
Department of Environmental Sciences, Informatics and Statistics

Master Degree in Computer Science
Second cycle (D.M. 270/2004)

Final Thesis

Feature Selection Using Neural
Network Pruning

Supervisor
Ch. Prof. Marcello Pelillo

Graduand
Alberto Scalco
Matriculation Number: 846175

Academic year
2017-2018

Abstract

Feature selection is a well known technique for data prepossessing with
the purpose of removing redundant and irrelevant information with the ben-
efits, among others, of an improved generalization and a decreased curse of
dimensionality. This paper investigates an approach based on a trained neu-
ral network model, where features are selected by iteratively removing a node
in the input layer. This pruning process, comprise a node selection criterion
and a subsequent weight correction: after a node elimination, the remaining
weights are adjusted in a way that the overall network behaviour do not worsen
over the entire training set. The pruning problem is formulated as a system of
linear equations solved in a least-squares sense. This method allows the direct
evaluation of the performance at each iteration and a stopping condition is
also proposed. Finally experimental results are presented in comparison to
another feature selection method.

1

Contents
1 Introduction 3

2 Definitions and notations 4

3 The feature selection algorithm 5
3.1 Elimination criterion . 6
3.2 DGELSD - the least square algorithm 7
3.3 Algorithm definition . 8

3.3.1 Fully connected algorithm optimization 8
3.4 stopping condition . 9

4 MIFS - Comparison algorithm 10

5 Experimental results 11
5.1 Reuters newswire topics classification 11
5.2 MNIST handwritten digits . 14
5.3 UJIIndoorLoc indoor localization . 18

6 Conclusions 21

2

1 Introduction
In machine learning, while is fundamental that the information contained in the
data is sufficient to infer the output, the presence of irrelevant or redundant fea-
tures can lead to loss of performance and burden the entire process since classifiers
and regressors are sensitive to the features used to construct it. Under the latter
assumption, feature reduction aims to select a subset of features that retains most of
the intrinsic information in the data. feature reduction can be separated in feature
extraction, which transforms the original features and select a subset of it (PCA and
discriminant analysis are well-known examples of this class), while feature selection
directly select a subset from the initial features.
Exhaustive search is generally impractical so, many algorithms has been proposed
in order to obtain reliable solutions. The choice of optimality criteria is also difficult
as there are multiple objectives in a feature selection task. Many popular search
approaches use greedy hill climbing, which iteratively evaluate a candidate subset of
features, then modify the subset and evaluate if the new subset provide an improve-
ment over the previous. Evaluation of the subsets requires a scoring metric that
grades a subset of features. Some proxy measures like information theory based
scoring, can be employed like in [1] where a combination of the concept of mutual
information between features and outputs and pairwise mutual information between
features is applied. Genetic algorithms are search heuristic that mimics the process
of natural evolution and can be used as framework for the extraction of relevant
features ([2] and [3]). Other graph based methods includes clustering approaches
like dominant sets, where nodes represent features and the similarity are computed
through mutual information and entropy([4]).
This thesis investigates a feature selection method based on neural network. The
main idea is to apply a pruning method, which are generally applied to hidden layers,
to the input performing a backward feature selection by iteratively removing input
nodes. In this context, the pruning can be interpreted as feature selection since the
elimination of an input nodes implies the removal of a feature. After each iteration,
the pruning algorithm used [5], adjusts the remaining weights minimizing the per-
formance loss of the network. The procedure allows to be iterated until the required
trade-off between feature reduction and performance is reached. The performance
metrics can be detected at each step providing flexibility on the choice of the stop-
ping criterion. It is also possible to adopt any stopping criterion based directly on
the network performance, instead of using an estimating measure of quality, thus
having a more reliable evaluation.
In the following sections, first the notation and definitions are presented in Section
2, The proposed algorithm is discussed in Section 3, an introduction to a compar-
ison method is shown in Section 4, while in in Section 5 experimental results are
provided. Lastly in Section 6 conclusions are reported.

3

2 Definitions and notations
A neural network (or model) can be represented a directed weighted graph N =
(V,E,w) where V = {0, 1, . . . , n} is the set of n+ 1 units (or neurons), E ⊆ V × V
is the set of connections and w : E → R is a weight function that assigns to any
connection (i, j) ∈ E a real value w(i, j) (or wij for ease of notation).
For each unit i ∈ V the projective field, which is the set of unit fed by i, can be
defined as follow

Pi = {j ∈ V : (i, j) ∈ E} (1)

In the same way the receptive field of i, which is the set of units that feed i

Ri = {j ∈ V : (j, i) ∈ E} (2)

Where the cardinalities of the sets are respectively denoted as pi and ri.
Considering a fully connected network, the receptive field of a given node is the
preceding layer, while the projective field is the subsequent layer.
Being V = VI ∪ VH ∪ VO partitioned in the sets of input, hidden and output nodes,
input nodes j ∈ VI receive their input xj from the external that also corresponds
to their output (xj = yj), while every non-input unit i ∈ (VH ∪ VO) instead, receive
from its own receptive field Ri an input given by

ξi =
∑
j∈Ri

wjiyj (3)

where yj represents the output value of the unit j, and provide as output

yi = f(ξi) (4)

where f is an arbitrary differentiable activation function.

4

3 The feature selection algorithm
The variable selection method is presented as an extension of an iterative prun-
ing method already presented in [5] and [6]. The algorithm consists in iteratively
selecting a input unit to remove after the network has been satisfactory trained
performance-wise. It is assumed that the network is trained over the set of M pat-
terns xm = (x1, . . . , yn)m = 1, . . . ,M by means of an arbitrary learning procedure
from which the pruning algorithm is completely independent.
Suppose that an input node h ∈ VI is chosen to be removed (the elimination crite-
rion will be addressed below). Removing h implies the removal of all its outgoing
connection. The new pruned network will have the following connection set

Enew = Eold − ({h} × Ph) (5)

After node removal, it is required to adjust the weights of h’s projective field Ph
to preserve the network behaviour over the training set. For each unit i ∈ Ph, its
net input upon presentation of pattern µ is

ξ
(µ)
i =

∑
j∈Ri

wjiy
(µ)
j (6)

where y(µ)j denotes the the output of the input unit j corresponding to pattern
µ. After removal of h, each i unit in the Ph will receive its input from Ri − {h}. In
order to let the pruned model be as close as possible to previous, need to hold the
following relation:

∀µ
∑
j∈Ri

wjiy
(µ)
j =

∑
j∈Ri−{h}

(wji + δji)y
(µ)
j (7)

where µ = 1, . . . ,M and i ∈ Ph, where δij’s are the adjusting factors to be
determined. After an algebraic manipulation the latter expression can be written as

∀µ
∑

j∈Ri−{h}

δijy
(µ)
j = whiy

(µ)
h (8)

(8) is a system of MPh linear equations in the κh =
∑

i∈Ph
(ri − 1) unknowns

{δji}, where κh represent the number of incoming connections into h’s projective
field Ph after h removal.
The system can be conveniently represented in a matrix notation in the formAδ = b:
for each unit in the input layer j ∈ VI their input vectors

yj = (y
(1)
j , . . . , y

(M)
j)T (9)

where y(µ)j are the inputs (and the outputs) of the node j on presentation of
pattern µ ∈M .
Also, being ri the cardinality of Ri, let Yi,h denote the M × (ri − 1) matrix, whose
columns are the output vectors of i’s new receptive field Ri − {h}:

Yi,h = [yj1 yj2 . . . yjri−1
] (10)

where the indexes jk, for all k = 1, . . . , ri − 1, vary in Ri − {h}.
The weight adjustment can be performed by solving the ph disjoint system:

5

Yi,hδi = zi,h (11)

for every i ∈ Ph, where δi is the unknown vector and:

zi,h = whiyh (12)

Putting these systems together, we obtain

zh − Yhδ (13)

where

Yh = diag(Yi1,h, Yi2,h, . . . , Yiph ,h) (14)

δ = (δ
T

i1
, δ
T

i2
, . . . , δ

T

iph
)T (15)

zh = (zTi1,h, z
T
i2,h
, . . . , zTiph ,h

)T (16)

One iteration of the pruning algorithm consists on solving the following linear
system in the least-square sense:

minimize
∥∥zh − Yhδ∥∥2 (17)

To solve the system of equations (17), In [5] is applied a conjugate gradient
least-square method called CGPCNE algorithm (details in [7]) to perform this min-
imization problem on whole Yh matrix. However even for discrete dataset size, the
computation may become unfeasible in terms of space, since the Yh matrix dimen-
sion is Mph × κh where κh =

∑
i∈Ph

(ri − 1).
Because of the structure of the Yh matrix which is block diagonal, each block can
be computed independently from the others, so the definition of δ is computed iter-
atively on each Yi,h, thus:

∀i ∈ Ph minimize
∥∥zi,h − Yi,hδi∥∥2 (18)

3.1 Elimination criterion

Ideally the best choice of the input unit h will be the one among all input nodes
which will lead to the smallest final residual of the system (17). This will guarantees
that the weights adjustment will have the minimal impact on the overall network
behaviour. This approach however, implies solving as many systems as there are
input nodes and it would become impractical even for small number of units.
The identification of the input unit h, is instead based on a property of the the
CGPCNE method adopted in [5]. The latter method solves the linear system by
starting with an initial δ0 and iteratively produces a sequence of {δk}k=1,2,... that
decrease the residuals ρh(δk) =

∥∥zh − Yhδk∥∥22. A suboptimal approach is to chose
the unit h that has the smallest initial residual

h = arg min
h∈VI

ρh(δ0) (19)

6

Since the initial solution δ0 is chosen to be the null vector, (19) can be written
as

h = arg min
h∈VI

∑
i∈Ph

w2
hi ‖yh‖

2
2 (20)

The latter selection criterion have an interesting interpretation. The quantity
defined as

∑
i∈Ph

w2
hi ‖yh‖

2
2 is nearly identical to the measure of "goodness" of an

individual unit activity proposed in [8]. This can be interpreted as a criteria that
select among all input units the one with the smallest synaptic activity.

3.2 DGELSD - the least square algorithm

The employed algorithm for solving systems in the least square sense is the DGELSD
routine in LAPACK package. By means of different approaches the algorithm solve
generic systems in the form

minimize ‖b− Ax‖2 (21)

However, for overdetermined systems where A ∈ IRm×n and m ≥ n (such as
those accounted in the experimental results section), the routine first perform a QR
factorization, namely A = QR where Q is an orthogonal matrix and R an upper
triangular matrix and subsequently computes the vector x by solving

x = R−1QT b (22)

The QR factorization is performed via Householder transformations leading to
Q and R as follows: select the first m-dimensional column vector x of matrix A,
computes

u = x− ‖x‖2 e1 (23)

where e1 is a m-dimensional vector (1, 0, . . . , 0)T . The vector u is normalized

v =
u

‖u‖2
(24)

and the Householder matrix Q1 computed as

Q1 = I − 2vvT (25)

where I is the m-by-m identity matrix. Computing the following, is it possible
to gradually transform A to upper triangular form

Q1A =


‖x‖2 ∗ . . . ∗

0
A′...

0

 (26)

This operations can be repeated for A′ (obtained from Q1A by deleting the
first row and first column), resulting in a Householder matrix Q2. The number of
iterations t is defined as t = min(m− 1, n).

7

Note that Q2 is smaller than Q1. Since it is wanted to operate on Q1A instead of
A′ it is required to expand it to the upper left, filling in a 1, or in general:

Qk =

(
Ik−1 0

0 Q′k

)
(27)

When t iterations are reached Q and R can be derived as follow

Q = QT
1Q

T
2 . . . Q

T
k (28)

R = QTA (29)

Thus leading to a numerically stable QR factorization of A, and permitting to
solve x via (22).

3.3 Algorithm definition

The algorithm is defined as follows: starting from a satisfactorily trained network
N (0) = (V (0), E(0), w(0)), with V

(0)
I equivalent to the complete set of feature, the

procedure iteratively construct a sequence of networks {N (k)} identifying the unit
h ∈ VI to remove with the already defined selection criterion, resolving the system
(13) in the least square sense to compute the weights adjustment δ(k), removing
the unit h along with its incoming and outgoing connections and finally adjust the
remaining weights. More explicitly the algorithm can be express as follows.

Algorithm 1 Pruning algorithm
k := 0
repeat

choose h ∈ V (k)
I according to rule (20)

compute δ that solves (17) in the least square sense
construct N (k+1) = (V (k+1), E(k+1), w(k+1)) as follows:

V (k+1) := V (k) − {h}
E(k+1) := E(k) − ({h} × P (k)

h)

w(k+1) :=

{
w

(k)
ji , if i /∈ Ph

w
(k)
ji + δji, if i ∈ Ph

k := k + 1

until the stopping condition on N (k+1) is met

Given the iterative structure of the algorithm, a certain flexibility is allowed in the
choice of the stopping condition to better fit the requirements. At each iteration the
network performance can be evaluated and compared with the original, for instance,
in terms of loss o recognition rate if it is a classification problem. Moreover is not
necessary to retrain the network after pruning since the weights are already updated.

3.3.1 Fully connected algorithm optimization

In the algorithm definition, the δ computation by solving (17) in the least square
sense can be further improved under the assumption that a fully connected network

8

is employed. As shown earlier, solving (17) is equivalent to solving (18). Recalling
(11), the latter equation can be written as follows

∀i ∈ Ph Yi,hδi = yhwhi (30)

Assuming the network fully connected, each unit i ∈ Ph have the same receptive
field Ri = Rk where ∀i, k ∈ Ph, thus the outputs yj for all j ∈ Ri−{h} are the same
for each unit i. Namely

∀i, k ∈ Ph Yi,h = Yk,h (31)

Being yh independent from unit i and whi a scalar, by exploiting algebraic prop-
erties, it is possible to simply solve a single system of equation in the least square
sense.
Considering the new system of equations

Yi,hδx = yh (32)

and its least square sense minimization problem

minimize
∥∥yh − Yi,hδx∥∥2 (33)

where δx is a generic resulting vector, and considering the vector of the outgoing
weights from h to any node i ∈ Ph so defined

wh = (whi1 , whi2 , . . . , whiph)T ik = 1, . . . , ph (34)

each correction vector δi can be later computed by the outer product with the
vector wh

∆ = δx ⊗ wh = δxw
T
h (35)

and then selecting the i-th column vector of the ∆ matrix

∀i ∈ Ph δi = ∆(:, i) (36)

3.4 stopping condition

In order to enhance both the generalization and the feature reduction of the final
model, the feature selection algorithm is stopped when a decrease of 5% on the
validation loss from the original model is reached. The use of the validation, instead
of the training set, provide more accurate estimation of the loss function over new
unseen data, while the threshold of 5% is a good compromise between feature number
and drop of the loss function. Moreover the validation loss is a always defined metric
regardless the problem under examination.
Note that any any stopping condition can be defined by the experiment designer,
for instance a predefined number of selected feature or a recognition rate threshold
can be employed if the problem allows it.

9

4 MIFS - Comparison algorithm
The proposed feature selection algorithm was confronted with another called MIFS
presented in [1]. The procedure is based on the concept of mutual information
between the features F and the outputs (or classes) C. It identifies the best feature
to keep and then further picks the remaining by putting in relation the mutual
information between the feature f and the class set C I(C; f), with the mutual
information of any f ∈ F and the features already chosen s ∈ S, I(f ; s).
First, It computes the mutual information for each feature f ∈ F with the class set
C defined as I(C, f). Then it chooses the first feature to be kept in S as the one
that maximizes the mutual information arg maxf∈F I(C; f). Afterwards, it applies
a greedy iterative approach for the subsequent features: at each step, computes the
mutual information among all couples of features in f ∈ F and s ∈ S, namely I(f ; s)
and then chose the new feature f ∈ F to be moved in the feature to keep s ∈ S by
solving the following

arg max
f∈F

I(C; f)− β
∑
s∈S

I(f ; s) (37)

The greedy approach is performed until the cardinality of S reaches the required
number of features.
In the following experiments, although parameter β was suggested in [1] to be in
range [0.5, 1], it was fine-tuned in the range [0.1, 1] to give the best results over the
chosen dataset.

10

5 Experimental results
To evaluate the effectiveness of the feature selection algorithm, analysis are con-
ducted on three different problems, two of which can be addressed as classification
problems and the last as a regression problem. For each of the three experiments, 10
independent model were trained each of which are composed of three fully connected
layers (input, hidden and output layer). The training stage was performed by means
of a early stopping criterion based of the validation loss function: the training was
performed until there were an improvement on the validation loss function with a
patience parameter set to 10 (the loss can degrades up to 10 epochs) and the best
model over all epochs was retained as final. The parameters such as the number of
hidden nodes and activation functions are properly chosen until a good validation
loss value were reached. Moreover the Adam optimizer was adopted for the training
phase and Xavier initialization for the initial weights.

5.1 Reuters newswire topics classification

The dataset is comprised of 11’228 newswires from Reuters, labeled over 46 topics.
Each wire is encoded as a sequence of word indexes. For convenience, words are
indexed by overall frequency in the dataset, so that for instance the integer "3"
encodes the 3rd most frequent word in the entire dataset. The top 2000 words are
considered and each newswire is represented as ’bag of words’ frequency vector. each
pattern is thus transformed into a 1× 2000 vector, while the classes are represented
as a one-hot vector of dimension 1×46. Training set is composed of 7186, validation
set of 1796 and test set of 2246. Ten independently initialized 2000-128-46 models
where trained. Hidden layer uses a sigmoid activation while softmax is applied to
output layer, with a categorical cross-entropy loss function.

11

Figure 1: Reuters average training categorical cross-entropy and accuracy for the 10
models at each iteration.

Figure 2: Reuters average validation categorical cross-entropy and accuracy for the
10 models at each iteration.

Figure 3: Reuters average test categorical cross-entropy and accuracy for the 10
models at each iteration.

In Figure 1, Figure 2 and Figure 3 The average of the 10 models of loss and
recognition rate are shown for training, validation and test set respectively. As

12

can be intuitively deducted, as the number of iterations increases, the accuracy
decreases and loss function degrades. Accuracy and loss function are more affected
in the training set, compared with validation and test set, where the variations
are more restrained. The average number of selected feature is of 388 (Table 1),
corresponding to iteration 1612.

test categorical cross-entropy test accuracy

model features original proposed
method MIFS original proposed

method MIFS

1 364 0.8007 0.8404 0.9412 0.8085 0.8032 0.7761
2 390 0.8004 0.8319 0.9407 0.8077 0.8032 0.7757
3 392 0.8080 0.8410 0.9409 0.8032 0.7988 0.7753
4 381 0.7945 0.8375 0.9387 0.8032 0.8041 0.7751
5 388 0.7999 0.8328 0.9399 0.8077 0.8014 0.776
6 398 0.8016 0.8376 0.9308 0.8054 0.8050 0.7777
7 377 0.8146 0.8514 0.9375 0.8014 0.7970 0.7762
8 373 0.8083 0.8576 0.9388 0.8077 0.7988 0.7768
9 411 0.8055 0.8388 0.9353 0.8054 0.7992 0.7777
10 401 0.8091 0.8430 0.9314 0.8054 0.8014 0.7787

average 387.5 0.8043 0.8412 0.9375 0.8056 0.8012 0.7766
standard
deviation 14.09 0.00587 0.00794 0.00381 0.00237 0.00268 0.00118

Table 1: The Reuters test loss function and test accuracy for each of the 10 models.
MIFS values are averaged among 5 trials (β = 0.5).

After the application of the proposed stopping condition for the feature selec-
tion, to evaluate the quality of the results, a comparison with the MIFS algorithm
ha been done. A number of features km were extracted for the 10 models. For
each of them, MIFS where subsequently applied with a number of features equal
to its corresponding model. The MIFS resulting features were used for training 5
independently initialized network with the same model structure (km-128-46) with
training procedure explained earlier. Detailed results are presented in Table 1.
The proposed algorithm provided a great reduction on number of features, on av-
erage, 19% of the total amount were retained. The final pruned models provided a
decrease of the 4.6% for the categorical cross-entropy and 0.44% for the recognition
rate. MIFS instead had drop of 16.5% and 2.9% for the loss function and accuracy
respectively. MIFS performed slightly worse for both loss function and recognition
rate for all the 10 trials.
Recalling that in Reuters the words are represented with an index that rank the
word by its frequency over the entire dataset, to provide an overall view of how
the algorithms behave, Figure 4 shows three examples of the feature selected by
the proposed algorithm and Figure 5 those selected by MIFS. Both algorithms tend
to recognize as import the most frequent words. MIFS feature choice just follow
the word frequency with some exceptions where certain frequent words like the
"said","is", "he", "but", "cash" are excluded. The proposed method instead, select
other less frequent words (like "bureau", "Venezuela", "brokerage", "bankruptcy")
and exclude some of the most frequent. This choice can be considered favorable by

13

the fact that while some very frequent words might by irrelevant on the choice of
belonging class, some less frequent can be very descriptive of the newswire topics.

Figure 4: Visualizations of 3 trails results for Reuters with the proposed method
with respectively {364, 390, 392} features. The abscissa represent the word index.
Yellow vertical lines depict the selected features.

Figure 5: Visualizations of 3 trails results for Reuters with the MIFS Algorithm
with respectively {364, 390, 392} features. The abscissa represent the word index.
Yellow vertical lines depict the selected features.

5.2 MNIST handwritten digits

MNIST is a well-known dataset of grayscale 28×28 pixel images consisting of hand-
written digits (from 0 to 9). The aim is to classify the greatest amount of images in
its corresponding class |C| = 10. The number of training patterns are 48’000, the
validation set is composed of 12’000 images, while those in the test set are 10’000.
The intensity values that range from 0 to 255 where normalized, and the inputs lin-
earized as vector of 1× 784 size. The classes where represented as a one-hot vector
of dimension 1× 10.
Ten independent 784-256-10 models where trained with a categorical cross-entropy
loss function. Hidden layer employs a sigmoid activation, while the output uses
softmax. In order to analyze the behaviour of the proposed feature selection, the
algorithm was applied until all but a single feature was left.

14

Figure 6: MNIST average training categorical cross-entropy and accuracy for the 10
models at each iteration.

Figure 7: MNIST average validation categorical cross-entropy and accuracy for the
10 models at each iteration.

Figure 8: MNIST average test categorical cross-entropy and accuracy for the 10
models at each iteration.

In Figure 6, Figure 7 and Figure 8 training, validation and test set metrics
as the average of loss and recognition rate for the ten models are reported. The

15

proposed algorithm shows a stable behaviour without significant deterioration over
the training set until iteration 300. Despite the behaviour over the test data is
affected by more variance, the loss function fluctuate around the value of the original
network up to 400 iterations, before worsening. From Table 2 the average number of
feature extracted with the application of the stopping condition provided on average
284 features, corresponding to iteration 500.

test categorical cross-entropy test accuracy

model features original proposed
method MIFS original proposed

method MIFS

1 321 0.0678 0.0711 0.1130 0.9785 0.9782 0.9671
2 277 0.0700 0.0768 0.1105 0.9784 0.9761 0.9667
3 233 0.0717 0.0767 0.1037 0.9791 0.9783 0.9678
4 302 0.0682 0.0728 0.1104 0.9794 0.9793 0.9667
5 288 0.0701 0.0753 0.1070 0.9790 0.9775 0.9679
6 246 0.0679 0.0741 0.1053 0.9792 0.9781 0.9676
7 307 0.0692 0.0729 0.1100 0.9796 0.9777 0.9671
8 272 0.0674 0.0759 0.1095 0.9798 0.9784 0.9672
9 310 0.0693 0.0716 0.1094 0.9790 0.9777 0.967
10 283 0.0693 0.0755 0.1111 0.9793 0.9778 0.9666

average 283.9 0.0691 0.0743 0.1090 0.9791 0.9779 0.9672
standard
deviation 28.19 0.00130 0.00206 0.00282 0.00044 0.00082 0.00045

Table 2: The MNIST test loss function and test accuracy for each of the 10 models.
MIFS values are averaged among 5 trials (β = 0.1).

As performed in the previous experiment, a comparison between the proposed al-
gorithm and MIFS is presented in Table 2. The application of the proposed stopping
condition for the feature selection, on average provides a number of 284 features,
that is roughly the 36% of the total number features. The average difference of the
recognition rate from the original network is 0.12% for the proposed method and
1,2% for MIFS, while the drop of the loss function is 7.5% and 57.7% respectively. It
is clear that the proposed method, with equal number of features, performed better
than MIFS for both metrics.
Since the features of the problem in consideration have a graphical interpretation,
provided the model 1 as example, Figure 9 for the proposed method and Figure
10 for MIFS, both show the original image of 784 pixels, and the feature selected
at some sample iterations. In Figure 9 can be clearly seen how the algorithm first
removes pixels on the edges of the image, which can be considered as the irrelevant
information and only subsequently removing the redundant information in the cen-
ter area of the image. Peculiar is how during the process of redundant information
removal, the algorithm has the tendency to maintain the locality information (which
is characteristic of images) by selecting a pixel and eliminating its neighbors. In fact,
despite the decreasing number of feature, digits are still recognizable even with 64
pixels.
MIFS instead even with a small β (which represent to some extend the importance
of removing redundant information) removes both redundant and irrelevant infor-
mation as the removal progresses by excluding pixels in the inner part of the image

16

along with those on the contour of the digits. This is behaviour is derived by the
fact that, when the number of selected features in S becomes large, in (37) the sec-
ond term

∑
s∈S I(f ; s) overcomes the first I(C; f). In fact, although single values

of I(f ; s) might result small, an increasing cardinality of S lead to greater values
of the summation. This makes gradually more preferable the removal of redundant
features against those that are irrelevant.

Figure 9: Proposed algorithm image reconstructions for model 1 with {784, 584,
351, 184, 64} features selected.

Figure 10: MIFS image reconstructions with {784, 584, 351, 184, 64} features se-
lected (β = 0.1).

17

5.3 UJIIndoorLoc indoor localization

UJIIndoorLoc is dataset for indoor localization based on WLAN fingerprints. The
data covers three buildings of Universitat Jaume I with 4 or more floors and almost
110m2. Even though the dataset can be used for classification (e.g. actual building
and floor identification), regression on actual longitude and latitude has been per-
formed. Each WiFi fingerprint can be characterized by the detected Wireless Access
Points (WAPs) and the corresponding Received Signal Strength Intensity (RSSI).
The intensity values are represented as negative integer values ranging -104dBm
(extremely poor signal) to 0dBm. The values are scaled from 0 to 105, where the
minimum signal strength is 1 and the maximum is 105. The 0 value denote those
WAP that were not detected. The number of features are 520 which represent the
different WAPs, thus, the WiFi fingerprint is composed by 520 intensity values. The
latitude and the longitude were normalized in the range [0, 1]. Other dataset infor-
mation like building and user id were ignored for the ease of problem representation.
The dataset is comprise of 12’760 training, 3’190 validation and 3’987 test patterns.
The model topology is 520-400-2 with sigmoid activation functions for all layers.

18

Figure 11: UJIIndoorLoc average training mean squared error for the 10 models at
each iteration.

Figure 12: UJIIndoorLoc average validation mean squared error for the 10 models
at each iteration.

Figure 13: UJIIndoorLoc average test mean squared error for the 10 models at each
iteration.

In order to evaluate the behaviour of the proposed algorithm was stressed until a
single feature remained. In Figure 11 and Figure 13 the MSE loss function averaged

19

among 10 models on training, validation and test set are presented. While training
and validation MSE are constant up to 250 iterations, in the first 50 iterations, the
test set shows an improvement of MSE and no significant increase were observed
until 300 iterations. As Table 3 shows, on average the stopping condition proposes
243 features (equivalent to 277 iterations). At this iteration, the MSE in the test
set is even smaller than the original network.

test mean squared error

model features original proposed
method MIFS

1 262 0.00091 0.00084 0.00133
2 233 0.00107 0.00099 0.00121
3 239 0.00085 0.00083 0.00126
4 231 0.00085 0.00081 0.00120
5 250 0.00082 0.00080 0.00129
6 264 0.00089 0.00084 0.00123
7 231 0.00085 0.00082 0.00119
8 238 0.00083 0.00078 0.00123
9 226 0.00090 0.00083 0.00119
10 255 0.00081 0.00078 0.00122

average 242.9 0.00088 0.00083 0.00124
standard
deviation 13.80 0.000076 0.000059 0.000044

Table 3: The Reuters test loss function and test accuracy for each of the 10 models.
MIFS values are averaged among 5 trials (β = 0.1 and t = 16).

Since MIFS works with output classes, using it on regression problems requires
to discretize the output values in classes. One way to perform this operation is
to rearrange each output value into intervals. Assuming t intervals, having l = 2
output values (latitude and longitude), the total amount of classes will be tl.
After a tuning process, the number of intervals was set to t = 16 leading to 256
distinct classes.
As can be seen, the networks pruned by the proposed method generalize slightly
better than the original models. There were a decrease of the MSE of 5,7%. MIFS
instead had a MSE increase of 40.9% on average.

20

6 Conclusions
In this thesis a method for variable selection using neural networks has been analyzed
with real-world problems experiments. The key idea consists on iteratively remov-
ing features by means on pruning the input layer of a trained network, subsequently
adjusting the remaining weights to preserve the network behaviour on training data.
The weights adjustment can be formulated in terms of system of linear equations
to be solved in the least-squares sense with a performing algorithm based on QR
factorization. An optimization for the system of linear equation was also presented
when fully connected network are adopted, based on the general idea that a single
system is required to be solved for distinct receptive fields. A removal criterion with
low computational cost is also proposed which happens to be proportional to an
independently developed "goodness" metric for neural units. However, provided the
flexibility of the feature selection method, both the latter criterion and algorithm
for solving the linear system can be freely chosen without altering the entire process,
providing an interesting cue for further investigations.
Moreover, the iterative nature of the algorithm, allow the experiment designer to
monitor the network performance at each step and employ a stopping condition that
is more suitable for the problem resolution. Another benefit of this method is that
do not require any parameter tuning process that might result tedious. The experi-
mental results obtained also in comparison to the other feature selection technique,
prove that the method does a very good job of reducing the feature set size while
preserving excellent performance.

21

References
[1] R. Battiti. Using mutual information for selecting features in supervised neural

net learning. IEEE Transactions On Neural Networks, 5(4):537–550, 1994.

[2] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm.
IEEE Intelligent Systems and their Applications, 13(2):44–49, 1998.

[3] F.Z. Brill, D.E. Brown, and W.N. Martin. Fast genetic selection of features for
neural-network classifiers. IEEE Transactions on Neural Networks, 3(2):324–
328, 1992.

[4] Z. Zhang and Edwin R. Hancock. Mutual information criteria for feature selec-
tion. In Similarity-based pattern recognition: fisrt international workshop, SIM-
BAD 2011, volume 7005 LNCS, pages 235–249, Berlin, 2011. Springer-Verlag
Berlin.

[5] G. Castellano, A.M. Fanelli, and M. Pelillo. An iterative pruning algorithm
for feedforward neural networks. IEEE Transactions On Neural Networks,
8(3):519–531, 1997.

[6] R. Reed. Pruning algorithms—a review. IEEE Transactions On Neural Net-
works, 4(1):740–747, 1991.

[7] A. Björck and T. Elfving. Accelerated projection methods for computing pseu-
doinverse solutions of systems of linear equations. BIT, 19(2):145–163, 1979.

[8] K. Murase, Y. Matsunaga, and Y. Nakade. A backpropagation algorithm which
automatically determines the number of association units. In Proc. Int. J. Conf.
Neural Networks, pages 783–788, Singapore, 1991.

[9] E.D. Karnin. A simple procedure for pruning back-propagation trained neural
networks. IEEE Transactions on Neural Networks, 1(2):239–242, 1990.

[10] G. Castellano and A.M. Fanelli. Variable selection using neural-network models.
Neurocomputing, 31:1–13, 2000.

[11] F. Ling, D. Manolakis, and J. Proakis. A recursive modified gram-schmidt al-
gorithm for least- squares estimation. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 34(4):829–836, 1986.

[12] J. Stoerand and R. Bulirsch. Introduction to numerical analysis. chapter 4,
pages 223–230. Springer, 3rd edition, 2002.

[13] R. P. Lippmann. An introduction to computing with neural nets. IEEE ASSP
Magazine, 4(2):4–22, 1987.

[14] LAPACK: Linear Algebra PACKage. Dgelsd. http://www.
netlib.org/lapack/explore-html/d7/d3b/group__double_g_esolve_
ga94bd4a63a6dacf523e25ff617719f752.html, 2017. Online; accessed 16
February 2019.

22

http://www.netlib.org/lapack/explore-html/d7/d3b/group__double_g_esolve_ga94bd4a63a6dacf523e25ff617719f752.html
http://www.netlib.org/lapack/explore-html/d7/d3b/group__double_g_esolve_ga94bd4a63a6dacf523e25ff617719f752.html
http://www.netlib.org/lapack/explore-html/d7/d3b/group__double_g_esolve_ga94bd4a63a6dacf523e25ff617719f752.html

[15] A. Jović, K. Brkić, and N. Bogunović. A review of feature selection methods
with applications. In International Convention on Information and Communi-
cation Technology, Electronics and Microelectronics (MIPRO). IEEE, 2015.

23

	Introduction
	Definitions and notations
	The feature selection algorithm
	Elimination criterion
	DGELSD - the least square algorithm
	Algorithm definition
	Fully connected algorithm optimization

	stopping condition

	MIFS - Comparison algorithm
	Experimental results
	Reuters newswire topics classification
	MNIST handwritten digits
	UJIIndoorLoc indoor localization

	Conclusions

