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Abstract

Nowadays, Computer Vision comprises a lot of di�erent useful applications, ranging
from real-time surveillance to series production.

Since most of the mass-production systems are automatized, there is a non-
zero probability for an error to happen, which in some cases would make the �nal
product useless. In that regard, many factories often integrate into their assembly
line a specialized camera system for the purpose of identifying errors at the end or
during the production. In particular, a device composed of a network of calibrated
cameras is usually employed to identify metrological and visual defects.

Together with cameras, such device could comprise multiple light sources to
easily spot defects caused by an imperfect structure of the object's surface.

This work explores the possibility of increasing the precision of such an inspection
system by estimating the position of each light source. The estimation is carried
out through the analysis of the shading observed on the surface of some spherical
Lambertian objects in di�erent poses and from di�erent points of view.
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Chapter 1

Introduction

Illumination plays a big role in Computer Vision, since it can give useful information
about the scene and the object which comprises. However in many cases and systems
the user has no control or information over the illuminants and their geometric
properties. That's why many researchers started to study techniques about inferring
light sources' properties by photograms of a speci�c scene, however in many cases
it resulted in an ill-posed problem. This is because if no speci�c assumption on the
scene are made, no precise model can be used in order to correctly describe the light.

In [1], Langer and Zucker stated that the de�nition of a light source is not an
easily de�ned concept: many models can be used with respect to what kind of
illuminant it is considered. For example, when talking about an outdoor scene the
most incisive light source is considered to be the sun most of the time, which can
be modelled as a �point at in�nity�, while indoors the source can have a point-like
source with coordinates in a speci�c reference frame.

Having information on the light source can lead to an improvement on an already
functioning system and Computer Vision's techniques. As Powell states in [2], some
previous work has been a�ected by the lack of knowledge on the light source.

Moreover, being able to estimate the properties of the illuminant can improve
the applicability of a system, for example it can lead to achieve colour constancy so
that colours perceived by a visual system remains stable, regardless the of illumi-
nant which enlightens the scene. Furthermore, illuminant estimation is needed for
the shape-from-shading problem. Shape-from-shading is an inverse problem which
involves the reconstruction of a 3 object's surface by extrapolating its features from
2D images.

Many techniques have been designed and developed, in order to reach a good
state-of-the-art solution, however no technique has been recognized as standard.
Most of the times the objective is a good tradeo� between precision and quickness,
because many of those techniques are implemented on small hardwares, which gener-
ally do not have large memory. This techniques are often implemented in Augmented
Reality scenarios.

Such methods have found multiple applications, ranging from cultural heritage
from industrial application. The main reason for light estimation nowadays regard
surface reconstruction, in which an object is reconstructed to a certain degree of
precision in a virtualized 3D space. For example, ambient light estimation is often

1



1.1. WHAT IS LIGHT IN A SCENE? 2

used to construct a realistic light model in videogames and 3D render as exploited
in [3].

1.1 What is light in a scene?

When talking about illuminations and light source, the �rst thing that comes to mind
is a point-like illuminant which irradiates the scene,which has a precise direction.
However, in most cases the light source is not summarizable in a point, since can
have di�erent natures and di�erent sources.

With regard to the initial data and scene, in order to estimate the light source
geometrical properties it is mandatory to make some assumption on the light and the
scene. Using a particular object in the scene, which respects some speci�c properties
is a common choice, since light can be inferred using its re�ection on objects.

Figure 1.1: Two pictures of the same sphere with di�erent illuminant

A practical example of the diversity of light nature can be seen in the �gure 1.1:
The same scene is illuminated respectively by a led light, which has a linear form
and include multiple leds, and a point-like illuminant. The led illuminant will have
a stronger radiance and the sphere surface will present a greater brightness, however
nothing can be infered about the structure of the illuminant looking at the shade
casted on the sphere.

In many case, the light which illuminates the scene is always the same, which is a
common scenario when talking about industrial machines where ad-hoc system with
well-known illuminants are used. However, for other scenarios like AR applications
where the illumination changes and even multiple illuminants are in play, the esti-
mation of the light depends on multiple factors and the geometry of the illuminant
cannot be easily de�ned.

1.1.1 Light source models

Illuminant estimation is not an easy problem and it is an ill-posed one if only images
are available. A good standard solution for this problem has not been found yet.
This is because a general model for light has not been devised yet and so each
technique will strongly depend on the kind of illuminant used. Many techniques uses
a precise and simpli�ed model in order to maximize the precision of the estimation
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or because the scenes on which these methods are applied have always the same type
of illuminant, so a generalized model is not needed.

The two classical model used are the directional source model and the point
source. The �rst one, used by a lot of techniques like [4] and [5], approximates
really well with far away lights, placed at in�nity like the natural sunlight. This
works well even when multiple light sources are involved, and so the direction of
every illuminant is estimated using di�erent patches on the image as proposed in [6].

When talking about sources decently near the object, maybe in the boundaries
of a small closed space such as a room, the directional model may not hold anymore.
The point model is used for such situations, as can be seen in the method explained
at [7]. However, these traditional methods su�ered from the fact that the type
of light must be assumed or known in order to be modelled properly. In complex
systems, with di�erent kinds of illuminants, these models do not hold. In these cases
an area light model may be used, which approximates very big light sources which
arevery close to the light, however the problem becomes more complicated problem
and might not have a real solution.

Many researchers tried to develop a general model which does not depend on the
speci�city of the illuminant involved, however it is shown that this would increment
the computational complexity of the whole estimation algorithm. In [1], the light
was modelled as a 4D hypercube, where illumination was described by rays and so
light source of di�erent kinds were represented as rays of di�erent dimensions. In
order to do it, the idea is to place an imaginary plane between the illuminant and
the scene. By doing so, a ray can be parametrized using its origin and the point
of intersection with the plane. The type of light will change with respect to the
dimensionality of the model and by the numer of rays emitted from the light source.
Zhou in [8] expands the work done by Langer and Zucker in [1], using a 6 dimensional
light source model. By adding two dimensions, the light source can be described in
more detail, adding information on light source position, size and intensity. The idea
is to consider the plane of [1] approximately coplanar with the light source plane. In
this way, many types of light sources can be represented and the framework will be
e�ective even without assumptions or prior knowledge on the illuminant structure
and properties. It is assumed that the rays of the light source cover the whole range
of the scene, since some light source might be non-isotropic, which means it does
not expand in all direction.

1.2 Related work

In this section the work of researchers on illuminant estimation is presented, where
di�erent light models and assumptions are presented.

1.2.1 Light estimation methods

Throughout the years, many techniques for illuminant estimation were developed,
using di�erent assumptions and features to exploit. Each method was designed based
on prior knowledge on the illuminant and how much the scene was manipulable.

Light source can have di�erent forms, nature and distance with respect to the
scene. In many cases the illuminant taken into account is the sun, while in other
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realities arti�cial illumination is considered. Moreover, the use case of the system
whose light sources need to be estimated as to be taken into account. Industrial
quality control system usually require a fast computation and uses images captured
at the moment, maybe at the end of a conveyor to perform an automated quality
control on products. This system usually do not have great memory or vast compu-
tational power, so a technique with a good tradeo� between precision and time is
preferred where hardware implementation is needed, as stated in [9].

In other circumstances the illuminant involved in the scene may not be modelled
in a proper way or may be unknown. When a higher precision is needed and a lot
of previous data is available, regarding the type of illuminant and its position, a
di�erent approach might be used, which exploits the prior knowledge to solve the
problem. An unsupervised learning approach is preferrable in those cases, as stated
in [9], which sacri�ces speed, at least for the training step, and requires a lot of
memory, but outclasses the other methods in terms of applicability and results.

Another thing to keep into account in certain situation is the color of the light
involved in the scene, because it has an in�uence over the pixel intensity. In many
cases white illuminant are considerated (even sunlight is considered white) or some
assumptions are made, like theGray-World assumption, which assumes the average
of an image to be gray. Moreover, usually invariant features are used and the e�ect
of the coloured light source is removed using white-balancing techniques.

With regards to di�erent assumptions, data and situations, the illuminant es-
timation methods can be classi�ed in three categories, which is well explained in
[9]:

• Statistic-based methods: Includes methods involving low-level image fea-
tures which lead to an inference of light parameter. This category is suited
and often applied for hardware implementation given their high speed and
their relatively low computational complexity.

• Learning-based methods: These methods relies to training a speci�c model.
This category proves to be the most precise and performs better if a su�ciently
large dataset is available, but �due to training process and more complex struc-
tures, they often take longer to execute�[9]. This are often used for complex
systems which as to perform calculations on scene where the illuminant is not
always the same.

• Gamut-based techniques that exploits gamut mapping. Gamut mapping is
the function which maps a pixel to the subset of possible colours. Most of those
methods can be represented as a subclass of learning-based techniques, since
they exploits classi�cation in some cases. They use light's gamut consistency
as the main exploit to estimate the light source.

The model used for the light depends on the situation in which the algorithm
is applied, not by the method used. However, the choice of the method might be
correlated with the illuminant type which is involved in the scene in some cases.
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1.2.2 Statistic-based methods

The preferred category of methods for industrial quality control regarding light
source estimation involve studying shades casted on particular (or not) surfaces.
Many of them relies on the brightest pixel of the surface re�ection, as explained in
[10], since it represents the point where the light is perpendicular to the object In
order to infer light from re�ections, some assumptions must be done on the image
regarding the color, illumination statistics or the scene geometry.

The �rst techniques implemented of illuminant estimation modelled the illumi-
nant as a point �to in�nity�, since in most cases the light source considered was the
sun. This particular concept was well explained by Pentland in [5], which has given
an algorithm and a good starting point for light estimation methods from features
extracted from the image. It assumed a in�nitely distant light source and by working
with Lambertian surfaces, it constructed a light model where the image irradiance
has a well-de�ned form. From that form, if an hemisphere is considered as the sur-
face, the tilt and the angle of the direction of the light can be retrieved. However,
the approach designed bt Pentland had several �aws, which are corrected [11].

Powell in [2] worked with manmade light sources and so it modelled the light in a
di�erent way. Powell used two specular spheres, with known radius and position, to
retrieve intensity and direction. The method uses the surface normal on particular
highlight points on the sphere. Using the law of sines and the perspective projection
of the highlight point, the point of intersection is calculated using a least-squares
estimation. Another method which uses a known geometry object is explained in
[12], which assumes an isotropic point illuminant, which is modelled as a radiance
mapping to the points on the image. The two main assumptions used in order to
estimate the light is the point structure of the illuminant and the existence of at
least one rotation axis which does not a�ect the distribution of the radiated light.
The objects used are two Lambertian cubes and the direction is estimated by �rst
assuming a in�nite distance between the light source and the object. The parameters
are estimated using a linear least squares estimation, which is then used as input
to a non-linear procedure, which is the textitGauss-Newton method in order to �nd
the �nite distance and direction.

Zang and Chellappa in [4] changed completely the approach and uses surface
re�ectance and statistics to infer surface albedo and to solve the shape-from-shading
problem. What is estimated in [4] is the azimuth between the illuminant and the
camera. Since the objective was surface reconstruction, the exact geometry of the
illuminant was not needed. Another method for light direction estimation whose does
not need a known object is presented in [13], where no speci�c object is used in the
scene. The assumption use is that �there exists a segment of an occluding contour of
an object with locally Lambertian surface re�ectance in the image�1, which has to be
found. Nillius found candidates for such a contour using an heuristic algorithm and
for such edges the intial guess of light direction is estimated. Then, after retrieving
the intensity on contours, a Bayesian network is used to improve the estimates and
arrive to the most probable light direction. Since the intensity formula of pixel on
a Lambertian surface is known, the light direction can be least-squares estimated
by using occluding contours, which will have the third component normal equal to

1[13]
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zero. By doing so, however, if there is not previous knowledge on surface albedo
and light source intensity, as explained in [13], the z-component of the light vector
cannot be estimated. Since the Lambertian model does not work well contours, so
extrapolation is performed along a direction perpendicular to the edge, which has
an ellipse-like shape. This method, although does not use a known object in the
scene, makes strong assumptions on the geometry of the image.

Althought these methods have greater error margins than the others, they are
preferred on hardware application since they do not require a large memory to run.

Re�ectance Transformation Imaging

Illuminants and light estimation is a fundamental step of the process for surface
reconstruction, both for scene modelling like in AR application or simply for storage.
There is the need to reconstruct a speci�c structure in a virtual enviroment in some
application �eld, for many di�erent reasons like the impossibility of moving the
object. Of course, a image recording of a particular object is su�cient in most
cases, however is not always like this.

This is particularly true for archeology, since many further information can be
extracted by observing peculiarities and markings on many archeological remains.
Moreover, the could be �nds which cannot be carried to a lab or cannot be moved,
and so having a good acquisition which can be examined carefully from a reliable
reconstruction. So a peculiar acquisition technique was designed for aiding the arche-
ologist.

Re�ectance Transformation Imaging(RTI) is used in this case, which exploits
multiple images of the same object and with a particular arti�cial illuminant. RTI
is a photographic computational method, which permits a re-lighting of the saved
object from multiple angles and enhances the object's surface features and colors Is
a shape-from-shaping solving algorithm, which reconstruct the surface of an object
by using light direction and surface normal.

The basic idea around RTI, as explained in [14], is to create a composite image
from a series of pictures of the same historical �nd, illuminating the object with
di�erent lights, each coming from a well-known direction. Then the surface is recon-
structed by a calculating the normal of a surface starting from the re�ection of the
light.

However, some constraints have to be placed into the scene in order to take valid
acquisition and ensuring them in an archeological dig or any open area is not an
easy task. In order to function properly, the light direction must be known, but is
di�cult to set a light in a precise direction by hand. It can be calculated, but the
algorithm should be fast and must be easily applicable, with the least number of
elements involved.

This can be done by using two re�ective targets, more speci�cally two spheres, the
software used for the computation of RTI is capable to estimate the light direction.

By calculating the light direction, RTI can reconstruct the 3D image, with each
feature's visibility improved. Of course, this algorithm is applicable only to a subset
of all possible artifacts, with respect to surface material, and in order to function
properly the artifact must have a certain size with respect to the light involved.
Since those acquisition are often made �in site� and no previous data are available,
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a statistic-based method based on [2] is used, althought is faster since only the
direction is needed in this case.

Figure 1.2: Practical application of RTI on the �eld on an Irish gravestone, photo
by Terry Collins, 2015, taken from [14]. Note that in this case the sphere are located
at the base of the grave.

1.2.3 Learning-based methods

One drawbacks of the statistic-based methods is that the assumptions and the gim-
micks used limit the applicability of such techniques. However, illuminant estimation
remains an ill-posed problem if no constraint is given. In order to solve the problem,
it is possible to extract the contraints directly from the image, �learning� how the
illuminant acts on scenes and how the scene is a�ected by di�erent illuminants.

When there are a lot of previous data available learning-based methods can be
used. The assumption made in this case is that the information on the lighting can
be learned from a training phase of an illumination estimation model. There are
di�erent types of learning, as stated in [9], but deep learning became the state-of-
the-art for computer vision.

In [9] a method which tried to give a di�erent approach for achieving color

constancy was studied. Color constancy is a fundamental step performed on any
digital camera's image formation pipeline, since it �removes the illumination's color
on the colors of object in the observed image scene�2.

This method has been developed by using three classes of light models, for each
class a specialized estimator is used to estimate the light. The classes are:

1. Outdoor pictures with the sun as illuminant.

2. Outdoor pictures with both natural and arti�cial illumination.

3. Indoor pictures with only arti�cial light sources.

2[9]
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The datasets present in the �eld of illuminant estimation are not su�ciently big,
so a pre-trained network was used in [9].

After the image illuminant is classi�ed, a specialized convolutional neural net-
work is used to perform illumination estimation. It uses a classi�cator which can
distinguish between informative and useless parts of the image. Three instance of
the same convolutional network has to be trained on the three class of images in
order to optimize the precision of the method.

Another application of a deep learning method is presented by Kafumann and
Kàn in [15], which is an approach speci�c for the Augmented Reality(AR). It uses an
RGB-D image to estimate the light position. A RGB-D picture is an image where, in
addition to the standard RGB image, a depth image is added, which is a particular
image channel where each pixel is related to the distance image plane-object in the
RGB image. In other words,it adds information on the depth of an object in a scene.

In AR, as referenced in [15], an estimation of the world light source is essential in
order to the rendering of objects in the space and also for visual coherence. The two
main categories of methods for AR are probe-based and probe-less, the former uses a
particolar object with well-known re�ectance properties, while the latter eludes the
usage of speci�c objects and estimate illumination from a main AR camera image.

The function to be learned represents the �relationship between input RGB-D
image of the scene and a dominant light direction�3.

The dataset comprehends a series of images with well-known illuminants working
with the assumption that there is only one dominant light in a scene. The dataset
is used to train a neural network. After the training, this network becomes capable
of estimating light sources during rendering of an AR scene not seen by training.

The estimation process is done by regressing a dominant light direction using
Euler angles, one for the light and one for the camera one in the AR. However,
by doing this problem arises when dealing with various camera poses, and so the
estimation has been made independent from camera pose. A transformation to the
world reference frame of the light estimated must be done in order to have the precise
3D coordinates of the light.

Whilst these methods are very precise, they require a good deal of memory in
order to process, and so they are often used in Augmented Reality applications on
big hardware or as input for lighting modelling applications.

1.2.4 Gamut-based methods

Most of statistics-based methods relies on image features like pixel intensity and
colour, however to use color is implicit that colour is assumed to be an inherent
property of the color. As stated in [16], colour depends both on illumination and
physical properties of the object. Many approaches using gamut mapping combines
a learning phase with a study on the image colors. Gamut approaches, as explained
in [16], do not require precise knowledge on surfaces or illuminant, minimizing as-
sumption and simplify the training of the model.

Some researchers, such as Forsyth in [17], tried minimize the assumption on
the scene and working with the gamut of the colours in an image. Given a set

3[15]



1.3. THEORETICAL BACKGROUND 9

of possible colours observable under a reference light, which is a bounded convex

set. The estimation of scene illuminant was converted into a problem of �nding the
speci�c mapping which relate the image gamut to the �ideal� gamut.

Modelling the illumination change as a diagonal model, as explained in [17], so
the relationship between di�erent lights becomes a scale factors. The illumination
estimation is performed in two steps �rst determining the mappings between image
gamut and the canonical one, and then selecting the most prosimising with respect
to a speci�c criteria. This algorithm was denominated CRULE.

This approach was then re�ned by Finlayson and Hordley [16], since modelling
illumination change as a diagonal model is a strong implication, which when not
satisfable would lead to no solution. This was solved by de�ning a priori set of
possible light sources, which restrict the solution set and is more reliable.

1.2.5 Novel approach based on level curves

The purpose of this work is explore the possibility of improving the precision of an
already functioning stereo system used for quality control, by estimating the position
of the arti�cial illuminant used. Illuminant estimation is performed using a novel
approach for light direction estimation. The particular feauture exploited in this
method are the curves de�ned of a particular intensity extracted onto the re�ection
of the light on a Lambertian spherical object with known position and radius.

The illumination estimation technique retrieves the illuminant geometric param-
eters, not for shape-from-shading purposes nor for making the system achieve colour
constancy, but in order to inspect if the precision of the triangulation of particu-
lar painting defects can be improved by knowing the precise light position and the
illuminant vector.

For this approach, light is modelled as a point in space, which irradiates the
scene in a cone-like structure. Light directions are estimated by using two di�erent
approaches, both exploiting ��tting� of a particular geometric structure using a set
of points.The precision of both approaches is explored.

The main idea is to consider points which are placed on a particular intensity
isocurve on the light re�ected by the sphere, using a reasoning similar to level curves
used in topography.

This techinque is similar to [6], [18], where only a single sphere is considered.

By using multiple sphere positions and images on a speci�c camera, a series
of illumination vectors is obtained, and those �rays� intersects near the real light
position.

1.3 Theoretical background

Computer vision's objective is to recontruct and understand a 3D scene by its imag-
ing in 2D, using some properties of the structure present in scene. While in computer
graphics light is needed in order to correctly image an object, what is wanted here is
to estimate the light position from a 2D image, so it is basically an inverse problem.

This can be seen in 1.4, the point P is imaged to point p', which is represented
by the intensity of the pixel. That intensity if certain conditions are met depends
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Figure 1.3: Example of level curves in topography

Figure 1.4: A visual representation of the problem of light estimation

only on the object's surface and the light vector direction and magnitude. So the
problem is retrieving the light direction which brought the pixel to have its intensity.

One of the most used assumption made for illuminant estimation that makes the
problem solvable is the Lambertian property of a speci�c surface.

1.3.1 Lambertian surfaces

A Lambertian object has a particular surface, which respects one speci�c prop-
erty:the perceived brightness of that surface does not change with respect to the
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angle of view(camera pose) of an observer. This is an important assumption, since
it is known that a particular scene is imaged by camera by capturing the light re-
�ections on the object.

By assuming that the object has a Lambertian surface, it will clearly de�ne how
that object is imaged, since the intensity of pixels belonging to a Lambertian object
will depend only on two thing: the normal of the surface and the illumination vector.
In particular, the intensity Id of a pixel is de�ned as

Id = L ∗NCIl (1.1)

where L is the normalized light-direction vector, N is the surface's normal vector, C
is the color and Il is the intensity of the incoming light.

The normal of the surface is strongly related to the light vector by the Lambert's
cosine law:

L ∗N = ‖N‖‖L‖cosα = cosα (1.2)

where α represents the angle between the two vectors. That formula basically states
that the intensity will be maximize when cos(α) in Eq. 1.2 will be equal to zero,
hence when both L and N have the same directions.

In other words, the regions of pixels which will have the greatest intensity are
the one where the illumination vector is perpendicular to the surface of the object
imaged. By assuming an object to be Lambertian features of the object can be
exploited in order to infer some properties of the illuminant.

However, by only making assumptions on the scene's object there aren't many
things that can be done to make assumption and estimation on the scene. There
is a need to know the properties and mechanism of the object which projected the
surface on the image: the camera. However, there are many cameras with di�erent
parameters, such as di�erent resolution or di�erent focal length. So it is needed to
know how a camera images the actual objects onto the image plane. Most of the
time Computer graphics image are produced using the same model, which pinhole

camera's one.

1.3.2 Pinhole camera model

The pinhole camera model expresses the relationship between a point in the scene,
which has 3D coordinates, and its image on the picture in 2D dimension.

Since the imaging device takes light from all the point in the scene, it is impossible
to have a perfect reconstruction. In order to have a better image, the idea is the
same as Leonardo's camera obscura experiment, that is putting a barrier with a hole
between objects and sensor. Of course, the size of the hole is relevant, since a big
hole will let pass more light and the image will become blurred, whilist a small hole
will force the object to be exposed for longer periods of time.

In order to avoid the hole problem, lenses are used, which will take all the parallel
light re�ections of the objects and will converge them into a single points. However,
the lens will create a distortion e�ect, since the displacement of the projected point
will become non-linear transformation. Since the distortion can be modelled, using
radial distance from the lens center, this is not a big problem, but those parameters
needs to be estimated in order to perform estimation from 2D to 3D worlds.
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A digital camera can be assumed to work like a pinhole camera, and so the
relation between 2D and 3D points can be modelled. However, most of the time this
relation is not easily described, since most transformations are not linear. By using
projective geometry, which is an elementary form of geometry which �expands�
the Euclidian one it is possible to describe the pinhole camera model with linear
relations.

1.3.3 Projective geometry

The 2D Euclidean space can be expanded by adding a dimension to all of its points,
which creates a new space which is called projective space

P2 = R3 −

0
0
0

 p =

wxwy
w

 ∈ P2 with w ∈ R− {0} (1.3)

This allows to convert operation of points into linear operations because of the higher
dimensionality. A point p expressed like in equation 1.3 which belongs to P2 has
homogeneous coordinates. An homogeneous points correspond to only one Euclidean
point, which is obtained by dividing all its coordinates by the last one(w) and con-
sidering only the �rst two coordinates. An Euclidean point however is described by
in�nite points in the projective space. Those points are described as an equivalence

class of points precisely, where only the last dimension di�ers.

By using this peculiar geometry, a planar projective transformation can be rep-
resented as a linear transformation involving a 3x3 matrix H:X ′Y ′

W ′

 = Hx =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (1.4)

This geometry can also be applied to the 3D space,with the di�erence that the
vector will be four-dimensional. In this particular case, the linear projective trans-
formation will be represented by 4x4 matrices in the form:(

A t
V T v

)
(1.5)

where V T and t are vectors, A is a 3x3 invertible matrix and v is a scalar.

Both geometries are very important, because they permit to describe the pinhole
camera model in a simple way and expresses and using linear transformation.

All modern imaging models can be approximated to the pinhole camera model.
By doing so, the relation between 2D and 3D points is known and inference of 3D
properties from 2D images becomes possible.

In particular, what is done by modern cameras is consider a virtual image plane
in front of the center of projection, as can be seen from �gure 1.5. The point p′

represents the projection on the image plane of the top of the sphere. The point
c is called principal point and all coordinates of the points in the image plane are
expressed with respect to the point. The actual relation between a point in P3 which
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Figure 1.5: An image which shows how a pinhole camera model image an object on
the image.

has been projected in P3 is:

p′ =

fxp + cxzp
fyp + cyzp

zp

 =

f 0 cx 0
0 f cy 0
0 0 1 0



xp
yp
zp
1

 (1.6)

In order to exploit projective geometry on an image, however, there is a need
to know the parameters of the camera which has imaged the scene. The camera is
considered to work like a perfect pinhole camera, which uses known parameters in
order to project a point in the image plane. Those parameters can be divided into
two categories:

• Intrinsic parameters, which depends only on the camera's speci�c charac-
terstics.

• Extrinsic parameters, which are related to the camera's position and orien-
tation.

Intrinsic parameters

The intrinsic parameters usually are represented by a 3x3 matrix K, and a �ve-
dimensional vector. The matrix K contains the principal point coordinates, which
is the last column vector of the matrix and the focal length of the lens.f 0 cx

0 f cy
0 0 1

 (1.7)

The 5D vector represents the polynomial model which represent distortion ap-
plied by the lens. By using these parameters, an image can be undistorted as it
would be taken with a perfect pinhole camera.



1.3. THEORETICAL BACKGROUND 14

Extrinsic parameters

In order to have a precise estimation of the projected point and its equivalence class,
there is a need of knowning the position of the camera with respect to the object.
Moreover in complex systems, multiple cameras have to be present, since stereo
vision is applicable only when multiple cameras are present. There is the problem
of considering a common reference system, known as world reference frame, where
all points of the scene can be reconstructed.

This world reference system must be common to all cameras, which will have a
speci�c pose. The extrinsic parameters are none other than the elements of a rigid
motion which translates points from the camera's reference system to the world
one. So if a camera A is selected as center of the world reference frame, O = −RT
is the position of the camera B's center with respect to camera A. R is referred to
as rotation matrix, while T is denoted as translation vector.

By knowing all the parameters of the camera, the projection of a point p to the
image point p' is expressed as

p′ = K(RT )


xw
yw
zw
1

 (1.8)

Since the projection of a point is a linear function, it is also invertible, and so we
can back-project a point on the image onto the world reference frame.

A 2D point is the imaged version of a 3D point, which has been projected on
the image using the projection matrix. Consider that point, an equivalence class of
points are mapped to the same point of the image plane. The collection of these
points is represented as a ray which is projected in space by the camera center and
the speci�c point p.

This can be done by considering the pseudo inverse of the projective matrix,
denoted as P+,which will de�ne the equation of the ray:

C + λP+x (1.9)

whew λ is a real coe�cient which represent the exact position of the considered point
on the line and C is the camera center. The back-projection is very important when
trying to perform stereo vision, since it can add information on depth of object and
when rendering. In order to use projective geometry to retrieve 3D properties, the
camera's parameters must be estimated �rst.

1.3.4 Camera Calibration

In order to exploit the a pinhole camera model on the imaging device, all camera's
intrinsic and extrinsic parameters has to be estimated. This can be done by a process
known as calibration, which can be done in many di�erent ways, considering what
type model is used, what is exploited and the linearity of the such procedure. The
most general classi�cation which can be done for calibration techniques is:
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• Photogrammetric calibration: It implies using a known 3D object, that
must have easily detectable feature. This involves a planar object and a �elab-
orate setup�

• Self-calibration: Unlike photogrammteric techniques, they do not require a
calibration target, just a static scene recorded by the same camera from multiple
position.

In [19], all di�erent models are explained and compared, however, as stated,
�there is at yet no accepted one step method that is either reasonably universal or
amenable to full automation�.

However, the method explained by Zhang in [20] became the most reliable so-
lution and it is considered a standard. This particular approach exploits a real
chessboard as target, since its axes and corner can be easily detected. By having the
same chessboard imaged from multiple position by the same camera, with known
3D coordinates of points, it is possible to infer the projection properties. This is
because many 2D point- 3Dpoint correspondence will be available, where the matrix
of the intrinsic K does never change.

Starting from a single plane, rewriting the modelling of a point in 3D M and its
image projection m becomes possible. By denoting the rotation matrix R using its
column vector[20]:

s

uv
1

 = K [r1 r2 r3 t]


X
Y
0
1

 = K [r1 r2 t]

XY
1

 (1.10)

The matrix which multiplies the 3D point can be interpreted as an homogra-
phy, which is a planar transformation which preserves straight lines, which can be
estimated by having a necessary amount of point-point correspondeces.

The target is a chessboard and the points used as exploit are it's angles, which
are good feature and are easily detectable. Starting from these point-point cor-
respondence, the instrinsic parameter of the camera can be retrieved. Also, the
extrinsic parameters pf the camera can be derived, having as world reference system
the chessboard one. Of course, the estimation of the extrinsic becomes possible after
the intrinsic have been estimated.

By calibrating intrinsic and extrinsic parameters of each camera involved in a
system, the position of object in the real scene can be guessed from just its image.

1.3.5 Triangulation

The triangulation of a particular point in a scene, that is estimating the 3D coordi-
nates of a pixel which has been imaged in a picture, cannot be done with one single
image. Starting from a 2D pixel, it is impossible reconstructing the point which
has been imaged at that location, since no depth information are available, and so
in�nite points X can be imaged to a point x'. Moreover, the point of interests has
to be extracted on the image, exploiting particular knowledge on objects or on the
image characterestics.
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Using the camera's parameters and the 2D points on multiple camera poses,
the 3D position of the sphere center can be estimated. Naive triangulation, which
involves �nding the intersection of the back-projections of the 2D points from two
images using epipolar geometry, is not a good choice, since the rays will be skew and
will never intersect in reality.

The triangulation can be performed in many ways, but the most common are:

1. Find the midpoint of a line perpendicular to the two back-projections, which
is called Midpoint triangulation.

2. Since both the points in 2D were projected on each image plane using the
respective projection matrix P(if the point is not a point at in�nity), it is
possible to decompose each component and build a linear system, which using
homogeneous coordinates is equivalent to solve:

minx||AX||s.t. ||X|| = 1 (1.11)

By doing so, the point can be retrieved by solving this system.

If the image is undistorted, it is possible to use a linear triangulation method
explained in [21] which exploits the Direct linear transformation(DLT) algorithm
in order to solve the system. DLT is an algorithm which solves systems of linear
equations described as a set of similarity relation [22]:

xk ∝ Ayk for k = 1, ..., N (1.12)

where A is the matrix which contains the unknowns to be solved. By doing this
the mapping between a set of 2D points to 3D becomes linear. The eq. 1.11 derives
from the fact that by having two points in the same image which represents the same
point X in space, the two equation x = PX and x′ = P ′X can be related to each
other. By expanding the relation as a system for each coordinates, four equation are
involved which can be summarized as:

A =


xp3T − p1T
yp3T − p2T
x′p′3T − p′1T
y′p′3T − p′2T

 (1.13)

where pnT is the n-th column of the projection matrix.
By solving this system, a solution is found, however since it minimizes the alge-

braic error which has no geometrical meaning, the estimate is not very precise. A
possibility of improving the estimate is to consider the DLT solution as a starting
point for a non-linear optimization algorithm, which may minimize the reprojection
error of the point on the image.

1.3.6 Feature points

Even if the points can be triangulated with a decent precision, in order to position
objects in the space and make solid assumptions, there's the need to undestand
what object is imaged �rst. Recognizing a speci�c object in the image space is a
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di�cult task, which cannot be done on the triangulated point since it will increase
the computational burder.

Usually, the information extrapolation is done on the image by localizing some
meaninguful points, that are called feature points. A feature point is local part of
the image which is invariant to viewpoint or illumination, resulting in a point which
contains a lot of information. It can be said that a feature point is a locationof
sudden change in the image.

A good example of feature are edge pixels, which reduces the information re-
quired for the inspection(few pixel in a binary image are more than enough) and
their causes can de�ne the structure of an object.

Edges can be detected by looking at the pixel intensity. Since an edge can
be derived from a re�ectance discontinuity or another interesting causes, in the
proximity of an edge the pixel intensity should change a non-trivial amount. So the
edges are detected by locating those areas where the intensity rises or drops, given
a certain threshold. However, the threshold must be setted wisely. If an incorrect
threshold is setted, false edges might be detected. Another thing to keep in mind
is the actual change that is considered as �abrupt�. If the intensity of an object
changes gradually, the edges might be measured incorrectly and result thick, so a
proper heuristic in those cases has to be setted. With regard to the di�erent type
of changes, three types of edges can be identi�ed: the step-edge, the ramp edge and
the roof edge.

Figure 1.6: Visual example of the three kinds of edges.

A good idea is to use the derivatives of the image, since it highlights very well
these zone of change. In particular, if we use the gradient of the image at each pixel
as indicator of a possible edges, which is equal to the �rst derivative in 1D scenarios,
it will be greater than zero along all the slow increase/decrease in intensity. Using the
second derivative, i.e. the Laplacian in 2D, will avoid this problem, since it gives a
better response if the change is gradual, however the more the function is derived the
more impactful noise will be on the result. Moreover by using the second derivative
there will be two responses which must be deambiguated using zero-crossing.

In order to solve all this problems, many heuristics and derivatives approxi-
mations where designed, until an algorithm with a solid mathematical background
became standard.
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Figure 1.7: Example of the di�erence of edge detection using �rst and second deriva-
tives. In the gradient case a threshold is setted in order to extract the edge, and
the actual edge becomes thick, while using the laplacian the edge is identi�ed at the
zero-crossing.

Canny Edge Detector

Canny's edge detector became the standard solution for edge detection problems.
This techniques relies on a strong mathematical background and the good heuristics
implemented for thick edge trimming. Canny in [23] de�nes two objective function,
which will be called for Λ and Σ, given a �lter f.

• Λ(f) will be large if f produces a good localization for the edge point.

• Σ(f) will be large if f produces good detection.

The goal here is to maximize the product Λ(f)Σ(f), with the constraint that
only one peak peak should be generated at a step edge.

Canny used as indicator of possible edges the Derivative of a Gaussian(DoG),
since it is a good approximation of the optimal �lter and it's a linear operator, so each
gaussian and derivative can be applied separately on the image as convolutions4,

4mathematical operation between two function which expresses how the shape of the �rst
operand is altered by the second
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image smoothing using a 2D Gaussian �lter and afterward computing the gradient
on the smoothed image. The DoG is so good because it suppress the noise before
applying the derivative, because the noise impact on the result will increase the more
the function is derived.

This step will generate pretty good results but will have thick ridges around a
peak, since �rst derivative is used. In order to trim the edges and eliminate false
positives, two particular heuristics are used, namely non-maxima suppression and
hysteresis thresholding, These techniques are performed on the result of the DoG,
non-maxima suppression selects a single maximum point across the width of an edge,
while hysteresis thresholding uses two limit values for separating �strong� and �weak�
edges: only weak edges connected with strong ones will be considered, eliminating
false edges.

By performing the edge detection on a picture, a binary image returns, where
at each pixel position 1 indicates the presence of an edge pixel. If the object has a
speci�c geometrical structure which can be generated by a mathematical model, the
model parameters can be estimated, since it is possible to generate a curve which
explains certain edges.

1.3.7 Model �tting

Fitting a mathematical model into an image implies solving some subproblems, with
respect to what information is available:

1. Parameter estimation, which is the recovery of the parameter of a speci�c
model which generated a speci�c segment in the scene.

2. Token-curve association which is the relation between a speci�c curve whose
parameters needs to estimated and the edge segments.

3. Counting of the curves in a scene. It basically resolves the problem of how
many object which are describable by the model needed to be �t.

If no prior knowledge on the data is available, all three of this problem has to
be solved. Counting is solvable by running the �tting on all the connected edges
on the image. However, if the model is not threshold properly, false positive might
be present, so generally either the shape are clearly recognizable or the number is
known beforehand.

For the token-curve association problem, two of the main approaches are:

1. Consensus-based approaches, such as RANSAC.

2. Voting schemes using accumulators, like Hough transforms.

RANSAC algorithm

RANSAC(RANdom SAmple Consensus), �rst explored in [24], is an iterative prob-
abilistic algorithm for parameter estimation, starting from a set of data. Being a
probabilistic algorithm, it does not guarantee to return the correct results.

The main idea is to random sample the minimum number of points which de�nes
the model which is wanted to be �tted. Then, according to this generated �tting all
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the points are tested according to a loss function, and will marked as inliers if they
accept the current model, outliers otherwise. The model chosen is the one which
will have the biggest number of inliers.

In order to maximize the probability of choosing the correct model, the maximum
number of iteration can be estimated. Assuming that e is the probability of a point
to be an outlier, (1 − e) will be the probability to be inlier. Given the number of
minimum points to �t the model s, (1 − e)s is the probability that all the points
contained in s are inliers and es indicates the probability of having an outlier in s.
Varying that probability with the number of iteration N will give the probability
that the algorithm won't ever choose a set of points which will be all inliers, which
is 1− p. More precisely:

1− p = (1− (1− e)s)N = p

1− (1− (1− e)s)N = p
(1.14)

Using the logarithm and rearranging the elements of the equation 1.14:

N =
log(1− p)

log(1− (1− e)s)
(1.15)

Hough transform

The main idea of Hough transform is to map points from the image space to the
parameter space points.

Every point votes for a speci�c curve by �lling an accumulator in the parameter
space. The most votes curve will result in the biggest accumulator. This approach
is fast in computation and it is decent precise, however it has some problems.

This method will become incovenient to be applied if the parameters of the model
are more than three , because the space will become too high-dimensional and sparse,
so the correct solution is not easy to be found and noise will be ampli�ed.

The dimension of the parameter space is discretized by using the range of values
that the parameter can assume.

Figure 1.8: Visual example on how hough represents point in the parameter space.

In �gure 1.8, it can be seen how Hough works. Consider two points a and b
with coordinates (x1, y1) and (x2, y2), their representation in the parameter space is
a line expressed with respect to the constant c and the the slope of the line m. The
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point of intersection of those two lines in the parameter space its actually a line in
the image space, which is the best �tting line for those points. The parameter space
is actually discretized into a matrix of �bins�, which works like an accumulator, and
the best line will be the one which accumulated the most votes.

1.3.8 Structure of the dissertation

This thesis is divided as follows: in Chapter 2 an overview of the method is presented,
in the third chapter the methods exploited for the triangulation of the spheres are
explained. Chapter 4 exposes the technique used for the extraction of the level curve
at a certain intensity, while in Chapther 5 the method of estimation of the normal
of the plane described by the isocurve is explained. Finally, in Chapter 6 the results
of the method are presented.
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Chapter 2

System setup and method

overview

The goal of this work is to estimate the light position from a large dataset of pictures
of a Lambertian spherical object, which is illuminated by twenty di�erent lights. The
system considered is an already functioning industrial quality control camera system,
used by Electrolux company at the end of their assembly line.

The machine inspects ovens which underwent a painting process. By taking
multiple pictures of the oven using a camera system, painting errors and defects can
easily be detected and triangulated.

The stereo system is composed of �ve di�erent cameras placed in a rectangular
shape, four at the side and one at the center. The side cameras reside on the same
plane, while the center one is deeper than the others. The system comprehends a
illumination system composed of twenty lights and a real sense. The real sense is
an object which implements a particular technology which adds depth information
to images. To do this, it uses a hybrid sensor which mix CMOS with infrared, a
Micro-Electro-Technical(MEM) devices, which projects a invisible light ray in order
to perceive profondity and a CPU. The real sense, however, has not been used for
this work and its presence is irrelevant.

Four lights, which are encoded from zero to three, are lines structures composed
by led light, while the other sixteen are �ashlights, which are the ones whose position
will be estimated.

The system operates in a closed room and the ovens passes over the cameras.
Multiple acquisition of the same objects are made, in order to increase the robstness
of the triangulation. The cameras are logically numerated from 0 to 4, as descripted
in 2.2. This will be important when talking about triangulation and the results of
the method.

2.1 Calibration

The intrinsic and extrinsic parameters of the camera had already been estimated,
since they were necessary for the functioning on the system. Regarding the intrinsic
parameters, a method very similar to [20] was used.

The extrinsic extracted using Zhang's algorithm, however, had to be perfected

23
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Figure 2.1: A couple of pictures representing the system

Figure 2.2: The coding of the cameras with respect to their position on the machine.

and mediated, since every projective transformation on the world reference frame
had to make sense. In order to estimate the poses and mediate them, the technique
explained in [25] have been used, which exploits dual quaternions, which are a special
algebraic structure, and a speci�c planar target.

The method works in two steps:

1. A view-graph is build, with respect to the di�erent poses of the camera on the
scene.

2. By performing multiple acquisition of the marker, all transformations from
marker's world to camera one are placed in one big graph which is then
widespreaded.
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2.1.1 View-graph construction

The view graph represents the various transformation needed to move from a ref-
erence system to the other. The nodes are the camera themselves with the real
sense while the arches represents the rigid transformations in order to move from
camera x reference system to camera y's. The poses of each camera are retrieved by
taking a picture of the marker by all camers, which has its own reference system.
The marker in this case is a chessboard, which is a good target since it has easily
detectable corners. By detecting the corners of the chessboard, which has known 3D
coordinates, a set of image point-real point correspondences as well as the intrinsic
parameters of each camera are available, so the only thing remaining to estimate its
the extrinsic parameters.

Figure 2.3: Two of the images used for, respectively, instrinsic and extrinsic param-
eter estimation. For the extrinsic, the points indicated on the cameras represents
the corners which have known coordinates, which are used as correspondeces.

The problem of estimating the rotation and translation of a speci�c camera by
a set of correspondences and with known intrinsic is known as Perspective-n-
Point(PnP) problem.

In order to solve it, many methods have been developed, for example Gao in [26]
gave an optimal and reasonably precise solution with only three correspondences,
while in [27] an optimal solution to the general problem is given. As can be seen
seen in �gure 2.3, the correspondences are more than three, so Gao's approach is
not suitable.

By solving PnP the pose of each camera is retrieved, and the relative transfor-
mations deduced by the pictures are composed in order to build the view graph.

2.1.2 Graph di�usion

In order to have the most robust estimate of the poses, multiple acquisition of the
marker were made, and a big view-graph was built. In order to retrieve the best
estimate of the extrinsic for each camera, a process of di�usion was made on that
graph.

The view graph considers the edges as transformation from a reference frame to
the other. As stated in [25], Vi a transformation from camera N to the common
world reference frame, and as Tij the transformation for camera N reference frame
to camera M. For all adjacent view, it must hold the equation Tij ∗ Vi = VJ in order
for the transformation of the reference frame to be coherent. Since in reality this
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equation is never exactly full�lled, the goal is to minimize the distortion of that
operation, that is:

D =
∑
i

∑
j∈N(i)

d(Tij , Vj , Vi) (2.1)

The measure of distortion considered in [25] refers to the Chasles' theorem,
which states that any rigid motion is equivalent to a rotation around a screw axis

and a translation along it.

The rigid motions are not expresses as the classical rotation matrix and a trans-
lation, but by using a particular algebraic construct known as dual quaternions.

By di�using the dual quaternion in the view-graph with respect to the minimiza-
tion of the screw distortion, the optimal extrinsics of the camera are retrieved. Of
course, the resulting network of the cameras will have a star-like topology, which
center corresponds to the world reference frame chosen. In this case, the real sense
reference frame is selected as world, and all other cameras' extrinsics consider the
real sense as origin.

2.2 Method overview

Since the objective is retrieving the light starting from the image, it can be seen as
an inverse problem with the same idea of shape-from-shading.

The light assumed in this model is point light source, since it is a good approxi-
mation for the real scene illuminant given the small distance between light sources
and illuminated objects. which irradiates the scene starting from a point in the world
but outside the scene visualized. Moreover, the Lambertian surface of the sphere
is assumed, in that way the intensity of a pixel will depend only on the surface's
normal and the illumination vector.

The main idea is to retrieve the light position by estimating multiple light vec-
tors of the same light source. Since they all came from the same source, their
approximated intersection should be a good estimation of the light position. It is
approximated because since there might be noise on the image the rays will result
skew in the 3D space and might never intersect. Instead, the closest point between
them is selected. The multiple directions are collected by changing the position of
the sphere in space during the acquisitions.

The sphere parameters are not necessarily known, since the position of the sphere
can be triangulate using the camera's extrinsic parameters, which are known, and a
couple of images from di�erent cameras. The radius can be calculated by geometry
relations between the projected �sphere� radius and the real one, since the camera
work following the pinhole model.

The method described in this work can be divided into various steps. For
starters,the sphere is located in the image, extracting the edges from the image
and �tting a particular curve on the edge pixels. Since a curve is invariant to the
projective transformation, it will be projected on the image as an ellipse, however
an ellipse is di�cult to �t, since the distance point-curve is not easily de�ned. The
ellipse is approximated to a circle, since the error which derives from the approxi-
mation can be trascurated in the estimation of the sphere center. A circle is �tted
on the edges detected by Canny's algorithm, using two di�erent method:
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• The consensus-based approach RANSAC.

• A voting scheme using Hough transform.

For the latter implementation, the standard Hough transform is not suitable for the
�tting of a circle. Since Hough uses a parameter space, the more parameter a speci�c
geometrical model has, the bigger the parameter space used by Hough will become.
This leads to a sparse, error-prone space and impacts the e�ectiveness and precision
of the method. In order to solve this problem, a slightly di�erent method is used,
known as Hough gradient, which e�ectively �ts the circle using the discretization
of Hough.

From the center of the circle which has been �tted, by using a pair of images
took from di�erent cameras, the center of the sphere in the world reference frame
is triangulated. The extrinsic of the cameras are known and can be manipulated to
change reference frame as preferred.

Since the goal is to �nd an isocurve indicated by a pixel intensity level, a squared
cut which contains only the sphere is extracted. This is a mandatory step, since
all pixels on the imaged sphere must be inspected and instead of doing a logic
partition on pixels, a separate image is considered in order to improve the speed of
the algorithm. Given the isovalue, the level curve is found by using a particular
algorithm, which is the 2D application of the famous Marching cubes algorithm, the
Marching square algorithm. The main idea of Marching square is to transform the
image in a binary one, where a pixel is labelled as one if its intensity above or equal
the isovalue, 0 otherwise. Then, the binary image is structured into 2x2 cells, whose
vertex indicates the general structure of the contour which passes through the cell.
By inspecting all the cells, the imprecise contour is built, which is then de�ned using
linear interpolation.

The level curve extracted from the sphere represent the intersection between a
plane almost perpendicular to the light vector and the sphere. The next step is to
�nd the plane which intersects the sphere at the points of the contour and �nd its
normal, which will be a good estimation of the light direction. This is done following
two di�erent routes, the �rst implies the �tting of an ellipse which generates the
contour, followed by the estimation of the normal on which the ellipse resides.

The alternative route implies the back projection of the contour points in space,
which does not exactly converts to a 3D point, since the same point in an image
might be generated by in�nite 3D points. The back-projection is basically a ray
in space, which however must intersect the sphere whose position is known. Since
the camera who took the image can be approximated to a pinhole camera and the
distortion coe�cients are known, it is possible to calculated the radius of the sphere
and the intersection ray-sphere can be calculated. The points are then used to �t a
plane whose normal will almost correspond to the direction of the light vector.

By taking multiple pictures of the sphere with a di�erent location, all the di-
rection will almost converge to a single point, which denotes the light position on
the world reference frame. Finally, the position of the light is then calculated as the
closest point to all the normals projected into space.
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Figure 2.4: A schematical simpli�ed representation of the method. Since two ap-
proached were used when dealing with the light direction estimation, there is a
biforcation.



Chapter 3

Triangulation of the sphere's

position

The triangulation of a particular point in a scene, that is estimating the 3D coor-
dinates of a pixel which has been imaged in a picture, is not an easy task. The
back-projection of the imaged point will not work, since no information on depth
is given and in�nite point can be imaged to that speci�c point of the picture. By
considering the center of the sphere projected into the center of the circle �tted onto
the image, a candidate feature point is found.

In order to perform this operation, it is needed to estimate the parameters which
descripts the circle on the image, using a process known as �tting. In order to
triangulate with a decent precision the center of the sphere, two points from di�erent
images are needed. By doing so, the triangulation can be performed using the DLT
algorithm and the projection matrices of the cameras.

At �rst a circle model is robustely �tted into the image using two di�erent
approaches,then using the centers of the circles in multiple images the sphere center
is triangulated in space.

3.1 Circle �tting for sphere center calculation

The most convenient way to triangulate the center of the sphere is to estimate
the parameters of the �circle� projected on the image,if it's clearly visible and illu-
minated. The sphere captured by a pinhole camera model with no distortion will
appear as an ellipse in the image,since conics are invariant under a general projective
transformation.

However in the images given the ellipse can be approximated into a circle, for
two reasons:

• The result of the triangulation of the sphere center is good enough, since the
ellipse has so little tilt and �deformation�.Moreover, the error derived from this
approximation is trascurable.

• The �tting of an ellipse is much more complicated and computationally taxing
than circle �tting, because the point-curve distance in case of ellipses is not
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easily formulated and approximated, while for a circle that problem does not
occur. It's a good tradeo� between precision and computational complexity.

3.1.1 Circle Fitting

The edges of the sphere are detected by Canny's edge detection algorithm and will be
represented into the binary image as an arc. The objective is to �nd the parameters
of a circle which �ts the edge considered, basically a circle which as that edge as
an arc. If the circle is �tted correctly, its radius and its center in the image will be
retrieved, and using multiple views from di�erent cameras the sphere center can be
triangulated.

Circle �tting using RANSAC

In order to apply RANSAC, it must be known the minimum number of points needed
to de�ne the model. In the case of a circle, the minimum number of points needed
to de�ne it is three. The general equation for a circle is:

(x− xc)2 + (y − yc)2 − r2 = 0 (3.1)

where xc and yc are the coordinates of the center of the circle and r its radius.
By putting all three points into the equation, since it is known they rest on the
circumference of the circle, a system of three equation in three variables (xc, yc, r) is
obtained, and so it is solvable with the classical linear resolution methods.

As loss function, the distance point-curve is used, since it is easily de�ned:

d = |
√

(x−1 x2)
2 + (y1 − y2)2 − r| (3.2)

The distance d is always positive, so it accepts as inlier points every point closer
than r to the center. The smaller the value d is, the closer the point will be to the
circle. The threshold applied in this case must be very small, since the edges are not
so noisy and a big arc is detected in all the images by Canny's algorithm, in order
to have the most correct estimate possible.

Fitting using Hough transform

The other common approach when it comes to �tting models is the Hough transform
method. However, standard Hough transform is not suggested for �tting circle, since
the parameter space will be three-dimensional as the radius of the circle has to be
considered. Instead of using the standard Hough transform, a di�erent method is
used in this thesis, called Hough gradient method, described in [28].

Usually the standard Hough transform method quantizes and discretize the pa-
rameter space, and then a n-dimensional accumulator is used in order to inspect all
points.This works very well in case of lines modelled using Hesse normal form. In
the case of circle �tting, however, it is works less e�ciently because of the three-
dimensionality of parameter space. The Hough gradient method instead calculates
the �rst-order derivative using Sobel operator,which is a linear operator which calcu-
lates the gradient using convolution on an image, for every edge point. The points on
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parameters space along the line which has as slope the gradient, will be incremented
in the accumulators.

Candidate centers will be chosen among the largest one in the parameters space
and must be larger than all immediate neighbors. Even by using this exploit, the
computation of di�erent radiuses is quite taxing, since all possible numbers need to
be considere. In order to limit the computation and bound the set, the maximum
radius wanted to be found has to be noted. Moreover, it tells the algorithm the
minimum distance accepted between two centers for which the circle is �tted.

The radius selected for each center is the best supported by the other non-zero
pixels. The best center selected is the one which has su�cient distance between any
previously selected center and the most number of supporting �white� pixels.

3.1.2 World reference frame

In order to have a more coherent reference frame and coordinates, the origin was
moved the camera with code four, which is placed at the center of the system. The
world reference frame used by the system had as origin the real sense, since it is an
important piece of the machine.

A change of reference was needed, since the real sense its place upside down and
the coordinates using the starting reference system would have the negative z. So
the world reference frame used here is the camera four's one.

If a camera is the origin of the reference frame, its rotation matrix will be equal
to the identity matrix while the transition vector will be null. The projection of a
point to the image plane in that particular camera will depend only on the intrinsic
parameters. For the other cameras, the extrinsic parameters as well as the projection
matrix needs to be changed using the extrinsic parameters of the camera four in the
real sense reference frame. First, it was needed to calculate the RT which projects
point from the real sense reference frame to the camera which had to become the
new origin(camera four) reference frame, so the inverse of R, T and the inverse of
RT was needed.

R−1 = RT

T−1 = −RT ∗ T

RT−1 =

[
R−1 T−1

0 1

] (3.3)

The inverse of RT is padded, becoming a 4x4 matrix, because the transformation
happens in the projective space P3 and homogeneous points have four coordinates.
Then, for each camera R and T are extracted by the result of the multiplication of
the inverse RT of camera four with each camera's RT matrix. This multiplication
expresses the transformation from camera four's reference frame to the camera N's
one. Then, the projection matrix for each camera is recomputerd using the new
extrinsic parameter.

By doing this, a new world reference frame is created, where all successive cal-
culation will be performed.

By considering the extrinsic parameters and the centers retrieved from the im-
ages, the 3D point can be triangulated using DLT algorithm.
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Figure 3.1: A visual example of the world reference system constructed using the
camera's extrinsic parameters wrt camera four



Chapter 4

Level-curves detection

In order to estimate the light source, it is mandatory to have an informative region
on the image regarding the illuminant. What is usually done is considering the
re�ection of known objects in the scene, but is not the only way.

One of the possible approach is to use the gradient mapping for light direction
estimation, like [29], however this approach is very sensible to noise When using the
gradient, the noise will be ampli�ed, so this approach is not suggested if the images
are not optimal. In fact, is mostly e�ective on close ups of a particular sphere with
high resolution.

In this case, the sphere is far from the camera and presents a decent amount of
noise, so even if the method is still applicable, it is not the best way to go. In order
to reduce the noise is it possible to use spatial �lters, which are linear operators
that act on all the pixels in a speci�c neighborhood. Noise reduction is performed
by shifting a �lter of size MxN, which is usually a square matrix, in all vertical and
horizontal possibility in an image, averaging the pixel contained in the neighborhood
of the �lter mask.

Figure 4.1: Example of �xed size convolution kernel approximating a Gaussian func-
tion with standard deviation of 1.

The �lter used is an approximation of a Gaussian function, as explained in [30],
which uses a two dimensional function in order to extract the Gaussian distribution
values:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (4.1)
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The kernel size depends on the standard deviation a of the function, for example
in �gure 4.1, a standard deviation of σ = 1 was assumed. The values have been
approximated since they are not really integers.

By smoothing the image using Gaussian �lter noise is reduced and the image
becomes blurred, so its details are suppressed. Moreover, if pixel intensities are
considered in a speci�c method, the result might be altered since all pixel values will
be mediated with respect to the �lter.

The main idea is the following: if we consider light as a point-like structure,
it will illuminate the scene in a cone-like fashion. When the light illuminates the
sphere, this cone will be sliced by a non-planar object(the sphere). There has to be
a speci�c region planar region which is orthogonal to the cone vertex. By forcing the
normal of the light to be passing through the center of the sphere, an approximation
of the light direction sis retrieved.

Figure 4.2: Simpli�cation of how the illuminant light the sphere and the re�ection
of the light.

In �gure 4.2, there will be a speci�c point on the sphere where the light vector will
be perpendicular to the actual sphere surface. The region which describes where the
light is is of course the one with the highest pixel intensity. However, using intensity
pixel alone to �nd this region is not plausible, since a big neighborhood of that
pixel will be �burned�. The objective is to �nd the approximated plane which slices
of the sphere and is perpendicular to the illuminant direction. By doing this, the
illuminant direction will have the same direction as the plane's normal.

However, the planes which slices the sphere must be retrieved in some way, using
some indications. The approach selected in this works the following: by using a
selected level of pixel intensity, called isovalue, a isocurve is extracted from the
image sphere. The isocurve extracted will represent a set of points which represents
the intersection of a speci�c plane with the sphere. If the correct plane is selected
with respect to the level curve, the light direction is retrieved.

The method used to retrieve the contours at a speci�c intensity uses an ap-
proach derived from the most famous Marching Cubes Algorithm for 3D meshing:
the Marching Squares Algorithm.
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4.1 Marching Square Algorithm

Marching squares is a computer vision algorithm, explaned in [31], that extracts a
contour(isoline) with respect to a speci�c intensity values called isovalue. It can be
divided into four steps:

• Divide the starting set of image points into 4 pixel cells.

• For each cell, an index of it is calculated.

• The geometry of the cell is retrieved using a lookup table.

• The contour position is re�ned using linear interpolation.

The �rst step implies a iterative scanning of the image, where 2x2 blocks of pixel
are examined at a time. Each block of pixel is then simpli�ed in a binary structure,
where at each position a binary value is placed, if the pixel value is greater than the
isovalue, 1 is placed, 0 otherwise.

4.1.1 Index calculation

Figure 4.3: Example of the calculation of an index on a cell.

After each cell is built, an index is calculated by scanning each pixel belonging to
a block in a clockwise direction. The index is calculated using bitwise OR operation
as well as a left-shift, with the most signi�cant bit being the top-left conrner of
the block. The least signi�cant bit on the other hand is the last one following the
clockwise direction, that is the bottom left one. Since this process examine all pixels
in an image, the complexity of this procedure depends on the dimension of the target.
It should only be used for small regions and images.

4.1.2 Look-up table

After the index has been calculated for each cell, it is possible to outline the ap-
proximated shape of the contour in that particular block. Using the index, a lookup
table is inspected, which contains the geometry of cells with a particular index. The



4.1. MARCHING SQUARE ALGORITHM 36

Figure 4.4: Lookup table utilized in Marching Squares algorithm.

geometry extracted from the table is only an idea of the countour, since the real
position of the contour must take into consideration the real value of the pixel.

The �fteen entries of the lookup table are shown in �gure 4.4, however not all
cases are reliable. In case 5 and 10 in particular it is notable that the real geometry
of the cell might di�er, because those cases happens at saddle points and de�nes
ambiguosly the contour. That is because the geometry of the center of each cell is
not considered, so it is impossible to know, given two opposite vertices of the cell, if
represents two di�erent contours or there is a �bridge� between the two areas.

Here the image which is wanted to be scanned for contours is free of saddle
points, so the implementation did not need to care about these cases, however the
ambiguity can be easily solved by using an average of each corner value as a center
cell value and choose di�erent interpolated points.

4.1.3 Linear interpolation

The contour given by the �rst two step is good but not too accurate, since it is simple
the mid-point between the cell's vertices. Starting from the geometry of the cell, the
pixel value of the points considered in the cell are considered and the interpolant is
calculated.

An interpolant is a point estimated within a range of a discrete set of data points.
In this set, the points considerated are the ones which build the side of the cell where
the contour is de�ned. The interpolant is the true point along the side of the square
where the contour passes, which is calculated by looking at the intensity values of
the pixel identi�ed by the vertices.

For each cell, depending on its geometry, di�erent number of vertices must be
taken into account:

• For the contours at the angles, only the three vertices at that side of the cell
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must be considered. Referring to the �gure 4.4, if a cell has index 1, the
vertices considered are top-left, bottom-right and bottom-left.

• If the contour passes through the cell's center, all four vertices must be taken
into consideration. If case 6 in �gure 4.4 happens, the two interpolant has to
be calculated for opposite sides of the square.

What is wanted here is to calculated the interpolant between two known points
using linear interpolation. The interpolant in detail is non other than a point on
the line which passes through the two points. In this case, the linear interpolant is
the side of the square which connects two vertices. The formulaa of that line can be
expressed as:

y = y1 + (x− x1)
y2 − y1
x2 − x1

(4.2)

By using 4.2 and considering that the variable in this case can regard both the x
and the y position, two formulas can be derived:

yi = y0 + (y1 − y0) ∗
V − I(x0, y0)

I(x1, y1)− I(x0, y0)

xi = x0 + (x1 − x0) ∗
V − I(x0, y0)

I(x1, y1)− I(x0, y0)

(4.3)

where I(x, y) is the intensity level of the image at pixel with coordinates (x, y)
and V is the isovalue given in input to the algorithm.

The result at each cell is a couple of points where the isocurve must go through,
by connecting all points extracted the isocurve is retrieved.

By applying this algorithm to the region of the image where the sphere surface
is, a curve at the isovalue's level is retrieved.
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Chapter 5

Light direction estimation

The isocurve extracted using Marching square represents an estimate the intersection
of an �ideal� plane, which is perpendicular to the light vector, and the sphere. By
using that points as intersection, it is possible to �nd the plane and by retrieving
his normal, a good estimate of the light direction can be calculated.

The plane in this work will be �tted following two di�erent approaches:

• The re�ection of the light by the sphere represented in the image by an arc;
the contour can be used to �t a particular quadratic curve, an ellipse in this
case. Since the ellipse represents the cut given to the sphere by the plane, what
is wanted is to retrieve the normal of the plane on which the ellipse resides.
This can be done by estimating the feasible orientation of the camera that
could have captured the plane containing the circle from which the ellipse is
generated, method de�ned in [32]

• Since the position of the sphere is known in space and the radius can be
calculated, it is possible to back-project points from the image plane to the
world coordinate frame.However, those points are none other than rays in P3

projective space. The intersection rays-sphere must be calculated in order to
retrieve the 3D coordinates of the contour's points. This is possible since the
sphere position is known and it radius can be estimated using the image. Then,
the best �tting plane is found, using as set the newly estimated contour points.

Here both approaches have been implemented and confronted. Moreover, some
mediation techniqus are inspected, in order to see if they actually improves the
precision of the normal estimated.

5.1 Fit a plane in space

In order to estimate the position of a speci�c point imaged in the plane in the world
reference frame, triangulation is a possibility. However, it is only applicable when
there is certainty that the point in both images is the same point imaged, otherwise
the coordinates will be wrongly estimated.

Since the camera can be assumed to work as a pinhole camera model, which
has known projective properties and mechanisms, the points' coordinates can be
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estimated by exploiting the known rules of the imaging of a scene to an image plane
by a pinhole camera model. However, this would require to know at least to know
the objects in the scene and some coordinates, since an point in the image could
have been derived from in�nite points in the world reference frame.

In the �rst approach the exploitation of the projection mechanism of the pinhole
camera model is performed, in order to place the isocurve points onto the sphere in
the 3D world reference system.

5.1.1 Back-projection of the level curve's points

Using homogeneous coordinates and the projective space P3, it is possible to express
the projection of a 3D point onto the camera's image plane by �rst �translating� the
point into the camera's own reference system:

p =

[
R T
0 1

]
(5.1)

and subsequently, by using the camera's intrisic parameters, that homogeneous point
is mapped in the P2 projective space. The complete projection is indicated as:

p′ =

f 0 cx
0 f cy
0 0 1

 (R|T )


xw
yw
zw
1

 (5.2)

Since all parameters are given in this case, the back-projection of the imaged
point is possible, however since no depth information are given, there is a need to
disambiguate the possible points which could have been imaged to the starting point.
In order to do this, for this spaci�c case there is a need to model the sphere in the
world reference frame, which is camera four's one, and use it as a �depth indicator�.

But �rst, the points need to be back-projected. The back-projection using ho-
mogeneous coordinate is a linear operation, which can be divided into smaller sub-
operations. By multiplying an image point, projected into projective space P2, by
the inverse of K, the point is placed on a virtual image plane, which resides in front
of the camera. Then, by using the projection process of the pinhole camera, the rays
which intersects the virtual plane and the camera center can be calculated.

The projective center of the camera, since the extrinsic parameters are known,
is derivable in world reference frame coordinates:

O = −RT (5.3)

What it is wanted to do is basically inverting the projection process, which includes
a step where the point is translated into the reference frame of the camera which is
taking the picture. In order to complete the inversion, it is needed to multiplicate
the point for the inverse of the RT matrix of the world coordinate frame, which
corresponds to the camera's four extrinsics. This operation is usually done by us-
ing the pseudo-inverse of the projection matrix, but since the projective space is
used here, the projection considering the homogenous coordinates becomes a linear
transformation and so the operation can be decomposed in smaller steps.
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Since camera four coincides with the world reference frame, if the image con-
sidered is one took with this camera, only the intrinsic inversion is su�cient, since
the point will already be represented in the world reference frame. For the other
cameras, however, the points must be converted in the world reference frame, which
is done by considering the inverse of the RT matrix of each camera, opportunely
padded since homogenoeus coordinates are used, which brings back the point from
camera frame to world frame.

To sum it all up, by multiplicating each contour point by the inverse of K, those
are place onto the virtual image plane, and by using the inverse RT that plane is
actually positioned in the world, which is extremely near to the camera N projective
center.

By using those points, it is possible to geometrically de�ne the ray which �pierces�
the virtual plane exactly at the contour point, which starts from the camera's pro-
jective center By considered the algebraic di�erence between the camera's center
and the calculated point and subsequently normalizing it, the direction d of the line
passing through the virtual plane which originates from the camera center can be
parametrized as:

x = o+ λd (5.4)

where λ is a variable; the greater λ is, the farthest along the line the point x will
be. Since λ is unknown, the line is in�nite and coincides to the equivalence class of
points whose image coincide with the starting 2D point.

By repeating this process for all contour points will result in series of rays which,
starting from the camera N's projective center which will intersectate with the
sphere. However, the radius of the sphere is still unknown, since at this point
only the radius of the circle projectied on the image and the center of the sphere is
known. It is possible, since the camera is approximated to a pinhole camera model,
to get an estimate of the radius of the sphere approximating the radius of the circle
by the similar triangles relationship.

In �gure 1.5, it can be seen that the radius can be scaled, since there is a relation
between image radius and the real one. The rays form two similar triangles and
since some sides are known, the others can be derived as well. In detail, if a point
and is image projection are given:

p =

xy
z

 p′ =

[
u
v

]
(5.5)

it is possible to de�ne a function T : R3 → R2 transforming each 3D point in
(x ∗ f

z , y ∗
f
z , where f is the focal length of the camera. However this function

is not linear, given the division by z, but using projective space and homogeneous
coordinates can overcome this issue, since the division by the last coordinate is
applied only when reverting to inhomogeneous coordinates.

This proportion is valid even for distances too, so given ri, which is the radius
of the circle in the image and rs, the sphere radius, it holds that:

ri
f

=
rs
z

(5.6)
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This applies only when considering the world reference system, and by using an
images captured from camera four the radius is retrieved.

Since the parameters of the sphere are known and the rays' equations are de�ned,
now the calculation of the intersections is possible. The general equation for a sphere
is:

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2 (5.7)

which rearranged in vectorial form becomes:

||x− c||2 = r2 (5.8)

where c is the center of the sphere, r its radius and x a point belonging to it. In
order to �nd the intersection between a sphere and the rays calculated before, the x
in the equation 5.8 is substituted with the equation of the ray, that is 5.4[33]. The
sphere equation becomes:

||o+ dl − c||2 = r2 (5.9)

By developing the norm, a second grade equation is derived, with d as the un-
known variable. With respect to the value of the delta of the second order equation:

O = l ∗ (o− c)2 − (||o− c||2 − r2) : (5.10)

three distinct cases are possible:

1. O < 0 means that no solution exists, so the line does not intersect the sphere

2. O = 0 implies that one unique solution exists, meaning that the line is tangent
to the surface of the sphere

3. O > 0 is the most frequent case. The line is secant to the sphere, so two points
are returned.

Figure 5.1: Visual examples on how a line can intersect a sphere

These actually represents the three situation where a line and a sphere can be,
as represented in �gure 5.1.

Since the contour point were all placed on the spheres and are reasonably distant
from the circumference of the circle �tted, all rays will result secant to the sphere,
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and so the equation will return two di�erent results. There's a need to disambiguate
the two solutions returned by the equation, since the only point of interest is the
one which represents the starting point on the image. Since λ indicates how far the
point lies on the ray and it is known that the sphere is located over the camera, the
point in the image will be the one with the smaller λ, hence the �rst point on the
ray which intersects the sphere.

By repeating this procedure for all the rays,a set of points in the world reference
frame describing the geometry of the contour on the sphere is obtained.

From the contours projected, a plane is �tted using as set the intersections on
the sphere. That plane's normal should be a good estimate for the light vector, since
the plane represent a good re�ection area.

It is possible to use a least square minimization in order to �t the best plane
in a set of points. Using the centroid of the �cloud� of points considered, a matrix X
of column vectors is created, whose elements are the di�erence between each point
and the centroid. By using Singular Value Decomposition(SVD), the normal
of the best �tting plane will be the left singular vector corresponding to the least
singular value. However, since the image has a lot of noise, it is possible that some
outliers have been considered as parts of the contours, and so the plane can be titled,
as can be seen in �gure 5.2. Since changing Marching squares in order to inspect the
neighborhood for each pixel is very expensive and it does not guarantee to eliminate
those outliers, an approach similar to optimization is used.

The distance from the centroid for each point is calculated and the farther away
points which are over a certain threshold is discarded. The threshold considered is
nearly equal to the mean of distance of all points to the centroid. By considering
all positions for both small and big ball the position, the normals were projected in
space and almost converged into a single points.

Figure 5.2: Big ball contour calculated with a noisy point, which is discarded after
the �rst plane �tted.

This problem happens when bigger surfaces are considered, since noise is more
incisive. The normals considered almost converged to a decent position, however
they remain skew since our images are not optimal.
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5.2 Ellipse Fitting

Another approach that can be used to get a good estimate of the plane is to consider
the ellipse generated by the re�ection of the light in the sphere. By doing so, the
normal of the plane on which the ellipse resides can be calculated using a speci�c
method.

An ellipse can be �tted by considering the contour as an arc of the ellipse and
then the ellipse is �tted. However the �tting is not easy as the circle case, since the
distance point-curve is not easily formulated and maybe will result in a non-linear
function. So an approach similar to Hough or RANSAC is not convenient.

A technique which exploits least squares has been explained in [34]. The general
conic equation can be written as:

ax2 + bxy + cy2 + dx+ ey + f = 0 (5.11)

and can be rewritten in a simpler vectorial form

F (a, x) = a ∗ x = 0 (5.12)

where a = [a b c d e f ]T and x = [x2 xy y2x y 1].
As stated in [35], the problem of �tting a conic given a set of points pi, can be

solved by minimizing in a least squares sense the algebraic distances:

DA(a) =

N∑
i=1

F (xi)
2 (5.13)

In order for this to not consider trivial solutions and be speci�c for ellipses, two
things must be taken into account:

• The vector a should have some contraints, for example must be di�erent than
zero.

• Given the coe�cient vector a, the constraint which identify a general conic
into an ellipse is that this condition is ful�lled:

b2 − 4ac < 0 (5.14)

However, by adding the inequality constrain indicated in 5.14 the problem becomes
hard to solve. What the researchers did in [34] is to scale the parameters so that
the discriminant conditions becomes an equality constraint, since this can be done
without loss of generality:

b2 − 4ac = 1 (5.15)

By transforming the constraint the complexity of the problem decreases, and it can
be transformed into a linear system using Lagrange multiplier and di�erentiation:

Sa = λCa

aTCa = 1
(5.16)

where C is the matrix that expresses the constraint.
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5.2.1 Improved Fitgibbonz's method

The method proposed in [34] by Fitzgibbon is a good method, but it has some
weaknesses some problems. First, the method is numerically unstable, since in some
cases, it returns complex numbers, moreover in some cases can return wrong or null
results.

Halir and Flusser in [36] succeded in stabilizing the solution which exploits the
�special structure� of the scatter matrix S and the coe�cient matrix C, which can
be decomposed into smaller matrices in order to stabilize the solution.

The problem with the method proposed by [34] in detail was:

1. If the input points lies exactly on the ellipse, the eigenvalue will become less
or equal than zero, but with [34] only the smallest positive one is considered.
In [36] the condition is altered and checked for all eigenvectors, and the one
which return a positive value can be proven to be unique and is actually the
solution of the problem.

2. The eigenvectors computed in the Fitzgibbon's method can be in�nite or com-
plex number, so the algorithm becomes numerically unstable. By scattering
the matrix, researchers in [36] stabilized the algorithm and eased the compu-
tation.

The points for which the ellipse must be �tted are grouped as a matrix, which
is called design matrix :

D =

x
2
1 x1y1 y21 x1 y1 1

...
x2n xnyn y2n xn yn 1

 (5.17)

In [36], this matrix is divided into two submatrices, the formaer containing the
linear part of the starting matrix, labelled as D1, and the latter, labelled as D2,
which contains the quadratic side of Da.

By representing D in such a way, the scatter matrix is also splittable in many
submatrices which can be calculated separately, four in total. The coe�cient matrix
C imposes the constraint indicated at equation 5.14, and so its matrix representation
will mostly contain zeroesm since it implies only three coe�cient, so matrix C can
be reduced. Summarizing the splitting and the reducing operations:

S =

(
S1|S2
ST
2 |S3

)

C =

(
C1| 0

0 | 0

) (5.18)

where

C1 =

0 0 2
0 −1 0
2 0 0

 (5.19)
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By performing this splits and considering submatrices, the numerical stability
of the algorithm increases, diminishing the probability of resulting in a complex
number solution. Now the equation 5.16 can be rewritten as:(

S1|S2
ST
2 |S3

)
∗
(
a1
a2

)
= λ

(
C1| 0

0 | 0

)
∗
(
a1
a2

)
(5.20)

which returns the following system:

S1a1 + S2a2 = λC1a1S
T
2 a1 + S3a2 = 0 (5.21)

The system indicated in equation 5.16 becomes:

Ma1 = λa1

aT1 C1a1 = 1

a2 = −S−13 ST
2 a1

a = (a1T |a2T )

(5.22)

where M is equal to:
M = C−11 (S1 − S2S−13 ST

2 ) (5.23)

The condition considered here is indicated in 5.22, where instead of looking for
the least positive eigenvalue, the condition aT1 C1a1 = 1 is considered. As stated in
[36], it can be proven that the only eigenvector which respects the condition is the
correct one.

5.2.2 Normal computation

The goal here is to �nd the normal of the plane in which the ellipse resides. Of
course �nding a plane in 3D coordinates using only the information on the image
is not simple. A possible way of estimating the normal is by �nding the possible
camera orientation which transformed a circle into the ellipse �tted. This method
is exploited in a calibration method which uses as calibration target some visible
coplanar circle, which is explained in detail in [32].

Since all conics are invariant under any generic projective transformation, a circle
in the world will be represented as an ellipse on the undistorted image, if the image
was took using a pinhole camera. This case the cameras are approximated to the
pinhole model, so the condition holds. The ellipse �tted can be represented as this
3x3 matrix: a b d

b c f
d f g

 (5.24)

where any points on the ellipse in E satis�es xTEx = 0.
As stated in [37], it is known that the ellipse originated from a circle, it is

possible to retrieve the rotation which transform the ellipse in a circle. Normalizing
the matrix of the intrinsic K with the focal length f, will translate the same ellipse
in the normalized image plane, whose origin is the optical center and has unitary
focal length:
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En = KT
nEKn (5.25)

As stated in [37], the new matrix representing the ellipse can be decomposing
via SVD:

En = V ΛV T with Λ = diag(λ1, λ2, λ3) (5.26)

By using V , it is possible to de�ne the rotation which trasforms the ellipse into a
circle. There can be four possible camera position which imaged the starting circle
as the �tted ellipse. The plane normals will have four di�erent possibilities and can
be de�ned using two signs, namely s1, s2, a angle ρ wrt the plane normal:

R = V

 gcosρ s1gsinρ s2h
sinρ −s1cosρ 0

s1s2hcosρ s2hsinρ −s1g

 (5.27)

where

g =

√
λ2 − λ3
λ1 − λ3

h =

√
λ1 − λ2
λ1 − λ3

(5.28)

In order to simplify the calculation, the angle ρ is �xed without loss of generality,
letting the matrix become:

R = V

 gc 0ρ s2h
sinρ −s1 0
s1s2h s20 −s1g

 (5.29)

The last column vector of R de�nes the plane normal in the camera reference
frame, hence the normal of the ellipse. Since there are four possibility, a disambigua-
tion is needed. As stated in [32], the last value of R indicates to which camera's is
that normal referred to; if the last value is less than zero, it means that the normal
is from the cameras looking at the back side of the plane. However, this is relative to
the speci�c camera's reference frame. Since in this work a common world reference
frame is considered. The most coherent normals are the one which has the negative
z coordinate if lights near camera two are considered, positive if the illuminants are
placed below camera one. This is because of the position of the camera four with
respect to the entire system. Without some heuristic, a disambiguation between the
two normals is impossible and unlike the methods [32] and [37], only one circle is
present, not two coplanar one. So, the correct normal was selected by projecting it
into the world reference frame and choosing the most coherent one.

5.3 Light puntual position

After the estimation of the light direction, the sphere was moved into di�erent posi-
tions, in order to inspect if the rays actually �converged� to a point. By estimating
light for multiple position, a beam of rays will be considered. In order to have a
starting point, all the light direction are projected from the sphere center as rays,
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with the usual parametrization seen in equation 5.4. However, those rays will never
intersect in reality, given noise and approximation errors, and they will be skewed in
the 3D space. In this case, it is possible to retrieve an approximation of the closest
point to the rays.

The position estimate will be a good approximation if the level curve selected is
a good one for all sphere position considered, which returns the correct estimate of
the light.

The closest point to a set of rays can be retrieve in a least square fashion, the
problem can be seen as a minimization of the distance between a point and a ray.
The closest point on a ray to a point P is actually the reprojection of X on the
ray or the starting point itself. By looking at the projection , the distance can be
expressed as a function:

D = ||X − (o+ λd)|| λ > 0

D = ||X − o|| λ < 0
(5.30)

where λ is the projection of X on the ray, using the equation at 5.4. The least square
minimization problem can be considered using this function as:

argminp

n∑
i=1

Di(P )2 (5.31)

However, as can be seen from 5.30, the function is piecewise and there can be
cases where the solution does not converge. In order to give the best solution, an
initial guess is done by mediating the starting point of all the rays. A loss function
Fi(P ) is considered, whose built such that Ei(P )2 = Fi(P )TFi(P ), whose is de�ned
as:

F (X) =

{
X − (o− λd) if λ > 0

X − S otherwise
(5.32)

By using the initial guess and the error function as input of the least square
algorithm, the center of the illuminant guessed is return as a point in 3D space.



Chapter 6

Experimental results

In this chapter the results of the method implementation are presented. Some com-
parisons between di�erent approaches for the same step are presented. First,vthe
dataset of images is presented, on which the information on the light has to be
extracted. Then, the result of each step is presented. Furthermore, a qualitative
measure of the precision of the method is retrieved. A precise metric could not be
retrieved, since the real position of the light in the real world was not available and
could not be retrieved.

6.1 Starting dataset

Several images and acquisition of the sphere were taken, in order to have a reasonable
dataset. Moreover, two di�erent sized balls were used. The impact of the object's
size for this method was wanted to be derived. The resolution of the all the cameras
is the same. The performance of both small ball and big ball are confronted. The
shade of the light will be more accentuated and precise in a big ball, since a bigger
surface is used. However, noise in the surface of the sphere is more accentuated for
the big ball case. The small ball was approximatively the radius of a ping pong ball,
which has a 40 millimeters diameter, while the big ball has a 90 millimiters diameter.

The photos were taken in a closed room with the minimum illumination, in that
way only one dominant light source is really in�uent and detectable, which is the
one used by the system.

In total, nine di�erent acquistion for the small ball were used, while seven for
the big one.

An example of image is considered in 6.1, where the ball is clearly visible and
the re�ection of the ball creates a visible region on the ball. This image would not
be considered optimal for the calculation of the normal, since most of the contour is
occluded and positioned on the other side of the sphere.

6.2 Triangulation

Each image represented the ball in a speci�c position, however, since the acquir-
ing of a picture considering twenty di�erent lights happens in di�erent times(some
milliseconds away). The position of the ball has been considered di�erent between

49



6.2. TRIANGULATION 50

Figure 6.1: An image used for the estimation.

images considering di�erent lights. This is because the ball was actually attached to
a small wire which hanged over from the roof, so the ball was slightly moving during
the acquisitions.

The triangulation was performed using a particular version of DLT, which re-
quires the rotation matrix to be expressed as a rotation vector. This is possible
using Rodrigues' formula, with can express every rotation using a vector and the a
rotation angle θ. The angle θ represents the magnitude of the rotation vector.

Both the nine position of the small ball and the seven position for the big ball was
triangulated for every light. Since the �rst four light are of di�erent type, precisely
a line of leds, and are not recognized by the light model considered, they will not be
considered.

Figure 6.2: A visual representation of the position of, respectively, the small ball on
the left and the big ball on the right. The ball on the right is kept small in order to
be albe to recognize the sphere position in this image, in reality the radius of each
sphere is 45, not 20

The triangulation returned good results, since the z coordinate of the triangulated
was a pretty close approximation of the real distance in millimeters. The precision of
the triangulation and the �tting algorithms are explored considering the reprojection
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of the points calculated, comparing Hough gradient and RANSAC in terms of good
sphere center's localization.

6.2.1 Ransac versus Hough gradient

The �rst comparison explored for these two methods was applicability. The images
given contained more than one area with concentrated white pixels. The detection
algorithm works only with intensity level, so many contours will be derived.

Figure 6.3: An example of the edges detected by Canny on the sphere picture

For the most problematic images, RANSAC was more robust and always returned
a good enough estimate, but in return it was very slow on the calculations. On the
other hand, Hough needed a maximum radius to work with, if a reasonable one
was selected, the algorithm returned an estimate faster than RANSAC, otherwise
the circles returned were completely wrong. After a few tries, since the radiuses of
the image would change only by a little amount, a good maximum radius has been
selected for both small and big sphere. As for the visual results, both of the methods
gave a good estimate of the circle radius.

Figure 6.4: An example of the estimated circle

In order to test the precision of the estimates, the images when light with code
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four was active was taken into consideration. As measurements, the reprojection
error mean and standard deviation is considered.

From the visual reprojection on the image nothing can be inferenced since the
distance between the point will be small, close to one or two pixels. In order to have
a big enough dataset for comparing the method, all position of both small ball and
big ball with respect to light four involved have been taken, the circle was �tted
in every image for six di�erent camera couples with both methods. Then, for each
method the point was triangulated in space and reprojected.

Mean Standard deviation

Hough gradient small ball 1.651757 1.183154

RANSAC small ball 1.528608 1.135654

Hough gradient big ball 2.583920 2.138819

RANSAC big ball 2.230089 1.731760

Figure 6.5: Scatterplot which expresses the reprojection error of both centers tri-
angulated from circle �tted from RANSAC(right) and Hough(left) with respect to
the z coordinate of the triangulated sphere center.This graphics was made using the
nine position of the small ball when light 4 was active.

Figure 6.6: Scatterplot which expresses the reprojection error of both centers tri-
angulated from circle �tted from RANSAC(right) and Hough(left) with respect to
the z coordinate of the triangulated sphere center.This graphics was made using the
seven position of the big ball when light 4 was active.

The results shows that RANSAC performs better both in terms of consistency
and precision. This result was expected, since Hough discretize the space it's reason-
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able that the precision would not be as good as RANSAC. However, Hough clearly
outmatches RANSAC when it comes to speed.

The �gures 6.5 and 6.6 represents the results of the test for all position, using
the six camera couples which involves camera 0, camera 2, camera 3 and camera
4. The triangulated point is the same regardless of the order of the couple. It can
be seen that the reprojection were more precise in the small case than in the big
one, this is probably because the object is bigger and it is more di�cult to spot the
exact center of the sphere. Moreover, distance plays a big role on the triangulation
of such a point, in fact as it can be seen from 6.6, the more the ball is farther away
from the camera the worse the result will become. In the small ball case, however,
the reverse is happening, as it can be seen from �gure 6.5. This is because of the
occluded area of the sphere, that is the part that is not illuminated by the �ashlight,
in cases of particular camera positions, might be estimated poorly and as a result
the circle �tted would be slightly smaller than the �real one�.

Figure 6.7: An example of why the big ball �tting is slightly more imprecise with
respect to the small case. On both image, the ball is placed in its position farthest
away from camera. While in the small ball the contour is clearly visible, in the big
one it is obscured and might be estimated poorly

6.2.2 Application of Marching square on the images

Marching squares inspects all the pixels in the image space, calculating the contour
using an isovalue and a 2x2 cell structure. This however becomes computationally
tasking in our case,since the image space is huge and the point of interest here is
only the image region where the sphere resided.

It is possible to extract a subimage by using the center coordinates and the radius
returned by the �tting process. This is done by using the �tted center position and
the radius of the circle. A cropping of the image is extracted, which extracts a square
zone containing only the sphere. Now Marching squares can be applied e�ectively,
since only the pixels of interest will be inspected, however the coordinates used
in that region must be brought back on the original image, since the relationship
between 2D image coordinates and the 3D world is valid only on the image space of
the picture taken by the camera.

The algorithm performed quite good with di�erent kinds of intensities and level
curves, however it is very sensible to noise and might recognize some isolated points
which does not stay on the isoline. The outliers are easily truncated using a small
threshold on distance between the points, however the curve will not be precise, it
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Figure 6.8: Result of the algorithm on the original image.

will be slightly jagged.

Moreover, since the original algorithm considers values greater than the isovalue
as 1, the points at the extremity of the ball are considered part of the isocurve. In
reality those points are �false positives�, and presents them near the circumference of
the �circle� delined by the sphere on the image. Considering the distance between the
circumference and the actual points those outliers are eliminated from the considered
contour.

Figure 6.9: An example of the error on the calculation of the contour. Only the
contour far from the circumference should be considered

6.2.3 Light direction estimation

The results of this phase will consider both ellipse and plane �tting methods. The
two approaches are di�erent, since the ellipse approach works only on the 2D image
in order to extract the normal. The �tting on the plane happens in the 3D world
reference frame. However, both approaches can be considered valid in a the proper
isocurve is chosen.
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Figure 6.10: The visual representation of the intersection of the rays with the actual
sphere.

6.2.4 Plane �tting

The results �tting the plane were quite promising, in �g 6.11 the normals of the
nine small ball position are projected in the world, and the area in which they
�concentrate� is actually a good approximation of the light position.

Figure 6.11: Comparison between the real position of light four with the estimated
one

In order to improve the results, as said before, multiple normals using di�erent
level curves were estimated, and then mediated in order to have a more robust value,
however, the result does not change that much.
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Figure 6.12: A visual comparison between single intensity normals(red) and mean
multiple intensity normals(blue). The intensity curve considered where in a range
(x+ 10, x− 10), where x is the actual intensity used for the single case.

However, as it can be seen from 6.12, there is not a big change. Of course, this
would change if the actual variance of the isovalues would be increased, however it
would likely result in a wrong estimate.

6.2.5 Ellipse �tting

Applying the improved Fitzgibbon's method on the contour points led to some in-
teresting result. The �tted ellipse was a very good approximation with respect to
the contour given.

The narrower the curve considered, the more tilted and �compressed� the ellipse
will be. The threshold chosen for the points to be considered su�ciently far from
the sphere is between �ve and �fteen pixel.

Figure 6.13: Comparison between a contour calculated without thresholding the
points near the circumference. The rest of the real level curve is in fact occluded
since it's on the back on the sphere. On the right, the points near the circumference
are not considered.
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The parameters of the ellipse, such as centers, angle of rotation and axis are
derived from the coe�cient vector a.

Figure 6.14: Projection of the normals calculated from the �tted ellipse, for all nine
small ball position.

In �gure 6.14 the two candidates normal for the light with code four are selected.
As can be seen, the right-most normal is completely wrong, since light four is near
to the camera with code two in reality, so it is discarded.

6.2.6 Comparisons between the two approaches

Both approaches returned some results regarding the light vector estimation. Of
course, the ellipse method included some heuristics, especially for the normal com-
putation and disambiguation. Moreover, it is not not clear how to choose the perfect
level curve for a speci�c image, since a high value might not be optimal for noise
implication, while a low value does not provide enough speci�city and tilt to the
plane.

While the level curve can be mediated in the plane case, in the ellipse case
this approach is not so simply achieved, since the normal must be disambiguated
manually.

However, by considering the two methods and their precision in equal conditions,
the plane one is much more precise in estimating the light vector, since the projection
of the directions are more convergent.

This is because the �tting of the plane is much more convenient in therms of
the angle of the vector with respect to the center. Moreover, the ellipse approaches
considers only information extracted from the image, and calculates the vector using
intrinsic parameters. On the other hand, the plane method exploits the knowledge
on the scene and the sphere itself in space, which should lead to better results.

Of course, while the two methods are both valid, the ellipse one was discarded,
since the imprecision of the method with respect to the back-projection approach is
clearly visible in �gure 6.15.
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Figure 6.15: Visual comparison between the normals estimated with the ellipse
method with red colors, and the plane �tting results in blue, using the same intensity
value and considering the same curve

6.3 Light position estimation

The position is referred as the closest point from all the rays considered. The rays are
the normals of the plane �tted with respect to the isocurve of a speci�c level curve
considered. Nine position for the small ball are considered and seven for the big
one, and so nine or seven rays are considered. Also, the possibility of using multiple
curves has been inspected, in order to see if it actually improves the robustness of
the estimate or if it makes it worse.

The source considered as reference for the as the previous steps, the light with
code four, highlighted in �gure 6.11.

The least square optimization were performed initially on the rays with only a
single isocurve, extracted with the isovalue considered optimal for that particular
image. The result of the algorithm can be seen in 6.16, which was estimated consid-
ering the normals visualized in �gure 6.11. It can be seen that the position estimated
is reasonable and coherent with respect to its real position in 6.11.

6.3.1 Method qualitative tests

As a qualitative measure for the method, the convergence of the rays is considered.
However, the position of the must be taken into consideration also.

Since the real position of the light in the reference frame is not available and
could not be retrieved, a di�erent approach for testing the precision of the method
was used.

Two experiments were performed, the �rst one was performed using a range
with a greater variance between its values(a di�erence of �fty between maximum
and minimum isovalue), the second one with a smaller variance.

The experiments returned pretty interesting results. The small ball estimates
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Figure 6.16: Multiple view of the estimated position of illuminant with code four.

Figure 6.17: Error plot of the mean of distances between rays and the estimated
light source point for both the small ball(left) and the big ball(right) using a big
variance between the intensity values(di�erence of 5)

Figure 6.18: Error plot on the mean of distances between rays and the estimated
light source point for both the small ball(left) and the big ball(right) using a small
variance between the intensity values(di�erence of 1)

were negatively a�ected, the rays convergence was moved from a good position to a
bad one, near the sphere. The general convergence of the rays, as can be seen from
�gure 6.17 and 6.18, deteriorates with the use of multiple level curves. However,
for the big ball, which has a greater convergence but in the wrong position, greatly
improved the estimated position for the light(6.19). The most interesting fact about
this experiment is that the variance of the range in which level curve are selected
played a little role regarding the convergence of the rays, but greatly impacted the



6.3. LIGHT POSITION ESTIMATION 60

position estimated for the light. This is because each �stream� of ray pointed to
almost the same position since the variance between the two range used was small.

Figure 6.19: A visual representation of the improvement in the estimated position
for the light four, using the big ball with one curve(red) and ten curves(blue)

Another thing to keep in mind is since the light is closer to the ball the actual
area in which the light vector and surface normal have the same direction is much
more di�cult to pinpoint. Moreover, the normal of the plane �tted is projected from
the sphere center in space, and the big ball normals are prone to be more negatively
a�ected by this approach. Moreover, the center of the bigger sphere is most subject
to error in the triangulation phase, so it might slightly move the sphere position,
and might impact the projection of the contour and the plane �tted. Furthermore,
the surface of the big ball it's more subject to noise than the small one.

From the experiments results, the small ball resulted more precise in the trian-
gulation of the real position of the light while the big ball lead to a slightly better
convergence of the ray. Considering our dataset and problem at hand, the small ball
was preferred and returned better results.



Chapter 7

Conclusion and Future Work

In this thesis a novel approach was presented for light source position estimation,
which works with point-like �ashlight posed near the cameras, was presented. This
was thought and implemented as an ad-hoc solution, starting from a pre-existent
system in order to inspect the possibility of increasing the system's precision and
power by adding the geometric properties of the illuminants.

The result were promising, all light positions were positioned at the right spot,
however the light direction estimates did not converge in a precise point, which is
reasonable given the considerable amount of noise on the images. Moreover, in order
to really estimate the precision of the method, a real position of the lights in space
should be measured, in order to be able to calculate the error that is made on the
estimation.

Regarding the method itself, more in-depth analisys on the heuristics for ex-
tracting the level curve and projecting the normal can be done, considering maybe
a di�erent starting point for the light vectors. Furthermore, a heuristic study on
each pixel of the sphere's surface on the image can be done in order to �nd the best
possible isovalue which describes the optimal isocurve for a particular image. Those
two points are particularly critical for the big ball case, since it has a greater conver-
gence than the small one. If a good heuristic for the normal projection is researched
for the big ball, this would lead to better results.

Another thing that can has to be done is optimize the light position using as
starting point the position estimated. A non-linear optimization of the intial guess
can be done in order to re�ne the position of such light and by consequence estimate
its intensity.

Finally, after the re�nement of the method, the light geometric properties should
be added to the system's errors triangulation phase, in order to see if an actual
improvement in the machine triangulation precision is reached.
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