 -0.045 -0.049 -0.046 -0.052 -0.047 

 

17 18 19 20 21 22 23 24 

0.817 0.825 0.834 0.815 0.819 0.835 0.834 0.971 

0.776 0.782 0.796 0.778 0.79 0.81 0.816 0.966 

0.787 0.794 0.807 0.796 0.805 0.827 0.828 0.968         

-0.052 -0.054 -0.047 -0.047 -0.036 -0.03 -0.021 -0.005 

-0.041 -0.043 -0.038 -0.037 -0.029 -0.025 -0.017 -0.004 
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