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Abstract

Machine learning is becoming more and more used by businesses and private users
as an additional tool for aiding in decision making and automation processes.
However, over the past few years, there has been an increased interest in research
related to the security or robustness of learning models in presence of adversarial
examples. It has been discovered that wisely crafted adversarial perturbations,
unaffecting human judgment, can significantly affect the performance of the learn-
ing models. Adversarial machine learning studies how learning algorithms can be
fooled by crafted adversarial examples. In many ways it is a recent research area,
mainly focused on the analysis of supervised models, and only few works have been
done in unsupervised settings. The adversarial analysis of this learning paradigm
has become imperative as in recent years unsupervised learning has been increas-
ingly adopted in multiple security and data analysis applications. In this thesis,
we are going to show how an attacker can craft poisoning perturbations on the
input data for reaching target goals. In particular, we are going to analyze the ro-
bustness of two fundamental applications of unsupervised learning, feature-based
data clustering and image segmentation. We are going to show how an attacker
can craft poisoning perturbations against the two applications. We choose 3 very
well known clustering algorithms (K-Means, Spectral and Dominant Sets cluster-
ing) and multiple datasets for analyzing the robustness provided by them against
adversarial examples, crafted with our designed algorithms.

Keywords Adversarial Machine Learning, Unsupervised Learning, Clustering
Algorithms, Machine Learning, Security, Robustness.
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Chapter 1

Introduction

Nowadays we have enough knowledge about the ability of machine learning mod-
els to make good predictions in different domains, like image classification, speech
recognition, market analysis and image segmentation. Due to their incredible
results, learning systems are assuming a fundamental role in very sophisticated
applications as tools for aiding in decision making. However, it has been observed
that, despite their advanced capabilities, they are sensitive to adversarial pertur-
bations in the input data, leading algorithms to make wrong predictions. A very
significant observation is that sometimes these alterations are invisible to human
eyes, leaving us some doubts about how these models manage data. The key prob-
lem is that these models have not been designed for working in scenarios where an
attacker wants to subvert or compromise the results of the system. Essentially an
attacker can carefully craft adversarial samples to inject inside data for subverting
the normal behavior of the machine learning model. In [8, 22] the authors dis-
cussed the problems of adversarial perturbations for spam filtering systems. They
show how linear classifiers can be easily fooled by simply injecting carefully crafted
perturbations inside spam messages. Even other applications of machine learning
models (like fraud detection, face recognition, video surveillance, traffic predic-
tion, credit-risk assessment, etc.) could be subject to malicious activities. Due to
the sensitivity of these domains, defense strategies and robustness analyses have
been studied for limiting the vulnerability to adversarial examples [1, 2, 7, 10, 18].
Nevertheless, security can be seen as an arms race game between attacker and
designer. The former wants to subvert the system, on the other hand, the latter
makes the system available and wants to protect it developing opportune coun-
termeasures. During the game each player evolves its strategy in contrast to the
other. Indeed, the designer develops defensive countermeasures against threats
and the attacker develops new attacks for breaking defensive strategies. The key
problem of machine learning models is that they are completely data-driven and
data contains noise by nature. Consider the scenario of a network of temperature
sensors in a room and, according to the retrieved temperature, the system reacts
with appropriate strategies. Data collected by sensors are commonly subject to
noise, due to internal and/or external variables. However, sensors can also be ma-
nipulated by an attacker for obtaining certain results. From this observation, we
can see how it is difficult to detect when data are subject to natural noise or when
they are affected by malicious threats, named adversarial noise.

In the rest of this Chapter we are going to introduce the theory behind the ad-
versarial machine learning field, limits of the current state of the art and how this
thesis is organized.



1.1 Adversarial Machine Learning Theory

The sensitivity of machine learning models to adversarial noise has recently at-
tracted a large interest in the computer science community. Different authors,
such us Biggio and Roli, proposed a theoretical framework for studying the roles
of attacker and designer in this arms race game. In their comprehensive review
[2] they propose a framework for studying the security property of supervised
models. In next works, Biggio et al. [4] extended the initial framework for the
unsupervised paradigm. In particular, they provided a taxonomy about possible
adversary’s goals and knowledge.

1.1.1 Adversary’s Goal

The adversary’s goal defines the objective function that the attacker wants to
maximize or minimize by injecting adversarial examples to the system. Essentially
the attacker may be interested on affecting three security properties: integrity,
availability, confidentiality.

Integrity Violation The attacker performs malicious activities that do not com-
promise significantly the system behavior. In the clustering scenario we refer to
the violation of the resulting grouping. Indeed, with integrity violation the attack-
ers aims to subvert the grouping for a portion of samples preserving the original
grouping as much as possible for the rest of the sample. For example, given a
dataset X containing two groups of users: authorized or guest. The attacker
may inject well crafted adversarial perturbations for moving samples from guest
towards authorized.

Availability Violation The attacker performs malicious activities for limiting
functionalities or access to the system. In the clustering scenario the attackers
wants to subvert completely the clustering process. Considering the authorized
and guest groups, the attacker injects noise such that at the end the two clusters
are reversed or they are merged together.

Confidentiality Violation The attacker performs malicious activities in order
to extract private information about the composition of the clusters. Consider-
ing the authorized and guest clusters, the attacker may extract fundamental
features from authorized users by applying strategies of reverse-engineer of the
clustering process.

For all the 3 cases the attacker may also define a certain specificity, that could be
targeted or indiscriminate. In the first case a targeted subset of samples is subject
to adversarial perturbations. On the other hand, any sample can be manipu-
lated without any distinction with respect to the others. For example, consider
a dataset composed by three clusters: authorized, guest and rejected. If
the attacker moves explicitly samples from rejected towards authorized, then we
define the attacker’s goal as targeted. Conversely, if the attacker moves samples
without a target direction, then we define the attacker’s goal as indiscriminate.
In the proposed example, this would mean that moving samples from guest to-
wards authorized gives the same payoff as moving samples from guest towards
rejected.



1.1.2 Adversary’s Knowledge

The adversary’s knowledge defines the capacity of the attacker to inject malicious
threats. The more knowledge the attacker has about the system, the greater
the attacker’s capacity is. It is reasonable to think that if the attacker knows
perfectly the system, then it is easier is for him/her to craft appropriate threats.
Conversely, if the attacker has no knowledge about the system, it is more difficult
to craft threats against a black box system.

Biggio et al. provided in [4] a taxonomy of attacker’s knowledge:

o Knowledge of data D: the attacker knows exactly the composition of the
data samples taken into consideration. It could be unnecessary the complete
knowledge but a portion of the entire collection might suffice. D is drawn
from an unknown probability distribution p.

e Knowledge of the feature space: the attacker knows exactly the features
composition of data samples or how they are obtained.

e Knowledge of the algorithm: the attacker knows which algorithm is used
for clustering data samples and how similarity between them is computed if
necessary.

o Knowledge of the algorithm’s parameters: the attacker knows the parameters
provided to the clustering algorithm (ex: the number of clusters k).

The best scenario for the attacker, and consequently the worst case for the de-
signer, is the one in which he/she has full knowledge (Perfect Knowledge) of the
target system. Certainly, this is not always the case, bringing the attacker to a
Limited knowledge, or worst, in a Zero knowledge. Even if the attacker has zero
knowledge some strategies can be adopted for estimating the required components.
For example, in absence of knowledge about D the attacker can collect a surrogate
dataset D with the hope that samples are retrieved from the same distribution
p. For instance, if the target system uses clustering of malware samples, then the
attacker can collect a surrogate dataset of malware D and use them as an estimate
of the true dataset D. The attacker may also have no knowledge about the features
representation used for projecting samples in the space. In certain conditions it
could be easier to identify the right feature representation since machine learning
is getting more and more standardized to provide unified services. For example,
documents are likely represented in vectors of TF-IDF, or images are likely defined
in matrices of intensities or RGB values.

A common argument in cyber-security is that in order to build a secure system, it
should overestimate the attacker’s capabilities rather than underestimating them.

1.2 Problem Description

Because of its strong implications, adversarial machine learning theory has been
developed more and more in the latest years’ research works. The greatest part of
the research, including [3, 7, 14, 23], addresses the problem of adversarial examples
against supervised learning. In these works authors try to give explanations to the
adversarial phenomenon going deeper on how models work. Especially, Yin et al.
give a first connection between adversarial learning and statistical learning theory,
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with the usage of the Rademacher complexity. Papernot et al. introduce a key
property of adversarial examples, which is their transferability between multiple
models. Even defensive and adversary algorithms have been designed for crafting
adversarial examples or for preventing the system against threats.

Conversely, from the best of our knowledge, only few works have been published
against unsupervised learning paradigm applications. Biggio et al. develop some
strategies for fooling single-linkage hierarchical clustering, and later on, a simi-
lar work [5] has been developed against complete-linkage hierarchical clustering.
Despite this lack, the demanding techniques for cracking clustering models or for
protecting them have recently turned to be fundamental. Clustering is finding a
wide range of applications, due to the absence of labeled data, in very sensitive
domains like image segmentation, face clustering, market or social analysis, infor-
mation processing, etc.

The aim of this research is to investigate the robustness provided by some cluster-
ing algorithms in presence of very well-crafted adversarial examples. We provide
three ways for crafting adversarial threats against clustering algorithms and we
analyze how K-Means, Spectral and Dominant Sets clustering react against them.

1.3 Outline

For the remainder of this thesis, we organize our work as follows. In Chapter.2, we
briefly introduce the background related to the unsupervised learning paradigm.
More specifically we give a deeper introduction to the three clustering algorithm
analyzed in the rest of this thesis (K-Means, Spectral and Dominant Sets clus-
tering). We give knowledge about how these algorithms work, their formulation
and properties. Following it in Chapter.3, we introduce the 3 designed algorithms
against clustering. In the first part we introduce the concept and applications of
image segmentation and how sensitive could be that field in presence of adversarial
noise. We discuss the two designed algorithms that can be used by an attacker
for fooling image classification. Conversely, in the second part of Chapter.3, we
introduce the sensitivity of certain clustering applications in possible adversarial
settings. We provide and explain how the three designed adversarial algorithms
work in order to fool data clustering algorithms.

In Chapter.4 we show the experiments done during the development of this thesis
and we analyze the robustness provided by the three algorithms. We show, using
different visualization techniques, how the three algorithms react by changing the
attacker’s capacity.

Finally, in Chapter.5, we conclude this thesis with discussions, open issues and
we highlight better our contribution thanks to this thesis. At last, we propose
a list of open issues, possible future improvements and ideas, realized during the
development of this work, in order to give future research directions on adversarial
machine learning.



Chapter 2

Unsupervised Learning

Unsupervised learning is a paradigm of the machine learning field which is based
on the training of knowledge without using a teacher. It includes a large set of
techniques and algorithms used for learning from data without knowing the true
classes. The main application of unsupervised learning consists on estimating how
data are organized in the space, such that they can reconstruct the prior probability
distribution of data. For doing that clustering algorithms are used with the goal
of grouping a set of objects in such a way that objects in the same cluster are
strongly similar (internal criterion) and objects from distinct clusters are strongly
dissimilar (external criterion).

The classical clustering problem starts with a set of n objects and an n x n affinity
matrix A of pairwise similarities that gives us an edge-weighted graph G. The goal
of the clustering problem is to partition vertices of G into maximally homogeneous
groups (clusters). Usually the graph G is an undirected graph, meaning that the
affinity matrix A is symmetric.

Figure 2.1: ”Classical” clustering problem.

In literature we can find different clustering algorithms that are strongly used, and
each of them manages data in different ways. Some of the clustering algorithm,
that we are going to test against adversarial noise in chapter 4, are: K-Means |,
Spectral and Dominant Sets clustering.

2.1 Images as Graphs

In some applications we can have that images correspond to our data for which
we want to obtain groups partition. In this case the clustering algorithms could
be used in order to reconstruct a simplified version of the input image, removing
noisy information. For doing that the image is represented as an edge-weighted
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undirected graph, where vertices correspond to individuals pixels and edge-weights
reflect the similarity between pairs of vertices. Given an input image with H x W
pixels we construct a similarity matrix A such that the similarity between the
pixels 7 and j is measured by:

4G ) = exp (PO FUEY

e [(7), is the normalized intensity of pixel i (intensity segmentation).

o F(i) = [v,vssin(h),vscos(h)|(i) where h,s,v are the HSV values of pixel i
(color segmentation).

o F(i) = [|I* fil,...,|I = f|](4) is a vector based on texture information at
pixel i (texture segmentation).

The constant ¢ is introduced for obtaining a scaling effect on the affinity:
e Small ¢: only nearby points are similar.
e Large o: distant points tend to be similar.

An example of application of clustering algorithms for image segmentation is below
provided:

Figure 2.2: Image of vegetables.

Figure 2.3: Clustering on pixels intensity. Figure 2.4: Clustering on pixels color.



2.2 K-Means

K-Means is one of the simplest, famous and used iterative clustering algorithms.
It aims to partition n objects into K maximal cohesive groups. The goal of the
K-Means algorithm is to reach the following state: each observation belongs to
the cluster with the nearest center. Its implementation can be shortly described

in few lines:

e Initialization: Pick K random points as cluster centers (centroids).

Figure 2.5: Initialization with K = 2.

e Alternate:

1. Assign data points to closest cluster centroid.

2. For each cluster C update the corresponding centroid to the average of
points in C.

Figure 2.6: Iterative step 1. Figure 2.7: Iterative step 2.

e Stop: When no points’ assignments change.

Figure 2.8: Repeat until convergence. Figure 2.9: Final output.



Formally speaking we can define the K-Means algorithm over the set of points X
in the following way:

1. Initialize cluster centroids ui, ..., fk,.
2. Repeat until all points remain unchanged (convergence):
. ¥ . . y 2
2.1. Vie X 9 =argmin, ||z — p;]|

. m 1 {cD =5}
22. VjeC WZ%

Properties of K-Means. K-Means benefits of the following properties:

e [t is guaranteed to converge in a finite number of steps.

e [t minimizes an objective function, which represents the compactness of the
retrieved K clusters:

K
argmcinZ{ Z ||93j—ﬂi||2}
i=0

j€elements of C; cluster

where p; is the centroid of cluster i.

e [t is a polynomial algorithm: O(Kn) for assigning each sample to the closest
cluster and O(n) for the update of the clusters center.

It is possible to say that K-Means is a very simple and efficient method but, on
the other hand, it is strongly sensible to the initialization phase. If the initial
centroids are not chosen correctly the algorithm converges to a local minimum of
the error function. Another disadvantage of K-Means is that does not work well
in presence non-convex shapes.

2.3 Eigenvector-based Clustering

The eigenvector-based clustering collects different techniques that use properties
of eigenvalues and eigenvectors for solving the clustering problem. Let us represent
a cluster using a vector x whose k-th entry captures the participation of node k in
that cluster. If a node does not participate in cluster x, the corresponding entry
is zero. We also impose the restriction that z72 = 1. The goal of the clustering
algorithm is to maximize:

arg max Z Z wizir; = 1 Ax (2.1)
i=1 j=1

which measures the cluster’s cohesiveness and x;, x; represent the measure of
centrality to the cluster and it is defined as:

_{%omec

i =

=0ifi ¢ C

Coming back to the notion of eigenvalues of a matrix we can say that \ is an
eigenvalue of A and ) is the corresponding eigenvector if:

Ax A= AT A
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From which we can derive that:
T1 Ary = AviT) = A

There are two important theorems that defines the nature of eigenvalues of a n xn
matrix A:

1. If A = AT then A is symmetric and has only ”7real” eigenvalues. It means
that we can sort them, from the smallest one to the largest one.

2. If A is symmetric then max, 7 Az corresponds to the largest eigenvalue \.
Moreover, the corresponding eigenvector ) is the argument which maximizes
the cohesiveness.

Taking advantage of the two theorems we can say that considering A as the affin-
ity matrix, then clustering problem 2.1 corresponds to an eigenvalue problem,
maximized by the eigenvector of A with the largest eigenvalue.

Clustering by Eigenvectors Algorithm

We can define the algorithm for extracting clusters from data points using the
eigenvectors strategy with the following steps:

1. Construct the affinity matrix A from input G.

2. Compute the eigenvalues and eigenvectors of A.

3. Repeat

4. Take the largest unprocessed eigenvalue and the corresponding eigenvector.

5. Zero all the components corresponding to samples that have already been clustered.
6. Threshold the remaining components to detect which elements belong to this cluster.
7. If all elements have been accounted for, there are sufficient clusters.

8. Until there are sufficient clusters.

2.3.1 Clustering as Graph Partitioning

Let G = (V, E,w) is an undirected weighted graph with |V| nodes (samples) and
|E| edges. Note that it is undirected when the affinity matrix is symmetric. Given
two graph partitions of vertices A and B, with B =V \ A, we define cut(A, B) in
the following way:

cut(A, B) =Y > w(i, j)

i€A jEB



Minimum Cut Problem

Among all possible cuts (4, B),
find the one which minimizes cut(A4, B)

Figure 2.10: Minimum cut problem.

In the MinCut problem, we look for the partitioning that minimizes the cost of
crossing from one A to B, which is the sum of weights of the edges which cross
the cut. The fundamental idea is to consider the clustering problem as a graph
partitioning. Indeed, the MinCut problem can be considered a good way of solving
the clustering problem in graph data. The MinCut clustering is advantageous
because it is solvable in polynomial time but, on the other hand, it favors highly
unbalanced clusters (often with isolated vertices), indeed, it only measures what
happens between the clusters and not what happens within the clusters.

Figure 2.11: Minimum cut unbalance clusters.[19]

2.3.2 Normalized Cut

In order to overcome the problem of unbalanced clusters, a normalized version of
the min cut problem, called Normalized Cut, is used and it is defined by:

1 1
Ncut(A,B) = cut(A, B) vol(A) * vol(B)

Between A and B\

~
Within A and B

where vol(A) is the volume of the set A given by vol(A) = >, ., d;; ACV and
d; = ) _; wi; is the degree of nodes (sum of weights).

The Normalized Cut has the advantage of taking into consideration what happens
within clusters, indeed, considering vol(A) and vol(B) it takes into account what’s
going on within A and B.

10



2.3.3 Graph Laplacians

From an accurate analysis von Luxburg discovered that the main tools for spectral
clustering are graph Laplacian matrices, defined in the spectral graph theory. In
this section we are going to define different graph Laplacians and point out their
most important properties since they will be later on used for solving the MinCut
and NMinCut problem.

The Unnormalized Graph Laplacian. The unnormalized graph Lapla-
cian matrix is defined as:

L=D-W
where:

e D is a diagonal matrix containing information about the degree of each node
in G.

o IV is the affinity matrix of G, containing 1s or Os if nodes are adjacent.
Diagonal elements are all set to 0.

In the following we provide an example of matrices D and W obtained considering
the graph shown in Fig. 2.14.

oo oo
cocoocoo s O
coc ok oo
cor~R oo o
cwoooo
MO oo oo
coo—~RF, O
O = == O
— O O
cocoocoor o
RO O R PO
O, O R OO

Figure 2.12: Degree matrix D. Figure 2.13: Affinity matrix W.

The elements of L are given by:

d(v;) ifi=j
Li; =4 —1 if 7 # j and v; is adjacent to v;
0 otherwise

where d(v;) is the degree of the vertex i.

Figure 2.14: Laplacian matrix L associated to the graph in the left.

In [21] are reported the properties satisfied by the matrix L, that are:

11



1. For all vectors f in R™, we have:

fTLf = % Z wi; (fi — fj)2

ij=1
This is proved by the definition of d;:

FILf = fTDf = fTWF = "dif? = fifiwy
=1

i,j=1

1 n n n n n

1 n
=3 > wi (fi = )

1,j=1

2. L is symmetric (by assumption) and positive semi-definite. The symmetry
of L follows directly from the symmetry of W and D. The positive semi-
definiteness is a direct consequence of the first property, which shows that
fILf =0

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the con-
stant 1 vector.

4. L has n non-negative, real-valued eigenvalues 0 = \; < Ay < ... <\,
First relation between spectrum and clusters:

e The multiplicity of eigenvalue A\; = 0 corresponds to the number of connected
components of the graph.

e The eigenspace is spanned by the characteristic function of these components
(so all eigenvectors are piecewise constant).

Normalized Graph Laplacians. In literature it is also defined the normalized
form of a Laplacian graph. In particular, there exists two definitions that are
closely related:

Lyym = D7Y2LD™Y2 = [ — D712WD1/2
Lw=D'L=1-D"'W

The first matrix Ly, is a symmetric matrix, and the second one L,,, as a nor-
malized form of a Laplacian graph which is closely connected to a random walk
[21].

Definition 2.3.1 (Properties for Laplacian matrices and normalized ones). In
relation to Laplacian matrices, it is possible to notice that, let L be the Laplacian
of a graph G = (V, E). Then, L > 0, indeed:
Ve = (xq1,...,2,),
2 Ly =27 Z L.x
eck

= ZxTLe:L‘

ecE

= Z (i —2;)* >0

1,jEE
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In relation instead to the normalized Laplacian Matrix we have that:

R VOB Y
Vz eR xLx_;<m \/@) > ()

2.3.4 Solving Ncut

Any cut (A, B) can be represented by a binary indicator vector x:

_JHlifie A
e {—1 itieB
It can be shown that:
y'(D—-W)y
y' Dy
Rayleigh quotient

subject to the constraint that ¥’ D1 = > y;d; = 0 (with y; € {1, —b} (relaxation
introducing also real values), indeed y is an indicator vector with 1 in the i-th
position if the i-th feature point belongs to A, negative constant (—b) otherwise).

Theorem 2.3.2 (Solving Ncut proof).

ming, Ncut(x) = min, (2.2)

TL TD—I/QLD—1/2
Ao = min Tt min T T Remember Ly, = D-Y2Lp1/?
x xlx T Ty
Considering the change of variables obtained by setting y = D~ '?x and x =

D1/2y:

Ao = min y'Ly = min yTﬂ
v (DV2y)T(DV2y) "y yTDy
Issues rise up because solving Problem 2.2 is not computationally efficient since
it is an NP-Hard problem. The huge Ncut time complexity brings us to take
into consideration an approximation of it. If we relax the constraint that y must
be a discrete-valued vector and allow it to take on real values, then the original
problem

Y (D —W)y
min ¥———=
y y' Dy
is equivalent to:
miny' (D — W)y subject to ¢y’ Dy =1
Y

This amount to solve a generalized eigenvalue problem, but now the optimal so-
lution is provided by the second smallest eigenvalue since we want to minimize
the cut. Note that we pick the second smaller eigenvalues since we have seen the
smallest one is always zero and corresponds to the trivial partitioning A =V and
B =0.

(D= W)y =Dy
—_——

Laplacian

We started from an NP-Hard problem and through relaxation we reached a feasible
solution. However, we have not the warranty that the relaxed solution is in one to
one correspondence.

13



The effect of relaxation. Through the relaxation we loose some precision in
the final solution.

Note that the original problem returns binary values (—1, 1), indicating the clus-
tering membership. The relaxed version, on the right, returns continuous values of
it can be the case that some points are not so clear to assign (close to the margin
between the two). For that reason relaxed solution not always is in one-to-one
correspondence with the original problem.

2.3.5 Random Walk Interpretation

The Ncut problem can be formalized also in terms of random walk, as highlighted
in [21], since we want to find a cut that reduces the probability of jumping between
nodes of different clusters. It can be defined by a Markov chain where each data
point is a state, connected to all other states with some probability. With our
affinity W and degree D, the stochastic matrix is:

P=D'W

which is the row-normalized version of W, so each entry P(i,j) is a probability of
7walking” to state j from state ¢[9].

Probability of a walk through states (sq,..., ;) is given by:

m

P(s1,...,80) =P (s1) [[ P (si,81-1)

=2

Suppose we divide the states into two groups, and we want to minimize the proba-
bility of jumping between the two groups. We can formulate this as an eigenvector
problem:

Py =Xy

where the component of vector y will give the segmentation.
We can precise also that:

e P is a stochastic matrix.

e The largest eigenvalue is 1, and its eigenvector is the all-one vector 1. Not
very informative about segmentation.
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e The second largest eigenvector is orthogonal to the first, and its components
indicate the strongly connected sets of states.

e Meila and Shi (2001) showed that minimizing the probability of jumping
between two groups in the Markov chain is equivalent to minimizing Ncut.

Theorem 2.3.3 (Random Walk Proposition). (\,y) is a solution to Py = \y if
and only if 1:

e 1 — X is an eigenvalue of (D — W)y = ADy

e y is an eigenvector of (D — W)y = ADy

Proof:
Py=X\y & —Py=-X\y
& y—Py=y—X\y
& (- Py=(1-NIy
& (D'D-D'W)y=(1-XN)D"'Dy
& D YD-W)y=D"'1-\Dy
& (D-W)y=(1-\Dy

The problem is to find a cut (A, B) in a graph G such that a random walk does
not have many opportunities to jump between the two clusters.
This is equivalent to the Ncut problem due to the following relation:

Ncut(A, B) = P(A|B) + P(B|A)

2.3.6 2-way Ncut clustering algorithm

In section 2.3.4 we have seen how to solve the Normalized Cut clustering problem,
and here we want to discuss its implementation for extracting just two clusters:

1. Compute the affinity matrix W, compute the degree matrix D. D is diagonal and
Dii =73 ev Wi,

2. Solve the generalized eigenvalue problem (D — W)y = ADy

3. Use the eigenvector associated to the second smallest eigenvalue to bipartition the graph

into two parts.

Sometimes there’s not a clear threshold to split based on the second vector since it
takes continuous values. In which way it is possible to choose the splitting point?

e Pick a constant value (0 or 0.5).
e Pick the median value as the splitting point.
e Look for the splitting point that has minimum Ncut value:

1. Choose n possible splitting points.
2. Compute Ncut value.

3. Pick the minimum.

! Adapted from Y. Weiss
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2.3.7 K-way Ncut clustering algorithm

In the case we want to extract more than 2 clusters we can adopt two possible
strategies:

Approach # 1. It is a recursive two-way cuts:

1. Given a weighted graph G = (V, E, w), summarize the information into matrices W and
D.

2. Solve (D — W)y = ADy for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph by finding
the splitting point such that Ncut is minimized.

4. Decide if the current partition should be subdivided by checking the stability of the cut,
and make sure Ncut is below the prespecified value.

5. Recursively repartition the segmented parts if necessary.

Note that the approach is computationally wasteful, only the second eigenvector
is used, whereas the next few small eigenvectors also contain useful partitioning
information.

Approach #2. Using the first k eigenvectors:

1. Construct a similarity graph and compute the unnormalized graph Laplacian L.

2. Compute the k smallest generalized eigenvectors uy, us, . .., ug of the generalized eigen-
problem Lu = ADu.

3. Let U = [uy,ua, ..., ux] € RP¥E,

4. Let y; € R* be the vector corresponding to the ith row of U.

T
Uil Uiz o Ulg Y1
T
U21 U2 - Uk Ys
U = = .
T
Un1 Un2 o Upk yn

5. Thinking of y;’s as points in R¥, cluster them with k-means algorithms.

2.3.8 Spectral Clustering vs K-Means

First of all, let us define the spectral clustering algorithm [12], its goal is to cluster
objects that are connected but not necessarily compact or clustered within convex
boundaries. The algorithm has in input the similarity matrix S € R"*" and the
k number of clusters to construct. It returns in output the k clusters. It follows
these steps:

1. Construct a similarity graph and compute the normalized graph Laplacian Lgyy,.

2. Embed data points in a low-dimensional space (spectral embedding), in which the clusters
are more obvious, computing the k smallest eigenvectors v, ..., vy of Leym.

3. Let V =[vg,...,vx] € RP¥K,
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4. Form the matrix U € R™** from V by normalizing the row sums to have norm 1, that is:

Uij
Ui = ——— 7759

1/2
kv /
5. Fori=1,...,n, let y; € R* be the vector corresponding to the ith row of U.

6. Cluster the points y; with ¢ = 1,..., n with the k-means algorithm into clusters C, ..., Ck.

Applying k-means to Laplacian eigenvectors allows us to find cluster with non-
convex boundaries.
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One of the possible problems that could appear on the usage of the Spectral
Clustering algorithm consists on choosing the best k. We want to find a k£ such
that all eigenvalues A1, ..., \x are very small, but A\, is relatively large. In this
way, the choosing of k£ maximizes the eigengap (difference between consecutive
eigenvalues) 0 = [A\x — \g_1]-

Eigenvalues
Histogram of the sample 0sl * ¥
a .
6 0.6
4 0.4
2 0.2
0 Dop—k * *

12 3 4 56 7 8 910
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2.4 Dominant Sets

In the previous sections we have seen that data can be represented using weighted
graphs, also called similarity graphs, in which data are represented by nodes in
the graph and the edges represent the similarity relation between nodes. This rep-
resentation allows us to codify also very complex structured entities. In literature
some authors argue to the fact that a cluster can be seen as a maximal clique?
of a graph, indeed the concept of clique is related to the internal cluster criteria,
instead maximal clique responds to the external criteria. But the standard defi-
nition of click does not consider weighted graphs. For this reason, dominant set
is introduced by Pavan and Pelillo as an extension of the maximal clique prob-
lem. We are going to see that the notion of dominant set provides measures of
cohesiveness of a cluster and vertex participation of different clusters.

2.4.1 Cluster in Graph Theory

Data to be clustered could be coded as an undirected weighted graph with no
self-loops: G = (V, E,w), where V' = {1,...,n} is the vertex set, E C V x V is the
edges set and w : E — R is the positive weight function. Vertices represent data
points, edges neighborhood relationships and edge-weights similarity relations. G
is then represented with an adjacency matrix A, such that a;; = w(i,7). Since
there are not self-loops we have that w(i,i) = 0 (main diagonal equal to 0).

One of the key problem of clustering is that there is not a unique and well define
definition of cluster, but in literature researches agree that a cluster should satisfy
two conditions:

e High internal homogeneity, also named Internal criterion. It means that
all the objects inside a cluster should be highly similar(or low distance) to
each other.

e High external in-homogeneity, also named Fxternal criterion. It means
that objects coming from different clusters have low similarity (or high dis-
tance).

The idea of the criterion is that clusters are groups of objects which are strongly
similar to each other if they become to the same cluster, otherwise they have a
highly dissimilarity. Informally speaking a cluster is a set of entities which are
alike, and entities from different clusters are not alike.

Let S C V be a nonempty subset of vertices and ¢ € S. The average weighted
degree of ¢ with regard to S is defined as:

1
awdegg(i) = — Z i (2.3)

151 <=
This quantity over here represents the average similarity between entity ¢ and the
rest of the entities in S. In other words how much similar ¢ is in average with all
the objects in S. It can be observed that awdegg; (i) = 0 Vi € V, since we have
no self-loops.
We now introduce a new quantity ¢ such that if j ¢ S:

¢s(i,j) = ai; — awdegg(i) (2.4)

2A clique is a subset of mutually adjacent vertices.
A maximal clique is a clique that is not contained in a larger one.
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Note that ¢y (i,5) = ai; Vi,j € V with i # j. ¢g(i,j) measures the relative
similarity between ¢ and j with respect to the average similarity between ¢ and its
neighbors in S. This measures can be either positive or negative.

Definition 2.4.1 (Pavan and Pelillo, Node’s weight). Let S C V' be a nonempty
subset of vertices and ¢ € S. The weight of ¢ with regard to S is:

1 if 9] =1

ws (i) = > ds\iy(Us))ws\ iy () otherwise (2:5)
JeS\{i}

Further, the total weight of S is defined to be W (S) = . s wg(7).

Figure 2.15: Weight of i respect to elements in S.

Note that wg; ;1 (1) = w(4) = ai; Vi,j € V Ai # j. Then, wg(i) is calculated
simply as a function of the weights on the edges of the sub-graph induced by S.

Intuitively, wg(i) gives a measure of the similarity between ¢ and S\ {i} with
respect to the overall similarity among the vertices of S\ {i}. In other words, how
similar (important) 7 is with respect to the entities in S. An important property
of this definition is that it induces a sort of natural ranking among vertices of the
graph.

Figure 2.16: Similarity graph example.

Considering the graph proposed in Figure 2.16, we can derive a ranking between
nodes:

w{1,2,3}(1) < w{1,2,3}(2) < w{1,2,3}(3)

Definition 2.4.2 (Pavan and Pelillo, Dominant Set). A nonempty subset of ver-
tices S C V such that W(T) > 0 for any nonempty 7" C S, is said to be a
dominant set if:

o wg(i) >0Vies (internal homogeneity)

o weu (i) <0Vig S (external homogeneity)
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These conditions correspond to cluster properties (internal homogeneity and
external in-homogeneity). Informally we can say that the first condition re-
quires that all the nodes in the cluster S are important (high weight, similar). The
second one assumes that if we consider a new point in the cluster S, the cluster
cohesiveness will be lower, meaning that the current cluster is already maximal.
By definition, dominant sets are expected to capture compact structures. More-
over, this definition is equivalent to the one of maximal clique problem when
applied to unweighted graphs.

Figure 2.17: The set {1,2,3} is dominant.

2.4.2 Link to Standard Quadratic Optimization

Clusters are commonly represented as an n-dimensional vector expressing the par-
ticipation of each node to a cluster. Large numbers denote a strong participation,
while zero values no participation. In section 2.3 we have seen that the goal of clus-
tering algorithm is to maximize the cohesiveness of the retrieved clusters. Formally
speaking the goal can be expressed using the following optimization problem:

maximize  f(x)

subject to z € A (2.6)
where A is a symmetric real-valued matrix with null diagonal and
A={zecR":2>0Ae'z=1} (2.7)

is the standard simple of R™. This yields the following standard quadratic problem
in which local solution corresponds to a maximally cohesive cluster.

The entity z is a strict local solution of problem 2.6 if there exists a neighborhood
U C A of x such that f(z) > f(z) Vz € U\ {z}. Then we define the support o(x)
of z € A as the index set of the positive components in x.

olz)={ieV:z; >0}
In other words o () is the set of vertices in V' that belongs to the extracted cluster.

Definition 2.4.3 (Pavan and Pelillo, Characteristic vector). A non-empty subset
C C V and C'is a dominant set, admits a weighted characteristic vector 2 € A
if it has positive total weight W (C'), in which:

We(i)  :p
L _ WO ifieC
‘ 0 otherwise

The important notion provided by Definition 2.4.3 is that also dominant set solu-
tions belong to the standard simplex, as imposed in problem 2.6. The advantage
is that, empirically, strict local maximizers of the dominant sets procedure work
well in extracting clusters.
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2.4.3 Link to Game Theory

Game theory is a theoretical framework used for examining and analyzing models
of strategic interaction between competing rational actors. The clustering problem,
as suggested by Pavan and Pelillo, can be formulated in terms of a game, also called
clustering game, with the following properties:

e Symmetric game, the payoff of playing any strategy does not depend by
the player but only by the strategy itself.

e Complete knowledge, players have complete knowledge about the game,
they know what are the strategies that can be played and the corresponding
payoffs.

e Non-cooperative game, players take independent decisions about the strat-
egy to play, they don’t make a priori alliance.

e Players play only pure strategies, meaning that they do not behave “ra-
tionally” but they take decisions in a pre-programmed pattern.

In the clustering game we have two players that want to extract the best structure
of cluster from data samples. The pure strategies available to the players are the
data points themselves in V' and the similarity matrix A is used as the payoff ma-
triz for the clustering game. The values A;; and Aj; are the revenues obtained by
player 1 and player 2 considering that they have player strategies (i,7) € V x V.
Remember that the main diagonal of the similarity matrix is zero, meaning that
Ay = 0. A mized strateqgy x = (x1,...,1,)T € A is a probability distribution over
the set of pure strategies, which models a stochastic playing strategy of a player.
If player 1 and 2 play mixed strategies (z1,x2) € A x A, then the expected payoffs
for the players are: x3 Axs and x3 Ax; respectively. The goal of the two players
of course is to maximize as much as possible their resulting revenue. During the
game each player extract an object (i,j) and the resulting revenue is associated
according to the payoff matrix A. Since we are considering A equal to the simi-
larity matrix we can say that in order to maximize their revenue the two players
would coordinate their strategies so that the extracted samples belong to the same
cluster. In other words, only by selecting objects belonging to the same cluster,
each player is able to maximize his expected payoff. The desired condition is that
the two players reach a symmetric Nash equilibrium, that is state in which
the two players agree about the cluster membership. A Nash Equilibrium is
a mixed-strategy profile (z1,22) € A x A such that no player can improve the
expected payoff by changing his playing strategy, given the opponent’s strategy
being fixed. This concept can be expressed with the following expression:

yl Azy < a1 Axy ya Azy < ot Axy V(y,y2) € (V x V).

A Nash equilibrium is symmetric if ;1 = x5, meaning that considering a sym-
metric Nash Equilibrium x € A the two conditions hold in a unique one:

yT Az < 2T Ax

The symmetric Nash equilibrium condition satisfies the internal homogeneity cri-
terion required by the dominant set definition. However, it does not include any
kind of constraint that guarantees the maximality condition. In order to satisfy
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this condition it is necessary to look for a different type of Nash Equilibrium,
known as Evolutionary Stable Strategy (ESS).

Definition. A symmetric Nash equilibrium z € A is an ESS if it satisfies also:

yT Az = 2T Ax = 2T Ay > yT Ay Vy € A\ {z}

yTAr = 2" Ar = 2T Ay <aTAz Wy e A\ {z}

Even if the strategy y provides the same payoff of the strategy x, it is better to
play x since the payoff against itself is greater than the one provided by y. The
two strategies x and y represents two Nash Equilibrium, but only z is an ESS.
In conclusion we can say that the ESSs of the clustering game with affinity ma-
trix A are in correspondence with dominant sets of the same clustering problem
instance. However, we can also conclude that ESS’s are in one-to-one correspon-
dence to (strict) local solutions of StQP.

It is possible to say that ESS’s satisfy the main characteristics of a cluster:

e Internal coherency: High support for all samples within the group.

e External incoherency: Low support for external samples.

2.4.4 Extracting Dominant Sets

One of the major advantages of using dominant sets is that it can be written with
few lines of code, and moreover we can define different clustering approaches:

e Extracting a dominant set, done using the replicator dynamics procedure.

e Partitioning of the data points, obtained using the peel-off strategy, which
means that at each iteration we extract a dominant set and the corresponding
vertices are remove from the graphs. This is done until all vertices have been
clustered (Partitioning-based clustering).

e Extracting overlapping clusters, obtained enumerating dominant sets.

In our applications we are going to deal with the second one, assuming that each
entity belongs to a cluster. This assumption is required since the subject of this
thesis is based on comparing three algorithms, but the first two (K-Means and
Spectral clustering) are essentially partitioning-based algorithm.

The Replicator Dynamics are deterministic game dynamics that have been
developed in evolutionary game theory. It considers an ideal scenario whereby
individuals are repeatedly drawn at random from a large, ideally infinite, popu-
lation to play a two-player game. Players are not supposed to behave rationally,
but they act according to an inherited behavioral pattern (pure strategy). An evo-
lutionary selection process operates over time on the distribution of behaviors [17].

Let x;(t) the population share playing pure strategy ¢ at time ¢. The state of the
population at time ¢ is: x(t) = (x1(t),...,z,(t)) € A,
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We define an evolution equation, derived from Darwin’s principle of nature selec-
tion:

T = 1 gi(7)
where g; specifies the rate at which pure strategy i replicates, z; is grow rate of
strategy 1.

—  payoff of pure strategy i - average population payoff

The most general continuous form is given by the following equation:
&5 = x5(Az); — 27 A

where (Az); is the i-th component of the vector and T Az is the average payoff
for the population. If we have a result better than the average strategy there’s an
improvement.

Theorem 2.4.4 (Nachbar,1990 TaylorandJonker,1978). A point x € A is a Nash
equilibrium if and only if x is the limit point of a replicator dynamics trajectory
starting from the interior of A. Furthermore, if x € A is an ESS, then it is an
asymptotically stable equilibrium point for the replicator dynamics.

Assuming that the payoff matrix A4 is symmetric (A = A7) then the game is said to
be doubly symmetric. Thanks to this assumption we can derive some conclusions:

o Fundamental Theorem of Natural Selection (Losert and Akin,1983)
For any doubly symmetric game, the average population payoff f(z) = 27 Ax
is strictly increasing along any non-constant trajectory of replicator dynam-
ics, meaning that w > 0Vt > 0, with equality if and only if z(¢) is a
stationary point.

e Characterization of ESS’s (Hofbauer and Sigmund, 1988)
For any doubly symmetric game with payoff matrix A, the following state-
ments are equivalent:

— z € APSS

— z € A is a strict local maximizer of f(z) = x7 Az over the standard
simplex A.

— x € A is asymptotically stable in the replicator dynamics.

A well-known discretization of replicator dynamics, which assumes non-overlapping
generations, is the following (assuming a non-negative A):

which inherits most of the dynamical properties of its continuous-time counterpart.
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Figure 2.18: MATLAB implementation of discrete-time replicator dynamics

The components of the converged vector give us a measure of the participation of
the corresponding vertices in the cluster, while the value of the objective function
provides of the cohesiveness of the cluster.

2.4.5 Dominant Sets Hierarchy

A useful extension of the Dominant Sets formulation is introduced in the opti-
mization problem. The new formulation is now defined:

maximize f,(z) =2'(A—al)x

subject to reA (2.8)

where o > 0 is a parameter and [ is the identity matrix.

The parameter « affects the number of clusters found by the algorithm. With an
huge value of a each point defines a cluster since we require a strong cohesiveness.
Instead decreasing the value of a the number of cluster increases.

The objective function f, has now two kinds of solutions:

e solutions which correspond to dominant sets for original matrix A (a = 0).

e solutions which don’t correspond to any dominant set for the original matrix
A, although they are dominant for the scaled matrix A+ «a(ee¢’ —I). In other
words, it allows to find subsets of points that are not sufficiently coherent to
be dominant with respect to A, and hence they should be split.

This algorithm has the basic idea of starting with a sufficiently large o and adap-
tively decrease it during the clustering process following these steps:

1. Let « be a large positive value (ex: a > |[V] —1).
2. Find a partition of the data into a-clusters.

3. For all the a-clusters that are not O-clusters recursively repeat step 2 with
decreasing .
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2.4.6 Properties

Well separation between structure and noise. In such situations it is
often more important to cluster a small subset of the data very well, rather
than optimizing a clustering criterion over all the data points, particularly
in application scenarios where a large amount of noisy data is encountered.

Overlapping clustering. In some cases we can have that two distinct clus-
ters share some points, but partitional approaches impose that each element
cannot be long to more than one cluster.

Dominant sets can be found by mining local solutions, so it is not necessary
to look for global solutions.

Deal very well in presence of noise.
Strong connection with theoretical results.

Makes no assumptions on the structure of the affinity matrix, being it able
to work with asymmetric and even negative similarity functions.

Does not require a priori knowledge on the number of clusters (since it ex-
tracts them sequentially).

Leaves clutter elements unassigned (useful, e.g., in figure/ground separation
or one-class clustering problems).

Limiting the number of dynamic’s iterations it is possible to detect quasi-
click structures.
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Chapter 3

Crafting Adversarial Threats

In the previous chapter we have discussed the history, real life implications and
properties of adversarial machine learning. We have also defined different levels of
attacker’s knowledge and how an attacker can take advantage from it for fooling
systems. From the best of our knowledge, the greatest part of the adversarial re-
search is focused on studying supervised models. Indeed, only few works have been
done for analyzing the robustness of unsupervised learning algorithms in presence
of adversarial noise. In this chapter we are going to analyze two applications of
clustering algorithms. The first one related to image segmentation and the second
one to feature-based data clustering. In particular we are going to see that in both
cases clustering algorithms can be fooled by using very well crafted adversarial
perturbations. In this chapter we propose three algorithms useful for crafting ad-
versarial examples against the two applications of clustering algorithms. The first
and the second one are focused on crafting noise for fooling image segmentation
systems. We will explain the reasons of using image segmentation in specific ap-
plications and what could be the implications of attacking those systems. The last
one related to the capacity of fooling feature-based data clustering applications,
and even in this case we will analyze sensitive application that requires security
properties.

3.1 Genetic Algorithms

The three designed algorithms that we are going to discuss are based on the opti-
mization of the adversarial noise. We will see that the resulting objective function
is not derivable, for that reason genetic algorithms are used. Genetic algorithms
(GAs) are a type of optimization algorithm based on principles of natural selection
and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). They are designed
for finding optimal solutions to a specific problem that maximizes or minimizes a
target objective function (or fitness function). They develop global search heuris-
tic strategies based on biological processes of reproduction and natural selection.
Each iteration of a genetic algorithm is also called generation and for each of them
the fitness of every individual in the population is evaluated. Then the algorithm
applies some stochastic operators (selection, crossover and mutation) in order to
evolve the current generation to a new one. A generic algorithm does not guarantee
convergence, indeed there are two stopping criteria. The first one is verified when
the maximum number of generations has been reached. The second is verified
when an acceptable fitness quality has been obtained for the current population.
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Before going on it is necessary to introduce some extra notions:

e The fitness function is the function that we want to maximize or minimize.
It is also called objective function.

e Individuals are candidate solutions.
e A population is a group of individuals that define a generation.
e Traits are the features of an individual.

In our work genetic algorithms are used for finding the best adversarial noise to
inject inside the input data samples. Our individuals are real values, representing
the perturbations to inject, and the fitness function is a measure that quantifies
how the adversarial example is close to satisfy the attacker’s goal.

In literature we can find multiple implementations of stochastic operators, and
in general they work better when candidate solutions are encoded in vectors. In
our experiments in order to evolve real values we decide to codify the integer part
using the binary representation and the decimal part using strings.

110/0/1]1]1] @ "832"

Figure 3.1: Encode for X = 39.832.

Then we have developed our custom crossover and mutation operators in order to
work with this encoding.

Crossover Given two candidates X; and X5 the crossover operator splits the
two candidates and then combines different portions together in order to generate
a new candidate. With our encoding we split the decimal and the integer part
independently. The splitting point s is randomly chosen.

x. 1]ololo]1/ 0 @ B34 X100 0\1\0\@'8QT

Xe 1‘1‘0‘1‘1‘1‘@"782" X ‘1‘1‘011‘1‘1‘@"7854"

Figure 3.2: Candidate individuals X; and Xs before Figure 3.3: Candidate individuals X; and Xs after

crossover. crossover.

Mutation Mutation is performed only on the integer part, and it consists in
flipping each variable value with probability p.

X '1/0/0/0|1]0| @ "832"

X /1/1]0]|0]1]1 @ "832"

Figure 3.4: Mutation over candidate X7 with p = %
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The function evolve that we are going to see is the composition of these stochastic
operators, designed for improving generation by generation the fitness function of
the population.

3.2 Fooling Image Segmentation

Image segmentation is the arrangement of an image into different groups. Each
pixel of an image is classified to a discrete region of the image. The resulting re-
gions are strongly cohesive, meaning that pixels inside the same region have high
similarity and preserve high contrast with respect to pixels of other regions. This
definition is closely related to the one given for clustering algorithms provided in
section 2. For that reason many research works in the area of image segmentation
have been done on the usage of clustering algorithms for solving the segmentation
problem. Note that clustering is not the unique way for solving the image segmen-
tation problem, since we can also adopt other techniques which can be threshold
based, edge-based, or neural network based.

Image segmentation deals with different kinds of datasets like images or video se-
quences. The most used application consists on segmenting images such a way
that interesting areas can be extracted from the background. In many fields, like
image processing, traffic analysis, pattern recognition and medicine image segmen-
tation results to be extremely useful because at the same time it allows extracting
essential information and removing noise and useless information.

Figure 3.5: Image segmentation for Automated driving systems.

Fig. 3.5, taken from [6], shows one of the main applications of image segmentation.
Nowadays, autonomous driving systems are being studied and used with great
interest and care. In those systems we can commonly find cameras, that collect
traffic scenes, and an Al system that takes opportune decisions. In general, instead
of providing original frames as input to the Al system, a sort of pre-pocessing or
simplification of the scenes is done with segmentation algorithms. This step is used
for removing possible noisy patterns and extract essential information, so that the
final algorithm can easily detect possible obstacles.

Now think about the possibility that an attacker wants to inject adversarial noise
into the scenes, so that the resulting segmentation will remove or forge essential
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information. What if the attacker is able to remove a fundamental element from
the scene?

Figure 3.6: Segmentation obtained by injecting adversarial noise.

In Fig. 3.6 we can see a scenario similar to Fig. 3.5, but now, due to the presence
of adversarial noise, one of the three bikers has been associated to the background.
This example highlights how dangerous can be the usage of weak algorithms or
the absence of defensive strategies.

In this section we are going to analyze two algorithms used for crafting adversarial
noise against clustering algorithms for image segmentation. We will see that the
two realized algorithms differ for the nature of the noisy pattern that they generate.
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3.2.1 Row-Based Adversarial Noise

The row-based algorithm has been designed with the goal of evaluating the robust-

ness of clustering algorithms in presence of clear and evident noisy patterns. The
algorithm basically tries to inject noisy rows-pattern, even detectable by human
eyes, for obtaining errors in the final segmentation. Given an input image X the
algorithm crafts an adversarial examples X', which is obtained by manipulating
the s most sensitive rows. In order to evaluate the robustness of clustering algo-
rithms different parameters (A, «, 3, s) are introduced. This extension allows us
to simulate different levels of attacker’s capacity and evaluate how the clustering
algorithms react.

Algorithm 1 Row-based Adversarial Noise Generator

Input Data: X € R™™, Y € R"™™, clst, p, A, s, a, 3, G, global.
Output: X' e R™™

1: t «+ sensitive_pixels (X,Y,s) > List of sensible rows.
2. X'+ X

3: fori € [0,..., 7] do

4: c < [ip,...,(i+1)p—1] > Range of columns.
5: € < rand (A)

6: if global then

7: T 1,...,m > All the columns.
8: else

9: T C

10: end if

11: e+ optimize (X, 7w, t, ¢, ¢, clst, A, «a, £, G)

12: Xie ¢ Xpe + 1 > Inject Adversarial Noise.
13: end for

14: return X’

Algorithm 2 Adversarial Noise Optimizer

Input Data: X € R"™™ 7, t,c,e, clst, A, «a, 8, G.
Output: &*

Y« clst(X,,)
X'« X

: fori€[0,...,G] do
Xie ¢ Xge + 1
Y' ¢ clst(X],)

€ < evolve (g, ¢)
end for
10: €* +— argmax. ¢
11: return c*

© XN TR

o+ eval (Y, Y’) > Miss-segmentation score
¢(e,0) < ao + B||A —¢|| > Noise score.
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where:

t is the vector of s most sensible rows to attack.
c is the vector of consecutive p columns.

7 is the projection vector. It depends on the type of optimization (global or
local).

X is the input image for which the attacker wants to break the segmentation.

Xy defines a portion of the input image X, obtained by picking rows in t
and columns in c.

Y is the true segmentation. Y;; specifies the cluster label in which the pixel
(,7) belongs.

clst is the clustering algorithm used for segmenting the input image X that
the attacker wants to fool.

p number of consecutive columns to attack jointly. The greater it is, the
lower the computational cost is.

A defines the noise threshold. The greater it is, the greater the attacker’s
capacity is, meaning that a stronger adversarial noise can be injected.

s is the number of rows to attack.
(G is the number of generations used for optimizing the noise perturbation.

o =-eval (Y, Y”’) get a score about how much the initial predicted segmen-
tation Y and the adversarial one Y’ are dissimilar.

¢(g,0) is the objective function that measures, through a weighted mean,
the effectiveness of noise € in X. The goal of the adversarial algorithm is to
maximize this quantity.

« is the importance of the dissimilarity between Vand Y. A very strong
attacker wants to use large values of a. In contrast, low values of a will bring
the optimizer to leave the input image X as unchanged as possible.

[ is the importance of choosing a small €. Force the optimizer to find the
best adversarial noise but limit the number and strength of adversarial trans-
formations as much as possible,

global is a boolean variable that specifies if the optimization procedure
has to consider the entire image or only a limited part. The results of the
two optimization procedures are different. If global is equal to FALSE
then the optimizer returns a spatially local optimal solution, otherwise it
returns a spatially global optimal solution. Moreover, when global=FALSE
then m = ¢, meaning that the clustering has to be evaluated locally in the
portion X, .. Otherwise, if global=TRUE then m = *, meaning that the
segmentation has to be evaluated over all the m columns.
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e X' is the crafted adversarial example.
e ¢* defines the optimal adversarial perturbation for X.

o X, . < Xic+ 1e¥ injects noise €* in rows t and columns ¢ of X.

From the pseudo-code proposed in Alg. 1 we can notice the usage of two funda-
mental functions: sensitive_pixels and optimize. The first one returns a
list containing the most s sensitive rows in X. It is based on the usage of some
heuristic, carefully crafted considering the similarity measure adopted and the
input image. Considering a grayscale image with just two clusters, background
(black) and foreground (white), a possible heuristic could be to get pixels in the
foreground with the lowest intensity. The second one, optimize, is a genetic
algorithm, described in Alg. 2, used for finding the best noise alteration £* to in-
ject in X. Starting with a population of candidate solutions it applies, generation
by generation, stochastic operators (selection, mutation and crossover) in order to
evolve the initial solution € to a better one €* which maximizes the objective func-
tion ¢(e,0). It does not guarantee to find a global optimum, but at least a local
one. The greater the number of generations G is, the greater the probability of
finding the global one is. Note that, in order to obtain a score about the goodness
of the adversarial permutation, it is necessary to compute the clustering result on
the adversarial image X’ at each iteration and compare, using the function eval,
the difference between the original labeling and the adversarial one.

In chapter 4 will be discussed the effectiveness of each hyper-parameter and how
much the obtained adversarial perturbations are sensible to them.

The most noticeable limit of Alg. 1 is that it is computationally costly, since we
are trying to optimize a certain function that requires the application of the clus-
tering algorithm on the input X at each generation. The greater G and X is, the
greater the computational complexity is. For that reason the local optimization
strategy (global=FALSE) has been developed, for reducing the size of the input
X provided to the optimizer.

The last consideration of this section is related to the role of Y. In most of the
clustering applications the true segmentation Y is unknown. For that reason the
attacker can decide to estimate it using clustering algorithms or other learning
models. However, the realized algorithm is able to work without that knowledge,
since the latter is only used for the development of sensitive pixels heuris-
tic function. Other heuristics can be taken into consideration according to the
attacker’s knowledge, without affecting the rest of the designed adversarial algo-
rithm.

Example of Application Let’s take into consideration the image X showed in
Fig. 3.7, taken randomly from the MNIST dataset. Now applying the spectral
clustering algorithm over X we obtain the segmentation proposed in Fig. 3.8. We
can see that the obtained segmentation Y is very good, the algorithm has correctly
separated the foreground from the background.
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Predicted Segmentation

Figure 3.7: Digit 5 from MNIST dataset. Figure 3.8: Segmentation using Spectral Clustering.

Now we consider the scenario in which the attacker wants to obtain errors in the
final segmentation. For doing that the attacker uses Alg. 1 for injecting noisy
rows in X. The corresponding adversarial example X’ is shown in Fig. 3.9, and
we can see that it is very similar to the original input image X. To the human eyes,
the two images might represent the same digit, but something strange happens in
the case above. Indeed, Fig. 3.10 shows the segmentation Y’ obtained using the
spectral clustering algorithm on X’. For some reasons the Y’ and Y are strongly
different, but X and X’ are really similar for human eyes.

Figure 3.9: Adversarial Digit 5. Figure 3.10: Segmentation using Spectral Clustering.

Just looking at Fig. 3.9 we are not able to detect where the injected noise is
located, and how strong it is. After some experiments we discovered that changing
the color map used for showing X', from grayscale to jet, it is easier to detect the
noisy pattern. Indeed in Fig. 3.11 it is simpler to detect the adversarial noise. We
can see that the injected noise is similar to the background and for that reason
in the grayscale representation we are not able to detect it. With respect to Fig.
3.12 in fact we can notice that in Fig. 3.11 6 rows have been transformed by Alg.
1.

Figure 3.11: Digit 5. Figure 3.12: Adversarial Digit 5.
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3.2.2 Pixel-Wise Adversarial Noise

The pixel-wise version is used for crafting adversarial examples in which no clear
noisy patterns are injected. The pixel-wise algorithm has been designed for in-
jecting noise in such a way that it seems to be random. Remember that even in
real life we do not always have clear images. As a matter of fact, we can find dif-
ferent types of noise coming from multiple sources: camera quality, illumination,
brightness. Indeed, in literature have been defined different types of noise that
can be founded inside images, like gaussian or salt-and-pepper noise. The goal
of pixel-wise adversarial algorithm is to craft an adversarial noise mask that is
indistinguishable from a random noise pattern but which is able to fool clustering
algorithms. With respect to a random noise mask, the adversarial noise is targeted
and attacks only sensitive regions of the input data.

Algorithm 3 Pixel-Wise Adversarial Noise Generator
Input Data: X € R"™™ Y € R"™™, clst, p, A, s, a, 3, G, global.
Output: X' € R"™™ ¢t

X' + X

t;, ¢ inner_sensitive_pixels (X,Y,s)
tou < outer_sensitive pixels (X,Y,s)
X' <+ craft_advpixels (X, t;,)

X'« craft_advpixels (X', tow)

t < [tin, bour]

return X' t

Algorithm 4 Craft Adversarial Pixels
Input Data: X € R"™"™ t,¢, clst, A, «, £, G.
Output: X' € R™™

1: s < |t] > Counts the number of pixels to attack.
2: X'+ X > Adv. Example
3: fori €[0,...,2] do

4: ¢ < columnsOf (t[ip],...,t[(: + 1)p —1]) > Get p-continuous pixels.
5: € <+ rand (A)

6: if global then

7: T+ 1,...,m > All columns.
8: else

9: T < C

10: end if

11: e < optimize (X, m, t, ¢, &, clst, A, «, 8, G) > See Alg. 2
12: X+ Xj o+ 1e

13: return X’

14: end for

where:
e s is the number of inner and outer pixels to attack.
e p is the number of consecutive pixels to attack jointly.
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e columnsOf (S) gets a list of column over S.
S={(i,))]iel,....,.nANjeL ....m} columnsOf(S) = {j|(i,j) € S}

columnsO£({[1,2],[1,3], [5,4]})={2, 3,4}

Note that the time complexity of the entire algorithm also depends on s and p.
In line 4 it is possible to see that the optimizer executes s/p iterations. The other
parameters have the same meaning described for Alg. 1 in section 3.2.1.

We can immediately see that Alg. 3 uses exactly the same optimizer described in
Alg. 2. In the pixel-wise version three new functions are used: craft_adv_pixels,
inner_sensitive pixels and outer_sensitive pixels. The first one is
strongly similar to the code showed in Alg. 1 from line 16 to 26, but now it is
defined inside a named function, since it is used twice. The only difference with
respect to the previous algorithm is that it manipulates only the s pixels and not
the entire rows. The second one returns the most sensitive pixels that belong to
a targeted cluster (for instance inside the foreground). Conversely, the last one
returns the most sensitive pixels that belongs to another cluster but are close to
the targeted one. These two functions implement possible attacker’s heuristics for
finding sensitive pixels. In section 4 we will see how they have been developed for
our experiments. Note that the list of targeted pixels T is exactly the combination
of inner sensitive pixels T}, and outer sensible pixels T,,;.

Example of Application In order to better explain how the last two func-
tions can be implemented we are going to consider a classic problem in image
segmentation: background/foreground separation for images in MNIST dataset.
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Figure 3.13: MNIST example.

The first function inner_sensitive_pixels returns pixels inside the fore-
ground (white) and conversely the outer_sensitive_pixels returns pixels
in the background that are spatially close to the foreground.
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Figure 3.14: Inner pixels mask.
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Figure 3.15: Outer pixels mask.

The red region highlighted in Fig. 3.14 (that corresponds to the border of digit
4) shows the part from which are extracted inner sensible pixels. Instead, the red
mask highlighted in Fig. 3.15 is external to the foreground and from that portion
of the image are extracted the outer pixels.
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3.3 Fooling Data Clustering

Clustering has been used for different applications, like pattern recognition, spatial
data analysis, image processing, market analysis, etc. Furthermore, nowadays clus-
tering algorithms have been increasingly adopted in security for detecting possible
dangerous or illicit activities, in particular for malware categorization. Malwares
are categorized by their intent and this allows to respond to a threat quickly, since
the removal techniques are similar inside the same category. In signal processing
data clustering algorithms are used for compression. All of these applications are
sensitive and malicious attacks can end up being dangerous. Let’s take into con-
sideration a message compression scenario: the attacker can introduce some noisy
words into the secret text in order to obtain a certain target compression, but
then the decompression would decode it to a different message, possibly with a
completely different meaning.

Algorithm 5 Adversarial Target Clustering
Input Data: X € R™™, Y € R", clst, p, A, s, a, 5, G, global.
Output: X' € R™™ T

1: ¢g < centroid(Xy—o.)

2: ¢1 < centroid(Xy—i.)

3: d <+ sign(cy—cq) > Get orientation vector.
4: t + sensitive_points (X,Y,s) > List of sensible sample.
5 X'+ X

6: fori € [0,...,7 do

7: c < [ip,...,(i+1)p—1] > Range of features.

8: € < rand (A)
9: if global then

10: T 1,...,m > All the features.
11: else

12: T < C

13: end if

14: e+ optimize (X, =, t, ¢, d., &, clst, A, «a, 5, G)
15: Xie ¢ Xietdee”

16: end for

17: return X', t

where:
e t is the vector of s most sensitive samples to attack.

e c is the vector of consecutive p columns.

e 7 is the projection vector. It depends on the type of optimization (global or
local).
e X is the input collection for which we want to break the clustering result.

Xt portion of the input dataset X, obtained by picking rows in t and
features in c.
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Algorithm 6 Adversarial Target Noise Optimizer

Input Data: X € R"™™ 7, t,c,d, e, clst, A, a, 3, G.
Output: =*

10:
11:

© XN TR

Y« clst(X,,)
X + X
: fori€[0,...,G] do

Xio ¢+ Xge+ed

Y clst(X.,)

o+ eval (Y,Y) > Get miss-clustering score
¢(e,0) < ao + fl|A —¢]|

€ < evolve (g, ¢)

. end for
€* 4 argmax. ¢
return ¢*

Y is the true clustering vector. Y; specifies the cluster label in which sample
© belongs.

clst is the clustering algorithm that the attacker wants to fool.

p is the number of consecutive features to attack jointly. The greater it is,
the lower the computational cost is, but from an attacker point of view it
would be better to optimize each pixel independently.

A noise threshold. The greater it is, the greater the attacker’s capacity of
injecting adversarial noise is.

s number of samples to manipulate.
G number of generations used for optimizing the noise perturbation.

o =-eval (}7, Y’) get a score about how much the initial predicted labels Y
and the adversarial one Y’ are dissimilar.

¢(e, o) objective function that measures, through a weighted mean, the effec-
tiveness of noise € in X. The goal of the adversarial algorithm is to maximize
this quantity.

« is the importance of the dissimilarity between Y and Y. A very strong
attacker wants to use large values of . In contrast, low values of o will bring
the optimizer to leave the input image X as unchanged as possible.

[, is the importance of choosing a small €. Forces the optimizer to find the
best adversarial noise, but limiting as possible the number and strongness of
adversarial transformations.

global, it is a boolean variable that specifies if the optimization procedure
has to consider the entire set of features or only a limited part. The results of
the two optimization procedure are different, if global is equal to FALSE
then the optimized returns a spatially local optimal solution, otherwise it
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returns a spatially global optimal solution. Moreover, when global=FALSE
then m = ¢, meaning that the clustering has to been evaluated locally in the
portion X, .. Otherwise, if global=TRUE then m = * means that the
clustering labeling has to be evaluated over all the m features.

X' crafted adversarial dataset, in which samples t have been attacked.
e* optimal adversarial perturbation for X.

XLC — X¢c + dee™ injects noise €*, with direction d¢, in samples t and
features c of X.

cx < centroid (Xy—y.) is the centroid vector of the elements in cluster
k. In this implementation we consider just two clusters but the algorithm

can be easily extended with more than two clusters.

sensitive_points returns a list of targeted samples that satisfy a certain
criterion or heuristic. For more detailed information see Section 4.3.

d is the orientation vector, for which occurs:

-1, Co, < Cq,
d; = sign(coi - Cli) =190, Co; = Cu,
1, otherwise

which means that if d; is +1/ — 1 the optimizer should find a positive/negative
noise perturbation to inject in feature ¢ for moving sensible entities from ¢y to c;.
If d; is 0 it means that the entities are in the right position for the feature i.

In order to better understand the general behavior of the last algorithm we propose
some pictures of a toy example. Let’s take into consideration the following dataset

Xz

Figure 3.16: Data points X with features x1 and z3.

We can see from Fig. 3.16 that points in X are easily clustered in two distinct
clusters with two centroids C and C5. The goal of the attacker algorithm is to
move sensible points (highlighted) from the green cluster towards the blue one for
fooling the clustering algorithm.
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Figure 3.17: Trajectories from Cp to Ca.

In Fig. 3.17 two red dashed lines define the optimal direction for moving green
points towards the blue cluster. The vector d basically represents these two lines,
gives features direction. We can notice that in this example d = sign(c; — ¢2) =
(+1,—1) meaning that it is necessary to reduce increase the x; component and
decrease the x5 one for moving a green point towards the blue cluster.

Xz

w__
x

Figure 3.18: Adversarial perturbation on green points.

Fig. 3.18 shows the application and the final result obtained by the adversarial
algorithm. We will see that the greater the attacker’s capacity is, the closer green
points are to the blue cluster.

Below we propose an example of using Alg. 5 using the MNIST dataset with digits
0 and 6. The algorithm was executed with the goal of moving images from the
6-digit cluster to the 0-digit one.

MMIST & DIGIT

Adversarial Example - 6
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Figure 3.19: MNIST Adversarial Digit 6 Figure 3.20: MNIST Adversarial Digit 6
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Fig. 3.19 shows the original data image, which is labeled with 6. Instead, in Fig.
3.20 we can find the adversarial examples obtained by executing Alg. 5 to the
previous image. We can see that now the shape of digit 6 is surrounded by other
pixels that tend to assume the shape of a 0-digit.

Figure 3.21: MNIST Adversarial Representation

Fig. 3.21 shows, from a geometrical point of view, how the adversarial algorithm
works with the MNIST dataset. The algorithm is executed with the goal of moving
a digit from cluster “0” to cluster “6”. The first step consists in computing the
direction mask, showed in Fig. 3.21 and in Fig. 3.22, then using the optimizer
the starting image of digit-6 Fig. 3.19 is perturbed for obtaining a new adversarial
example Fig. 3.20. The adversarial mask obtained, showed in Fig. 3.23, is the
difference between X and X’ and we can see that it is similar to the direction
mask, meaning that the optimizer is working correctly.

Figure 3.22: Direction Mask. Figure 3.23: Adversarial Noise Mask.

Another key point that guarantees the empirical correctness of the algorithm is
given by Fig. 3.23. The mask M is composed by red pixels and blue pixels. If M;;
is red it means that pixel in position (7, j) needs to increase its intensity. Otherwise
if M;; is blue it means that the corresponding pixel needs to decrease the intensity
value. We can also notice that the composition of red pixels follows exactly the
shape of a “0” digit, instead the composition of the blue ones represents the parts
to remove from digit “6” for obtaining a “0”.
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Chapter 4

Experiments and Analysis

In this chapter we are going to analyze how the three designed algorithms, dis-
cussed in chapter 3, have been developed. Moreover, we are going to discuss the
results obtained using the three algorithms in different contexts, analyzing the
resulting robustness provided by the three algorithms: K-Means, Spectral and
Dominant Sets clustering. In the first part of this chapter we will take into consid-
eration the first two algorithms (Alg. 1, 3), used for fooling image segmentation,
and in the last part we will address the third algorithm (Alg. 5), used for fooling
data clustering. We will analyze the robustness provided by the three algorithms
for all of the scenarios with the goal of establishing a sort of hierarchy of robustness
between them.

4.1 Row-Based Adversarial Algorithm

The first algorithm, described in Section 3.2.1, allows the attacker to inject noisy
patterns in the input image X. In particular, a key point of this algorithm is to
detect whether some rows are sensitive to adversarial noise perturbations, basing
on some heuristic strategies. In this section we are going to analyze how target
rows are identified, how adversarial noise is optimized and we will analyze the
results obtained for the MNIST dataset.

4.1.1 Choice of Target

In our experiments the s most sensitive rows are the ones which contains pixels
in the background with the highest intensity value. Formally speaking, given an
n x m image, let us define S = {(i,p;)} as the set of all the tuples whose first
element is the row number and the second is the intensity of the background pixel
in the ¢-th row which has the highest intensity. Then, we say that the s most
sensitive rows are the s rows belonging to S which have the highest intensity value
p. Our goal is to increase the intensity of the background pixels so that they will
be clustered together with the foreground pixels. The reason for choosing pixels
with the highest intensity comes from the idea that in general the greater their
intensity is, the closer are with respect to the foreground intensity pixels. We
assume that the attacker wants to fool the segmentation algorithms in such a way
they will expand the foreground or, in the worst case, they will detect a different
foreground shape with respect to the original one. Let’s take into consideration
an input digit X from the MNIST dataset:
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Figure 4.1: Digit ”4” from MNIST.

Which is commonly encoded with an n x m matrix of real values:

0 00 00 00 00 00 G0 00 00 00 00 GO 00 00 00 00 00 GO 00 00 00 00 G0 GO 00 0 00 00

0 00 00 00 00 00 G0 00 00 00 00 G0 00 00 00 00 00 50 00 00 00 00 00 00 00 00

0 00 00 00 00 00 00 00 00 00 00 GO 00 00 ©0 00 00 00 00 00 00 00 00 00 00 0 00 00

Figure 4.2: Encode of digit ”4”.

Fig. 4.2 shows the common encoding usually adopted for representing gray scale
images in digital systems. Then the most sensitive rows are below highlighted:

] s F) 5 F) =

20 00 00 00 00 00 00 G0 00 00 00 00 00 60 00 00 00 00 G0 00 00 00 00 00
0 00 00 00 00 00 00 00 00 00 G0 00 0D 00 00 00 00 00 00 G0 00 GO 00 00 00 00 00 00
2 00 00 00 00 00 00 00 00 00 00 0O 0D 00 00 00 0O 00 00 00 00 GO 00 00 00 00 00 00
0 00 00 00 00 00 00 00 00 00 00 00 0D 00 00 00 00 00 00 G0 00 GO 00 00 00 00 00 00

@ 00 00 00 00 00 00 00 00 00 00 00 0D 00 00 00 0O 00 00 00 00 G0 00 00 00 00 00 00

9 00 00 00 00 00 00 00 00 00 G0 00 00 00 00 00 00

2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0 0 o
25100 00 00 00 00 00 00 00 00 00 00 00 0D 00 00 00 0O 00 00 G0 00 GO 00 00 00 00 00 00
2 00 00 00 00 00 00 00 00 00 00 00 0D 00 00 0O 0O 00 00 00 00 00 00 00 00 00 00 00

@ 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00

Figure 4.3: 2 Most sensitive rows for input X.

The two green points in Fig. 4.3 identifies the two pixels, grouped together in the
background by the clustering algorithm, with the highest intensity. The red rows
are the ones which will be perturbed by the algorithm, since they contain the 2
most sensitive green pixels. The resulting perturbation, as we said in Section 3.2.1,
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depends on different parameters (A, s, clst, full,...). For example we could
obtain something like this:

0f00 00 00 00 0c 00 00 00 00 60 00 00 00 00 00 00 G0 G0 00 00 00 00 00 00 00 00 00 0

{00 00 0 00 00 00 00 00 00 00 00 a0 00 00 00 00 00 oo oo oo croffll =0 o 6o 00 0o oo
0 00 00 00 @o/mo| a0 00 00 00 00 a0 00 00 00 00 00 a0 o %0 00 00 00 00 00

{00 00 00 00 00 03 G0 00 00 00 00 a0 00 00 00 o %40 00 00 00 00 00 00 00 00

0 00 00 00 00 00 GO 00 0D 00 00 GO 00 00 00 00 00 20 00 00 00 00 00 0o 00

5100 00 00 00 00 00 0 00 00 00 00 0 00 00 00 00 00 GO 00 00 GO 00 0O 00 00 00 00 00

90 00 00 00 00 00 G0 00 00 00 00 G0 00 00 00 00 00 GO G0 00 00 00 00 GO 00 00 00 00

Figure 4.4: Adversarial example X'.

The two most sensitive rows have been influenced by the corresponding optimal
adversarial noise £*, giving origin to the adversarial example X’. Note that in this
example the adversarial noise injected is not so strong, but choosing accurately
the two parameters A and « the attacker could be able to inject a stronger pertur-
bation. The greater these two quantities are, the greater the attacker’s capacity
is, meaning that a stronger perturbation can be injected.

4.1.2 Local and Global optimization

In Section 3.2.1 we discussed the role of the global parameter for Alg. 1. In this
section we are going to see how the crafted adversarial examples change according
to this parameter.

Figure 4.5: Local optimization adversarial example. Figure 4.6: Global optimization adversarial Example.

The role of the global parameter is not only related to the time complexity,
but we can see from the two previous images that also the resulting perturbation
is different. When global is equal to FALSE we are in the case of local opti-
mization, meaning that the optimal noise is optimal only for the p consecutive
columns, regardless of the rest of the image. Otherwise, when global=TRUE,
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the optimizer has to find an optimal perturbation for those p consecutive columns
with respect to the entire image. From a practical point of view if the p columns
contain only small intensities then a soft perturbation can be sufficient for break-
ing the local segmentation. Indeed we can see in Fig. 4.5 that the major level of
perturbation is concentrated around the foreground, leaving the external columns
quite unchanged. Conversely, in Fig. 4.5 even the external columns have been
strongly transformed. Considering the attacker point of view, the adversarial ex-
ample shown in Fig. 4.5 seems to be stronger for fooling the segmentation than
the other one. On the other hand, if the attacker also wants to hide threats as
much as possible then the local optimization seems to be more appropriate be-
cause it limits the perturbations on parts that are not important (like the external
columns). This second scenario allows also the attacker to craft adversarial ex-
amples for which could be more difficult to detect adversarial perturbations. An
example was previously described with Fig. 3.11. In that case the optimization
was done in a local way, indeed it is very difficult for human eyes to detect where
threats are located.

4.1.3 MNIST results

The evaluation of robustness provided by the three clustering algorithms (Domi-

nant Sets, K-Means and Spectral Clustering) has been done using a random sample
of the MNIST dataset. MNIST contains images of handwritten digits, from 0 to
9. Each sample in MNIST is a 28 x 28px gray scale image where the background
is completely dark and the foreground has high intensity. The similarity measure
used for the three algorithms is based on the distance between pixels intensities.

— |10 — I(J’)II%)

o2

A(i, j) = exp (
where:
e (i) € [0,255], intensity of pixel 7 in X.
e 0, scaling factor fixed to the standard deviation of the input X.

We decided to use clustering algorithms for segmenting digits with the goal of
correctly splitting the background from the foreground. We noticed that in the
natural setting the three algorithms work quite well. In order to evaluate the
robustness in presence of adversarial noise we tested the three algorithms with
multiple tests, each of which characterized by different maximum level of power
noise A and the number of rows s. The other parameters were fixed according to
the following description:

e p =1, no joint optimization.

e global = False, local optimization.

e o = (3 =0.5, no privilege to a specific objective component for ¢.
e =20

Each test has been repeated multiple times using different initial random seeds.
Mean values and standard deviation over the multiple runs are considered in the
following plots.
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Figure 4.7: ARI over power noise A. Figure 4.8: ARI}; over power noise A.

Fig. 4.7 and Fig. 4.8 show how the 3 clustering algorithms react in presence of
adversarial noise. The x-axis represents the maximum level of perturbation A and
the y-axis instead represents a similarity measure between two clustering labeling.
In Fig. 4.7 we use the ARI measure, proposed in [11], instead in Fig. 4.8 we use
the ARI}, measure. ARI (Adjusted Rand Index) considers all pairs of samples and
counts the number of pairs that are assigned to the same or different clusters in
the predicted and true clustering labeling. It has been introduced as the adjusted
version of the RI measure. Given a set of n samples in X and two clustering
labeling to compare Y and Y’, we define the Rand Index (RI) in the following
way:
a+b

()

RI =

where:

e ¢ is the number of pairs of samples that are in the same cluster in Y and in
the same cluster in Y.

e b is the number of pairs of samples that are in different groups in Y and in
different ground in Y.

° (g) is the total number of pairs.

The numerator a+ b can be considered as the number of pairs-agreements between
Y and Y.

b=1Sg| where Sp = {(05,05) : 0; € Y,0, €Y, A 0, €Y,,0; €Y/}

a=|S4| where Sy = {(0i,0;) 1 0,0, €Yy A 0;,0; € Y]}

where Y}, refers to a set of cohesive entities in the k-cluster in Y. The Adjusted
Rand Index is the adjusted version of the RI, meaning that it is compared with
respect to a random clustering labeling. In our experiments we consider as the
true segmentation labeling Y all the pixels with intensity greater than 0. Then we
consider the segmentation obtained on the adversarial example for the Y’ label-
ing. The smaller the ARI(Y,Y") measure is, the closer Y is to a random labeling,
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otherwise if they agree then ARI is exactly 1. In other words, the smaller it is the
farthest are the two predictions, meaning that the adversarial noise has strongly
affected the resulting segmentation. On the opposite, if ARI is equal to 1 it means
that the adversarial perturbation is not suitable for fooling the segmentation.

A key property of the ARI measure is that it is not sensitive to labeling alteration,
meaning that ARI([0,0,1,1],[1,1,0,0]) = 1. This is a strong advantage since we
are interested on splitting the image in two clusters/regions, without taking in
consideration the resulting labeling. Indeed if we use another measure like the
F—measure we obtain F'1([0,0,1,1],[1,1,0,0]) = 0, even if the separation results
to be correct.

ARI}, is instead defined equally to the ARI measure but it considers as true la-
beling Y the predicted clustering Y obtained by the three algorithms in absence
of adversarial noise. This new measure has been introduced for studying how the
internal robustness change in presence of adversarial noise. In other words, how
decrease the performance of the algorithm with respect to the initial prediction in
presence of adversarial perturbations.

Coming back to Fig. 4.7 and Fig. 4.8 we can see that the Dominant Sets algorithm
works better than the others in absence of adversarial noise. Then if we increase
A the three clustering algorithms get worse, only K-Means is quite constant at
the beginning. If we compare these results with Fig. 4.8 we can notice that with
respect to the initial prediction K-Means is more robust than the others, with the
disadvantage of obtaining lower ARI in absence of adversarial noise.
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Figure 4.9: ARI over num. of perturbed rows s. Figure 4.10: ARIj, over num. of perturbed rows s.

Another parameter used by the adversarial algorithm is the number of rows s. The
two figures 4.8 and 4.10 highlight how the three algorithms react increasing this
parameter. We can notice that K-Means is not strongly affected by this algorithm,
the unique factor of interest result to be A. Indeed we can manipulate multiple
rows, but if we use A too small then it will be ineffective, since we are using a
similarity matrix based on distanced between pixel intensities.

In the opposite spectral results to be more sensitive on the number of perturbed
rows. It means that even small values of A can affect the results of the final
segmentation if the consider an opportune s.
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Figure 4.11: Errorplot ARI over the attacker’s capacity. Figure 4.12: Errorplot ARI}, over the attacker’s capacity.

Another way of reading the attacker’s capacity, as suggested in [4], is to evalu-
ate the distance between the original input X and the adversarial one X’. The
euclidean norm ||X — X'||5 gives a measure of distance between the two entities.
In particular, the greater is the distance the stronger is the attacker. From this
analysis two plots have been designed and shown in Fig. 4.11 and Fig. 4.12. In
the x-axis we consider the euclidean norm || X — X”||» and in the y-axis we consider
again ARI and ARI},. For the sake of readability, we report the average ARI and
ARI;, with the corresponding standard deviation (shown with error bars). The
first impression that comes from these two plots is that Spectral clustering has a
very large standard deviation, meaning that it works well for some digits but does
not provide good results on others. The other two clustering algorithms, Dom-
inant Sets and K-Means , instead preserve a smaller variance. These two plots
resume the analysis previously reported, that is, in the natural setting Dominant
Sets works better with respect to the ground truth. Instead, with the increase
of the attacker’s capacity Dominant Sets is not able to maintain the clustering
performances more than the other two algorithms.
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Figure 4.13: ARI over A and num. of perturbed rows s.
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Figure 4.14: ARI}, over A and num. of perturbed rows s.

Figures 4.13 and 4.14 shows the 3D surface, obtained with linear interpolation,
generated by changing A and s. In all the three algorithms the minimum ARI
and ARI;, are reached when we use high A and s, meaning that also the result-
ing capacity ||X — X'||5 ie higher. In other words, this 3D representation confirm
what we said previously for Fig. 4.11 and 4.12, meaning that the Euclidean norm is
a good proxy for collapsing the two parameters (A, s) into a unique single measure.

Note that these analyses have been done considering only the MNIST dataset, but
in the future works for sure we will extend this analysis with other datasets in
order to check it these results are a general or they can be found also in other
settings. Another key point is that in these experiments we used the distance
between intensities for constructing the similarity matrix. Probably for that reason
K-Means seems to be the strongest algorithm, but we don’t have any guarantee
about its robustness when other similarity measures are used.

4.1.4 Crafted Adversarial Examples

In this section we are going to show some adversarial examples crafted using Alg.
1 for the three clustering algorithm.

Adversarial Example - A =20,5=5

Figure 4.15: Adversarial example (left) crafted against Dominant Sets clustering with A =
20 and s = 5. The resulting segmentation (middle) results to be quite good, insensible
to the adversarial noise. The image on the right shows in another color scale the crafted
adversarial example.
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Adversarial Example - A=20,5=5

Figure 4.16: Adversarial example (left) crafted against Spectral clustering with A = 20
and s = 5. The resulting segmentation (middle) results to be completely destroyed. A
targeted and small perturbation has fooled completely the spectral segmentation for this
example. The image on the right shows in another color scale the crafted adversarial
example, an we can notice that the injected noise is close to zero.

Adversarial Example - A=20,5=5
o 250

Figure 4.17: Adversarial Example (left) crafted against K-Means clustering with A = 20
and s = 5. The resulting segmentation (middle) results to be quite good, insensible to
the adversarial noise, since the maximum level of noise A is small. The adversarial noise
injected is easier to see in the figure on the right, which basically projects the image
using another color scale.

Adversarial Segmentation - A=120,s =8 Adversarial Example - A=120,s=8
10

Figure 4.18: Adversarial example (left) crafted against Dominant Sets clustering with A =
120 and s = 8. The resulting segmentation (middle) results to be strongly affected by
noisy patterns. Even if for humans the only important thing is the digit 5, the noisy
pattern is grouped together with the foreground. The image on the right highlights
better how strong is the noise injected.
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Adversarial Example - A=120,5=8

Figure 4.19: Adversarial example (left) crafted against Dominant Sets clustering with A =
120 and s = 8. The resulting segmentation (middle) results to be completely destroyed
by the noisy patterns. Even if the generated adversarial example is quite similar to the
initial input image, the adversarial segmentation does not totally preserve the “5” digit
shape. From the image on the right we can notice that the injected noise has a low value
of intensity.

Adversarial Example - A=120,5= 8
o 250

Figure 4.20: Adversarial example (left) crafted against K-Means clustering with A = 120
and s = 8. The resulting segmentation (middle) results to be the best one with respect
to the other algorithms. Only few points have been grouped inside the foreground, even
if from the image on the right we can notice that the injected noise is very strong.
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4.2 Pixelwise-Based Adversarial Algorithm

The next designed algorithm, described in Section 3, allows the attacker to inject
noisy perturbations only in target pixels of X. It means that there is not a clear
noisy pattern, but each target pixel is optimized independently. The choice of
targets may be done considering opportune heuristics, designed taking advantage
of the attacker’s capacity. During this section we are going to analyze how targeted
pixels are identified by our heuristics, how adversarial noise is optimized and we
will analyze the results obtained for the MNIST dataset.

4.2.1 Choice of Target

The key point of this algorithm is that it is capable to detect the most s sensi-
tive pixels that belong to the background and to the foreground. Then it opti-
mizes for each of them an opportune adversarial noise. The choice of these most
sensitive pixels is done by the two functions inner_sensitive_pixels and
outer_sensitive_pixels.

The first function is designed for finding pixels belonging in the foreground that are
sensitive to be moved towards the background cluster. Given an n xm input image
X, partitioned with foreground pixels F' and background pixels B, the function
inner_sensitive pixels returns a set 1" containing s indices corresponding
to the pixels with the smallest intensity in F'.

Figure 4.21: Top 50 inner sensible pixel for digit 4 in MNIST.

Pixels highlighted in red in Fig. 4.21 are the ones with the smallest intensity in
the foreground (blue). These pixels define the target pixels in 7" that are sensitive
to be perturbed. The goal of the adversarial algorithm is to move them towards
the background cluster.

The second function outer_sensitive pixels returns a set of s pixels in the
background that satisfies a certain criteria or heuristic. In our experiments we
decided to consider the locality of pixels for choosing the most sensitive pixels,
with the assumption that the attacker wants to hide threats as much as possible
for fooling also human eyes. The outer_sensitive_pixels can be briefly
described in the following way:
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e Given an n x m input image X with the associating ground truth segmen-
tation Y.

v — 1, X, eF
o 0, otherwise

e Craft an outer mask Y applying a dilation of Y using kernel size e.

Get border mask Y by subtracting to Y¢ the ground truth Y (Y? = Y4-Y).

oY) ={ie{l,...,nxm}: Y>>0}
e Pick s random pixels in o(Y}) as targets.

The dilating function is a morphological operator especially used in computer
vision for different applications: removing noise, find holes or isolate individual
elements. It consists in convolving an input image X with a square kernel E
of size e. Then for each convolution, centered in pixel i, compute the maximal
intensity value v inside the convolution window and sets intensity of pixel ¢ to v.
The kernel size e defines how much we want to dilate the image X.

Ground Truth Dilated Mask - e=3 Dilated Mask - e=5

Figure 4.22: Ground truth segmentation on the left and the corresponding results obtained
by dilate function. In the middle the kernel size e = 3. The figure in the right shows the
result using kernel size e = 5. The greater is the kernel size the bigger will be the white
shape.
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Figure 4.23: The border mask, on the right, Y obtained by subtracting from the dilated
mask Y¢, on the middle, the ground truth segmentation Y. Kernel size e = 3.
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Dilated Mask - &
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Ground Truth

Figure 4.24: The border mask, on the right, Y obtained by subtracting from the dilated
mask Y, on the middle, the ground truth segmentation Y. Kernel size e = 5.

Sensitive pixels are randomly extracted from the border mask. Note that the
smaller the kernel size e is, the closer sensitive pixels are to the border. We may
see this strategy as a way for hiding threats when e is small, since otherwise threats
in pixels too far from the foreground are easier to be detected even by human eyes
since they are strongly isolated.

Background sensible pixels - e=3 Background sensible pixels - e=7

0 0
5
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15

o 5 10 15 20 25 o 5 10 15 20 25

Figure 4.25: Outer target pixels with kernel size e = 3. Figure 4.26: Outer target pixels with kernel size e = 7.

Note the differences between the two previous images. In Fig. 4.25 target pixels,
highlighted in red, are very close to the border of the foreground. On the other
hand, targeted pixels in Fig. 4.26 results to be farther from the foreground, mean-
ing that strong perturbations may be more easily identified with respect to the
ones closer to the foreground border.

Coming back to Alg. 3 remember that we can perturb and optimize each target
pixel independently or jointly with others p consecutive.

Figure 4.27: Outer sensible pixels for digit 4.
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Fig. 4.27 shows in red targeted pixels that belong to the background. Consider
the case in which p = 3, then the optimization will consider 3 consecutive pixels
(green points) at a time generating a unique €* for them.

4.2.2 Local and Global optimization

In Section 4.1.2 we discussed the role of the global parameter and its impli-
cations on the resulting adversarial example. In the pixelwise algorithm it ba-
sically assumes the same role. Considering the example provided in Fig. 4.27,
if global=FALSE then the optimizer performs the clustering evaluation only
on the 3 consecutive columns where the 3 green pixels belong. Otherwise, with
global=TRUE, the optimal adversarial noise is detected by injecting noise on the
3 green pixels and then the corresponding segmentation is evaluated on the entire
image.

Figure 4.28: Local Optimization Adversarial Example. Figure 4.29: Global Optimization Adversarial Example.

Fig. 4.28 and 4.29 provide the visualization of two adversarial examples crafted
against Dominant Sets with parameters A = 120, s = 200,e = 5. The first on the
left was crafted considering local optimization, while the second one was crafted
using global optimization. The two seem to be very similar, differences can only
be noticed in few pixels.

Figure 4.30: Visualization of the original input image X (left), adversarial example with
local optimization (middle) and with global optimization (right).

By the color scale we can notice that the two adversarial examples are quite similar.
The similarity between these two results comes from the observation that targeted
pixels are strongly close to the foreground shape, meaning that optimizing locally
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or respect to the entire image is more or less similar. In other words, while the
global optimization considers all the pixels intensities, the local one considers only
pixel intensities in a certain portion. If that portion has pixels strongly similar to
others in the entire image then the two optimization strategies will look for similar
solutions.

Predicted Segmentation

Figure 4.31: Clustering segmentation obtained for the input X (left), adversarial example
with local optimization (middle) and with global optimization (right).

Equally the results that we obtain performing the clustering segmentation are
similar. Both the two adversarial examples are able to break the clustering algo-
rithm, obtaining a segmentation very far from the original predicted one. This
observation gives more emphasis on the similarity between the two optimization
strategies. In the optimization strategy a strong role is played also by the dilation
kernel size e, since it defines how much targeted outer pixels should be close to the
foreground. The closer the outer mask is to the foreground shape, the lower the
effect of moving from global optimization to the local one is. Note what happens
when we increase the dilation kernel size from e =5 to e = 7.

Figure 4.32: Local Optimization Adversarial Example. Figure 4.33: Global Optimization Adversarial Example.

Differences between the two adversarial examples are more evident with respect
to the previous case. Indeed, we can notice that the perturbations injected for the
first one in Fig. 4.32 are less evident than the ones shown in Fig. 4.33.

In conclusion the advantages obtained using the local optimization in the opposite
of the global optimization can be shortly summarized:

e With small values of e we obtain similar adversarial examples crafted with
global optimization but with a consistently lower computational time.

e With high values of e the outer perturbations are more sparse and the local
optimization tries to hide threats better than the global one.
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4.2.3 MNIST results

In this section we are going to analyze the robustness provided by the three clus-
tering algorithms in presence of adversarial pixelwise noise. Dataset and measures
used are exactly equal to the ones described in Section 4.1.3.

The first analysis takes into consideration the maximum power noise A. The two
following plots show how the three algorithms react when A increase regardless of
the other parameters.
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Figure 4.34: ARI over power noise A. Figure 4.35: ARI}, over power noise A.

We can immediately confirm the same pattern discussed in Section 4.1.3, that is,
Dominant Sets clustering works better than the others in the natural setting, but in
a certain point, when A becomes bigger, it is not capable to maintain this quality
anymore. Indeed, we can notice from 4.35 that the more robust algorithm seems
to be K-Means, but looking at Fig. 4.34 we can notice that it does not work well
with respect to the ground truth in absence of adversarial noise. Something strange
happens with Spectral clustering, in fact it seems that very small perturbations
strongly affect the results of the segmentation. From this observation we decided
to evaluate how the three algorithms react by changing the number of internal and
external pixels to attack.
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Fig. 4.35 and Fig. 4.37 show that the most sensitive algorithm for this parameter
is Spectral, meaning that, regardless of the maximum power noise A, by picking
an accurate number of pixels to perturb the algorithm can be strongly fooled. On
the other hand, the other two clustering algorithms requires greater values of A

for changing the initial prediction.
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Figure 4.38: Errorplot ARI over the attacker’s capacity.
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Figure 4.39: Errorplot ARI}, over the attacker’s capacity.

We decided to analyze the robustness trend of the three algorithms considering
the attacker’s capacity, as suggested by Biggio et al., expressed in form || X — X'|]5.
This representation takes into consideration both A and s at the same time, since
the greater are these two parameters the greater is the Euclidean distance between
the original sample X and the adversarial one X’. We can immediately notice
the large standard deviation provided by the spectral clustering algorithm, that
highlights how it works quite good for some examples in MNIST and for others it

provides bad results.

The two more robust clustering algorithms seem to be K-Means and Dominant
Sets, with greater performance of the last one in absence of adversarial noise or
for small perturbations. K-Means again results to be more robust than the others,
but this is probably related to the fact that we are using similarities based on
the distances. In future works, it would be interesting to expand this analysis by

introducing other similarity measures.

DominantSets Adv. Segmentation

Figure 4.40: ARI over A and num.
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Figure 4.41: ARI over A and num. of perturbed pixels s.

Figures 4.40 and 4.41 shows the 3D surface, obtained with linear interpolation,
generated by changing A and s. In both of the Dominant Sets and K-Means algo-
rithm the minimum ARI and ARI} is reached when we use high A and s, meaning
that also the resulting capacity || X — X'||2 is higher. On the other hand Spec-
tral reaches the minimum in presence of small perturbations, and even from this
representation we can notice a high variance provided by the Spectral algorithm
results.

In other words, this 3D representation confirms what we said previously for Fig.
4.38 and 4.39, meaning that the Euclidean norm is a good proxy for collapsing the
two parameters (A, s) into a unique single measure.

4.2.4 Crafted Adversarial Examples

In this section we are going to show some adversarial examples crafted against the
three clustering algorithms:

Figure 4.42: Sample digit “0” X to attack.

Predicted Segmentation

Predicted Segmentation Predicted Segmentation

Figure 4.43: Clustering segmentation obtained by the three algorithms, correspondingly
Dominant Sets, Spectral and K-Means, for digit ”0”.
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We can immediately notice how in absence of adversarial noise K-Means and Domi-
nant Sets work well, keeping correctly the foreground. On the other hand, Spectral
leaves some holes inside the foreground, reducing the quality of the final result.

Adversarial Segmentation - A = 60, s = 300 Crafted adv example - A= 60,5 = 300

250

15

25

Figure 4.44: Adversarial Example (left) crafted against Dominant Sets clustering with
A = 60, s = 300 and e = 3. It is strongly similar to the original input image. The
resulting segmentation (middle) seems to preserve the digit 0 shape but even adversarial
noise has been clustered in the foreground. The image on the right shows in another
color scale the crafted adversarial example, and we can notice where the noise is located.

Adversarial Segmentation - A = 60, s= 300

Crafted adv example - A= 60, s = 300

Figure 4.45: Adversarial Example (left) crafted against Spectral clustering with A = 60,
s = 300 and e = 3. The results are similar to the ones obtained for Dominant Sets but
also for noisy pixels are grouped in the foreground.

Adversarial Segmentation - A = 60, s = 300 Crafted adv example - A= 60, s = 300

Figure 4.46: Adversarial Example (left) crafted against K-Means clustering with A = 60,
s =300 and e = 3. The segmentation obtained against the adversarial example (middle)
is quite good, meaning that the injected attacks are not able to fool K-Means since A is
too small. The figure on the right shows, with a different color scale, where adversarial
perturbations are located and how strong they are.
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4.3 Targeted Clustering Adversarial Algorithm

Clustering algorithms are used in different applications, due to the unavailability

of having labeled data in certain settings. Different applications of clustering
algorithms are widely used and studied for analyzing data both in the literature
and in the industry, for example:

e Crime analysis, used for predicting patterns and trends in crime. Given
a location of interest we can use clustering algorithms for analyzing crime
prone areas.

e Call Detail Record (CDR), used for studying customers. Clustering algo-
rithms are used for grouping customers with similar needs and then specific
or custom offers are proposed to the different groups.

e Cyber profiling, used for studying activities or Internet users through log
activity analysis. Users could be clustered according to similar behaviors
analyzing daily activities, and then a summarized profile of them can be re-
constructed. An interesting application of this setting is used for identifying
possible malicious users.

e Local classification, instead of training a classifier over all the data in some
application it seems to be better to split data into groups and then train
a model for each group. For example, in patient analysis we could group
patients with similar characteristics and then use custom classifiers for pre-
dicting the risk of having dangerous diseases.

All of these applications adopt clustering algorithms for their purposes but they
have to deal with an unexpected problem: clustering algorithms have not been
originally designed to work in adversarial settings. This may allow the attacker to
inject carefully-crafted attacks into collected samples in order to compromise the
clustering results.

In section 3.3 we propose an algorithm for crafting targeted adversarial examples
for fooling data clustering algorithms. The goal of the attacker is to obtain a certain
clustering labeling for some samples, targeted or generic. In our application we
decided to leave the algorithm the role of choosing the most sensitive samples
to move towards a desirable cluster. Then, we tested the clustering robustness
over multiple datasets considering always the same similarity measure, based on
distance between entities.

4.3.1 Choice of Target

The first step of the algorithm, as highlighted in Alg. 5, is to pick the most sensitive
points or entities to attack. Nothing excludes the possibility for the attacker to
decide by himself/herself target entities. In our experiments we decided to leave
the algorithm the role of picking the most sensitive entities through the application
of a certain heuristic. In particular, given two clusters C; and C5 we assume that
the attacker wants to move samples from C} towards C5. Then, the algorithm
picks the closest samples to Cy that belong to C;. Distances from a point to a
cluster can be defined in different ways:

e Single link (p, Cy): gets pairwise distances from p and all the samples in C
and the smallest one is considered.
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e Complete link (p, Cy): gets pairwise distances from p and all the samples in
(5 and the smallest one is considered.

o Average link (p, C): gets the centroid ¢ of cluster Cy (average point between
samples in C5) and then distance between ¢, and p is considered.

In our experiments we decided to use the last one, so at each iteration the adver-
sarial algorithm looks for optimal noisy perturbations such that target samples are
moved towards the centroid of a certain target cluster.

For the sake of clarity we are going to propose an example of how the adversarial
algorithm works on a synthetic dataset X created using the make blobs func-
tion of the sklearn library'. X is organized in two evident blobs, each of which
contains 250 samples.

Figure 4.47: Synthetic dataset X.

From Fig.4.47 we can notice that the two clusters are strongly cohesive and sepa-
rate, in fact the three algorithms work very well on detecting the two structures.
The first step of the adversarial algorithm is to detect sensitive targets for moving
points from C; to Cy. For that reason the s closest points to ¢q (centroid of Cj)
belonging to C are considered.

75 -850 -25 00 25
X1

Figure 4.48: Target sensitive points s = 25 and cluster centroids.

!Sklearn Library - make_blobs function references
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Fig. 4.49 provides a graphical visualization of the scenario. Note that the green
points t are the ones that the algorithm tries to move. Of course we could take
into consideration other heuristics, indeed another heuristic could be to take the
farthest points instead of the closest one.

The last part of the adversarial optimization consists in finding the best pertur-
bation to be applied to green points t.

-75 -50 -25 0O 25
X1

Figure 4.49: Adversarial synthetic dataset, A = 2,s = 25.

As expected the adversarial algorithm moved 25 points (0.1% of Cjy) towards CY,
simply reducing the x5 and increasing the x; features.
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Figure 4.50: Data clustering obtained for X’ using K-Means (left), Spectral (middle) and
Dominant Sets (right) clustering.

From Fig. 4.50 we can observe two interesting things:
e Spectral clustering seems to be extremely sensitive to small perturbations.

e This example stresses again the importance of the introduction of the ARI
measure. We can notice that, in the opposite on what shown in 4.49, the
clustering labeling proposed by Dominant Sets and K-Means are reversed.
The separation obtained is basically the same, the only difference is the
cluster name, which is meaningless for our application. Indeed the ARI
measure is not affected by this change and provides and quality equal to 1.

An interesting observation for Spectral clustering regards the role of k, which is
the number of extracted clusters. Let & be the initial number of clusters retrieved
over X. Now we define X’ as an adversarial perturbation of X. Then, it seems
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that iterating the Spectral clustering algorithm over X’ forcing it to find exactly k
clusters does not provide satisfying results. Conversely, if we execute it in order to
find k + 1 clusters, it seems to be more efficient and able to detect the adversarial
points in a separate cluster. An example is shown below:

Spectral Clustering X', K =2 Spectral Clustering X', K=3
8 . 0 o
L4 " L ® o
3
6~
-
L ]
5 . :i .‘. . -t .
2 '.’ ™
0- : . » ‘i
o L
L ]

Figure 4.51: Spectral clustering for K = 2. Figure 4.52: Spectral clustering for K = 3.

We can notice how the clustering obtained considering K = 2 over X’ returns a
strange labeling. The two blobs in Fig. 4.51 are clustered together (red) and target
points are seen as a separate cluster (blue). On the other hand, if we consider one
more cluster the Spectral clustering algorithm, shown in Fig. 4.52, is able to group
adversarial samples in a unique cluster.

4.3.2 Local and Global optimization

In previous sections we analyzed the implications of using local or global opti-
mization through the usage of the global parameter. Given X € R™™ with
G = 20 and p = 2, then the global optimization performs the clustering evaluation
G times over X' € R™™. Conversely, with the local optimization the adversarial
algorithm iterates clustering evaluation G times over X' € R™*P_ with p < m.
The global optimization may result to be computationally heavy to execute for cer-
tain datasets. For instance, in computer vision applications it is quite common to
analyze large images, meaning that m is strongly high. Let’s consider the MNIST
dataset, containing images of 28 x 28 pixels. Then, we have that m = 28 x 28 = 784
features to optimize and over with we need to execute the clustering algorithm G
times. We can conclude that simply considering a small dataset like MNIST the
computational advantage of using local optimization is extremely high.
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Figure 4.53:
Means with local optimization A = 120,s = 5,p = 1.

Crafted adversarial example against K-

Figure 4.54: Crafted adversarial example against K-

Means with global optimization A = 120,s = 5,p = 1.

The two figures above show two adversarial examples crafted with the goal of mov-
ing a digit “0” towards the cluster of digits ”3”. The two optimization strategies
were adopted and the results can be compared. In both cases we can notice that
the algorithm has injected noise for highlighting the shape of a ”3” digit. Even us-
ing the local optimization the resulting sample seems to be very good, it preserves
the shape of a digit ”0” and we can also notice that the injected noise around the
foreground is close to a ”3” shape. A way for analyzing the correctness of the
algorithm is to project the noise mask obtained.

Local Optimization Noisy Mask

Figure 4.55: Crafted adversarial noisy mask against K-

Means with local optimization A = 120,s = 5,p = 1.

Global Optimization Neisy Mask

R
%
i
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Figure 4.56: Crafted adversarial noisy mask against K-

Means with global optimization A = 120,s =5,p = 1.

Comparing the two figures we can notice how the local one gives more importance
to remove the shape “0”, on the other hand the global one gives more emphasis

on injecting the “3” shape.
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4.3.3 Synthetic Dataset

The first experiment for evaluating the robustness of the clustering algorithms con-
siders a 2 dimensional synthetic dataset obtained using the make_b1lobs? function,
which basically generates isotropic Gaussian blobs. We decided to use the same
dataset shown in Fig. 4.47, composed by 2 evident clusters of 250 samples each.
The three algorithms in absence of adversarial noise provide an ARI accuracy
equal to 1.0 using Gaussian similarity with Euclidean norm between points. Then
the 3 algorithms (Dominant Sets, Spectral and K-Means clustering) are tested
against multiple adversarial examples crafted using Alg. 5.

Figure 4.57: ARI over maximum noise power A. Figure 4.58: ARIj, over maximum noise power A.

The two figures above show that the closer adversarial samples are to the target
cluster the worst the resulting clustering labeling is for all the three algorithms.
As we have seen also in other experiments, Spectral seems to be most sensitive to
small adversarial perturbations. On the other hand, K-Means and Dominant Sets
clustering preserve a similar behavior. Note how the two plots look quite similar,
since the true clustering and the initial one are exactly the same.

Figure 4.59: ARI over the attacker’s capacity. Figure 4.60: ARI} over the attacker’s capacity.

’make_blobs - Sklearn library
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From Fig. 4.59 and 4.60 show the performance of the three algorithms by changing
the attacker’s capacity || X — X’||o. The two plots highlight the sensibility of Spec-
tral clustering in presence of very small perturbations, and the greater robustness
provided by the other two algorithms.

4.3.4 DIGIT Dataset

The Digit dataset is similar to MNIST, since it contains images of hand-written
digits, but with respect to the last one it contains 1797 8 x 8px images. Using this
dataset, we decided to simulate a possible scenario in which the attacker wants to
move samples from the “0” cluster to the “3” one.
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Figure 4.61: Principal component visualization from cluster “0” and “3”.

From the principal component visualization, shown in Fig. 4.61, we can notice
that the two clusters are very well separated. Considerably, even in the original
space they result to be strongly separate, since the three clustering algorithms are
able to reach an ARI measure equal to 1, meaning that all digits are correctly
clustered. In the figures below we propose a visualization of two samples taken
from clusters “0” and “3”.
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Figure 4.62: Digit “0”. Figure 4.63: Digit “3”.

In the following, we propose the results obtained by the three algorithms in pres-
ence of adversarial noise for the Digit dataset.

68



1.0 - %H‘—__—__\ 1.0 - (—'\*’Hd______.\

0.8 - 0.8 -

0.6 -

ARI
ARI,

o <"
) 4

0.4- 0.4

0.2-
= kmeans

50 100 150 200 250 50 100 150 200

/h‘_-"_'/ --don:.-st-ats /..'"'_"—‘--/ -'-d:)rrsem
/ == spectral 02- / -

pm]

spectral

> kmeans

250

Figure 4.64: ARI over maximum noise power A. Figure 4.65: ARIj, over maximum noise power A.

Considerably, with respect to the previous analyses, Spectral clustering does not
seem to be affected by the adversarial noise. The robustness provided by the
Spectral clustering algorithm now is strongly greater than the ones provided by
the other two algorithms. Conversely, Dominant Sets seems to be strongly influ-
enced by the adversarial noise injected in DIGIT.

Figure 4.66: ARI over percentage of moved samples s. Figure 4.67: ARI over percentage of moved samples s.

The two plots provided in Fig. 4.66 and 4.67 highlight the importance of the
number of samples moved from cluster “0” towards cluster “3”. Indeed, we can
notice that the major component that affects the results provided by Dominant
Sets is exactly the parameter s. When only a small percentage of samples are
moved, Dominant Sets is still able to detect the organization of the true clusters.
But when the percentage of samples moved becomes too high then Dominant
Sets is not able to maintain the original performance anymore. Remember that
Dominant Sets is based on the extraction of dominant sets (maximal cliques for
weighted graphs). The main reason for these results related to Dominant Sets is
that when we move samples, we are basically reducing similarities between nodes
inside the dominant set. In other words, given a dominant set S C X we know
by definition that Ws(i) > 0 Vi € S, importance of i in S. We also know that
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Wi(i) is computed considering the similarity between i and the rest of samples
in S. Now let’s define T' the set of target samples in S that are sensitive to be
moved. Then, when the adversarial algorithm moves samples 7" in adversarial way
it is basically reducing the similarities between samples in 7" and samples in S\ 7.
Consequently it is reducing also the importance of sample in T to be part in S.
For that reason only when we move few samples or all of them the Dominant Sets
clustering algorithm is able to reconstruct the original cluster. The worst case is
reached when we move more or less 40 — 60% of samples from S, because basically
the attacker is constructing a new cluster.

Another interesting pattern is provided by K-Means, in fact we can see that the
performance decrease until we reach a certain point and then the greater s is, the
better the results are. The reason is that when we move the entire cluster what we
are done is basically to leave unchanged the entire structure. The worst case, if the
attacker moves all the samples, is reached when the two clusters are completely
merged.
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Figure 4.68: PC projection of “3” and “0” clusters, that Figure 4.69: PC projection of X', obtained moving target
define X. Green points are the targets (s = 1%) of “0” samples (s = 1%) by A = 180 towards cluster “3”.
sensitive to be moved towards “3”.
Comparing Fig. 4.69 with Fig. 4.68 we see, through a principal component visual-
ization, that target samples have been correctly moved towards the right direction.
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Figure 4.70: Direction mask from cluster “0” to cluster Figure 4.71: Optimal direction noise mask crafted
“37. against K-Means with A = 180, s = 1% and local op-

timization.
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Fig. 4.70 shows the right direction in order to transform a digit “0” into a “3”.
This mask represents in red the portions of the image for which intensities must be
increased and in blue the portions which define regions where the algorithm needs
to decrease intensities. We can notice that the red portion assumes the shape of
a “3” digit and the blue one assumes the shape of a “0”. The optimal noise mask
extracted by the algorithm is shown in Fig. 4.71, which is quite similar to the
direction mask. Applying this mask to a “0” sample we could convert it into a
“3”. In the following we proposed an example of its application.

Target digit 0 Adversarial digit 0

o] 1 2 3 4 5 6 7

Figure 4.72: Target “0” digit. Figure 4.73: Adversarial “0” digit.

We can see from Fig. 4.73 how the original “0” digit, shown in Fig. 4.72, has been
transformed for being more similar to a “3” digit.

In conclusion we report some plots that show how the 3 clustering algorithms react
by changing the adversarial’s capacity.
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Figure 4.74: ARI over the attacker’s capacity. Figure 4.75: ARI}, over the attacker’s capacity.

We can notice how the 2 figures above are very similar to the ones provided in
Fig. 4.66 and 4.67, highlighting how the most important parameter that affects
the results is essentially the percentage of samples moved.
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4.3.5 Yale Dataset

In recent years face clustering has assumed an essential role in very sophisticated
applications. It consists in grouping images of faces that are similar to each other
(same people) for which no labels exists. In [13] and [20] some of multiple applica-
tions of face clustering are discussed, like grouping faces together in order to make
more efficient face retrieval systems. Consider for example the scenario in which
we have a huge dataset of faces and given an input image X we want to find a
face similar to X. For solving that problem we need to compute the similarity of
X with all faces in the dataset in order to get the most similar face and corre-
spondingly identify the subject. This strategy may end up being computationally
wasteful, especially for online applications. An idea for speeding up the system
consists in clustering together similar faces and for each cluster a representative
prototype is considered. Then, instead of comparing similarities between all the
faces, we can limit the computations only to those prototypes.

Even in this scenario we could think to have an attacker may want to break the
clustering process for satisfying a certain desire. For instance the attacker may
desire to merge a collection of faces into the others, such that at the end one group
is removed and possible retrieval of similar faces becomes more difficult.

Due to the sensibility of these applications we decided to test the three algorithms
even for the face clustering setting. We decided to use the Yale dataset® that
contains 165 320 x 243px grayscale images, 11 per subject. In order to focus our
analysis only on faces and even for reducing the computational time, an initial
pre-processing was done:

e For each image in Yale dataset use the Cascade Classifier? for detect-
ing the center ¢ of the face inside the image.

e Construct a box of k x k px centered in c¢ for extracting the face.
e Use interpolation to down-size the input box into a k' x k' px image.

We decided to set £ = 150 and k&’ = 28, in order to preserve a good quality of the
images and maintain acceptable computational requirements. In the following we
propose an example of face obtained after the pre-processing procedure against
the original image:

Figure 4.76: Sample in Yale dataset. Figure 4.77: Retrieved face after the pre-processing pro-
cedure.

3Yale dataset
4Cascade Classifier documentation.
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Then we decided to simulate the scenario in which the attacker wants to move face
samples from a cluster to another. We randomly picked two clusters (subject-1 and
subject-4), that define our X, with the purpose of moving samples from subject-4
cluster towards the subject-1 group. In absence of adversarial noise the following
results are obtained:

Clustering algorithm H ARI

Spectral 0.6675
K-Means 0.6675
Dominant Sets 1.0

We can immediately see that in the natural setting Dominant Sets works better
than the other clustering algorithms taken in consideration.

Figure 4.78: ARI over maximal power noise A. Figure 4.79: ARI} over maximal power noise A.

Looking at 4.78 we can notice that respect to the ground truth Dominant Sets
is more robust than the others, but if we consider Fig. 4.79 then we can see
that the three algorithms decrease their performance in a similar way. The major
advantage of Dominant Sets seems to be that in this configuration and in absence
of adversarial noise, it works better than the other two algorithms.

Figure 4.80: ARI over the attacker’s capacity. Figure 4.81: ARI}, over the attacker’s capacity.

Considerably we can notice that after a certain point of the adversarial’s capacity
the ARI obtained by Spectral and Dominant Sets clustering seems to increase.
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Conversely, K-Means is drastically compromised when the adversarial’s capacity
becomes too high. In the following we propose some examples designed for moving
faces of subject-4 towards the cluster of subject-1.
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Figure 4.82: PC projection of subject-0 and subject-1
clusters, that define X. Green points are the target sam-
ples (s = 4%) sensitive to be moved from subject-0 clus-

ter to the subject-1 one.
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Figure 4.83: Optimal direction noise mask crafted

timization.

against K-Means with A = 180, s = 1% and local op-

Comparing the two principal component projections shown in Fig. 4.82 and 4.83
we can clearly see that the adversarial algorithm is working correctly, moving green
target samples from the blue cluster to the red one.

Figure 4.84: Target sample of subject-4 to move towards

subject-1 cluster.

nm [ 100
-

Figure 4.85: Sample in subject-1 cluster.

Figure 4.86: Target sample from subject-4 cluster (left), over which is applied the optimal
noise adversarial mask (middle) for crafting an adversarial example (right).
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Chapter 5

Conclusions and Future Work

In this work, we have presented how adversarial machine learning is increasingly
attracting researchers and privates due to the strong implications that it can have
in real life. We have shown how in sophisticated domains, such as cyber-security,
adversarial perturbations can bring to dangerous conclusions. We have in par-
ticular analyzed the impact of adversarial machine learning for the unsupervised
paradigm. After having shortly reviewed image segmentation in terms of clus-
tering, we have noted how fooling an image segmentation algorithm can bring
sophisticated systems to make dangerous decisions.

We have testified a lack of adversarial analysis in clustering algorithms and we
have addressed this lack by performing extensive experimentation on three clus-
tering algorithms, discovering a strong sensitivity to the adversarial perturbations.
In particular, we have developed three methods for crafting adversarial examples
against K-Means, Spectral and Dominant Sets clustering. The first two meth-
ods have been designed for fooling image segmentation algorithms, and we have
discussed how they work along with the differences between them. The last one, in-
stead, has been designed for fooling feature-based data clustering. We have shown
how the three clustering algorithms behave, for both applications, in presence of
adversarial noise. In particular, we have seen how Spectral Clustering seems to be
strongly sensitive to small perturbations with respect to the other two clustering
algorithms. Moreover, we have seen how K-Means and Dominant Sets preserve
a similar behavior against adversarial noise, but the latter has the advantage of
working better in absence of adversarial noise.

During the development of this work we have realized some ideas that could be
interesting to address in the future. The first one is related to the optimization
of the adversarial algorithms. At the moment, the major component that results
to be computationally costly is the noise evaluation, which requires multiple iter-
ations of the clustering algorithms. A possible solution could be to develop the
proposed clustering algorithms in order to work with GPUs, to speed up the com-
putations. In our implementation the designed code is strongly scalable, meaning
that it is possible to run the entire algorithm over parallel architectures without
much effort. Right now, due to the absence of GPU-supported implementations
of clustering algorithms, we can not run the adversarial algorithms on GPUs. An-
other idea for speeding up the adversarial target algorithm 5, is to introduce a new
heuristic that avoids the injection of noise if the target samples are locally close
to the desired cluster. Indeed, at the moment target samples are always moved
towards the destination cluster, meaning that the algorithm injects small pertur-
bations even if samples are already locally close. From multiple observations, we

5



have seen that the optimizer leaves local features more or less unchanged if samples
are locally close. This consideration brings us to the conclusion that executing the
optimization for those features can lead to waste computational resources, since
only negligible perturbations are crafted.

The second topic of interest for future work is the connection between adversarial
examples crafted against clustering and supervised classification models. A clus-
tering algorithm can be seen as a way for estimating probability distributions of
samples. If samples belong to the same group, then they are probably sampled
from the same distribution. We believe that fooling clustering is tightly related to
change the classes probability distributions. Supervised models are built with the
goal of discriminating samples coming from different classes, therefore we think
that adversarial examples crafted to fool clustering can even fool supervised al-
gorithms. If we could verify the correctness of this idea then we might think to
use the adversarial masks, like in Fig. 4.71, generated offline against clustering
algorithms, for fooling online classifiers. This strategy could be interesting for
drastically reducing the computational time required for crafting adversarial ex-
amples. The latest idea is related to the design of the target clustering algorithm
5. Indeed, it works moving samples from one cluster towards another one. We can
imagine to generalize this framework allowing the attacker to move samples from
a cluster towards multiple ones.
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