

Master‘s Degree programme

in Economics and Finance

Final Thesis

Adaptive evolutionary algorithms for portfolio selection

problems: state of the art and experimental analysis

Supervisor
Ch. Prof. Giacomo di Tollo

Assistant supervisor
Ch. Prof. Marco Corazza

Graduand
Gianni Filograsso
Matriculation Number 878206

Academic Year
2020/2021

Abstract

This thesis aims at solving complex portfolio selection problems by introducing an
adaptive strategy for parameter control in Evolutionary Algorithms (EAs), with the
aim of achieving accurate and robust solutions. In our work, we review a broad set of
parameter tuning and parameter control strategies, then we implement an adaptive
policy, based on the parameter control technique proposed by Maturana et al. (2010),
on a variety of non-convex risk measures, that display many local optima, for which
traditional minimization strategies like gradient descent methods are not suitable.
The idea behind this method is to solve problems by managing the well-known EvE
balance in the context of evolutionary computation, which is widely acknowledged as
a key issue in terms of search performance. This approach allows the EA to use an
appropriate parameter setting at different stages of the search process, typically by
generating large improvements of the solution quality at the beginning and finally by
fine-tuning the solution. We apply this method to large scale optimization problems;
in particular, we start by considering relatively basic programming problems with
easy constraints, then we take into account a set of NP-hard integer programming
problems, which display well-known computational issues.

Contents

Introduction 5

1 A literature review of parameter tuning and parameter control 9
1.1 Overview . 9
1.2 Parameter tuning: a literature review 12

1.2.1 A formal definition of the parameter tuning problem 12
1.2.2 Evaluating the tuning algorithm 13
1.2.3 Tuning methods . 14

1.2.3.1 Simple generate-evaluate methods 15
1.2.3.2 Iterative generate-evaluate methods 17
1.2.3.3 High level generate-evaluate methods 21

1.3 Parameter control: a literature review and trends 22
1.3.1 A formal definition of the parameter control problem 22
1.3.2 Evaluating the parameter control algorithm 23
1.3.3 Parameter control methods . 24

1.3.3.1 Deterministic parameter control 25
1.3.3.2 Adaptive parameter control 28
1.3.3.3 Self-adaptive parameter control 33
1.3.3.4 Some features of parameter independent methods . . 37

2 Basics on portfolio selection 39
2.1 Basic formulation of the PSP and formal properties of risk measures . 39

2.1.1 Dealing with input sensitivity and unstable solutions 40
2.1.1.1 Measuring tail risks 42
2.1.1.2 Assessing the sensitivity of MV portfolios to input es-

timation . 43
2.1.2 Mixed-integer programming (MIP) problems 45

2.2 A reformulation of the mixed-integer portfolio selection problem based
on the exact penalty function . 46
2.2.1 A brief introduction to penalty methods 47

2.2.1.1 Quadratic penalty method 47
2.2.1.2 Nonsmooth exact penalty method 48
2.2.1.3 Augmented Lagrangian method 49

2.2.2 Reformulating the portfolio selection problem 50

3 A literature review of crossover operators 53
3.1 A discussion of crossover operators design principles 54

3.1.1 Some guidelines . 54
3.2 A taxonomy of RCGA crossover operators 55

3.2.1 Discrete crossover operators: uniform and n-point recombination 55
3.2.2 Aggregation-based crossover operators 58
3.2.3 Neighborhood-based crossover operators: mean and parent-centric

strategies . 63

4 Computational analysis 73
4.1 Test 1: evaluating the crossover performance 73

4

4.1.1 Experimental setting . 74
4.1.2 Benchmark instances and setup 75
4.1.3 Testing the crossover performance with the selection process . 75
4.1.4 Testing the crossover performance without the selection process 82

4.2 Test 2: evaluating the operators management 87
4.2.1 Experimental setting . 87
4.2.2 Testing dynamic search policies 91

4.3 Test 3: evaluating the adaptive strategy on MIP problems 97
4.3.1 Experimental setting . 101
4.3.2 Results . 103

4.3.2.1 Evaluating the in-sample performance of the adaptive
policy . 104

4.3.2.2 Testing the out-of-sample performance of the adaptive
policy . 106

Conclusions 123

A KKT Conditions 125

B Source code 127

C Figures 137

Introduction

Over the past decades, Evolutionary Algorithms (EAs) have received considerable
attention in academic research as powerful tools for solving complex optimization
and search problems. Among many problem classifications, a useful distinction is
the one discussed in Eiben and Smith (2015), in which they consider essentially the
difference between combinatorial and numerical optimization problems (in the former
case the search space -namely, the set of all possible solutions- S is continuous, in
the latter it is discrete). EAs have been extensively exploited for a broad variety
of problems, in many different fields: among continuous problems, we mention the
portfolio selection problem (PSP) (Chang et al. (2000)) and feature selection for
machine learning (Goldberg (1988)), whereas in the group of combinatorial problems
we mention the Boolean satisfiability problem (SAT) (Lardeux et al. (2006)) and the
vehicle routing problem (VRP) (Baker and Ayechew (2003)).

Among them, in our work we consider a variant of the portfolio selection problem
(PSP) developed by Markowitz (1959): the basic idea of portfolio selection involves the
selection of promising assets in terms of reward and risk and the allocation of capital
to each of them. In particular, he formulates the PSP as a bi-criteria optimization
problem in a mean-variance framework, under the hypothesis that the distribution
of asset returns are fully characterized by their means, variances and covariances.
Actually, there are two main issues with this approach (see e.g. Corazza et al. (2013)
and Lwin et al. (2017)), which we recall briefly here:

• Asset returns are asymmetric and have excess kurtosis and the mean-variance
framework cannot take fully describe the investor preferences. New risk mea-
sures are required to satisfy proper formal properties and to take into account
non-normal empirical distributions; many of these risk measures are unfortu-
nately nonconvex, nondifferentiable and nonlinear. Solving these optimization
problems require ad-hoc reformulations, which cannot anyway accomodate in-
teger constraints.

• The optimization problem with realistic and practical constraints is formulated
as a mixed-integer programming problem (e.g. due to the presence of cardinality
constraints); this problem has been proven to be NP-hard by Moral-Escudero
et al. (2006). As we argue below, NP-hard problems provide a strong motivation
for the application of heuristic approaches;

Altogether, in our work we implement a modified version of the PSP, which ad-
dresses jointly the two critical questions raised above. The issues arising from the
application of integer constraints and complex risk measures provide strong support
for the development of an efficient EA, by which it is possible to manage flexibly a
variety of risk measures and problem instances. In particular, as we point out below,
a major issue in this field is the design of the algorithm, by which it is possible to
adjust its behaviour in a static or dynamic manner, depending on the nature of the
problem to solve. The key idea behind EAs is to deal efficiently with complex prob-
lems at a reasonable computational cost: in general, this is exactly where evolutionary
strategies typically fit in, i.e. they can deal with problems for which a compromise
between the accuracy of the solution and computational cost must be found. In these

5

6

cases, a fast and exact solver does not actually exist: heuristics based on evolutionary
computation, if appropriately tuned, can lead to a good or even near-optimal solution
in a reasonable amount of time, for any given problem size. The flexibility and the
efficiency of EAs on a wide range of problems is even more clear when NP-hard and
NP-complete problems are taken into account: for these classes of problems, known
algorithms currently require superpolynomial time (with respect to n input size) to
solve the problem. A practical way of tackling these classes of problems is to resort to
heuristics to generate good solutions. The quest for high-quality results at reasonable
cost has subsequently laid the foundation of a field of study on evolutionary strategies
(De Jong (1975), Goldberg (1988), and Holland (1992)). Essentially, an EA manages
a population of individuals, which is gradually altered by variation operators, with
the aim of converging as close as possible to an optimal solution with respect to a
fitness function.

Thereafter, most efforts to improve the performance of EAs have focused on the
parameter setting problem (Eiben et al. (1999)). In a nutshell, the choice of an opti-
mal parameter setting that results in the best performance across different problem
instances can be achieved in a ‘static’ fashion (Huang et al. (2020)), otherwise the
parameter values may change over the run of an EA (Karafotias et al. (2015)), in a
‘dynamic’ fashion. Being dynamic and adaptive, they argue, EAs likely benefit from
using different parameter values at different stages of the search process in terms of
performance. Let us consider this aspect in further detail. di Tollo et al. (2015)
observe that two key notions describe the behaviour of an EA: on the one hand,
exploitation typically denotes the tendency of evolutionary algorithms to generate
concentrated individuals in a specific area of the search space S, on the other hand
exploration describes the tendency of the algorithms to spread new individuals in a
larger area of S. In the field of parameter control, finding an optimal balance between
exploration and exploitation (EvE dilemma) in order to achieve better performance
is a matter of particular interest, which has drawn a special attention of many studies
and is currently considered a key issue for the algorithm performance (Huang et al.
(2020)).

Karafotias et al. (2015) find that there is an extensive literature on parameter
control, focusing particularly on adaptive operator selection (AOS), which amounts
to the selection of the optimal operator at the following iteration of the search pro-
cess, given a set of variation operators. Some authors (Maturana et al. (2010) and di
Tollo et al. (2015)) propose to adjust the EvE balance dynamically for combinatorial
optimization problems, in order to improve search efficiency. They aim at achieving
an optimal EvE balance through a controller that performs AOS, which is in charge
of identifying a suitable operator at each iteration of the search, based on a com-
promise amongst quality and diversity criteria. There is an extensive literature on
metaheuristics for portfolio selection problems; for instance, Corazza et al. (2013) test
the basic PSO algorithm on a complex mixed-integer programming problem, whereas
Kaucic (2019) tests the benefits of a variety of multiobjective PSO algorithms with
risk parity control. Chang et al. (2000) and Chang et al. (2009) test a variety of
metaheuristics, including basic genetic algorithms with a standard variation opera-
tor, while Lin and Liu (2008) evaluate a simple multiobjective genetic algorithm on
a set of programming problems with minimum transaction lots. Finally, Lwin et al.
(2017), Anagnostopoulos and Mamanis (2011) compare the performance of a set of
popular multiobjective evolutionary algorithms, including a popular multiobjective
approach based on genetic algorithms (NSGA-II). Most of the contributions based
on genetic algorithms resort to a single variation operator, despite its crucial role in
the exploration of the search space. Consequently, in our work we analyze further
the benefits of managing the values of various parameters of an EA: for a start, we
search and we evaluate the available literature in the field of parameter setting : the
values of all the parameters of an EA impact greatly the efficiency of an algorithm
(see e.g. Eiben et al. 1999), so we examine thoroughly two major classes of parame-
ter setting, i.e. parameter tuning, by which the parameter values are selected before

7

the run and parameter control, by which the values are changed during the run. We
present a definition for both of them and then we discuss the state-of-the-art algo-
rithms. Though there is no one-size-fits-all strategy in EAs, we opt for an approach
based on parameter control which has shown a good performance on a variety of com-
binatorial optimization problems: in our work we integrate a genetic algorithm with
a dynamic strategy based on Adaptive Operator Selection (Maturana et al. (2010))
to select, at each step of the search process, an operator out of a pre-defined operator
set. In particular, we investigate the properties of a set of variation operators and
then we adopt the framework proposed in di Tollo et al. (2015), i.e. we implement a
controller with the aim of finding a good EvE compromise during the search process,
by choosing either an exploration operator or an exploitation one, on the basis of
an external criterion defined by the user; then, we embed high-level strategies which
guide the search dynamically, by changing the EvE balance over time. Finally, we
employ the controller to solve a variety of portfolio selection problems, in order to
assess the optimal portfolios and to evaluate the out-of-sample performance over real
data.

The rest of the thesis is organized as follows. In chapter 1 we present a literature
review of parameter tuning and parameter control methods. In chapter 2 we recall the
basics of portfolio selection and we discuss some desirable properties of risk measures.
Furthermore, we discuss the design of our mixed-integer programming problem and
an unconstrained reformulation based on the exact penalty method (Bazaraa et al.
(2013)), which is largely based on the discussion in Corazza et al. (2013). In chapter
3 we present a literature review of three classes of GA crossover operators, which
lays the foundations for the discussion in chapter 4; in the last chapter, we show
first some experiments in which we test the performance of simple genetic algorithms
with different variation operators. Then, we comment the adaptive operator selection
approach, which serves as a tool for performing new tests with a dynamic policy.
Finally, we run a set of experiments based on a mixed-integer programming problem,
in which we evaluate both in-sample and out-of-sample performance of the adaptive
strategy.

Chapter 1

A literature review of parameter
tuning and parameter control

In this chapter, we propose a literature review of strategies that address the parameter
setting problem for evolutionary algorithms (EAs). The general class of evolutionary
algorithms includes all the heuristic methods based essentially on the role of variation
operators (recombination and mutation) and selection operators (Eiben and Smit
(2011)), whose aim is to manipulate automatically a population of solutions. Given
the general framework of EAs, which encompasses a broad variety of strategies, the
user has to provide an application-specific design, by specifying a suitable set of
parameters, i.e. ‘all the details that make the EA concrete and executable’ (Eiben
and Smith (2015)). We introduce the topic with an informal discussion involving
parameter setting in section 1.1, providing also some key concepts and the necessary
terminology, while in sections 1.2 and 1.3 we take a deep dive into the topics of
parameter tuning and parameter control. In both sections, we first provide a formal
definition and then we examine some performance metrics; finally, we discuss the
state-of-the-art methods in the field.

1.1 Overview

In this section we propose a very general overview regarding the algorithm setup:
in particular, we deal with the notion of EA parameter in a sweeping framework.
We want here to tackle the parameter setting problem, which has experienced an
intense development recently, attracting the attention of many scholars. The first
technical contribution in this field is definitely De Jong (1975)’s doctoral thesis, which
recommends a set of ‘proper’ values for both the probabilities of single point crossover
and (bit) mutation probabilities: the underlying idea is that, given these parameter
values, one should expect a desirable performance. He basically determines a set of
‘correct’ values for some test functions as follows:

• population size: 50;

• probability of crossover: 0.6;

• probability of mutation: 0.001;

• generation gap: 100%;

• selection strategy: elitist.

However, an alternative approach, which is the one mainly discussed in this chapter
following the taxonomy of Eiben et al. (1999), highlights a simple evidence: specific
problems require specific EA setups, that is, an ‘optimal parameter setting’ has a

9

10 A literature review of parameter tuning and parameter control

very narrow meaning, so empirical/experimental procedures, which aim at being as
general as possible, typically fail to address a wide range of optimization problems.
Note indeed that for new problems a specific setup may turn out to be poor (see
for instance Huang et al. (2020), Eiben and Smit (2011)): a crucial contribution to
this topic is the so-called No Free Lunch Theorem (NFL) Wolpert and Macready
(1997) which states in a nutshell that there is not an universal algorithm which suits
every optimization problem well. The underlying intuition is that the parameter
setting problem is not a one-time quest, instead it must be tailored properly when
new problems are met. As a consequence, the parameter setting is a task that has
to be considered over and over again, because an algorithm, given NFL, on average
cannot outperform other algorithms on any conceivable problem. Eiben and Smith
(2015) restate the theorem by noting that it is referred to nonrevisiting (i.e. a point
in the search space is generated only once) and black box algorithms, namely those
that do not include instance specific knowledge.

Furthermore, interaction between parameters is another critical issue when dealing
with an optimal setting: indeed, parameters are not independent; tuning ‘by hand’
or ‘by analogy’ typically cannot deal with interaction between parameters, which
are somewhat complex and not easily explicable as well. Moreover, note that these
empirical methods are for sure unfit to manage properly a wide array of algorithm
setups. Suppose to use a ‘brute force’ algorithm to determine the fittest combination
of parameters; this method has a O(n!) time complexity, i.e. testing four different
values for, say, eight parameters requires 48 = 65536 different and independent runs.
A rigorous quest for performance must take into account at least ‘quality’ (see below)
and speed. Eiben and Smith (2015) summarizes this concept as follows: one may
identify quality by means of a fitness function, which is usual and straightforward.
Speed is instead typically identified by CPU time or wall-clock time; then at least
three combinations of them can be used to determine the algorithm performance. As
a consequence, the user could:

1. Set a maximum running time and define the performance as the best fitness for
that given amount of time;

2. Set a minimum fitness level and evaluate the time required to reach that amount;

3. Exploit strategy (1) and strategy (2): a run is successful if both targets are
reached, in terms of time and quality.

To keep this overview very general, consider now the problem of finding ‘desirable’
values for an EA, i.e. determining a ‘good’ setting. Eiben and Smith (2015) high-
light that the design of an EA is an optimization problem itself, so a more rigorous
treatment of ‘parameter’ must be given. As a consequence, they propose a specific
convention, in order to distinguish those parameters whose domain is ordered and
usually a subset of R, like the mutation probability, which they call numeric param-
eters, and all those parameters which are characterized by an unordered domain, i.e.
a set with no distance metric (for instance, a set of crossover operators {onepoint,
uniform, averaging}), called symbolic parameters. Another convention, which is of
practical importance, is used here. We treat an EA as an algorithm with his own
operators, i.e. symbolic parameters. If only one of these is different, then we are
handling another algorithm; instead, if only one value of the problem is modified,
we have a new problem instance. Moreover, following Eiben and Smith (2015), two
EAs differing only in their numeric parameters (e.g.population size) are considered
as variants of the same EA, so that an EA is a partially specified algorithm: in other
words, an EA is fully defined by its symbolic parameters, while its exact specification
(a variant) is characterized by numeric parameters.

We also highlight here that some authors (for instance Hoos (2012)) propose a
in-depth classification of parameters, though we will mostly refer to the one of Eiben
and Smit (2011), discussed before:

A literature review of parameter tuning and parameter control 11

1. Categorical parameters have a finite set of discrete and unordered values, whose
goal is to select from a collection of mechanisms;

2. Boolean parameters are used to disable or enable certain heuristics, so they
typically assume integer values;

3. Ordinal parameters are parameters that assume only discrete and ordered val-
ues;

4. Conditional parameters are those parameters whose state is conditional to the
value of other parameters; for instance, they arise when mechanisms are ac-
tivated using some parameters, whose behaviour in turn is conditional to the
behaviour of other parameters.

Therefore, we can now move on by recalling the distinction between two ways of
setting parameters, namely parameter tuning and parameter control. Another way of
classifying parameter setting methods, which is mainly a matter of terminology, is the
one discussed often in machine learning literature; one may consider offline tuning
and online tuning as Alpaydin (2019) does:

• Offline tuning (parameter tuning) is a method for determining good parameter
values before running the algorithm; then the optimal setting found in the
process is reused to solve a given problem and is left unchanged for the whole
run;

• Online tuning (parameter control) is a method which normally starts with a
pre-defined set of parameter values (which can be basically tuned ‘by analogy’
or ‘by hand’) and then some values are allowed to vary according to a certain
goal defined by the user during the search process.

In general, there is no one-size-fits-all parameter management strategy that yields
good results for every problem: consequently, a few issues are raised by the definitions
provided above and will be discussed thoroughly in the upcoming sections. That
holds true in general, whichever the problem at hand and the selected model. Here
we note that parameter tuning is normally very time-consuming but at the same
time it proves to be very general; on the other hand, parameter control, though
more problem specific, provides a greater degree of flexibility in the search process,
so that, given the inherently dynamic nature of EA, one may set different parameter
values according to his own will, which is based on the algorithm performance: more
explorative features are preferred to exploitative approaches (based either on symbolic
or numeric parameters) in the early generations (Angeline (1995), Bäck (1993), Davis
(1989), Hinterding et al. (1997)).

Figure 1.1: Classification of parameter setting techniques, adapted from Eiben et al.
(1999)

Finally, one further distinction (see Figure 1.1) involving parameter control has
to be considered here: those methods (i.e. parameter control) that involve changing
parameter values are generally are usually classified in three different categories. We
propose here the taxonomy introduced first by Eiben et al. (1999):

12 A literature review of parameter tuning and parameter control

• Deterministic parameter control : this method typically alters certain parameter
values according to a deterministic rule, without employing any feedback from
the search process. Nonetheless, in order to design a rational strategy, rules are
often time-based and will be typically linked to the number of generations; in
this way, the user implicitly defines an ‘expectation’ about the desired behaviour
of an operator (for instance, it is supposed to search new areas as time passes
and so on).

• Adaptive parameter control : this method is based on a feedback procedure from
the search process, namely from the historical data involving the behaviour
of the operators. This information is stored and sent to a credit assignment
module, which establishes the direction of the algorithm. Finally, a selection
module is expected to pick a value according to a certain rule, which should take
into account both the credits and to a certain extent, also some randomness to
favor a more explorative attitude.

• Self-adaptive parameter control : the underlying idea here is to force the param-
eters to undertake recombination and mutation, so that the well-known rule
involving the survival of the fittest can be applied to them too, so that bet-
ter individual are likely to survive and produce in turn better offspring; this
approach, if properly tuned, may actually lead to self-propagation of ‘good’
solutions, without any intervention from the user.

1.2 Parameter tuning: a literature review

In this section we provide a broad review of the literature involving the topic of param-
eter tuning; though we will not provide a very detailed analysis, we aim at offering an
updated review. Currently, the parameter tuning literature is pretty ‘stable’: starting
from the end of the nineties, a wide array of new techniques has been presented, which
are now intensively applied. Differently, the parameter control literature looks still in
full development, with still more room for improvement. We find that Huang et al.
(2020) and Eiben and Smit (2011) provide at the moment a very thorough survey of
automated parameter tuning methods. Though we will refer directly to the methods
proposed in literature, we follow their taxonomy and their logical steps here. As a
consequence, we propose a similar classification of tuning methods, focusing in par-
ticular on the distinction amongst generate and evalute methods, iterative generate
and evaluate methods and high level generate and evaluate methods.

1.2.1 A formal definition of the parameter tuning problem

We move forward now by taking into account a more formal and rigorous statement
of the configuration problem. Though many versions have been provide over time, we
state a definition (e.g. Birattari et al. (2002), Hoos (2012)) which has been already
employed over time in literature.

Given:

• A parametrized algorithm A with p1, . . . , pn parameters affecting its behaviour;

• A space C of configurations, where each configuration c ∈ C specifies values for
the parameters of A, whose behaviour on a given problem instance is therefore
unambiguous (i.e. specified);

• A set of problem instances I = i1, . . . , im;

• A performance metric m that measures the performance of A on the instance
set I ∀ c configurations.

A literature review of parameter tuning and parameter control 13

The problem is aimed to find a configuration c? ∈ C which shows an optimal perfor-
mance of A on I, for a user-defined performance metric m.

We define with A(c) the target algorithm A under a certain configuration c, com-
pletely described by a set of values θi1, . . . , θij , which is called domain, which contains
a set of values for a given configuration ci.

1.2.2 Evaluating the tuning algorithm
So far, we have only sketched a formal definition of the tuning problem, but we have
neglected a deeper discussion involving each part of it; in particular there are some
open questions of practical relevance. In order to tackle them, we consider now a
larger taxonomy and also how to manage practically the evaluation of an algorithm,
in terms of performance and quality. Note that a further distinction between symbolic
and numeric parameters is implicitly contained in the above mentioned definition in
section 1.1.

As far as algorithm quality is concerned, we refer the reader to section 1.1 for
a broad discussion of the topic. Here we raise, with respect to parameter tuning
problems, some more specific points. For instance, Eiben and Smit (2011), Eiben
and Smith (2015) and Huang et al. (2020) cope with both performance and robust-
ness. First of all, the EAs are stochastic algorithms, so the performance measure is
consequently random and typically computationally intensive, given the inherently
stochastic nature of EAs and the randomness in problem instances selection. This
amount of stochasticity has to be managed and analyzed carefully: the estimation of
the expected performance is usually inferred by Monte Carlo techniques, by means of
which one can generally keep variability under control. Furthermore, when evaluating
an algorithm, one should also break down its quality into a series of drivers, typically
performance and robustness.

Beginning from the former, one may aggregate the measures mentioned in section
1.1 to get a performance metrics, giving a grasp of the global performance.

• MBF (mean best fitness)

• AES (average number of evaluations to solution)

• SR (success rate, i.e. the ratio of runs with required quality to the total number
of runs)

Hence, many paths are available: one may also take a different standpoint and
choose to maximize a combination of these performance metrics (i.e. SP Success Per-
formance in Eiben and Smit (2011)), for instance by performing linear aggregation
of the above mentioned quantities. A key point here is to acknowledge that a ‘good’
or a ‘poor’ tuning process could be highly sensitive to the performance measurement.
One further distinction should take then into account the notion of robustness: intu-
itively, it can be seen as a measure of ‘flexibility’, namely it amounts to the variance
of the algorithm performance with respect to some dimension. We can summarize
this informal idea as follows:

• Robustness with respect to problem spefication: suppose to tune an EA (say, A)
on a function f . Then the algorithm (or, to be more precise, a target algorithm,
as it is tested on a specific configuration c: the notion of robustness is related
to pre-specified EA instances) is evaluated with respect to the parameter vec-
tor and to f , namely it is a specialist algorithm (a more rigorous treatment is
available in Smit and Eiben (2010a)), because it is a target algorithm which
shows good performance with only one problem instance. Often, the EA de-
signer wants the algorithm to be as general as possible, albeit, under the NFL
theorem this is a dead-end quest. The target algorithms tuned on a test suite
of f1, . . . , fn functions are called generalist if they show good performance as
the problem instance changes. More in general, the core difference is that the
performance metrics are determined according to a different approach:

14 A literature review of parameter tuning and parameter control

– A specialist target algorithm is tuned on one problem instance, so a very
rough evaluation of it could be based on the mean fitness calculated on a
series of runs on that specific instance. For sure, it is much more likely
to find a good parameter setting for a specialist target algorithm, i.e. a
problem-specific solution;

– A generalist target algorithm is based on a set of instances, so the per-
formance has to be evaluated in some way (i.e. via normalization) with
respect to a whole set of instances (say, the average fitness of each one).

• Robustness with respect to parameter values: any variation to parameter val-
ues affects the specific algorithm instance A(c), whose performance is based in
terms of ‘tuneability’ and ‘tolerance’ (Eiben and Smit (2011)): an EA charac-
terized by a volatile quality as the parameter vector varies, is ‘tuneable’ because
it can considerably improve by choosing proper values. Note that here we mea-
sure quality not in terms of fitness, but with respect to parameters, namely we
evaluate the quality of parameter vectors for a certain problem;

• Robustness with respect to random number generator : the Success Rate measure
mentioned before is typically useful to evaluate the robustness with respect to
the ‘stochasticity’ of the algorithm: one can obtain information about it by
considering the ratio of runs with the same setup but with changing random
seed, so one can develop a success rate, which takes into account results above
a user-defined threshold T and those below, namely the difference between the
worst and best runs: if big, then the EA instance is ‘unstable’, otherwise it is
called successful.

1.2.3 Tuning methods

In the last two decades, much effort has been devoted to the topic of parameter
tuning, which seems pretty obvious in light of the challenges discussed in section
1.1. At the moment, a broad range of methods is available: hence, starting from the
conceptual framework presented in Eiben and Smit (2011), which proposes a detailed
taxonomy, many surveys (see, for example, Dobslaw (2010), Hoos (2012), Eiben and
Smit (2012), Montero et al. (2014) and Huang et al. (2020)) appeared since then; the
research activity in this field seems much more mature now.

A serious challenge here regards the choice of a proper taxonomy: while Dobslaw
(2010) stresses the difference between model and model-free methods, Eiben and
Smit (2012) focus their attention on a taxonomy based on search effort measurement.
Tuning algorithms classification hinges on the allocation of search effort spending,
according to a desidered direction. In a nutshell:

• Methods which use a small number of parameter vectors, i.e. ‘optimizing the
spending’ (Nannen and Eiben (2007));

• Methods using a small number of tests per parameter vector (Balaprakash et al.
(2007));

• Methods that use a small number of parameter vectors and tests (Yuan and
Gallagher (2007));

• Methods using a small number of function evaluations, i.e. optimizing the num-
ber of fitness evaluation per EA run. Currently, this last subclass is purely
‘theoretical’ (proposed in Eiben and Smit (2012)) as, to our knowledge, no
methods have been developed for this goal.

One further classification is the one of Montero et al. (2014), which is based on a
‘historical’ classification, spanning from De Jong (1975)’s seminal work to more recent
developments. They basically detect five classes, as follows:

A literature review of parameter tuning and parameter control 15

• Hand-made tuning (e.g. De Jong (1975));

• Tuning by analogy, a family in which De Jong (1975)’s PhD thesis is included;

• Experimental design-based tuning, namely those studies based on experimental
design to set the parameters values (e.g. Birattari et al. (2002), Balaprakash
et al. (2007));

• Search based tuning, i.e. meta-EAs, which includes all those evolutionary algo-
rithms employed to optimize in turn other EAs, like Revac (Nannen and Eiben
(2007)) and ParamILS (Hutter et al. (2007));

• Hybrid tuning includes Calibra (Adenso-Díaz and Laguna (2006)) method, which
combines local search techniques and and experimental design tuning.

Here we focus our attention on the most recent taxonomy presented in Huang et
al. (2020), which is based on the idea that every tuning method is based on a generate
and evaluate principle (generate a configuration space C and then evaluate according
to performance metrics m); accordingly, the currently available tuning methods are
classified into three categories:

• Simple generate-evaluate methods (e.g. Birattari et al. (2002), Birattari (2003))
include all the approaches made up of two simple steps, namely a generate step,
by which the candidate configurations are generated (for instance, by using
experimental design strategies). Finally, the candidates are evaluated according
to a performance metrics;

• Iterative generate-evaluate methods (e.g. Hutter et al. (2007), Nannen and Eiben
(2007), Balaprakash et al. (2007)), by which the generate-evaluate steps are
iterated, so that new small groups of candidates are generated at each step
and not all at once. The subgroups are then evaluated to find a ‘best-so-far’
candidate to be compared in successive steps;

• High-level generate-evaluate methods (e.g. Yuan et al. (2013)), by which a set
of elite candidates is generated with traditional tuners (like F-Race), then the
best configuration is selected among elite candidates through evaluation.

1.2.3.1 Simple generate-evaluate methods

Here Huang et al. (2020) include all the methods that provide the most straightforward
process of parameter setting. It is basically made up of two core steps:

1. Generate a population of candidate configurations;

2. Evaluate configurations to find a ‘good’ setting.

Brute force and F-Race are included in this section. Here we borrow from machine
learning the distinction between the ‘training phase’ and the ‘testing phase’; in the
first one the parameter setting is determined according to a performance measure,
for a given set of traning instances. In the latter the configuration is tested on new
problem instances. The configuration chosen, which is the result of the calibration
process carried out in the training phase, is expected to perform well across different
(new) problem instances.

1. Brute-Force

The Brute Force belongs to the category of simple generate-evaluate methods be-
cause, despite being a ‘naive’ way of tuning algorithms, it estimates the optimal
configuration by testing each candidate on a large set of training instances and
on a large number of runs; the candidate setting with best expected performance
is chosen as the optimal configuration. The set of parameter configurations are

16 A literature review of parameter tuning and parameter control

Figure 1.2

usually generated by full factorial design (FFD), so that it cointains all combi-
nations of values or levels, using design of experiments (DOE) jargon, for a set
of discrete parameters. Note that brute force allocates computational resources
equally to each candidate, including the poor performing ones. Though being
easy to apply, the computational power is not spent with parsimony and, as a
consequence, this method is typically recommended only for small-scale prob-
lems. Furthermore, as noted by Birattari et al. (2002), there is not a proper
criterion to decide how many runs should be performed to manage the stochas-
ticity of the target algorithm.

2. F-Race

The racing method has been proposed first by Birattari et al. (2002) and then
implemented in Birattari (2003), based on racing methods1. The idea is to
provide a better allocation of computational resources among candidate config-
urations, by reducing the resources allocated to poor configurations. F-Race
evaluates a set of candidate configurations for each problem instance, eliminat-
ing those settings which show poor performance.

F-Race exploits the Friedman test, a non-parametric statistical test based on
ranking; hence, hypotheses on the distribution of observations are not required.

1The essential idea of racing methods is to look for good configurations, starting from an initial
set of candidates and discarding the worst performing configurations as soon as statistically sufficient
evidence is gathered against them.

A literature review of parameter tuning and parameter control 17

It is used to nail differences in performance among candidate parameter config-
urations. A blocking design is then implemented, i.e. the units are organized
in blocks and a blocking factor is specified (i.e. a source of variation), which in
this case is the problem instance. Birattari et al. (2002) highlight the fact that
EAs are intrinsically stochastic and both instances and configurations may be
very different with one another. The blocking process helps to manage properly
a disturbing source of variation, by focusing the attention on different configu-
rations within each instance, removing the impact caused by differences among
instances, i.e. normalizing the performance metrics observed on different in-
stances. The null hypothesis that all rankings within each block are equally
likely is tested with the following test statistic:

T =
(n− 1)

∑n
j=1(Rj − ((m(n+ 1))/2))2∑m

l=1

∑n
j=1(R2

ij − (m(n+ 1)2)/4
(1.1)

where T ∼ χ2(n − 1), m steps of the race, n parameter configurations (can-
didates), Rij is the rank of parameter configuration cj within block l and
Rj =

∑m
l=1Rlj , with an user defined confidence level α. We can summarize

the test hypothesis as follows:{
H0 : ‘All rankings within each block are equally likely’
H1 : ‘At least one candidate shows a better performance than one another’

F-Race can be sketched as follows: first, as always, a set C of configurations
is generated. After each evaluation round of the candidate configurations, the
Friedman test is performed to check if at least one candidate is significantly
different from others in terms of performance. If so (i.e. null hypothesis is
rejected), then pair-wise comparisons between the best ranked and each other
configuration are performed, and all the candidates showing worse performance
are removed from the set of candidate configurations C and will not appear in
the following evaluation steps.

Algorithm 1: F-Race (simplified version)
Input : C: Set of candidate configurations

α: Confidence level
max_iter: Maximum number of iterations

1 i = 0, Sθ = C, Cθ = ∅
2 while i < max_iter do
3 dataset=RandomSampled()
4 for c ∈ Sθ and |Sθ| > 1 do
5 Cθ = EvalSolution(max_iter, c, dataset)
6 end
7 i = i+ 1

8 end
9 Remove inferior (in terms of resulting quality) candidate configurations from

Sθ by Friedman test for a given α confidence level.

1.2.3.2 Iterative generate-evaluate methods

The methods falling in this category are basically all those tuners which execute
iteratively the ‘generate & evaluate’ steps (Huang et al. (2020)). The underlying
idea is to exploit the information gained in the previous iterations to explore more
effectively the best candidates solutions. Though many other subclasses could be
detected, here we limit ourselves to the broader class of iterative tuners, focusing in
particular on those methods that use some heuristic rules to generate new candidates.

18 A literature review of parameter tuning and parameter control

1. Relevance Estimation and Value Calibration
The Relevance Estimation and Value Calibration (Revac) method has been in-
troduced by Nannen and Eiben (2007) and it is often included in the class of
Meta-EAs, due to the fact that metaheuristics are well-suited to find an approx-
imate solution to complex problems like parameter tuning.
An intuitive understanding of this method typically starts from a graphical
representation of the problem (see table 1.1).

Table 1.1: A Revac table Xt updated at step t

D(θ1) · · · D(θi) · · · D(θk)
c1 {θ1

1 · · · θi1 · · · θk1}
...

. . .
cj {θ1

j · · · θij · · · θkj }
...

. . .
cm {θ1

m · · · θim · · · θkm}

If one looks at the table horizontally, then a series of m parameter vectors (i.e.
configurations C = {c1, . . . , cm}) are shown, while vertically the representation
of each parameter value is shown in each column (for instance, in the first column
the parameter θ1 is shown for different configurations and so on).
Consider now the columns in table 1.1: D(θi) represents a marginal density
function defined on the parameter θi. The k columns define in turn a joint dis-
tribution C: this interpretation turns out to be very powerful in the framework
proposed by Nannen and Eiben (2007). When each parameter is initialized, one
gets a set of k uniform marginal densities. Then, as we will discuss soon, these
densities are ‘altered’ in the following steps, during the search process. The
gist of their method is to measure the so-called Shannon entropy of these D(·)
marginal densities, which can be computed as follows:

H(D[a,b]) = −
∫ b

a

D(x)log2D(x)dx (1.2)

Note that we use a continuous domain definition of Shannon entropy, as this is
required for all those parameters which are real-valued, like the mutation rate;
in order to compare the entropy of distributions of different parameter (as each
one may be defined on very different subset of R, the range of all parameters is
normalized to the unit interval [0, 1] (Smit and Eiben (2010b)). In this way the
uniform distribution has entropy H(D[0,1]) = 0 and definitely it is negative for
any other distribution.
The entropy measure could be intuitively interpreted (in general) as the amount
of disorder in a system or, more specifically in information theory, as the un-
certainty associated with a random variable. In general, as the ‘information’
contained in a marginal density grows, the importance of a parameter increases,
as the entropy of the marginal distributions is typically considered an indicator
of parameter relevance, which can be used by the user to allocate the resources
for their tuning by providing more resources to to those with a higher degree
of relevance. The Revac procedure normally starts with k marginal uniform
densities, so with the entropy set for every column to zero. Then, the distri-
butions are updated as each iteration gives a higher probability to regions with
higher performance and generally, those with ‘sharper’ peaks have lower level
of entropy: in layman’s terms, the difference between the uniform distribution
and a maximum entropy distribution for a given level of performance can be in-
terpreted as the minimum amount of ‘information’ to reach that pre-established
level of performance.

A literature review of parameter tuning and parameter control 19

Suppose now to start with a X0 table, whose values have been drawn from
a random uniform distribution. The updating process at time t + 1 from t
generates a new table Xt+1: basically this process can be broken down in two
main steps. First, one should evaluate each parameter configuration among a set
of instances (1); then at each generation an evolutionary algorithm is employed
to generate a new population, which is expected to be ‘better’, according to
some quality metrics (2).

This ‘Meta-EA’ generates at each iteration one new parameter configuration
(or child configuration): the user chooses n (so that n < m) parent vectors
from current population, it undergoes recombination and mutation and then
it replaces an element of the population. The recombination is carried out by
means of a multi-parent uniform crossover operator, i.e. creating one child from
n parents. The mutation operator is made up as follows: for each parameter
a mutation interval is calculated and then a number from a random uniform
distribution defined on this interval, whose bounds are basically computed ac-
cording to the lowest/largest neighbor value of the parameter k. Note that four
parameters must be necessarily defined in the Revac procedure, namely the size
of population m, the size of crossover and mutation operators n and h, finally
the maximum number of executions as a stopping criterion.

Algorithm 2: Revac (simplified)
Input : m: size of parameter configurations

n: size of crossover operator
h: size of mutation operator
max_iter: maximum number of iterations

1 Generate m configurations c1,...,m drawn from a random uniform distribution;
2 Evaluate each parameter configuration cj ;
3 i = 0
4 while i < max_iter do
5 cchild=uniform multi parent crossover;
6 cchild=uniform multi parent mutation;
7 evaluate configuration cchild;
8 replace oldest parameter configuration∈ C;
9 calculate entropy of each parameter H(θji)

10 i = i+ 1

11 end

2. ParamILS

ParamILS has been proposed in Hutter et al. (2007). The core point of this
method is to exploit a well known heuristic, the Iterated Local Search (ILS),
already developed for many combinatorial optimization problems. The gist of
this approach is to carry out a procedure based on two set of phases (Hoos
(2012)):

• A number of phases of local search designed to reach a local optima for a
given problem instance;

• A number of phases of perturbations interposed with the local search pro-
cedure, in order to escape from local optima.

Basically, starting from a local optimum, in each iteration a perturbation phase
is performed, followed by a new local search phase, with the purpose of ending
up to a new local optimum. Hence, a comparison is required to decide whether
to continue the search process or to move back to the previous local optimum
(so-called acceptance criterion). Generally, ILS methods are designed so that

20 A literature review of parameter tuning and parameter control

the heuristic visits new candidate configurations and meanwhile it stores the
best solution found so far.

Here we want to focus only on four main features of the algorithm design:

• The initialization procedure;

• The local search phase;

• The perturbation phase;

• The restart mechanism.

The initialization described in Hutter et al. (2009) is based on combination of
a user-defined configuration (for example by-analogy) and some other r config-
urations randomly chosen; these r + 1 configurations are then evaluated and
the best-performing configuration is picked as a starting point for the iterated
local search. The authors show that for r > 0 a better performance can be
achieved, compared to a only user-defined parameter setting (i.e. r = 0). Hoos
(2012) proposes to implement a more advanced technique for the initialization
procedure (for instance a racing method).

The ParamILS method performs iterative first-improvement search, which dif-
fers from best-improvement local-search in the sense that a solution is chosen
uniformly at random in the neighborhood, whereas the best-improvement search
looks for the best solution in the neighborhood. The perturbation phase per-
forms s (randomly chosen from a uniform distribution) steps in the same neigh-
borhood used in the local search phases, using typically (Hutter et al. (2009))
a few steps, according to the experiments performed by the authors. Finally, a
restart mechanism is added with a low fixed probability pr; at the end of each
iteration the current configuration with probability pr is replaced with another
one, drawn from a random uniform distribution, which serves as a new starting
point for the search process. Hoos (2012) pinpoints that this mechanism brings
additional diversification to avoid a ‘stagnant behaviour’.

3. Iterated F-Race

This method has been proposed by Balaprakash et al. (2007) and is meant to
solve some of the drawbacks of the F-Race procedure with a supplementary
mechanism; here we outline only the key differences and improvements. One
of the main shortcomings of F-Race is that it struggles -for a given reasonable
amount of computational budget- to manage a large amount of candidate con-
figurations. The standard F-Race procedure is based on a so-called full factorial
design, according to which, in oversimplified terms, the initial configuration set
C0 cointains all combinations of values for a set of discrete parameters, so that
the computational burden grows rapidly as the number of parameter increases.
Furthermore, the FFD requires the user to determine a priori the levels of each
parameter.

A tweaked version of the plain vanilla F-Race is based on RSD, according to
which the initial set configurations C0 is determined with a sampling process, ac-
cording to some probability model (usually a uniform distribution). Balaprakash
et al. (2007) show that RSD/F-Race outperforms significantly the FFD/F-Race
in many combinatorial applications. The Iterated F-Race is based on the itera-
tive application of the F-Race algorithm to find the optimal parameter setting.
At each iteration a set of candidate configurations is generated according to
a probabilistic model M . Balaprakash et al. (2007) consider a k-dimensional
normal distribution and subsequently they assume that the parameters are in-
dependent (knowing a value for a particular parameter does not give any infor-
mation on the values of the remaining ones), so that the k-dimensional normal
distribution can be factorized as a product of k univariate independent normal

A literature review of parameter tuning and parameter control 21

Algorithm 3: ParamILS (simplified)
Input : r random initializations:

s: perturbations
prestart: probability of restarting the search
max_iter: Maximum number of iterations
LS(): Local_Search() function

1 i = 0, c0= initial parameter setting
2 for k ∈ r do
3 c=random parameter vector
4 if better(c, co) then
5 c0 = c
6 end
7 end
8 cILS = Local_Search()
9 while i < max_iter do

10 c = cILS
11 for j = 1 ∈ s do
12 c=Local_Search()
13 %first improvement search
14 if better(c, cILS) then
15 cILS = c
16 end
17 if rU [0,1] < prestart then
18 cILS=random parameter vector
19 end
20 end
21 i = i+ 1

22 end
23 return best parameter configuration c∗

densities. Then, a standard F-Race is performed on this set: the survived can-
didates are reused to update the model and will be sent to the ensuing iteration.
The idea here is to concentrate/spend the computational budget (which is also
the stopping criterion) around a ‘good’ region by reusing survived candidates,
in order to bias the search process towards better candidates at each iteration.

1.2.3.3 High level generate-evaluate methods

Huang et al. (2020) discuss a relatively new trend in tuning methods: this framework
essentially is based on the generation and evaluation of elite (high-level) candidates,
by means of which one could cut computational cost, i.e. by reducing the time spent to
perform a thorough evaluation of candidates from the beginning. In other words, the
idea is to quickly generate a set of high quality parameter configurations with a little
amount of computational resources and then spending them in the evaluation process
(i.e. the evaluation and selection process is performed among elite candidates). In
this way, they argue, time could be saved in the parameter space exploration in favor
of evaluation of elite configurations.

1. Post-selection mechanism
The essence of the post-selection mechanism is summarized in Algorithm 4,
which is a reworked version of the one proposed in the pioneering contribution
of Yuan et al. (2013): at its core, the so-called post-selection mechanism serves
as tuning method, which is organized in a two-phase process, namely an elite
qualification phase and an elite selection phase. In the former, the elite con-
figurations are collected by running one or more configurators simultaneously.

22 A literature review of parameter tuning and parameter control

The configurators give back then a set of elite candidates; in the latter phase an
evaluation method selects the best configuration c∗ from the set of elite candi-
dates Ce. Note that, as Huang et al. (2020) point out, this approach is entirely
based on existing tuners, which both identify and select elite configurations.

Algorithm 4: Post-selection
Input : C: Set of candidate configuration

Ee: Elite_evaluation_method()
1 Phase 1: elite qualification.
2 while t < budget do
3 Run the code with one or more configurators simultaneously, collecting

the best configurations ce;
4 Store each ce in Ce;
5 Put aside a computational budget Rn depending on the number n = |Ce|

of elite configurations d for phase 2;
6 end
7 Go to phase 2;
8 Phase 2: elite selection.
9 Use the Elite_evaluation_method() (e.g. ParamILS, F-Race,. . .) to choose

the best parameter configuration c∗ from Ce.

1.3 Parameter control: a literature review and trends

Some insights of the parameter control problem have been provided in section 1.1; in
particular, one of the taxonomies proposed by Eiben et al. (1999) has been discussed,
focusing on three different approaches to parameter control, rather than analyzing
what is changed. Indeed, a well-known classification identifies four strategies for
parameter control, based on a set of questions:

• What is changed? (i.e. identify a list of parameters and then manage them, e.g.
according to a schedule);

• How the change is made (identify a list of mechanisms, like adaptive/self-
adaptive control,. . .);

• Scope of change (population level, individual level, sub-population level);

• Evidence that informs the change (e.g. by monitoring performance/diversi-
ty/. . .)

In this section we present a mechanism-specific literature review; in particular,
we review concisely a set of parameter control techniques based on the previously
mentioned classification (deterministic parameter control, adaptive parameter control,
self-adaptive parameter control).

1.3.1 A formal definition of the parameter control problem

A parameter control problem addresses the problem of finding a (near)-optimal pa-
rameter configuration c∗(t) in the space of configurations C, given an algorithm A,
as the search proceeds, with respect to a particular stage of the process, say, time t.
Given:

• An algorithm A, with (p10, . . . , pn0) ∈ P parameters, initialized at time t = 0
with suboptimal parameters;

• A set of problem instances I = i1, . . . , im;

A literature review of parameter tuning and parameter control 23

• A feedback strategy F , which could be explicitly based on a reward measure
R(·), estimated at each time t, with the aim of adapting the selection probabil-
ity of each parameter value given by P(t) vector (regularly re-evaluted to take
into account past and immediate effectiveness of each parameter value) or alter-
natively it could be inherently embedded in the procedure (i.e. a self adaptive
one);

• A quality attribution strategy Q (for adaptive and deterministic control), i.e.
a strategy which summarizes and stores the rewards of each value over time
according to a predefined rule in a quality estimates vector q̂t = [q̂1t, . . . , q̂nt].
For the various strategies implemented in literature, see Aleti and Moser (2016)
or Fialho (2010);

• A selection strategy S, which updates the parameter values to use at time
t+ 1. Though this step is implicit for self-adaptive parameter control, adaptive
strategies usually rely on reinforcement-like procedure, trying to strike a balance
between exploration and immediate performance.

Find a configuration c∗(t) for which A performs optimally at time t or generally at
a specific stage of the search process on a set I, by setting different values of each
parameter pit, resulting in an effective, though temporarily, combination of parameter
values. This definition is thus consistent with the deeply-rooted idea that different
configurations may be optimal at different stages of the optimization problem.

1.3.2 Evaluating the parameter control algorithm

We find that currently, among many literature reviews available in this field, the
most recent and comprehensive ones are those of Karafotias et al. (2015) and Aleti
and Moser (2016); in particular the former provides a very broad analysis based on
a parameter-specific approach, while the latter introduces in this field the so-called
systematic literature review approach, which is unfortunately limited only to adaptive
methods. In a nutshell, this procedure collects and assess systematically research in a
certain field; typically the purpose of this investigation is to answer to a set of research
questions (e.g. classify the current research activity (1), evaluate it in light of that
classification (2) and determine a trend of research according to findings in points (1)
and (2)).

Before diving in the analysis of parameter control mechanisms, we want to point
out some of their features in this brief introduction. First of all, a well developed
and abundant literature (Angeline (1995), Eiben et al. (1999), De Jong (2007), Eiben
et al. (2007), As stated in the introduction, this approach presents many advantages
(Karafotias et al. (2015)):

1. EAs are dynamic and adaptive algorithms, so using different parameter values
at different stages of the search process is likely to provide better results (e.g.
one can manage more easily the EvE balance, di Tollo et al. (2015));

2. It is a practical way to overcome the parameter tuning problem and, more
generally, one does not have to set ‘adequate’ parameter values at all;

3. It allows EA itself to learn and store information on the ongoing process, so that
it can be exploited for the following iterations, perhaps adjusting its behaviour;

4. The optimization process (De Jong (2007)) can evolve from a global one to a
more focused/local converging one;

5. It allows the EA to deal with dynamic problems, i.e. adjusting a changing fitness
landscape (Karafotias et al. (2015)).

24 A literature review of parameter tuning and parameter control

Some authors (e.g. Eiben and Smith (2015)) point out that a further distinction is
helpful for evaluating and classifying the performance of the algorithm. In particular,
they consider the fourth question at the beginning of this section, i.e. the evidence
that informs the change of parameter value. This criterion is crucial to monitor and
dissect the performance of the algorithm; indeed, they note that the information used
as feedback to adjust the parameters deserves a distinction between two potential
cases:

• Absolute evidence, namely the rule used to change the parameter value is applied
when a predefined event occurs, e.g. the mutation rate is increased deterministi-
cally or by feedback from search (e.g. when the population diversity hits a given
threshold), i.e. the user has to design and to establish the desired direction of
the given parameter;

• Relative evidence, i.e. parameter values are compared and the better configura-
tions are rewarded. The direction of the change of the parameter is not specified
in advance, rather it is relative to the performance of other values.

Table 1.2: A taxonomy of parameter control strategies, Eiben and Smith (2015)

Deterministic Adaptive Self-adaptive

Absolute 3 3 7
Relative 7 3 3

This taxonomy, which is a refined version of the discussion provided at the begin-
ning of this section, consists consequently of six combinations of strategies to imple-
ment properly a parameter control mechanism, though two of them are practically
impossible, as shown in table 1.2.

1.3.3 Parameter control methods
In this section, we discuss briefly some parameter-specific control methods; given the
breadth of this topic, the focus of this investigation is not to provide a thorough
and complete analysis of existing methods, rather we want to look at some methods
that we find meaningful to motivate a further general discussion on the most relevant
problems and trends in this field. Our review is based on three ‘subpillars’, i.e. a
subclassification of parameter control techniques: we will indeed explore the state-of-
the-art strategies with a parameter specific approach. We will investigate particularly
a few contributions on control designed for the following parameters:

• Fitness function (constrained problems management via penalty methods);

• Population;

• Variation operators (operator selection and probability setting)

Note that deterministic methods have enjoyed a decent popularity in the early days of
research in this field; recently much more effort has been devoted to develop adaptive
or self-adaptive methods. Fialho (2010) argues that there are basically two main
reasons to prefer adaptive/self-adaptive methods:

• A deterministic parameter control technique implements a schedule without any
feedback from the search process, requiring the user to guess in advance how long
the algorithm takes to achieve a target solution, which is for sure a challenging
quest;

• Furthermore, there is no question that the EvE balance is not manageable by de-
terministic approaches; rather, a feedback-based strategy should be preferable,
as it can monitor and manage many different properties of the search process.

A literature review of parameter tuning and parameter control 25

1.3.3.1 Deterministic parameter control

1. Fitness function: managing constrained problems

In this field, the two seminal contribution of Joines and Houck (1994) and
Michalewicz and Attia (1994) are for sure the most relevant; in particular, the
latter introduces the groundbreaking Genocop II, an hybrid optimization system
(GA+dynamic penalty method) to handle non-linear constrained programming
problems.

Let us consider a constrained optimization problem, with m inequality con-
straints and p equality constraints. The problem can be written as follows:

min f(x)

s.t.
gi(x) ≤ 0 for i ∈ [1,m]

zj(x) = 0 for j ∈ [1, p]

(1.3)

Consider two arbitrary sets, containing feasible and infeasible solutions:

feasible set F = {x : gi(x) ≤ 0 for i ∈ [1,m] and zj(x) = 0 for j ∈ [1, p]}
infeasible set F = {x : x 6∈ F}

(1.4)

A penalty approach modifies the fitness function of an individual x according
to some constraint violation measure; if one of the constraints in 1.4 is not
respected, these unfeasible solution x 6∈ are allowed but their fitness amount is
subjected to penalty, as follows (we call this an exterior point approach, see
Simon (2013)):

min φ(x) = f(x) +

m∑
i=1

riGi(x) +

p∑
j=1

cjZj(x)

s.t.

Gi(x) = [max(0, gi(x))]β

Zj(x) = [max(0, |zj(x)| − ε]β

(1.5)

Typically the equality constraints are unforgiving (Simon (2013)), so they are
reformulated as above, with the inclusion of a parameter ε, which should be
properly calibrated to get meaningful results (i.e. the equality constraint zj(x) =
0 is rearranged to get |zj(x)| ≤ ε). Note that for every x ∈ F we have φ(x) =
f(x) and if x 6∈ F we have φ(x) > f(x) due to constraint violation. Joines
and Houck (1994) propose a dynamic penalty method, with β = 1 or 2 and
ri=cj=(ct)α, with t the t− th generation, so that the penalty amount increases
as times goes by, with c = 0.5 and alpha = 1 or 2.

Rearranging the minimization problem 1.5 we obtain:

φ(x) = f(x) + (ct)αM(x)

M(x) =

m+p∑
i=1

Gi(x)
(1.6)

Simon (2013) proposes to adjust the penalized fitness function by normalization:

φ(x) = f ′(x) + (ct)αM ′(x){
M ′(x) = M(x)/maxxM(x)

f ′(x) = f(x)/max |f(x)|
(1.7)

26 A literature review of parameter tuning and parameter control

Note that the value discussed in the literature are often the result of tuning
by analogy or by hand; generally, the value of c should be consistent with the
number of generations (i.e. if it is low, one may also consider to use c = 1 or
c = 1.5).

Genocop II (Michalewicz and Attia (1994)) uses annealing penalties, i.e. the
penalty coefficients are based on a ‘freezing schedule’ 1

2τ(t) , which in turn de-
pends on the generation count and on the temperature τ itself.

Kazarlis and Petridis (1998) adjust the penalty factor dynamically in a so-called
varying fitness function framework. The gist of this approach is to replace the
term ct with a a function V (t), which again depends on the generations count;
moreover, the authors identify seven shapes for the function V (g) (e.g. linear,
exponential, cubic,. . .).

2. Population

The literature available on this topic is quite broad, so here we discuss only a
few interesting approaches for managing the population parameter. Costa et al.
(1999) discuss growth and shrink schemes in what they call Random Variation
of Population Size (RVPS), in order to vary the population diversity and the
selective pressure as well. The underlying idea is to increase diversity by includ-
ing randomly generated individuals in the population and at the same time to
increase (reduce) selection pressure by replicating the worst (best) individuals.

Shrink schemes can decrease the diversity of the population (i.e. by removing
individuals), but they can vary the selection pressure as much as growth ones do.
In their experiments, they authors propose to investigate on a limited set of test
functions the potential of deterministic control schedule (RVPS), by analyzing
its impact on some performance measures. Eiben and Schut (2008) find out
that this method performs poorly on a set of different performance metrics
(Success Rate (SR), Mean Best Fitness (MBF), Average number of Evaluations
on Success (AES)) when compared to other methods.

Algorithm 5: Random Variation of Population Size (RVPS)
Input : T : number of deterministic resizing decisions

n: number of individuals
I: number of iterations for each resizing decision

1 Generate the initial population P0

2 Evaluate the fitness of P0

3 for t = 1 : T do
4 for i = 1 : I do
5 Parentsi = Selection(n, Pi)
6 Offspringi = Crossover(Parentsi)
7 Offspringi = Mutation(Offspringi)
8 Pi = Offspringi
9 Pop_Fitnessi = Evaluate(Pi)

10 end
11 %Resize population according to a deterministic rule (e.g. linear)

Resize_Population(PI , t)
12 end
13 Evaluate quality of the population PT after T runs (e.g. with MBF)

This approach, which is probably both the most straightforward and easy-to
implement among populations control methods, according to the taxonomy pro-
posed by Karafotias et al. (2015), belongs to those mechanisms which control
directly the parameter on-the-fly (in this case, the population is shrinked or

A literature review of parameter tuning and parameter control 27

grows in a way that is consistent with a generation-based schedule); for sure, in
the collection of deterministic methods, some other approaches are viable.

Koumousis and Katsaras (2006) propose a genetic algorithm which employs a
more sophisticated scheme, based on a variable population size and a partial
reinitialization of the population; the insertion of randomly generated individu-
als makes the population variation scheme peculiarly ‘saw-toothed’: the authors
argue that this method is expected to improve some performance metrics (i.e.
maximum/mean fitness). Suppose to have a mean population size n̄, which cor-
responds to the fixed population size GA having the same computing cost (Kou-
mousis and Katsaras (2006)) and consider an amplitude parameter D, which
should be tuned accurately (see below). Furthermore, take into account a period
of variation T : then, at generation t the population size n(t) is:

n(t) = int

{
n̄+D − 2D

T − 1

[
t− Tint

(
t− 1

T

)
− 1

]}
(1.8)

A few observations are worthy of remark: first of all, note that n(0) = n̄ + D,
n(T) = n̄−D and n(T + 1) = n̄+D. Moreover, note that the performance of
the schedule presented here is heavily affected by parameter selection, so again
the parameter tuning problem arises. For D = 0 we have a constant population
size GA, whichever the value of T , whereas for every D greater than zero, the
population size decreases with a constant decay (of course, the bigger the value
of D, the stronger the impact).

Finally, note that a graphical interpretation of T and D could be given: indeed,
at an arbitrary generation t, T represents roughly the amount of ‘teeth’ for a
given number of generations t on the x-axis (i.e. number of random reinitializa-
tion) and D represent somehow the ‘size’ of each ‘tooth’, i.e. in plain terms the
random restarts make the population size n(t) in the range [0, t] more variable,
while the restart frequency depends on the user-defined value of T .

Laredo et al. (2009) develop a three-step schedule called Simple Variable Pop-
ulation Sizing (SVPS) to determine the optimal amount of individuals at each
generation. This method consists in decreasing the population according to a
deterministic schedule, based on speed and severity parameters. The steps can
be summarized as follows:

(a) A bisection method estimates the optimal size n∗ of the initial population
Pinit;

(b) A refinement procedure is enforced to improve the optimal size n∗;

(c) The SVPS-GA uses the following deterministic function to alter the pop-
ulation size:

n(t) =

{
n(0) ·

(
1− (1− ρ)(t

tmax
)τ
)

t ≤ tmax
n(tmax) t > tmax

With n(t) denoting the population size at generation t, n(tmax) the pop-
ulation size when a maximum number of generations of the schedule is
reached, estimated on the runtime of constant population size GA. τ and
ρ represent, respectively, the speed and severity parameter; the greater the
value of ρ the faster the reduction of the population size, ρ ∈ [0, 1] where
ρ → 0 implies that the run ends with an almost empty population, while
for ρ→ 1 the initial population size is not modified.

3. Operator selection

As argued by Fialho (2010), the deterministic schedule approach is not very suit-
able to manage the operator selection, as it can not properly take into account,

28 A literature review of parameter tuning and parameter control

for instance, the EvE balance, which is hardly manageable deterministically, i.e.
without a feedback from the process.

As a consequence, in this subsection we review briefly a few approaches that are
somehow outdated and not discussed in the most recent experimental studies.

Davis (1989) has for sure paved the way, in general, to operator selection strate-
gies, whichever the technique adopted. In particular, he proposes to update the
probability of selecting operators via a fitness-based decay mechanism, which is
in charge of the credit assignment process, up to a pre-established number of
generations; the method does not include a feedback mechanism, so it has been
used to obtain a deterministic and time-varying schedule.

Hatta et al. (1997) discuss a method in which the crossover operator is chosen
according to a measure of fitness, i.e. the so called elite degree of an individual,
which is basically the ratio of the sum of all its ‘elite ancestors’ (up to some
predefined number of generations before) and the total number of ancestors.
An individual is an elite member if her/his fitness is greater than an amount
defined by n̄ + ασ, with n̄ the average fitness of the current population, σ
its standard deviation and α is a parameter that magnifies the impact of the
standard deviation, according to the user’s preference.

Once the credit assignment scheme has fully determined a set of credits for each
operator, then the operator selection is based on a deterministic and feedback-
free schedule: if the sum of the elite degrees of both parents is higher than a
fixed threshold, then less disruptive operators are chosen (Fialho (2010)).

Tuson and Ross (1998) have devised an approach for which the user (before
carrying out the experiments) defines a set of static probabilities, which are
subsequently and deterministically assigned to the operators, according to a
ranking based on a dynamic credit assignment scheme. The authors do not
disclose how to define a priori the set of probabilities, which serves as input for
the operator selection.

1.3.3.2 Adaptive parameter control

1. Fitness function: managing constrained problems adaptively

In subsection 1.3.3.1 we have stressed the fact that deterministic methods are
based on a predefined schedule, so they often require a significant amount of
parameter tuning, at least to get meaningful results; furthermore, managing
the penalty coefficient correctly is far from easy, because it in general leads to
complex trade-offs (i.e. too high values prevent the algorithm from searching
infeasible areas, whereas too low values lead to slow/poor convergence towards
‘good’ results).

To overcome this problem, which is actually common and not specifically related
to penalty methods, some solutions have been proposed.

Ben Hadj-Alouane and Bean (1997) propose an adaptive method, i.e. a feedback
from the population is used stepwise to adjust the penalty weights of equation
1.5 as follows:

cj(t+ 1) = ri(t+ 1) =

{
ri(t)/β1 if xbest ∈ F in a k rolling window
β2ri(t) if xbest 6∈ F in a k rolling window

Where t identifies the generation count, k is a rolling window to be tuned
affecting the speed of adaptation. Note that the gist of this method is to decrease
(increase) the penalty weight if the best individual is (not) feasible, allowing
more infeasible individuals in the population. This method, differently from
those shown above, allows the algorithm to use a feedback from the search

A literature review of parameter tuning and parameter control 29

process, so that it is adjusted accordingly in the following generations, i.e. by
tightening/loosening the penalty weights.

A segregated genetic algorithm is proposed in Le Riche et al. (1995); the idea
behind this is method is to use two values of the penalty parameters ri and
cj , which are associated with two populations, performing at their best with
respect to their own penalty settings. These two groups are segregated in terms
of rankings, but at each iteration they are mated, in order to get a solution
which is deemed to be more robust, as new individuals are generated both from
the individuals in the group with a tight penalty parameter (say, group 1) and
from those in the group with a loose (group 2) one, so that one obtains an
auxiliary population arising from a mixture of feasible (group 1) and infeasible
individuals (group 2).

2. Population

Adaptive population sizing is for sure one of the research areas that has attracted
most interest from scholars. For a thorough and recent review of contributions
in this field, we refer the reader again to Karafotias et al. (2015); they propose
a new subclassification of population sizing, which takes into account the most
recent developments as well:

• Theoretical studies on population size and benefits of dynamic sizing;

• Approaches which manage the population size parameter by exploiting a
new operator;

• Mechanisms that approximative a good population size during the run;

• Methods that control directly parameters on-the-fly.

Here we limit ourselves to consider only the most relevant strategies; we start
from the Genetic Algorithm with Varying Population Size (GaVaPS) (Arabas
et al. (1994)); the authors actually remove the population size as a parameter.
In this review direct approximation of population size will be also considered,
as it is deemed as a wholly different family of strategiies.

This strategy removes the population size as a parameter as follows. The strat-
egy allocates to each individual at his/her birth (i.e. generated either in the
initial population or by means of a variation operator) a maximum lifetime
which depends both on her/his individual fitness and her/his average fitness.
At each step, one year is added to an age counter; hence, when the maximum
lifetime is reached, the individual is removed from the population. Further-
more, a ρ parameter, called reproduction ratio, keeps the offsprings/population
size ratio constant, so that also the selection pressure is kept constant, namely
only a fraction of the current population is allowed to the mating phase. Note
that for different values of ρ, the population may grow rapidly or may become
extinct.

The core implication of this design is that the population size is not properly
a parameter and there is not an explicit selection operator, as the individuals
are chosen to reproduce with equal probability, so selection does not depend on
fitness value. However, given that the individuals die once they exceed their
lifetime value, on long term and on average, those who are fitter live longer
(i.e. a further indirect selection is performed). The idea is obviously to get a
fitness-driven selection and meanwhile to add some diversity to the population.
Overall, the selection pressure does not vary.

Arabas et al. (1994) identify a set of strategies that could be implemented (pro-
portional, linear and bilinear) to get different selection pressure levels, relying
on two parameters, MinLT and MaxLT , i.e. minimum and maximum lifetime
value allowed. Higher difference between the two values leads to higher values of

30 A literature review of parameter tuning and parameter control

Algorithm 6: GAVaPS
Input : P0: Initial population size

ρ: Reproduction ratio
T : stopping criterion

1 t = 0, P (0) = P0

2 Evaluate P(0)
3 while t < T do
4 increase age of each individual i
5 recombine P (t) with a consistent ρ
6 evaluate P (t)
7 if agei < lifetimei then
8 remove individual i from P (t)
9 end

10 t = t+ 1

11 end

selection pressure; the lifetime parameter for the i− th individual is computed
as follows:

• proportional allocation:

min(MinLT + η
F itness[i]

AvgFit
,MaxLT)

• linear allocation:
MinLT + 2η

F itness[i]− |FitMin|
|FitMax| − |FitMin|

• bilinear allocation:
MinLT + η

F itness[i]−MinFit

AvgF it−MinFit
if AvgFit > Fitness[i]

0.5(MinLT +MaxLT) + η
F itness[i]−AvgFit
MaxFit−AvgFit

if AvgFit < Fitness[i]

where η = (MaxLT − MinLT)/2, MinFit, MaxFit and AvgFit stand for
the minimum, maximum and average fitness of the population. Though the
user has to input the initial population size, the authors claim that the initial
population has little influence on the performance. However, a study of Eiben
et al. (2004) finds out that GAVaPS is highly sensitive to the rate ρ (which has
to be inputted by the user too), leading either to population extinction or to
exponential growth.

A slight variation of GAVaPS is presented in Bäck et al. (2000), called Genetic
Algorithm with Adaptive Population Size (APGA). The difference involves ba-
sically the reproduction rate ρ, which admits for each iteration only two new
offsprings, a results which stems from the experimental results in their work.
Essentially, the idea is that this value should prevent the reproduction strategy
from growing out of control; their findings lead to a very stable population,
though only with a few individuals included (unless a high value of MaxLT is
set) and not very responsive to the evolution of the search process.

Eiben et al. (2004) present an approach known as Population Resizing on Fitness
Improvement GA (PRoFIGA), which is very similar to a traditional GA, but at
the end of selection, reproduction and mutation steps, the population size can
grow or shrink on the ground of improvements of the fittest individual contained
in the population. The population grows if there is an improvement in the fittest
individual or if there is not an improvement in the fittest for many iterations;
otherwise the population is shrinked by a user-defined percentage (usually a
small amount).

A literature review of parameter tuning and parameter control 31

It is easily noticeable that behind this design there is an attempt to keep the
EvE balance under control, as this strategy typically leads to large populations
during the exploration phase and to small populations in the exploitation phase.

Overall, this method introduces six parameters, which require non-trivial tun-
ing; though the authors suggest some values, they are mainly problem-specific:

(a) initial population size;

(b) increaseFactor (a number in the interval [0, 1]);

(c) V , number of generations without improvement;

(d) decreaseFactor (a number in the interval [0, 1]);

(e) minPopSize;

(f) maxPopSize.

The growth rate X is determined as follows:

X = increaseFactor·(maxEvalNum−currEvalNum)·maxFitnew −maxFitold
initMaxFit

(1.9)

3. Adaptive Operator Selection

Adaptive operator selection (AOS) copes with the problem of choosing an op-
timal symbolic parameter (see 1.1) of the variation operator. An encompassing
discussion is proposed in Maturana et al. (2010), in which the problem is tackled
with a very general framework which allows a lot of implementation flexibility.
In a nutshell, they propose a framework in which four modules are embedded
in a controller, as follows. First, a module stores the successive application of
the operators with a k-sized memory; then, the following module computes a
reward for each operator, according to a strategy (e.g. fitness-based reward,
diversity-based reward,. . .). Hence, the impact is passed to a credit assign-
ment mechanism, which computes a score for each operator, outputted finally
to an operator selection module, whose goal is to choose the operator to be used
in the following generation according to a pre-specified rule (e.g. Probability
Matching, Adaptive Pursuit, UCB,. . .).

As far as operator selection is concerned, the simplest strategy is the so-called
Probability Matching (PM) strategy, which chooses the optimal operator at
generation t according a to roulette wheel selection strategy, i.e. the probability
Pi of choosing an operator i is proportional to its credit Ui to the total amount
of credits of all operators K. Note that a minimum probability of selection Pmin
is typically enforced, in order to retain all those operators which could turn out
to be useful in later stages of the search process; due to the non-stationarity of
the environment considered, i.e. the probability distribution that specifies the
reward generated by operators is unstable (Thierens (2007)).

Formally we have the following rule to update the probabilities:

Pi(t+ 1) = Pmin + (1−K · Pmin) · Ui(t+ 1)∑K
i=1 Ui(t+ 1)

(1.10)

This approach typically ends up choosing suboptimal operators; an alternative
strategy is proposed by Thierens (2007), the so called Adaptive Pursuit (AP),
a winners-take-all strategy, which proportionally selects an operator to execute
according to a probability vector P(t); therefore, the selection probability of
the operator with maximal reward i∗t is increased and all other probabilities are
decreased. The main idea is to adapt the probability vector P(t) in a greedy
way:

32 A literature review of parameter tuning and parameter control

Algorithm 7: Probability Matching (PM)
Input : T : termination criterion

A = {a1, . . . , aK}: set of K operators
Pmin: minimal value of selection probability for each K
α: adaptation rate

1 for i = 1 : K do
2 % initial probability vector
3 % initial credit vector
4 P[i] = 1/K
5 U [i] = 1.0

6 end
7 while termination criterion T not met do
8 s = Select_Operator(P)
9 Rs[t] = Get_Reward(s)

10 Us[t+ 1] = Us[t] + α(Rs[t]− Us[t])
11 %update probability vector
12 for s = 1 : K do

13 Ps[t+ 1] = Pmin + (1−K · Pmin)
Us[t+ 1]∑K
i=1 Ui[t+ 1]

14 end
15 end


i∗t = arg max[Pi(t), i = 1, . . . ,K]

P∗i (t+ 1) = P∗i (t) + β(Pmax − P∗i (t))

Pi(t+ 1) = Pi(t) + β(Pmin − Pi(t))

A third selection method, proposed by Costa et al. (2008), is inspired from the
Multi-Armed Bandit problem (MAB), so that the operator selection problem is
expressed as an EvE dilemma. In particular, the adopted approach (actually,
many options are available) is to employ an Upper Confidence Bound (UCB1
variant) algorithm. Each variation operator is treated as an arm of a MAB
problem; then denote with ni,t the number of times the i − th arm has been
played up to generation t and with pi,t the average corresponding reward. With
C we denote the scaling factor. At each time step t the algorithm chooses the
arm maximizing:

pi,t + C

√
log
∑
k nk,t

nj,t
(1.11)

The first term tilts the search process towards exploitation (by favoring indi-
viduals with a greater average reward up to time t) while the second one, often
interpreted as a ‘variance’ term, enforces exploration.

They also suggest to use a dynamic version of the algorithm: indeed, they
argue, if an operator becomes less efficient during the run, the probabilities are
adjusted quite slowly. As a consequence, the authors adopt a Page-Hinkley test,
coupled with the UCB algorithm. As soon as the test detects a change in the
distribution, the MAB algorithm is restarted, in order to overcome the slow
convergence of MAB. They refer to this method as Ex-DMAB, i.e. a dynamic
MAB algorithm with the AOS combination.

For a complete discussion of these topics, which include also the setting problem
of the credit assignment mechanism, we refer the reader to the contribution of
Maturana et al. (2010).

A literature review of parameter tuning and parameter control 33

1.3.3.3 Self-adaptive parameter control

1. Fitness function: self-adaptive penalty methods

In this section we discuss two self-adaptive penalty methods: given that the
approaches discussed are quite sophisticated, here we limit ourselves to outline
the basic steps.

Farmani and Wright (2003) discuss a self-adaptive penalization method in two
steps. If any individual x 6∈ F has an unpenalized fitness value that is better
than the best individual x ∈ F , then the fitness value of each individual x 6∈ F
is penalized. Furthermore, if x̂={x : x 6∈ F}, x̃={x : x ∈ F} and we have that
f(x̂) > f(x̃) for all x̂ and for the best value in x̃, then none of the infeasible
individuals are penalized. Let us define a total infeasibility measure for each
individual x as follows (see equation 1.5):

τ(x) =
1

m+ p

m+p∑
i=1

Gi(x)/max
x∈x̂

Gi(x) (1.12)

Then we denote with xb the best individual, with xwf the worst in terms of
feasibility (i.e. an individual such that τ(x) is maximized) and with xwc the
worst in terms of fitness. Moreover, the infeasibility metric is normalized:

τ̃(x) =
τ(x)− τ(xb)

τ(xwf)− τ(xb)
(1.13)

The first penalized step is defined as follows:

φ(x) =

{
f(x) + τ̃(x)(f(xb)− f(xwf)) if ∃x ∈ x̂ such that f(x) < f(xb)

f(x) otherwise

A second step of penalization is then introduced. All the infeasible individ-
uals are penalized and in particular the worst penalized fitness is assigned to
the individual with the greatest violation. First of all, we define an auxiliary
exponential penalized fitness function:

φ′(x) = φ(x) + γ|φ(x)|

(
exp(2τ̃(x))− 1

exp(2)− 1

)
(1.14)

γ =


(f(xwc)− f(xb))/f(xb) if f(xwf) < f(xb)

0 if f(xwf) = f(xb)

(f(xwc)− f(xwf))/f(xwf) if f(xwf) > f(xb)

The scaling factor γ makes sure that φ′(xwf) ≥ φ′(x) for all x.

A different approach is discussed in Tessema and Yen (2006), where a five step
procedure is presented:

(a) Normalize the fitness function for each x:

f ′(x) =
f(x)−minx f(x)

maxx f(x)−minx f(x)
(1.15)

The normalized fitness is then f ′(x) ∈ [0, 1] fo all x.

(b) Compute τ(x) which is a normalized measure of constraint violation, so
τ(x) ∈ [0, 1] for all x, so that if x ∈ F , then τ(x) = 0 and if x ∈ x̂ then
τ(x) > 0.

34 A literature review of parameter tuning and parameter control

(c) Compute the distance value for each x:

d(x) =

{
τ(x) if F = ∅√
f ′2(x) + τ2(x) if F 6= ∅

The idea here is to compute a distance value that is equal to the constraint
violation of x if there are not any feasible individuals in the population,
whichever the fitness value; otherwise, if there are feasible individuals, then
the distance value is computed as a combination of fitness and constraint
violation.

(d) Compute the following auxiliary fitness functions:

X(x) =

{
0 if F = ∅
τ(x) if F 6= ∅

Y (x) =

{
0 if x ∈ F
f ′(x) if x 6∈ F

(e) Compute the final penalized cost function:

φ(x) = d(x) + (1− r)X(x) + rY (x) (1.16)

where r ∈ [0, 1] is the ratio of feasible individuals to population size. Note
that φ(x) strikes a balance between the relevance of the auxiliary fitness
function X(x) and Y (x), in such a way that if there are many feasible
individuals, the latter is emphasized instead of X(x). Note that Y (x)
contains fitness-based penalties on infeasible individuals, whereas X(x)
includes constraint violation penalties on infeasible individuals.

Note that this approach does not require to determine the penalty coefficient;
basically, the algorithm looks for a good mix between feasible and infeasible
individuals, so that infeasible individuals are exploited in the search process. To
put it simply, the distance value is the metrics which guides the whole process, as
it helps to compare infeasible and feasible individuals, according to a rigorous
metrics, which takes into account a proper balance of fitness and constraint
violation in the (τ(x), f ′(x)) plane, according to which -potentially- infeasible
individuals are allowed to be have a better (penalized) fitness value, due to a
lower distance.

2. Population

Controlling the population size by self-adaptation is a relatively new trend in
parameter control: as Eiben et al. (2006a) highlight, the traditional literature
on self-adaptation has flourished in variation operators management, i.e. self-
adapting mutation and recombination, while a relatively little focus has been
put on what they call ‘global parameters’.

They find evidence that handling the population size with a self-adapting proce-
dure can be rewarding, given two well-known benefits arising from self adapta-
tion, namely the size is adapted in a evolutionary and smooth way (not heuris-
tically) (1) and broad evidence in the literature of adequate parameter control
in evolution strategies (2). As a consequence, they concentrate their efforts on
carrying out some experimental studies on population with simple strategies, as
the one described below.

The idea is to derive the population size via an aggregation method, so that it
is determined from local parameters, i.e. collectively by the individuals in the
population. They propose the following procedure:

A literature review of parameter tuning and parameter control 35

(a) An extra parameter p ∈ [pmin, pmax] is assigned to each individual, which
is interpreted by the authors as an individual ‘vote’ for a collective decision
regarding the global parameter P ;

(b) An aggregation mechanism calculating P from individual p values is chosen.
The authors opt for the sum of the local votes:

P = d
N∑
i=1

pie (1.17)

with pi ∈ [pmin, pmax] and N the population size;

(c) The extra parameter p is added to each individual chromosome, i.e. it
is encoded as an extra gene. As we explain below, this design supports
self-adaptation itself, because the ‘local’ parameters are forced to undergo
mutation/variation just like the other parameters, so that the user does
not have to come up with a specific heuristic to control the parameter size.

In order to obtain meaningful values of p, they propose the following mutation
mechanism:

p′ =

(
1 +

1− p
p
· e−γ·N(0,1)

)−1

(1.18)

With γ we denote the learning speed, i.e. it controls the adaptation speed. Note
that for p ∈ (0, 1), then p′ ∈ (0, 1).

Another approach is the one of Baluja and Caruana (1995), called Population-
based incremental learning (PBIL) which removes the population size parameter
rather than focusing on population size approximation. Basically, they employ a
probability vector over each individual chromosome to represent the population.
In particular, they use a binary encoding strategy to represent each solution;
then, they also store the proportion of ones and zeroes at each gene position
(which they initialize to 0.5) and move away from the initial solution, towards
0 or 1 as the search progresses. Then, at each step they update the probability
vector with a simple rule, based on a learning rate:

pi+1 = pi · (1− LR) + individualij · LR (1.19)

The idea is to reuse this updated probability to generate new solutions, by tilting
the probability vector toward the fittest of the generated solution. Though
we do not here elaborate too much on PBIL, we note that this mechanism is
implemented in such a way that the number of individuals to update from nv
and the stopping criterion are all parameters of the algorithm, i.e. self-adapted.

Harik et al. (1999) propose a variation of the procedure described in Baluja and
Caruana (1995) with the so-called ‘Compact Genetic Algorithm’: basically they
modify the generation step, by generating only two individuals each time and
then picking a winner according to the result of a competition. Furthermore,
they opt for an update step with a constant rule, with the aim of converging to
a solution, reducing at the same time the computational burden.

3. Self-adaptive operator selection

The issue of selecting an optimal operator at each step has been discussed for
a long time and, as we have noted before, although adaptive operator selection
research has experienced in the last decade a steady growth, there also a few
contributions in the self-adaptive field which are worth mentioning.

A seminal contribution here is the one of Spears (1995), in which a simple
operator selection is implemented. First, a bit representation is adopted, so
the individual amount of fitness is encoded in a bit string. Hence, a bit is

36 A literature review of parameter tuning and parameter control

Algorithm 8: Population-based incremental learning (PBIL)
Input : p: Initial probability vector

P0: Initial population with l elements for each solution
LR: Learning Rate
nv: subset of n individuals used in the update step

1 for i = 1 : l do
2 % initial probability vector
3 p[i] = 0.5

4 end
5 while termination criterion T not met do
6 for i = 1 : n do
7 %generate n individuals with consistent p vector
8 individual[i] = generate(p)

9 end
10 for i = 1 : n do
11 evaluate(individual[i])
12 end
13 rank individuals according to fitness
14 %update probability vector
15 for i = 1 : nv do
16 for j = 1 : l do
17 p[i] = p[i] · (1− LR) + individual[j][i] · LR
18 end
19 end
20 end

added to each chromosome, which serves as an indicator bit, i.e. choice among
two crossover operators; in particular, they author implements the operator
selection among two crossover methods, i.e. two points crossover and uniform
crossover. Though a bit outdated, these operators show different properties,
namely the latter is considered highly disruptive while the former is deemed
less disruptive of material, so that a ‘mixture’ of these characteristics may lead
to more ‘balanced’ individuals.

As a consequence, each individual receives an extra bit, so that the last column
of the population represents the space of operators (e.g. 0 stands for uniform
crossover and 1 for two-point crossover). Thus, the last column is manipulated
by crossover and mutation operators just like the whole string of bits. Many
specific implementations are then allowable: once the last columns is generated
randomly, then local or global adaptation can be adopted. If ther former ap-
proach is chosen, then the choice of the crossover operator is tied to a particular
individual, whereas if the latter strategy is picked, the crossover operator is
linked to the population results (i.e. the last column can be used in a roulette-
wheel fashion, in order to choose each time which crossover technique should be
performed).

Montero and Riff (2011) discuss two self-adaptive control techniques, which we
briefly review here. The key idea is that the representation of each individ-
uals includes the parameter value of genetic operators, namely the operators
probability value; basically each operator receive a reward when its application
generates a better offspring than his or her parents; otherwise she/he receives a
penalty. We formally summarize the procedure, which they call light-self adap-
tive control (LSA) and Self-Adaptive Control (SA) as follows. We denote with
Sa a success measure for the operator Ok in its a-th application, Sa(Ok):

Sa(Ok) = F (Cj)− F (P) (1.20)

A literature review of parameter tuning and parameter control 37

Where F (Cj) and F (P) denote respectively the fitness of the child and the
average fitness of her/his parents. Then we denote with Max − il and with
Max−dl, respectively, the ‘positive behaviour’ of an operator and the ‘negative
behaviour’ of an operator during the l generations, for a given set of operators
Ok and for a success measure Sa:

Max− il = arg max
a=1,...,Ak

(Sa(Ok)) (1.21)

where Ak is the number of applications of the operator Ok in the last l genera-
tions.

Max− dl = arg max
a=1,...,Ak

(|Sa(Ok)|) (1.22)

Finally, given the a-th application of an operator, we define the probability of
selecting as follows:

Pcj (Ok) =


1 + δ · Ph(Ok) for reward LSA
1− δ · Ph(Ok) for penalty LSA

(1 +
Sa(Ok)

Maxl
· Ph(Ok) for SA

with δ a random number in (0,1), Ph the parent probability and:

Maxl =

{
Max− il if Sa(Ok) ≥ 0

Max− dl otherwise

Note that both LSA and SA determine the probability of choosing an operator
for a child Cj according to a reward/penalty mechanism, but the only the latter
takes into account an ‘absolute’ amount of improvement/degradation, depend-
ing on the successive application of the operator Ok. The key idea is that LSA
detects only an improvement or a deterioration of the fitness value, and sub-
sequently penalizes the operator probability; the SA technique is instead more
sophisticated, as it employs a measure of reward/penalty which is proportional
to the quality of the generated child compared to the fitness of her/his parents.

1.3.3.4 Some features of parameter independent methods

We conclude this section on parameter control by taking a look to some recent devel-
opments in parameter independent methods, i.e. generic control methods that suit
any numeric EA parameter. We provide a qualitative discussion, without elaboring
too much on specific implementations; we outline this topic by mentioning a few
influential works.

To our knowledge, a seminal contribution in this field is the one of Eiben et al.
(2006b), in which they propose to use the feedback from the search process, per-
forming on-the-fly adjustement of the parameter values, just like self-adaptation; the
innovation in their work, which actually has opened a wholly new area of research, is
the application of reinforcement learning techniques to calibrate EAs, with a combi-
nation of SARSA (i.e. on-policy reinforcement learning) and Q-Learning (off-policy
reinforcement learning) techniques. The state of the EA-process is described by a
vector of numbers which reflects the characteristics of the population, then some ac-
tions are undertaken in order to maximize a reward measure; the fundamental idea in
this case is to learn the functions which map states into actions, in order to maximize
the reward.

Karafotias et al. (2014) extend the framework presented in Eiben et al. (2006b) to
a variety of state-of-the-art EAs for generic parameter control, with more encouraging
results.

A different approach for generic and parameter-independent control is suggested by
Aleti and Moser (2011): in their work they predict future parameter values according

38 A literature review of parameter tuning and parameter control

to a linear time series forecasting strategy, based on OLS regression: instead of using
past winners to compute the probability of using the parameter value in the next
iterations, the authors fit a linear regression model with those values in order to
derive a forecast for the future, of course assuming linearity of data. They show a
strong and robust performance in their experimental setups.

Aleti and Moser (2016), in their sweeping systematic literature review, note that
a challenge still to be addressed both by adaptive and generic quality attribution
parameter control (e.g. Arabas et al. (1994), Bäck et al. (2000), Eiben et al. (2004)
Maturana et al. (2010), Fialho (2010), Aleti and Moser (2011)) is the interaction
between different parameters, as the quality of one algorithm parameter typically
depends on other settings. These methods model the quality of the parameter setting
based on a certain strategy (e.g. quality in Maturana et al. (2010) or di Tollo et
al. (2015) is expressed in terms of the combination of fitness and diversity based on
Hamming distance), in order to describe its performance based on past observations.
Actually, to our knowledge, only Aleti and Moser (2011) have introduced a linear
forecasting strategy, which instead of directly translating success ratios for selection
probabilities in the future, propose a fitted model to predict the success ratio in the
next iteration.

Chapter 2

Basics on portfolio selection

In this chapter we discuss briefly some basic results about portfolio selection: in par-
ticular, in section 2.1 we highlight some essential properties of risk measures, we shed
light on the sensitivity of portfolios to input estimation and then we examine some
regularization techniques in literature. Finally, we discuss the mixed-integer model
that we use extensively in Chapter 4. Then, in section 2.2 we comment the issue of
constraint handling in the context of EAs: in particular, we focus on penalty methods
and after that we propose our approach. In what follows, for a given wealth W , we
denote with X = {X1, . . . , XN} a set of investment choices in equity markets, i.e. a
portfolio is a N -dimensional vector x′ = (x1, . . . , xN) ∈ RN , such that each element
in the portfolio xi, with i = 1, . . . , N , represents a long/short position in a specific
asset in the stock market. Furthermore, when dealing with practical constraints, it
is not uncommon to deal with amounts of assets represented as multiples of trading
lots, by imposing a round lot constraint. Note that it is immediate to relate the GA
terminology to that of portfolio selection problem (PSP), as the population represents
a collection of portfolios (individuals), composed of N assets (genes).

2.1 Basic formulation of the PSP and formal prop-
erties of risk measures

For a start, consider a general problem of this form, denoting in this case with X the
set of feasible solutions and with x the asset weights:

min
x

φ(x)

s.t. x ∈ X
(2.1)

The formulation of the well-known quadratic programming problem proposed by
Markowitz (1959) is the following:

min
x

1

2
σ2
p =

1

2
xTΣx

s.t. xT r = Ep

xT1 = 1

(2.2)

With Σ denoting the covariance matrix and with Ep denoting the level of desired
expected returns. Note that by imposing a nonnegativity constraint (i.e. xi ≥ 0,
for i = 1, . . . , N), there is not a closed-form solution for the quadratic programming
problem and KKT conditions must be satisfied, due to the presence of an inequality
constraint (see Appendix A). In our work, we consider mainly non-convex and difficult
objective functions, with many local minima which cannot be tackled with standard
optimization techniques, like gradient-based methods (see, for instance, Gilli et al.

39

40 Basics on portfolio selection

(2011)). Certain risk measures, like the Omega ratio or VaR can be reformulated to
obtain a linear program. Though a rich literature has dealt with this possibility, the
approaches presented over time typically do not accomodate integer constraints (Gilli
et al. (2011)).

Another critical issue involves the identification of a set of properties that a risk
measures should satisfy; the design of the objective function in portfolio optimization
problems is of the utmost importance, since it may lead to unattractive results. For
instance, a portfolio based on VaR minimization (see Table 2.1) displays unpleasant
and unnatural properties (Lwin et al. (2017)); first all, it does not satisfy subadditiv-
ity (in a nutshell, given two vectors of returns r1 and r2 and a linear combination of
them rp, it does not always hold true that V aR(rp) < V aR(r1) + V aR(r2)). More-
over, it does not take into account losses beyond V aR itself. Also the variance is
non-subadditive unless the correlation between the assets is zero or negative. As a
consequence, Artzner et al. (1999) have proposed the notion of coherent risk measure,
i.e. a function R(·) : R→ RN of N random variables that satisfies:

1. Translational invariance: for a given constant c and a random variable, say,
a vector of returns X ∈ R, R(X + c) = R(X) + c;

2. Positive homogeneity: for a given real number c, R(cX) = cR(X);

3. Subadditivity: for two given random variables X ∈ R and Y ∈ R, R(X+Y) ≤
R(X) +R(Y);

4. Monotonicity: R(X) ≤ R(Y) when X ≤ Y .

We look into a variety of both coherent and non-coherent risk measures: we include
in the set traditional measures assessed in earlier literature, like the mean-variance
approach proposed by Markowitz (1959) and more recent developments, i.e. equal
risk contribution (ERC) portfolios (Maillard et al. (2010)). In general, we adopt risk
measures which satisfy as much as possible formal properties and meanwhile present
attracting properties. A well-known issue of mean-variance portfolios is that they
treat below-target and above-target expected returns equally, while alternative ap-
proaches attempt to include more realistic features into the model, like relaxing the
normality hypothesis, in order to take into account a few stylized facts in financial
practice, i.e. especially fat-tailedness and asymmetry of asset returns. Moreover, the
practice of optimizing plain mean-variance portfolios with historical data, is suscep-
tible to one more critical issue, which can be decomposed in multiple parts. It is
well-known, indeed, that they are particularly sensitive to the estimation of input pa-
rameters, which are highly noisy, with small perturbations in the value of each input
leading to large swings in the portfolio composition, leading to counterintuitive and
highly concentrated portfolios. This is mainly due to the impact of the estimation
error of both the covariance matrix and the vector of expected returns, resulting in
unstable optimal portfolio weights at best, leading usually to precarious out-of-sample
performance. The upshot of this discussion is that there is a large upside potential in
overcoming these central issues in portfolio management.

A concise summary of cost functions used in our work is proposed in Table 2.1.
Note that, as di Tollo and Roli (2008) point out, the distinction between objective
function and cost function is crucial, as the former represents the function to be
optimized, while the latter is the function guiding the search process. This problem
occurs whenever a bicriteria mean-risk optimization model is considered to represent
the investor preferences, whose risk aversion is typically handled by a proper trade-off
coefficient: we will explore this topic more in depth, in section 4.1.1.

2.1.1 Dealing with input sensitivity and unstable solutions
In what follows, we consider a few techniques which tackle both the issue of manag-
ing estimation sensitivity and the problem of designing risk measures equipped with
desirable and realistic properties in the optimization process.

Basics on portfolio selection 41

Table 2.1: Summary of cost functions

Risk Measure Cost Function Notes

Omega Ratio Ω =

∫ rd
−∞(rd − r)F (r)dr∫∞
rd

(r − rd)F (r)dr
rd is a threshold set by the investor, F (r) is a proba-
bility density function of the returns r. This risk/re-
ward ratio, devised by Keating and Shadwick (2002),
takes into account the entire probability distribution
of returns. The programming problem is non-convex,
though it can be reformulated as a LP.

Mean-Variance MVλ = λrp − (1− λ)σ2
p We denote this quadratic programming problem with

rp and with σ2
p the portfolio return and the portfolio

variance; it is a reformulated version of the classic
MV problem (Markowitz (1959)), as we include the
desidered return constraint in the objective function
(see also Chang et al. (2000)), where λ ∈ [0, 1] is a
risk-aversion parameter.

Mean-MAD M −MADλ = λrp − (1− λ)MAD(rp) MAD =
1

n

∑n
i=1 |rpi − r̄p| is the average absolute

distance between each return observation and the
mean value of returns r̄p. A mean-MAD optimiza-
tion problem has been formulated by Konno and Ya-
mazaki (1991) as a linear program; we design the
optimization problem by including the desidered re-
turn constraint in the objective function.

Two-sided
ρa,p(r) = a‖(rp − E(rp))

+‖1+

(1− a)‖(rp − E(rp))
−‖p − E(rp)

This risk measure, proposed by Chen and Wang
(2008), takes into account both sides of the loss dis-
tribution, with (rp − E(r))− = max(r̄p − rp, 0) and
(rp − E(r))+ = max(rp − r̄p, 0) denoting, respec-
tively, the downside and the upside of rp. Therefore,
the ‘two-sided’ approach takes a convex combination
of the 1-norm of the upside and the p-norm of the
downside, where a and p denote a pair of parame-
ters by which it is possible to model the investor’s
risk attitude. Chen and Wang (2008) prove that the
two-sided risk measure is also coherent.

Equal risk contribution fERC(x) =
∑n
i=1

∣∣∣∣∣xi(Cx)i
xTCx

− 1

K

∣∣∣∣∣ Equal risk contribution (ERC) strategies are based
on the idea that weights x may be adjusted so that
each asset equally contributes to portfolio risk, i.e.

for K assets we have RC(x)i =
σp(x)

K
, as the portfo-

lio volatility can be decomposed in (Cx)i risk com-

ponents, therefore σp(x) =
∑n
i=1 xi

(Cx)i√
xTCx

. The

seminal study of Maillard et al. (2010) show that
RP portfolios are located between minimum variance
and 1/n portfolios in terms of risk.

V aR(1−β) V aR(1−β) = F−1(1− β) The value at risk is the (1 − β) quantile of the dis-
tribution function F of the portfolio loss (parametric
VaR). The mean-VaR optimization problem is cum-
bersome, since VaR is a non-convex function of port-
folio assets, with multiple stationary points; more-
over, it does not display sub-additivity (Lwin et al.
(2017)).

Expected Shortfall ES = V aR+
1

β

∫∞
V aR

(1− F (r))dr The expected shortfall is the conditional mean value
of the losses exceeding V aR(1−β). It is largely known
as a risk measure with many appealing properties,
since it is a coherent risk measure that can be eas-
ily reformulated in a linear program. Scenario-based
CVaR minimization problems via LP have been pro-
posed first by Rockafellar and Uryasev (2000).

42 Basics on portfolio selection

Figure 2.1: Cost functions for VaR and Omega, for a three asset optimization problem
(shortselling allowed). The surfaces are non smooth, with many local maxima in both
cases.

2.1.1.1 Measuring tail risks

Fishburn (1977) shed light on a comprehensive family of risk measures called lower
partial moment (LPM), i.e. below-target risk measures capturing the ‘bad tail’ of the
distribution of returns, normally used as ex-post measures of performance. Nonethe-
less, some contributions (e.g. Gilli et al. (2006), Gilli et al. (2011), Lwin et al. (2017))
have dealt both with downside risk optimization and with risk/reward optimization in
which risk and reward are treated, respectively, as lower and upper partial moments.
Certain risk measures, as discussed below in Table 2.1, combine partial moments of
the same order (e.g. Omega ratio), while others (e.g. the Two-sided risk measure)
mix partial moments of different orders.

The general idea of partial moment is to catch return asymmetry around a thresh-
old rd, i.e:

M+
γ =

1

n

n∑
i

(ri − rd)γ1{ri>rd}

M−γ =
1

n

n∑
i

(rd − ri)γ1{ri>rd}

(2.3)

With + and − denoting respectively the left and the right tail of an empirical return
distribution and γ the order of each partial moment. Another way of dealing with
the ‘bad’ tail the distribution is to consider quantiles and superquantiles (also known
respectively as VaR and CVaR in finance), for a given distribution of losses l:

q(α) = F−1(α)

q̄(α) = E[l|l > q(α)]
(2.4)

Another possibility is given by two-sided approaches (Rockafellar et al. (2006), Chen
and Wang (2008)), in which upper and lower moments of different orders are combined
to obtain a family of new risk measures. The idea is to extend the good properties
of LPM and quantile-based measures, which are often not coherent though, to both
sides of the return distribution. Compared to variance, which puts same weights to
positive and negative deviations from the mean, the reasons behind the formulation
of VaR or CVaR are well founded, as it has been shown empirically that investors
value differently losses and gains (see e.g. Borges and Knetsch (1998), Kahneman and

Basics on portfolio selection 43

Tversky (2013)). However, as Chen and Wang (2008) note, in economic terms, the
strict separation of downside risk and upside potential may affect negatively the in-
vestment decision, by discarding potentially useful data and by representing portfolio
risk only in terms of downside risk, which is somehow an ‘incomplete’ representation
of the investment opportunity. Furthermore, to model correctly some stylized facts
in financial markets, it is essential for the risk measure to capture the deviation from
the mean in an asymmetrical way and to satisfy coherence. The attitude towards risk
can be tuned accordingly with risk aversion parameters (see 2.1 for further details on
the two-sided risk measure). This broad family of deviation measures proposed first
by Rockafellar et al. (2006) is the following:

D(rp) = ‖a(rp − E(rp))
+ + b(rp − E(rp))

−‖p (2.5)

For any p ∈ [1,∞], a ≥ 0, b ≥ 0 and a+ b > 0.
Finally, another possibility is to give up on estimating expected returns, focusing

on the so-called smart beta strategies, which focus only on managing risk. In this
family, minimum variance, equally weighted and equally-weighted risk contribution
portfolios Maillard et al. (2010) are included: the general idea, indeed, is to make the
strategy less reliant on input estimates, with the purpose of constructing more robust
and stable portfolios.

2.1.1.2 Assessing the sensitivity of MV portfolios to input estimation

The stability of mean-variance portfolios is of course one of the key themes of portfolio
management, which we only sketch here for space limits. We introduce the topic by
recalling a few elementary results, following the discussion in Roncalli (2013). First of
all, consider the following standard quadratic portfolio optimization problem, without
the non-negativity constraint, with γ denoting a risk-aversion parameter:

x∗ = argmin
1

2
xTΣx− γxT r (2.6)

and its closed-form solution is x∗ = γΣ−1r. Consider now the sample return vector
r and the sample covariance matrix Σ̂ and note that the solution to problem 2.6 is
a function of the inverse of the covariance matrix, which we denote, as in Roncalli
(2013), with I = Σ−1. The covariance matrix, as any diagonalizable matrix, can be
factorized as follows:

Σ̂ = PΛPT (2.7)

which is the eigendecomposition of Σ̂, where P is an orthogonal matrix consisting
of the n columns of the eigenvectors of Σ̂ and Λ = diag(λ1, . . . , λn) is the diagonal
matrix of the eigenvalues, with λ1 > λ2 > · · · > λn.

ˆΣ−1 = I = (PΛPT)−1

=
(

(PT)−1Λ−1P−1
)

= (PΛ−1PT)

(2.8)

The eigenvectors of I are the same of Σ̂, while the eigenvalues of I are the inverse of
th eigenvalues of Σ̂. We denote each eigenvector as ei and each vector yi = ei

T r is
called principal component. It follows that:

n∑
i

V ar(ri) = tr(Σ̂) =

n∑
i

λi =

n∑
i

V ar(ri) (2.9)

The key implication is that each eigenvalue of Σ̂ explains a percentage of total vari-

ance, with
λi

λi + · · ·+ λn
denoting the amount of variance explained; moreover, an

44 Basics on portfolio selection

interesting implication is that each component has an economic meaning, with the
first one representing the market risk factor, the next eigenvectors denoting the com-
mon risk factors and the last eigenvectors representing the noise factors (Roncalli
(2013)).

This result is clearly useful for two reasons. On the one hand, it could be exploited
to obtain more robust portfolios, by removing noisy components and keeping the most
informative factors. Furthermore, if we consider the solution to problem 2.6, we have
that x∗ = γΣ−1r = x∗ = γPΛ−1PT r, it follows that PTx∗ = γΛ−1PT r, so we observe
that the Markowitz closed-form solution of the quadratic program 2.6 is actually
proportional to the vector of returns and inversely proportional to the eigenvectors.
The unpleasant consequence is that the Markowitz approach has small exposure to
common risk factors and to the market factor, with greater concentration on noisy
factors. This well-founded argument provides a more than robust evidence to the
poor out-of-sample performance of plain mean-variance portfolios, as they basically
gets large exposure to noise, resulting in unstable and counterintuitive compositions.
In figure 2.2 we propose an empirical test that backs all the previously mentioned
results, based on the Hang Seng covariance matrix at December 2014. On the y-
axis the fraction of explained variance of the ith component is reported, with the
noisy factors explaining a large part of variance in the case of the information matrix,
whereas in the case of the covariance matrix about 40% of variance is explained by
the market factor.

Figure 2.2: Eigenvalues of covariance and information matrices of stock returns (Hang
Seng index). This example, based on our own data, is largely similar to the test
reported in Roncalli (2013), section 1.2.

So far, we have considered a regularization technique of the covariance matrix both
to explain the poor out-of-sample performance of standard mean-variance portfolios
and to improve the performance itself by making the solution more stable. In what
follows, we sketch a few more regularization strategies, following DeMiguel et al.
(2009).

First of all, recall that the solution of problem 2.6 is x∗ = γΣ−1r. Jagannathan
and Ma (2003) propose to add i no-short sales constraints x > 0 to the minimum

Basics on portfolio selection 45

variance portfolio in order to regularize it: although the proof goes beyond the scope
of this chapter, it can be shown that it is equivalent to determining an unconstrained
minimum variance portfolio for which the sample covariance matrix is Σ̄ = Σ̂−λ1T −
1λT , where λ ∈ R is the vector of Lagrange multipliers for the shortsale constraint.
Given the KKT conditions, the constraint λi ≥ 0 must be satisfied and if it is active,
the sample covariance of asset i is reduced (or shrinked) by λi.

A similar approach has been proposed by Ledoit and Wolf (2003), in which the
sample covariance matrix is replaced with a weighted average of the sample covariance
matrix itself and a highly structured target estimator, which could be a covariance
matrix with constant correlation or a multiple of the identity matrix:

Σ̂shrink = αΣ̂ + (1− α)Σ̂target (2.10)

with 0 < α < 1, Σ̂ an unbiased estimator of the covariance matrix with large estima-
tion error, Σ̂target a biased estimator with little estimation error.

Finally, we provide a sketch of the family of penalization methods (see e.g. DeMiguel
et al. (2009)), which are based on regularization problems of the linear regression
model, with widespread applications in machine learning. The `1-norm constrained
portfolio (also known as Lasso penalty) adds a penalty term, which is equal to the
sum of the absolute value of the weights:

x∗ = argmin
1

2
xT Σ̂x− γxT r + λ‖x‖

s.t. 1Tx = 1
(2.11)

It tends to generate sparser portfolios compared to standard mean-variance optimiza-
tion; as a result, portfolios generated with the Lasso approach are generally more
stable. The effect of penalizing each weight is to shrink the weights towards zero
and forcing some of them to be equal to zero, provided λ is large enough, by per-
forming variable selection. Though there is no closed-form solution, this approach
is particularly useful because it typically leads to simpler and highly interpretable
models, especially when large-scale optimization problems are taken into account.
Jagannathan and Ma (2003) show that, under certain conditions, the solution of the
`1 norm-constrained portfolio is equivalent to the solution of the portfolio with the
short-sale constraint.

The `2-norm constrained portfolio (also called Ridge penalty) is defined as follows:

x∗ = argmin
1

2
xT Σ̂x− γxT r + λxTx

s.t. 1Tx = 1
(2.12)

Roncalli (2013) shows that problem 2.12 could be reformulated as follows:

x∗ = argmin
1

2
xT (Σ̂ + 2λIn)x− γxT r (2.13)

He notes indeed that equation 2.13 is a mean-variance portfolio with a modified
covariance matrix, i.e. Σ̄ = Σ̂+2λIn, which amounts to adding the quantity 2λ to the
diagonal elements of the covariance matrix, which is actually similar to the shrinkage
approach of Ledoit and Wolf (2003). The main advantage of ridge penalty is rooted
in the tradeoff between bias and the estimation error: by imposing a constraint λxTx
the coefficients of the model are shrinked towards zero, making the model more robust
and stable. The key difference between Lasso penalty and Ridge penalty is that it the
latter shrinks all the coefficients slowly, whereas in the case of Lasso some coefficients
decrease more quickly towards zero.

2.1.2 Mixed-integer programming (MIP) problems
We briefly summarize here the formulation of the optimization problem with integer
constraints that we use in section 4.3 to perform a set of tests: here we focus briefly on

46 Basics on portfolio selection

some issues involving the design of the programming problem; we take into account
practical integer constraints for a start, then we propose our (general) optimization
model. As clarified before, we extend the basic models with real-world constraints,
which reflect better a practical approach of active asset management (Lwin et al.
(2017)); most importantly, we can now cope with an alternative and more complex
portfolio design, which integrates a variety of risk measures into the framework of
mixed-integer portfolios. We consider two standard integer constraints:

• Cardinality constraint : cardinality constraints limit the number of K assets
composing the portfolio; in this way we select a relatively small subset of the
available assets in the problem instance. Imposing a constraint to the number
of assets in the portfolio usually leads to better out-of-sample performance, as
it reduces the complexity of portfolios, leading to a way more sparse represen-
tation, which in turn has two main benefits: on the one hand, sparse portfolios
are more robust, as they are less sensitive to input parameters; on the other
hand, a sparser representation dramatically reduces turnover;

• Floor and ceiling constraints: the floor and ceiling constraints are needed to
further limit the proportion of each asset held in the portfolio, so we assume
that each asset weight lies between bound li and bound ui. This constraint (as
well as the cardinality constraint) has been introduced by Chang et al. (2000)
for portfolio selection problems (PSPs) and it has some of the benefits presented
for the cardinality constraint, as enforcing a lower and an upper bound to each
asset in the portfolio leads to more robust results (and likely better out-of-sample
performance), as well as lower transaction costs. Especially in a Markowitz-like
framework, upper and lower bounds are expected to favor a more stable solution,
as it avoids extreme and unnatural concentrations in a few assets.

Therefore, we can now write the general mixed-integer portfolio selection problem as:

min
x

φ(x)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, . . . , n
n∑
i=1

δi = K

δili ≤ xi ≤ δiui i = 1, . . . , n

δi ∈ {0, 1} i = 1, . . . , n

(2.14)

where δi ∈ {0, 1} represent N integrality constraints, namely δi is a binary variable
to include or exclude asset i in the portfolio; moreover, with δili ≤ xi ≤ δiui we
impose N floor and ceiling constraints and with

∑n
i=1 δi = K we denote the car-

dinality constraint, i.e. we impose that exactly K active position are chosen from
the market index. Finally with xi ≥ 0 we denote the no-short selling constraint and
with

∑n
i=1 xi = 1 we ensure that all the capital is invested in the portfolio. This

formulation will turn out to be particularly useful in section 2.2, in which we study
a penalty approach to incorporate the above mentioned integer constraints into the
objective function.

2.2 A reformulation of the mixed-integer portfolio
selection problem based on the exact penalty
function

Recall that the solution of the portfolio selection problem (PSP) is given by a vector of
N variables x1, . . . , xN , where each xi represents a fraction of the amount invested in

Basics on portfolio selection 47

asset i. Furthermore, we have already specified that heuristic approaches generally can
deal with unconstrained problems; therefore, various strategies have been proposed
to tackle both equality and inequality constraints. di Tollo and Roli (2008) propose
a sweeping classification of search processes based on infeasibility handling:

1. All feasible approach: each candidate solution must satisfy the constraints at
each step of the search process (Chang et al. (2000));

2. Repair approach: infeasible solutions are immediately ‘repaired’ in order to sat-
isfy the constraints; consequently, the search algorithm basically is not allowed
to visit unfeasible solution in the search space, as it is forced to correct the
values of infeasible solutions (Lwin et al. (2017));

3. Penalty approach: the search algorithm is allowed to visit infeasible solutions,
whose cost function receives an additional penalty depending on the amount of
constraint violation (Corazza et al. (2021)).

In what follows, we sum up some key facts about the penalty strategies, with the aim
of providing a general framework for the application of the exact penalty function
to portfolio selection problems. In particular, in subsection 2.2.1 we introduce some
results on penalty approaches, while in subsection 2.2.2 we define a specific model
that we subsequently use to perform a set of tests in Chapter 4.

2.2.1 A brief introduction to penalty methods

The main references for this subsection are Nocedal and Wright (2006) and Bazaraa
et al. (2013). The general idea behind penalty methods is to replace a (nonlinear)
constrained optimization problem with an unconstrained one, in which the constraints
are included into the objective function by means of a penalty term. We consider
essentially three strategies:

• The Quadratic penalty method includes the constraints in the objective function
by adding a multiple of the squared violation of all the constraints. The con-
strained problem is typically solved with a sequence of unconstrained penalized
problems;

• The Nonsmooth exact penalty method replaces the original constrained prob-
lem with a single unconstrained problem, i.e. with a nonsmooth exact penalty
function. It is possible to deal with the nonsmoothness of the penalty func-
tion by reformulating the nonlinear problem as a quadratic one, which can be
tackled with a standard quadratic solver; otherwise, it is also possible to apply
derivative-free methods;

• The Augmented Lagrangian method, which presents some similarities with the
quadratic penalty methods and deals with some of its drawbacks, by introducing
Lagrange multiplier estimates into the objective function.

2.2.1.1 Quadratic penalty method

Consider the following nonlinear minimization problem with equality and inequality
constraints:

min
x

φ(x)

s.t. gi(x) = 0 i = 1, . . . ,m

ki(x) ≤ 0 i = m+ 1, . . . , p

(2.15)

Where I = {i : ki(x) = 0} is the set of binding constraints for which ki(x) ≤ 0
is satisfied with equality. The problem can be reformulated as a quadratic penalty

48 Basics on portfolio selection

function, which is defined as:

Q(x, µ) = φ(x) +
µ

2

m∑
i=1

g2
i (x) +

µ

2

∑
i∈I

([ki(x)]−)2 (2.16)

where µ > 0 denotes a penalty parameter and where [ki(x)]− = max [0, ki(x)]. As
Nocedal and Wright (2006) note, the algorithmic framework require a proper design.
In order to ensure a fast convergence of the algorithm towards the minimum, the
choice of µk at a given k iteration is particularly critical; for instance, given a tolerance
threshold ‖∇xQ(x, µk)‖ ≤ τk as a stopping criterion, convergence towards the optimal
value may not be achieved when the penalty parameter is not large enough.

The problem formulated in equation 2.16, as any unconstrained problem, can be
tackled with a variety of algorithms, though, as reported in Nocedal and Wright
(2006), the key drawback of this method is that it is particularly sensitive to the ill-
conditioning in the Hessian ∇2

xxQ(x, µk). We sketch briefly this problem, but we do
not investigate the poor performance of some well-known unconstrained minimization
algorithms when tacking this formulation of the problem. For the sake of simplicity,
consider now the quadratic penalty function without inequality constraints: the gra-
dient and the Hessian are respectively given by:

∇xQ(x, µk) = ∇φ(x) +

m∑
i=1

µkgi(x)∇gi(x)

∇2
xxQ(x, µk) = ∇2φ(x) +

m∑
i=1

µkgi(x)∇2gi(x) + µk∇gi(x)T∇gi(x)

(2.17)

We set H = ∇2
xxQ(x, µk) and we define the condition number of H as κ(H) =

|λmax(H)|
|λmin(H)|

, i.e. the ratio between the largest and smallest eigenvalues: informally, we

say that for large values of κ(H), matrix inversion is sensitive to error in input, namely
the Hessian is ill-conditioned. The singular value decomposition of H is H = UΣV T ,

and if H is non-singular, we have H−1 = V Σ+UT , where Σ+
ij is equal to

1

Σij
if i = j,

otherwise Σ+
ij = 0. Intuitively, since λmax = λm = Σmm, the source of potential

instability is now apparent1.

2.2.1.2 Nonsmooth exact penalty method

The second class of penalty functions is called exact because, for certain values of the
penalty parameter, it requires one unconstrained minimization to yield an optimal
solution, so that it does not rely upon the parameter update strategy discussed above.
Quadratic penalty functions, instead, are not exact because their minimizers are not
a solution of the nonlinear program for any positive µ. We comment briefly the `1
penalty function, which is nonsmooth due to the presence of the absolute value. As
a consequence, it is not twice differentiable:

C1(x, µ) = φ(x) + µ

m∑
i=1

|gi(x)|+
∑
i∈I

[ki(x)]− (2.18)

We refer the reader to subsection 2.2.2, where we briefly discuss an important
theorem, which ensures the exactness of the `1 penalty function in the context of
portfolio selection problems: for a proof, see e.g. Bazaraa et al. (2013). Typically,
in order to handle this class of penalty functions, C1 is reformulated as a smooth

1Recall, for instance, that the Newton step for Q(x, µk) involves the computation of the inverse
of the Hessian, i.e. p = −∇2

xxQ(x, µk)−1∇xQ(x, µk).

Basics on portfolio selection 49

quadratic programming problem, while here we directly optimize the C1 function via
evolutionary algorithms.

Nocedal and Wright (2006) point out that the exactness of the `1 penalty function
follows directly from its nonsmoothness. They provide an informal proof, which is
sketched briefly below. Consider the `1 penalty function with one equality constraint
g1(x) = 0:

C1(x, µ) = φ(x) + µh(g1(x)) (2.19)

where h is a real-valued function, h(·) ≥ 0 and h(0) = 0. Supposing that h is
continuously differentiable, given that h has a minimizer in zero, so ∇h(0) = 0. If x∗

is a solution of the problem, g1(x∗) = 0 and ∇h(g1(x∗)) = 0. Finally, we have:

∇C1(x∗, µ) = 0 = ∇φ(x∗) + µ∇g1(x∗)∇h(g1(x∗)) = ∇φ(x∗) (2.20)

However, as the authors argue, it is not generally true that∇φ(x∗) = 0 for constrained
problems, therefore h is not differentiable and C1(x, µ) is not smooth.

2.2.1.3 Augmented Lagrangian method

Finally, we outline the Augmented Lagrangian method: for the sake of simplicity,
we consider only equality constraints and we provide only an intuition behind this
approach, which is related to the quadratic penalty function. It introduces also a
key difference, by including explicit Lagrangian multiplier estimates in the objective
function. Now, let us recall one more result in the context of quadratic penalty
functions: Nocedal and Wright (2006) show that if a x∗ is a KKT point there is a
sequence K such that:

lim
k∈K
−µkgi(xk) = λ∗i for all m equality constraints (2.21)

where λ∗i is the Lagrangian multiplier vector for which the KKT conditions hold. The
equality constraints are approximated as follows:

gi(xk) ≈ −µkλ∗i for all m equality constraints (2.22)

This result is crucial because it shows that a sequence {xk} achieves an inexact but
increasingly accurate minimization of the quadratic penalty function Q(·, µk), i.e. we
have that gi(x)→ 0 for µk →∞. The Augmented Lagrangian method works around
this undesirable property, by including the estimate 2.22 of the Lagrangian multipliers
in the objective function with quadratic penalty. So we have that:

L(x, λ, µ) = φ(x)−
m∑
i=1

λigi(x) +
µ

2

m∑
i=1

g2
i (x) (2.23)

It is possible to prove that under certain conditions, when the exact Lagrange multi-
plier λ∗ is known, x∗ is a strict minimizer of L(x, λ∗, µ), with µ > µ̂ and µ̂ a threshold
value (Nocedal and Wright (2006)). Given that practically λ∗ is not known, it is still
possible to obtain a good estimate of x∗, under the condition that λ∗ is a good esti-
mate of the true Lagrangian multipliers as well, even for small values of µ. In order
to perform minimization with respect to x, it is again necessary design a proper al-
gorithmic framework, in which at every k iteration the penalty parameter µk > 0 is
increased and an estimate λk is determined. The optimality condition, denoting with
xk the approximate minimizer of L(xk, λ

k, µk), is the following:

0 ≈ ∇L(xk, λ
k, µk) = ∇φ(xk)−

m∑
i=1

[λki − µkgi(xk)]∇gi(xk) (2.24)

It follows that λ∗i ≈ λki − µkgi(xk) and by rearranging the expression one obtains
gi(xk) ≈ − 1

µk
(λ∗i − λki), so that if λk is close to the true value λ∗ the infeasibility

50 Basics on portfolio selection

of xk is smaller than 1
µk

. Finally, we note that the convergence of the Augmented
Lagrangian method is ensured without setting µ→∞: this approach makes the algo-
rithm less dependent on the choice of µk and generally less prone to ill conditioning;
the choice of the starting is less relevant as well. We refer to Nocedal and Wright
(2006) for deitailed proofs of the above mentioned results.

2.2.2 Reformulating the portfolio selection problem
In this study, we focus on penalty methods and in particular we adopt the framework
outlined by Fletcher (2013) and then extensively applied by Corazza et al. (2013)
and Corazza et al. (2021) to solve complex portfolio selection problems; here we
recap the main steps. Given a cost function φ : RN → R and two vector functions
g = {g1, . . . , gm} : RN → Rm and k = {km+1, . . . , kp} : RN → Rp−m, the general
nonlinear programming problem is the following:

min
x∈S

φ(x) (2.25)

subject to the constraints
gi(x) = 0 i = 1, . . . ,m (2.26)

ki(x) ≤ 0 i = m+ 1, . . . , p (2.27)

Given the two class of constraints 2.26 and 2.27, we follow the notation adopted by
Fletcher (2013) and we denote with S the feasible region:

S = {x| gi(x) = 0, i = 1, . . . ,m; ki(x) ≤ 0, i = m+ 1, . . . , p} (2.28)

Intuitively, the idea is to balance the need of minimizing the cost and meanwhile
staying inside the feasible region. As noted by Fletcher (2013), it is possible to
combine φ, g and k, i.e. by minimizing the former quantity coupled with a penalty
for constraints g and k violation.

It is possible to associate to the constrained problem (2.25, 2.26 and 2.27) the
following `1 penalty function:

C(x, ε) = φ(x) +
1

ε

[
m∑
i=1

‖gi(x)‖1 +

p∑
i=m+1

‖ki(x)‖1

]
(2.29)

For portfolio selection problems, we rearrange the `1 penalty function as follows:

C(x, z, ε) =φ(x) +
1

ε

[∣∣∣ N∑
i=1

xi − 1
∣∣∣+ max

{
0,

N∑
i=1

zi −K
}

+

N∑
i=1

max{0, zili − xi}

+

N∑
i=1

max{0, xi − ziui}+

N∑
i=1

∣∣∣zi(1− zi)∣∣∣]
(2.30)

With ε denoting a penalty parameter. Finally, our `1 penalty problem is:

min
x∈RN ,z∈RN

C(x, z, ε) (2.31)

The exact penalty function 2.30 is actually non-smooth due to the `1 penalization
terms, which actually makes a genetic algorithm an attractive choice for the opti-
mization problem at hand, given that the derivative of C(x, z, ε) is not required. This
will turn out to be particularly useful in section 4.3, in which rather than reformu-
lating the problem as a smooth one, we will straightforwardly optimize the exact
non-smooth function.

Furthermore, it is possible to prove (see for details the proof of Theorem 9.3.1 in
Bazaraa et al. (2013)) that under certain conditions, there is a value of ε for which
a solution (x∗, z∗) of problem 2.31 is also a local minimum of 2.14. The theorem is
stated as below:

Basics on portfolio selection 51

Theorem 2.1. Consider the general problem 2.25 and denote with x∗ a KKT (Karush-
Kuhn-Tucker) point (see appendix A) with Lagrange multipliers ui for i = 1, . . . ,m
and λi for i ∈ I, where I is the set of binding constraints, for which ki(x) = 0.
Furthermore, suppose that x∗ is a regular point (i.e. it satisfies regularity conditions
provided in appendix A). Then, for ε ≥ max{λi, i ∈ I, |ui|, i = 1, . . . ,m}, x∗ also
minimizes the `1 penalized objective function C(x∗, ε) defined by 2.29.

Chapter 3

A literature review of crossover
operators

As outlined in Chapter 1, a dynamic strategy based on parameter control (which,
of course, could involve both numeric and symbolic parameters) could be devised to
tackle those optimization problems for which certain parameters give back a better
performance at different stages of the search process and/or for different problem
instances. In a nuthshell, the issue discussed and empirically studied in this section
and in the AOS-related literature (see Maturana et al. (2010) and di Tollo et al.
(2015)) is to select certain search operators dynamically in order to achieve an effective
exploration/exploitation policy. In particular, we focus on a well-known subclass of
EAs, i.e. Real Coded Genetic Algorithms (RCGA from now on). In broad terms,
RCGAs are based on a real-encoding strategy to define a population of solutions,
i.e. the solutions are first generated and then iteratively evaluated in an unbounded
real-valued search space RN . Instead, in binary-coded genetic algorithms (BCGAs)
binary-encoded solutions are represented according to a specific encoding scheme,
so that specific crossover operators are required to manage them in a binary search
space, namely Bl, with B = {0, 1} and l− string length (see Beyer and Deb (2001)).
Herrera et al. (1998) stress the fact that it is more natural to represent optimization
problems with variable in continuous search spaces, so that the solution is a vector
of floating point numbers. Furthermore, Herrera et al. (1998) and Herrera et al.
(2005) find out that binary coding is not suitable for large-scale dimension problems
or for all the problems that require a high numerical precision (i.e. because the fixed
string length affects the precision of the solution and actually an appropriate length
of the stringth is not known a priori. With RCGAs, instead, the vector size equals
the dimension of the problem at hand, so that each gene represets a variable of the
problem; finally, Herrera et al. (1998) argue that another advantage is their ability to
exploit the graduality of the functions with continuous variables, i.e. small changes in
the variables lead to a small change in the objective functionm whereas in a BCGA
framework usually a so-called Hamming cliff problem arises; this issue refers to the
fact that two neighboring solutions may have very different binary representation,
leading potentially to convergence towards local optima under certain conditions (see
Goldberg (1988) and Herrera et al. (1998)). The chapter is structured as follows: in
section 3.1 we explore some design principles for crossover operators and we propose
some guidelines; then, in section 3.2 we propose a taxonomy of real-coded crossover
operators in the context of GAs, largely based on the contribution of Herrera et al.
(1998) and Herrera et al. (2005).

53

54 A literature review of crossover operators

3.1 A discussion of crossover operators design prin-
ciples

The point of choosing a broad set of different crossover operators is to take advantage
of the potential of each operator in a specific stage of the search process: indeed,
as noted by Herrera et al. (2005), the quality of the solutions in the visited region is
problem-dependent (which is of course consistent with the NFL theorem, Wolpert and
Macready (1997)) or could even depend on the stage of the search process, for a given
problem. The authors propose, as a consequence, a comparative study based on hybrid
crossover, in order to combine many features of different crossover operators; indeed,
each operator is characterized by a search bias. In order to be more effective, it should
be adjusted to adapt to the structure of the problem. Certain crossover operator could
turn out to be more suitable than others in solving specific problems (Herrera et al.
(2005)). Finally, we mention also the contribution of Yoon and Moon (2002), who dig
into a slightly dissimilar approach, based on synergies between operators.

3.1.1 Some guidelines
In the last twenty years, many authors have posed the problem of defining a set of
‘guidelines’ (Herrera et al. (2005), Kita and Yamamura (1999)) to design correctly
genetic operators and more specifically, much attention has been put in particular on
the crossover ones.

Here we limit ourselves to highlight the key points from these literature surveys,
which we set as referring point in the process of building up an operator list for
dynamic and adaptive operator selection.

First of all, Kita and Yamamura (1999) propose a ‘functional specialization hy-
pothesis’, which basically states that the selection operator should gradually narrow
the probability density function (p.d.f.) of the population, while the crossover op-
erator should be designed to preserve the probability density function. The authors
motivate this statement as follows: if the crossover operation widens the p.d.f. of
the population, an amount of computation is wasted to search in vain to look for
solution in an area already cut out by the selection operator; instead, if the crossover
operator narrows the p.d.f., it looks for solutions in a subregion specified in the selec-
tion process, so that the remaining search space is utterly ignored, which is for sure
undesirable.

A broader strategy for designing crossover operators is the one presented by Her-
rera et al. (2005), who suggest the following set of guidelines:

1. The statistics of the population, i.e. the mean vector and the variance-covariance
matrix, should be invariant with respect to the crossover operations;

2. Offsprings should have as much diversity as possible, given the constraint in
Guideline 1;

3. Guideline 1 should be dropped if the selection operator does not work ‘properly’
(i.e. it fails to suggest a good region); the user may consider to design operators
in such a way that the population variance is increased for each breeding process.

Moreover, some authors suggest a set of postulates (e.g. Beyer and Deb (2001),
Deb et al. (2002)) which, according to their argument, should represent a referring
point for future development of crossover operators.

They argue that certain crossover operators display a self-adaptive behaviour, i.e.
they generate additional diversity along time (explorative crossover) or use diversity
to create better individuals (exploitative crossover). Then they propose the following
postulates:

1. Postulate 1: Under a variation operator, the expected value of fitness should
not change.

A literature review of crossover operators 55

2. Postulate 2: The variance of the resulting children population should be greater
than that of the parent population.

The first postulate is based on a simple idea: the variation operator should not
use fitness information (though that is not always the case), therefore the population
average fitness should not vary as well; their point is that the task of the crossover
operator is simply to lead the population towards a suitable direction, while increasing
the variance of the resulting population.

The second postulate is grounded in an intuitive explanation too, which is by the
way similar to that of Kita and Yamamura (1999): given that the selection opera-
tor tends to reduce the population variance, it should be increased by the crossover
operator, with the aim of keeping a reasonable amount of diversity in the popula-
tion. These two properties should always be satisfied when designing recombination
operators.

From this perspective, Herrera et al. (2005) discuss a very encompassing taxonomy
of crossover operators, which is rearranged here for a general discussion: our purpose
is indeed to use the classes proposed in the literature to favour a formal analysis in the
context of adaptive and dynamic operator selection for the PSP. We will focus our
attention on the so-called ‘Neighborhood-based’ crossover class, by including some
more recent contributions to the field, which has for sure displayed promising results
for optimization problems.

3.2 A taxonomy of RCGA crossover operators

In this section we discuss a broad assortment of real-coded search operators, in a very
general and not-too technical framework and we provide a reasoned analysis of them.
Though the search space has been originally based on a binary encoding (Goldberg
(1988)), we stick to the tradition of GA-based portfolio selection literature, which
typically focuses on a real representation of each solution vector in the population,
which is of course a very straightforward approach for continuous problems. We
recall that a key building block of GAs is the mating process, which consists in
sharing information between vectors during the search process, by combining the
features of each parent, which in turn pass their ‘genetic’ material to the offsprings.
As pointed out by Herrera et al. (2005), the crossover operator is the main search
operator which leads the search process towards different areas of the solution space.
The core idea is to generate offspring solutions in a neighborhood of the parents; the
degree of proximity is typically relevant to guide the search process properly. In this
section, assets and chromosomes, genes and weights have exactly the same meaning,
as discussed in Chapter 2.

3.2.1 Discrete crossover operators: uniform and n-point re-
combination

The class of discrete crossover operators is borrowed from Herrera et al. (2005) and it
includes all the crossover operators applied in the binary encoded GA, for which a ver-
sion for RCGAs is admitted, mainly the n-point crossover and the uniform crossover.
Basically, the value of each k-th gene yi(k) in the offspring is always included in his
parents’ genetic material. According to the classification of the authors, given two
parents’ genes xi(k) for i = 1, 2 and denoting with αi = min{x1(k), x2(k)} and with
βi = max{x1(k), x2(k)}, for an arbitrary interval [ai, bi] with ai < αi and with βi < bi,
then the intervals [ai, αi], [βi, bi] are considered explorative and the interval [ai, bi] is
deemed exploitative Herrera et al. (1998). Note that this approach is highly flexible,
as the user can easily detect a priori the expected behaviour of an operator; poten-
tially, she/he is also allowed to tweak accordingly some tunable parameters, which
are normally designed to determine the desidered level of exploration.

56 A literature review of crossover operators

In this section we do not provide many insights, instead we focus solely on practical
issues; note that discrete crossover operators (see for instance Holland (1992)) are well-
known for being the most exploitative ones, given that, at each step of the optimization
process, the offspring population is made up with the same genetic material inherited
from the parents. As a consequence, those methods are somewhat lacking in visiting
certain subregions of the search space. In what follows, we use a set of acronyms
to identify each operator. A sweeping classification of each of them is available for
instance in Herrera et al. (1998).

• Single point crossover [OPX]

The single point crossover is the simplest crossover operator, which has been first
proposed in the seminal works of Holland (1992) and Goldberg (1988) generates
an offspring by mating two parents by means of a cutting point, i.e. a randomly
chosen position in the portfolio, by which the genetic material of each parent is
split into two parts. It has been widely used in PSP literature and among many
contributions we refer the reader, for instance, to Chang et al. (2000), whereas
Lin and Liu (2008) manage the vector of assets for a PSP with minimum lots
with one-point crossover. Given a population of N individuals {x1, x2, . . . , xN},
each individual is characterized by n genes; let xi denote a parent and with yi
an offspring, then we have:

xi = [xi(1), xi(2), . . . , x(N)] (3.1)

yi = [yi(1), yi(2), . . . , y(N)] (3.2)

Consider now two parents xa and xb and a cutting point k ∈ N randomly
chosen in the interval [1, n − 1]. Then, the two parents are mated to generate
two offsprings, which in turn inherit the genes from their parents in a random
fashion, as follows:

y1(n) = [xa(1), xa(2), . . . , xa(k), xb(k + 1), . . . , xb(N)] (3.3)

y2(n) = [xb(1), xb(2), . . . , xb(k), xa(k + 1), . . . , xa(N)] (3.4)

In a nutshell, the cutting point k determines how many genes the parent xa
is expected to pass to the first offspring; then the residual amount of genetic
material is passed to the second offspring. A similar procedure is carried out
for parent xb in the mating process.

• Multiple point crossover [MPX]

The multiple point crossover, discussed by Goldberg (1988), is pretty much an
extension of the single point crossover and it is based on a very similar idea.
Basically, the procedure includes more than one cutting point in the procedure.
Consider, for instance, a three point crossover; three numbers are randomly
drawn, so that we three different cutting point are considered (say k1, k2, k3).
It goes without saying that cutting points are drawn one after another, in order
that the inequality k1 < k2 < k3 is verified and they are defined over the [1, n−1]
interval. Hence, once the cutting point are determined, the offspring inherits,
say, the first portion of genes (assets for PSP) [1, k1] from parent xa, the second
portion [k1, k2] from parent xb, the third one [k2, k3] from parent xa and finally
the last portion [k3, N − 1] from parent xb, as follows:

yi =[xa(1), . . . , xa(k1), xb(k1 + 1), . . . , xb(k2), xa(k2 + 1),

. . . , xa(k3), xb(k3 + 1), . . . , xb(N)]
(3.5)

The remaining values in the solution vectors, i.e. the first and the third portion
of genes of parent xa, the second and the last portion of genes of parent xb may
be allocated to a second offspring.

A literature review of crossover operators 57

Algorithm 9: Single point crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 draw a cutting point k ∈ N randomly chosen in the interval [1, N − 1]
8 ‘mate parents xa and xb:’
9 xa = [xa(1), xa(2), . . . , xa(N)], xb = [xb(1), xb(2), . . . , xb(N)]

10 ‘generate an offspring yi:’
11 yi = [xa(1), xa(2), . . . , xa(k), xb(k + 1), . . . , xb(N)]
12 i = i+ 1

13 end
14 recombine P (t)
15 evaluate P (t)

16 end

• Uniform crossover [UX]

The uniform crossover, devised by Syswerda (1993), generates an offspring by
mating two parents. For instance, Chang et al. (2009) apply this variation
operator to a set of non-convex PSPs with integer constraints. For a The k− th
gene is passed either from parent xa with probability p = 0.5 or by parent xb
with probability 1− p = 0.5, for each k ∈ [1, n] position, as follows:

yi(k) =

{
xa(k) with probability p = 0.5

xb(k) with probability (1− p) = 0.5

• Global uniform crossover [GUX]

The global uniform has been proposed by Simon (2013) and it is a generalization
of the two-parent uniform crossover. The point of this approach is to extend
the parent pool to the whole population, so that the k − th gene is selected
with probability p = 1/N from the i − th parent. This standard algorithm,
though, chooses weights in a completely random fashion; as a consequence, one
may redefine the probability of selecting the k− th in accordance with a fitness-
based criterion (for instance, the most popular method allocates the normalized
fitness of each parent in the pool to a "roulette-wheel", encouraging and biasing
the selection toward more fit individuals).

• Queen bee crossover [QBX]

This method, discussed in Sung (2007), mimics the queen bee evolution in nat-
ural evolution; the author tests this recombination tool with a combinatorial
problem and two (continuous) function optimization problems. We note here,
just as done by the author, that a major flaw in this operator is its fast conver-
gence to (potentially) local solutions. The idea is the following. The "queen-
bee" represents the fittest parent, which is mated, for each step, with a randomly
chosen parent, which in turn is dropped at the following step and he or she is
replaced with another parent and so on. The author points out that, in order
to have the parents mated, a wide array of choices is available (e.g. simple
crossover techniques, like uniform or multiple point crossover strategies).

58 A literature review of crossover operators

Algorithm 10: Multiple point crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 draw {k1, . . . , kn} ∈ N cutting points randomly chosen in the interval

[1, n− 1], such that k1 < · · · < kn
8 ‘mate parents xa and xb:’
9 xa = [xa(1), xa(2), . . . , xa(N)], xb = [xb(1), xb(2), . . . , xb(N)]

10 ‘generate an offspring yi:’
11 yi = [xa(1), xa(2), . . . , xb(k1), . . . , xa(k2), . . . , xb(k3), . . . , . . . , xb(N)]
12 i = i+ 1

13 end
14 recombine P (t)
15 evaluate P (t)

16 end

3.2.2 Aggregation-based crossover operators
The key idea behind this class is to group those crossover operators which breed
individuals by means of an aggregation function which combines the gene values of
the parents in order to determine the gene values of the offsprings, i.e. for two parents
x1
i and x2

i we have y1
i = f(x1

i , x
2
i). A wide range of solutions has been proposed over

time and many benefit are associated with the flexibility given by one or more tunable
parameters.

• Arithmetic and average crossover [AX]
The arithmetic crossover, devised by Michalewicz (1992), produces two offspring
by mating two parents for each iteration. The resulting offsprings, are generated,
gene by gene, as a weighted average mean of his or her parents genes, definitely
displaced in the same position of the resulting offspring gene, as follows:

yi(k) = βxa(k) + (1− β)xb(k) (3.6)

A second offspring is generated similarly by inverting the β weights. Herrera
et al. (2005) argues that this search technique is an exploitative one, since every
offspring generated by this procedure is displaced into a space bounded by their
parents genes.
The average crossover, mentioned in Michalewicz (1992) and also discussed in
Simon (2013), simply derives the k−th gene in the offspring as an average of his
parents genes, drawn exactly from the same position in the vector representing
an individual, as follows:

yi(k) = (xa(k) + xb(k))/2 (3.7)

Note that the average crossover is a special case of the arithmetic one, indeed
β = 0.5. The general idea behind the arithmetic crossover lends itself for many
other variants. Some of them are mentioned in the following paragraph, but
note that it is possible to tweak the strategy by mating many more parents (i.e.
a multi-parent crossover) rather than two and then by taking the average of
them.

A literature review of crossover operators 59

Algorithm 11: Uniform crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 for j = 0 : N do
8 draw a random number r ∈ U [0, 1]
9 if r>0.5 then

10 yi(j) = xa(j)
11 else
12 yi(j) = xb(j) % generate a N dimensional offspring yi
13 end
14 end
15 i = i+ 1

16 end
17 recombine P (t)
18 evaluate P (t)

19 end

• Geometrical crossover [GX]

The geometrical crossover has been first proposed by Michalewicz et al. (1996)
and it could be also generalized, by including more than two parents in the
mating pool. In the above mentioned article, some simple test are carried out
to compare its performance to standard crossover operators. We limit ourselves
here to note that, by mating two parents, an offspring could be generated in
this way:

yi(k) =
√
xa(k) · xb(k) for each k − th gene (3.8)

They show that, consistently with the NPL theorem Wolpert and Macready
(1997), this recombination operator turns out to be a useful problem-specific
operator for some particular constrained optimization problems; clearly, geo-
metrical crossover can be applied only for those problems where the decision
variables are entirely non-negative. They show that for a few test cases the GA
combined with the geometric crossover shows a promising behaviour in bound-
ary search. Furthermore, it outperforms the arithmetic crossover in terms of
speed of convergence.

• Simplex crossover [SPX]

The design of the simplex crossover has been proposed by Renders and Bersini
(1994)) and it can be viewed as a generalization of the arithmetic crossover
(see Michalewicz and Schoenauer (1996)). A simplex is a geometrical figure
with (n + 1) vertices in a n-dimensional space. The methods starts with an
initial simplex and then it evolves through a series of geometric transformations
(reflection, contraction, extension), so that the initial simplex adapts itself to
the fitness landscape. At each iteration, the algorithm compares the relative
order in terms of fitness of the points, replacing at each transformation the
current worst point with a better one.

The first step involves the computation of a centroid: the operator selects k > 2
parents, then the best and the worst individual (in terms of fitness) are deter-

60 A literature review of crossover operators

Algorithm 12: Global uniform crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select all parents xa,. . . ,xN from P (t− 1)
7 for k = 0 : N do
8 draw a random number r ∈ U [0, 1]
9 if z/N < r < (z + 1)/N then

10 yi(k) = xz(k)
11 end
12 end
13 i = i+ 1

14 end
15 recombine P (t)
16 evaluate P (t)

17 end

mined within the group G, then its centroid c is computed by removing the
worst individual xwi from it, as follows:

c =
∑

xi∈G−xw
i

xi/(k − 1) (3.9)

Then the ‘reflected point’ is computed:

xr = c+ (c− xwi) (3.10)

If xr is better (in terms of fitness) than the best selected individual xbest, an
expanded point xe is determined:

xe = xr + (xr − c) (3.11)

If xe is better than xr, the offspring is xe, else the offspring is xr; otherwise if
xr is not better than xbest but it is better than xw, then the offspring is xr.

Renders and Bersini (1994) argue that their goal is to enhance the local ex-
ploitation properties of GA by biasing, in particular, the crossover operator;
furthermore, they note that the simplex crossover, being dependent on fitness
information, includes a ‘hill climbing’ mechanism, enhancing as a consequence
the local exploitation properties of GA. According to their tests, they find out
that the standard GA focus on the ‘global facet’ (i.e. it is efficient in detect-
ing areas of the search space likely to be high fitness), while it looks weak on
the ‘local facet’. Conversely, they claim that the hill climbing algorithms rely
heavily on local exploitation.

• Linear crossover [LNX]

The linear crossover has been devised by Wright (1991) to overcome some draw-
backs of the n-point crossover. The authors propose to generate three offsprings:
each k−th gene in the offspring is computed as a linear combination of the k−th
gene in parent 1 and in parent 2. In this way, the algorithm typically gives back
an offspring which behaves like the one determined by average crossover, and

A literature review of crossover operators 61

Algorithm 13: Queen bee crossover
Input : T : termination criterion

P (·): population
Iq: queen bee
Im: selected bees

1 t = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 select P (t) from P (t− 1)
6 P (t) = {Iq(t− 1), Im(t− 1)}
7 Recombine P (t)
8 do crossover
9 evaluate P (t)

10 end

Algorithm 14: Arithmetic crossover
Input : T : termination criterion

P (·): population of size S
β: a constant value c ∈ [0, 1]

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 for k = 0 : N do
8 yi(k) = βxa(k) + (1− β)xb(k)
9 end

10 i = i+ 1

11 end
12 recombine P (t)
13 evaluate P (t)

14 end

it is cointained in the interval bounded by the parents, while the other two are
generally located outside it. Finally, the authors choose to bias the selection,
by picking one or two offspring out of three according to their fitness. The
essence of this approach is to keep the randomness of the crossover operator
under control, by letting the search operator itself looking for best individuals;
the resulting population is definitely expected to be fitter and the whole process
is expected to converge rapidly to a solution, at the expense of some (useful)
diversity in the population.

yi(k) = 0.5 · x1(k) + 0.5 · x2(k)

yi+1(k) = 1.5 · x2(k)− 0.5 · x2(k)

yi+2(k) = −0.5 · x1(k) + 1.5 · x2(k)

• Direction-based crossover [DBX]

The direction-based crossover, devised by Arumugam et al. (2005), is a variant

62 A literature review of crossover operators

Algorithm 15: Geometrical crossover
Input : T : termination criterion

P (·): population of size S
β: A constant value c ∈ [0, 1]

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 for k = 0 : N do
8 yi(k) =

√
xa(k) · xb(k)

9 end
10 i = i+ 1

11 end
12 recombine P (t)
13 evaluate P (t)

14 end

of the linear crossover in the sense that the population is biased towards fitter
individuals, i.e. problem-specific information is introduced in the search process.

The direction-based crossover uses the fitness function information to determine
the direction of the search in the following way. First, we denote with f(·) a
generic fitness function and with r a random number such that r ∈ U [0, 1].
For two given parents xa and xb, assuming that f(xb) < f(xa), the operator
generates an offspring yi according to the following rule:{

y1 = r(xb − xa) + xb if f(xb) < f(xa)

y1 = r(xa − xb) + xa otherwise

• Heuristic crossover [HX]

The heuristic crossover, devised by Wright (1991), is a more sophisticated vari-
ant of the direction-based crossover; in this case the crossover is still based on
a fitness criterion, but it proposes a slightly different approach when dealing
with constrained optimization problems. The parents are chosen in the mating
pool and their fitness, before running the usual procedure of gene transmission,
is compared. Afterwards, a random number r is generated from a uniform dis-
tribution U [0, 1] and the genes are chosen accordingly with the rule displayed
below.

The heuristic crossover has been heavily applied by Michalewicz and Schoenauer
(1996) and Michalewicz (1995) for constrained optimization problems. In this
case, it produces one offspring, but it may also not produce any offspring; if the
offspring vector is not feasible, another random number is generated and another
offspring is produced. After w attempts, if no feasible solution is generated (i.e.
the constraints are not met), then the crossover operator gives up and the GA
moves on with the ensuing step.

Herrera et al. (2005) shows that a considerable shortcoming is the tendency to
converge prematurely; this procedure generates systematically offsprings in the
exploration zone, which is located on the left side of the best parent. Wright
(1991) suggests to apply the heuristic crossover operators in advanced stages
of the GAs. Michalewicz and Schoenauer (1996) find that a modified version
of the Genocop system, including the heuristic crossover, displays a superior

A literature review of crossover operators 63

Algorithm 16: Simplex crossover
Input : T : termination criterion

P (·): population of size S
β: A constant value c ∈ [0, 1]

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select three parents xk, with k = 1, . . . , 3 from P (t− 1)
7 compute the centroid c =

∑
xk∈G−xw

k
xk/(K − 1)

8 compute the reflected point xr = c+ (c− xwk)
9 denoting with f(·) a generic fitness function, if f(xr) > f(xbest),

compute an expanded point:
10 xe = xr + (xr − c)
11 if f(xe) > f(xr), yi = xe, else yi = xr, otherwise if

f(xw) < f(xr) < f(xbest), then yi = xr
12 i = i+ 1

13 end
14 recombine P (t)
15 evaluate P (t)

16 end

performance with respect to the precision of the solution; overall, their tests
show that it is particularly effective for fine local tuning. Note that the resulting
population is expected to display less diversity and a greater mean vector after
the crossover stage. For maximization problems we have:

yi(k) = xb(k) + r(xa(k)− xb(k)) if f(xb) > f(xa) (3.12)

3.2.3 Neighborhood-based crossover operators: mean and parent-
centric strategies

In this section we discuss a very broad family of crossover operators: actually the
‘neighborhood-based’ family of operators proposed in Herrera et al. (2005) covers
so many strategies that we feel the importance of making a distinction between the
mean-centric and the parent-centric operators (for a thorough discussion, see Deb et
al. (2002)). Indeed, the authors consider the crossovers which determine the genes of
the offspring from intervals defined in neighborhoods associated with the genes of the
parents, by means of a probability distribution. This is actually a very general defi-
nition, which does not take into account two different approaches extensively studied
in literature. We recall the importance of the guidelines presented at the beginning
of this chapter, in particular, the two postulates discussed in Beyer and Deb (2001)
are still considered the cutting-edge criteria for the design of crossover operators.

On the one hand, the mean-centric recombination preserves the mean vector of the
population, i.e. offsprings are displaced near the centroid of the parents; on the other
hand, the parent-centric recombination creates offsprings near the parents. The idea
is still to preserve implicitly the mean vector once the crossover operation is carried
out, because the expected population mean of the offspring population is equal to
that of the parent population (Deb et al. (2002)): guideline 1 is definitely fulfilled.
The only difference among these approaches is the region to be biased, the centroidal
or the parental one.

64 A literature review of crossover operators

Algorithm 17: Linear crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 for k = 0 : N do
7 yi(k) = 0.5 · x1(k) + 0.5 · x2(k)
8 yi+1(k) = 1.5 · x2(k)− 0.5 · x2(k)
9 yi+2(k) = −0.5 · x1(k) + 1.5 · x2(k)

10 end
11 i = i+ 3

12 end
13 recombine P (t)
14 evaluate P (t)

15 end

Furthermore, García-Martínez et al. (2008) point out that one more significant
advantage is implicit when designing parent-centric crossovers, i.e. they are self-
adaptive. Parent-centric crossover operators define a probability distribution based
on a measure of distance among the parents, hence if they are close the offsprings
are expected to be so as well, whereas if they are located far away from each other,
they are expected to be distributed sparsely. Implicitly, this strategy self-adapts
its behaviour (i.e. action range) by using information inherited from the parents
and increase/reduce diversity accordingly, leading to a more diverse population or
conversely to more refined offsprings in later stages of the search process. Moreover,
these self-adaptive operators are typically tunable by means of ‘strategy parameters’
(Beyer and Deb (2001)): the authors show that these operators are able to adapt to
a variety of fitness landscapes.

• Flat crossover [FX]

The flat crossover, proposed by Radcliffe (1991), generates the offsprings from
a uniform distribution, tweaking the classical crossover techniques in order to
improve the search process in terms of exploration, since it extends the search
process to every possible value contained in a uniform distribution bounded as
follows, for a given k-th gene of a generic offspring yi:

yi(k) = U [min(xa(k), xb(k)),max(xa(k), xb(k))] (3.13)

Still, note that the offspring is generated from a uniform distribution bounded
by the parents genes, which actually is not that beneficial for exploration pur-
poses, according to the framework sketched in Herrera et al. (2005); Radcliffe
(1991) finds out that RCGA with flat crossover performs better than traditional
crossover techniques on De Jong’s test suite.

• Blend crossover [BLX]

The blend crossover, proposed by Eshelman and Schaffer (1993), deals with the
limited search capabilities of the flat crossover by adding a parameter α whose
aim is to widen or to shrink the search domain. Given two parents xa and xb,
then the k−th gene of an offspring is drawn from a random uniform distribution,

A literature review of crossover operators 65

Algorithm 18: Direction-based and Heuristic crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 if f(xb) < f(xa) then
7 y1 = r(xb − xa) + xb
8 else
9 y1 = r(xa − xb) + xa

10 end
11 if ‘heuristic’ and ‘unfeasible’ then
12 draw r again up to w times
13 i = i+ 1

14 end
15 end
16 recombine P (t)
17 evaluate P (t)

18 end

as follows:

xmin(k) = min(xa(k), xb(k)), xmax(k) = max(xa(k), xb(k))

∆x = xmax − xmin
(3.14)

Then we have:

yi(k) = U [xmin(k)− α∆x, xmax(k) + α∆x] (3.15)

As highlighted by Herrera et al. (2005), a negative alpha encourages exploitation,
whereas a positive alpha tilts the crossover operator towards exploration; note
that the blend crossover is a simple generalization of the flat one: indeed, for
α = 0, they are equivalent.

Many articles in the past twenty years have investigated some useful character-
istics of the blend crossover; in general, it could be considered as a pioneering
operator in the mean-centric crossover family of crossover strategies, satisfying
most of its properties identified in literature over time (actually, the taxonomy
presented here is more recent and so the crossover design principles). Eshelman
and Schaffer (1993) suggest α = 0.5 because, they argue, the probability that
an offspring lies outside its parents is equal to to the probability that it lies
between his/her parents; furthermore, they stress the fact that for that value of
α the convergent/divergent tendecies are balanced.

From a different standpoint Deb and Beyer (2001) discuss a compelling proposal
for the design of crossover operators; indeed, the argue, a mean-centric operator,
to implement a truly self-adaptive recombination, should respect the following
properties:

– The extent of the offspring solutions is proportional to the parent solutions;

– The offsprings generated in close proximity to parents are monotonically
more likely to be chosen as children solutions than those distant from
parents.

66 A literature review of crossover operators

The gist of the above mentioned ideas, especially the latter, is to assign a bias
to certain solutions in order to implement a self-adaptive crossover strategy.

An interesting property of the blend crossover is the one highlighted in equation
3.14: if the difference in the parent is small, the difference between offsprings and
parents is small as well. In Deb and Beyer (2001) this property is deemed crucial
because the spread of current population has an impact on the following one,
i.e. the offspring solutions are somewhat proportional to the parents solutions,
implementing a simple and basic version of self adaptivity.

Though the blend crossover fulfills the first property, the second one is not fully
satisfied, because offsprings within a certain distance from parents are favored,
but no bias is attached to new solutions (i.e. a fixed probability is assigned to all
solutions near parents); as a consequence, they claim that generating uniformly
distributed offsprings in the proximity of parents does not fulfill completely the
principles behind self-adaption of crossover operators. The tests carried out in
the final part of the paper tend to confirm this intuition.

Algorithm 19: Flat and Blend crossover
Input : T : termination criterion

P (·): population of size S
α: a constant value c ∈ [0, 1]

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 if ‘flat’==True then
8 α = 0
9 end

10 for k = 0 : N do
11 xmin(k) = min(xa(k), xb(k)), xmax(k) = max(xa(k), xb(k))
12 ∆x = xmax − xmin
13 yi(k) = U [xmin(k)− α∆x, xmax(k) + α∆x]

14 end
15 i = i+ 1

16 end
17 recombine P (t)
18 evaluate P (t)

19 end

• Simulated binary crossover and fuzzy recombination [SBX] and [FR]

The simulated binary crossover, proposed by Deb et al. (1995), generates two
vectors of offsprings from a probability distribution, which is dependent on the
location of their parents; in other terms, it displays self-adaptive features. Fuzzy
recombination is based on a similar hypothesis and it can be derived from the
simulated binary crossover, so we discuss their properties jointly. Essentially,
FR is only different in that it is based on a triangular probability density. For
our discussion we refer mainly to Beyer and Deb (2001).

The simulated binary crossover is defined as:

y1 = 0.5[(1− β)xa + (1 + β)xb] (3.16)

y2 = 0.5[(1 + β)xa + (1− β)xb] (3.17)

A literature review of crossover operators 67

xa and xb are independent samples from the population of parents and β is a
sample from a random number generator with density:

p(β) =

{
0.5(n+ 1)βn β ≤ 1

0.5(n+ 1) 1
βn+2 β > 1

This distribution can be obtained by sampling from a random uniform U [0, 1]
and then by the following transformation:

β =

{
(2u)

1
n+1 if U(0, 1) ≤ 0.5

[2(1− u)]
−1

(n+1) otherwise

Here we want to highlight that the blend crossover and the fuzzy recombination
are special cases of the simulated binary strategy.

For what concerns blend crossover, with a simple reformulation of equation 3.16
we define:

β = 2ξ − 1 (3.18)

applied to 3.16 and 3.17 we obtain:

y1 = (1− ξ)xa + ξxb (3.19)

y2 = ξxa + (1− ξ)xb (3.20)

Hence ξ is sampled uniformly from U [−α, 1 + α], which is the Eshelman and
Schaffer (1993)’s blend crossover.

The fuzzy recombination, proposed by Voigt et al. (1995), is very similar to the
simulated binary crossover. The density of β has its maximum at β = 1. while
the only difference between them is the shape of the probability density p(β),
which is triangular for the fuzzy crossover:

p∆(ζ) =

{
ζ + 1 if −1 ≤ ζ < 1

1− ζ if −0 ≤ ζ ≤ 1

The β value in 3.16 and 3.17 is then obtained as follows:

β = 1 + 2ζd (3.21)

As Beyer and Deb (2001) suggest, d is a ‘strategy parameter’, which determines
how far the offspring should be located from parents. The random number ζ
with triangular distribution can be obtained as the sum of two independent
numbers U [0, 1]:

ζ = u1 + u2 − 1 (3.22)

The p.d.f. (whether p(β) or p∆(ζ)) has a non-zero mean and a maximum at
β = 1, whereas for the blend crossover the distribution has a zero mean and it
is uniform. This point is definitely crucial: we have mentioned previously the
self-adaptive property of certain parent and mean centric operators, which is
broadly considered useful and attractive (Kita (2001), García-Martínez et al.
(2008)), as it allows to displace offspring on the basis of a measure of distance
among parents, which is in turn helpful to define a probability distribution.

Recall that blend crossover generates offsprings on the basis of a distance mea-
sure (1), but the probability of creating solutions near parents (2) is fixed, which
is considered a main flaw by Deb and Beyer (2001), who argue that near parents
solutions should be more likely to be chosen than those that are distant; note
that blend and fuzzy crossover satisfy both properties (1) and (2).

68 A literature review of crossover operators

Algorithm 20: Simulated binary crossover
Input : T : termination criterion

P (·): population of size S
d: tunable parameter

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 for k = 0 : N do
8 xmin(k) = min(xa(k), xb(k)), xmax(k) = max(xa(k), xb(k))
9 ∆x = xmax − xmin

10 yi(k) = U [xmin(k)− α∆x, xmax(k) + α∆x]

11 end
12 yi = 0.5[(1− β)xa + (1 + β)xb]
13 yi+1 = 0.5[(1 + β)xa + (1− β)xb]
14 i = i+ 2

15 end
16 recombine P (t)
17 evaluate P (t)

18 end

• Laplace crossover [LX]

The Laplace crossover, proposed by Deep and Thakur (2007), is part of the
family of parent-centric crossover operators, sharing many characteristics with
the simulated binary crossover. The density function of the Laplace distribution
is given by:

f(x) =
1

2b
exp

(
−|x− a|

b

)
−∞ < x <∞ (3.23)

where a ∈ R is the location parameter and b > 0 is the scale parameter. For
b = 0.5 the probability of creating offsprings near the parents is higher and for
b=1 distant points are likely to be selected as offsprings. Moreover, the authors
proceed by drawing a random number u ∈ R from U [0, 1]; then a random number
β is generated from the Laplace distribution. This can be obtained by inverting
it:

β =

{
a− b log(u) u ≤ 1

2

a+ b log(u) u > 1
2

Then, the offsprings are generated as follows:

y1 = xa + β|xa − xb| (3.24)

y2 = xb + β|xa − xb| (3.25)

The idea behind this method is similar to that of other parent centric crossovers:
on the one hand the operator displays a self-adaptive behaviour, just like the
simulated binary crossover, being compliant with the two guidelines for self-
adaptive crossover operators design (in general, if the two parents are far from
each other, then the offsprings are expected to be far as well, for given values of a
and b). On the other hand, there are two tunable strategy parameters (a and b),
which are helpful to determine the shape of the probability density. The main
implication still involves the trade-off between exploitation and exploration; one
may impose for instance a small value of b to encourage the production of more
diversity in the population. Otherwise, in later stages of the search process

A literature review of crossover operators 69

Algorithm 21: Fuzzy crossover
Input : T : termination criterion

P (·): population of size S

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 for k = 0 : N do
8 % the probability that k-th gene yi(k) is given by p(yi(k))
9 %where φ(xa), φ(xb) are triangular p.d.f. having modal values

xa, xb
10 p(yi(k)) ∈ {φ(xa), φ(xb)}
11 i = i+ 1

12 end
13 end
14 recombine P (t)
15 evaluate P (t)

16 end

one may prefer fine-tuned solutions, which can be favoured by a convergent
population, i.e. by choosing a large value of b.

• Parent-centric normal crossover [PNX]

The parent-centric crossover, devised by Ballester and Carter (2004), seeks to
improve the simulated binary crossover by generating offsprings in regions of the
search space neglected by SBX, though it essentially fulfills the design principles
outlined in Deb and Beyer (2001) and Beyer and Deb (2001); in particular, it is
a parent-centric and self-adaptive operator, i.e. the spread of offspring solutions
depends on the distance between parents, which decreases as the population
tends to converge to a solution.

Consequently, the parent-centric crossover aims at preserving the many use-
ful properties of the simulated binary crossover and in the process it does not
exclude any regions, supporting a more effective and extensive exploration in
the search space. Furthermore, the parent-centric normal crossover is not bi-
ased towards any direction: rather, it uses an ellipsoidal probability distribution
around two parents to generate two offsprings. In order to satisfy the parent-
centric property is satisfied, as the offsprings are generated by means of a normal
distribution centered at the parents genes. Furthermore, the self-adaptive be-
haviour is achieved by exploiting the shrinking distance between parents, which
are used here to determine the second moment of the distribution. A tunable η
parameter increases/decreases further the concentration around the parents:

y1(j) = N(xa(j), |xb(j)− xa(j)|/η) (3.26)

y2(j) = N(xb(j), |xb(j)− xa(j)|/η) (3.27)

where N(µ, σ2) is a normal random number, η is a tunable parameter. With j
we denote as usual the j − th component of parent a or b.

• Unimodal normal distribution crossover [UNDX]

The unimodal normal distribution crossover, devised by Ono and Kobayashi
(1999), belongs to the family of mean-centric operators and it uses an ellipsoidal

70 A literature review of crossover operators

Algorithm 22: Laplace crossover
Input : T : termination criterion

P (·): population of size S
a, b: tunable parameters

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 if β = a− b log(u) then
8 else
9 β = a+ b log(u)

10 end
11 yi = xa + β|xa − xb|
12 yi+1 = xb + β|xa − xb|
13 i = i+ 2

14 end
15 recombine P (t)
16 evaluate P (t)

17 end

probability distribution to generate offsprings. Three parents are required to run
the algorithm, with two offsprings located on the line connecting two parents:
two disadvantages typically arise when using this crossover operator. First,
offsprings have zero probability of appearing in certain regions of the search
space. Moreover, this strategy struggles to find optimal points near to the
boundaries (Ono and Kobayashi (1999)). Finally, the authors and Kita et al.
(1999) have shown that this approach has a self-adaptive behaviour, with the
distance between the parents and the mean vector reducing progressively as the
convergence in the population increases.

Basically, (µ− 1) parents are randomly chosen (say, µ = 3) and their midpoint
xp is computed; thereafter, the difference vector (primary search direction) as
d = x2 − x1. Furthermore a third parent x3 is picked up randomly, and let D
denote the distance between x3 and the line connecting x1 and x2:

D = |x3 − x1|×

(
1−
((x3 − x1)T (x2 − x1)

|x2 − x1||x2 − x1|

)2
)1/2

(3.28)

An offspring is generated by the equation:

y1 = xp + ξd+

n−1∑
i=1

ηieiD (3.29)

where ξ is a random number following a random distribution N(0, σ2
ξ), ηi are

n − 1 random numbers sampled from a normal distribution N(0, σ2
η) and ei

an orthogonal basis vector. Ono and Kobayashi (1999) suggest σ2
ξ = 0.25 and

σ2
η = (0.35)2/n and µ = 3 to 7.

A literature review of crossover operators 71

Algorithm 23: Parent-centric normal crossover
Input : T : termination criterion

P (·): population of size S
η: tunable parameter

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select two parents xa and xb from P (t− 1)
7 for k = 0 : N do
8 yi(k) = N(xa(k), |xb(k)− xa(k)|/η)
9 yi+1(k) = N(xb(k), |xb(k)− xa(k)|/η)

10 end
11 i = i+ 2

12 end
13 recombine P (t)
14 evaluate P (t)

15 end

Algorithm 24: Unimodal normal distribution crossover
Input : T : termination criterion

P (·): population of size S
σ2
ξ , σ

2
η: tunable parameters

1 t = 0, i = 0
2 initialize and evaluate P (t)
3 while termination criterion T not met do
4 t = t+ 1
5 while i < S do
6 select three parents xa, xb, xc from P (t− 1)
7 choose randomly two parents (say, xa and xb), compute midpoint xp
8 compute the difference vector d = xb − xa
9 compute the distance D between parent xc and the line connecting xa

and xb
10 generate an offspring yi = xp + ξd+

∑n−1
k=1 ηiekD

11 %where ξ ∼ N(0, σ2
ξ), ηk ∼ N(0, σ2

η) and ek an orthogonal basis vector
12 i = i+ 1

13 end
14 recombine P (t)
15 evaluate P (t)

16 end

Chapter 4

Computational analysis

In this chapter, we propose a set of tests in which we evaluate the performance of
a variety of crossover operators according to the following framework. We begin the
analysis by evaluating in a static fashion the behaviour of each crossover operator in
section 4.1. The point of that experiment is to gauge the performance of each of them
in a simple experimental setting, and we investigate in particular if each operator is
more inclined towards exploration or exploration. A proper classification is indeed
useful to evaluate the behaviour of the controller: in section 4.2 we analyze the impact
on performance of the adaptive operator selection (AOS), as it is expected to steer the
search direction towards the desired direction, by picking the optimal operator for the
next iteration accordingly; identyfing the nature of each operator is therefore crucial.
Finally, in section 4.3 we perform an out-of-sample test, in which our goal is to gauge
the performance of portfolios optimized with an EA based on the adaptive strategy;
then we compare them with plain EAs equipped with various crossover operators.

4.1 Test 1: evaluating the crossover performance
The purpose of this section is to present and discuss some preliminary experimental
results involving crossover operators. We aim to analyze their behaviour in a static
framework, i.e. at the moment we do not consider the dynamic architecture for
parameter control. Rather, we run two tests for each operator in the set: basically
we observe the behaviour of twenty operators in terms of fitness and diversity, first
by optimizing the fitness at each generation, then in the second one we neutralize the
impact of the selection operator, which biases the search towards regions with greater
fitness, in order to single out the crossover operator behaviour. The whole population
is then simply kept for the next generation.

The point of this strategy is to evaluate on the one hand the overall performance
of a standard GAs (from now on, with SGAs we denote any basic real-coded genetic
algorithm), based on a combination of elitist selection and many different crossover
strategies. On the other hand, by considering an algorithm which actually does not
look for near-optimal solutions, but rather explores the search space according to a
specific strategy, we evaluate solely the random search strategy implemented by the
crossover.

These preliminary tests are therefore crucial to introduce the subsequent experi-
ments involving the AOS architecture, given that any dynamic strategy based on the
EvE balance necessarily requires a preparatory study of the performance of those op-
erators and a classification of them as well, in terms of exploration, exploitation and
neutrality, as proposed by di Tollo et al. (2015). This performance diagnosis will turn
out to be useful when we will take into account a controller, which will be employed
to implement an effective policy of operator selection. A correct interpretation of the
behaviour of each recombination operator is therefore essential to measure the quality
of the adopted strategy.

73

74 Computational analysis

4.1.1 Experimental setting
First of all, a discussion of the basic structure of the SGAs is necessary: in partic-
ular, preliminary ‘by-hand’ tuning tests have shown that the performance of each
operator is highly sensitive to ‘strategic’ parameters, if present. Furthermore, the
impact of basic GA numeric parameters could be occasionally relevant, whereas the
tests -across different instances- have shown that the choice involving the selection
operator is not of particular interest, though having an impact on selective pressure.
As a consequence, we opt for an elitist selection strategy, which is a very effective
way to ensure that the best individuals are retained in the population from one gen-
eration to the following, i.e. by producing (P − B) children at each iteration, with
P the population size and B the best or elite individuals. The B best individuals in
the population are directly merged with the new population. Pseudocode 25 below
outlines the procedure.

Algorithm 25: Elitism
1 Compute fitness F(P) of population P
2 Detect best individuals B
3 Children=∅
4 t = 0
5 while Children< |Parents−B| do
6 Choose a pair of parents for mating
7 Mate the parents, generate children c1 and c2
8 Children = Children ∪ {c1, c2}
9 t = t+ 1

10 end
11 Parents = Children ∪B

The two performance criteria for the population P are the following:

fitness(P) =

∑
ind∈P eval(ind)

|P |
(4.1)

With eval(ind) we denote the individual fitness, so that fitness(P) represents a
measure of average fitness.

entropy(P) =
−
∑n
i=1

∑k
j=0

nij

|P | log
nij

|P |

nlog2
(4.2)

where n is the number of individuals in the population and k is the number of genes
for each individual. For these experiments, we set P = 50, while the number of
generation g is set to 1000. Finally, we consider the set of twenty crossover operators
discussed in this chapter for the performance analysis.

Furthermore, we propose the following settings for the strategic parameters:

Table 4.1: Strategic parameters

BLX-α AX SBX-α LX FR PNX UNDX

SP1 α = 0.5 β = 0.8 µ = 0.2 a = 0 d = 0.5 µ = 0.25 σ2
ξ = 0.25

SP2 / / / b = 4 / / σ2
η = (0.35)2/n

We refer to the extensive discussion in section 3.1 about the importance of strate-
gic parameters: in this context, it is enough to say that their values have basically
an impact on diversity of the offspring population, by increasing or reducing the con-
centrarion around the parents: for instance, a small value of η for the parent-centric

Computational analysis 75

normal crossover leads to a sparse children population, whereas greater values typi-
cally shrink the search space around the parents.

4.1.2 Benchmark instances and setup

Table 4.2: Problem instances

ID Instance name Country of origin # Number of observations (days)

01 Nikkei 225 Japan 210 1302
02 FTSE 100 United Kingdom 89 1306
03 Hang Seng Index Hong Kong 42 1306
04 CAC40 France 36 1306
05 FTSEMIB Italy 32 1397

For these preparatory tests, we have used a basic formulation of the PSP, by
considering two basic constraints, i.e. budget and no-short selling constraint, that is:

min
x

φ(x)

s.t. x ≥ 0

xT1 = 1

(4.3)

The point is to evaluate and observe the behaviour of each operator for varying
datasets and risk measures, so for the moment we do not consider more complex
problems, e.g. with integer constraints. In this test suite, we consider mainly non-
convex and difficult objective functions, with many local minima which cannot be
tackled with standard optimization techniques, like gradient-based methods (see, for
instance, Gilli et al. (2011)).

When we formalize the cost function as convex combination of risk and reward,
we use the risk aversion parameter λ = 0.5 (see in Table 2.1 the risk measures Mean-
Variance and Mean-MAD). Moreover, for the Two-sided risk measure of Chen and
Wang (2008) we use a = 0.5 and p = 2, while for VaR we consider a monthly
probability β = 0.05 that losses can exceed the V aR(1−β) threshold itself. A summary
of the cost functions used in the ensuing tests is proposed in Table 2.1.

4.1.3 Testing the crossover performance with the selection
process

In this subsection we evaluate the performance of each crossover operator with the
selection process, i.e. we consider the behaviour of each of them when an optimization
process is ongoing, so that the crossover operator has basically the goal of retaining
a certain amount of diversity while simultaneously the fitness is being optimized.
Ideally, in this first test, we look at two main appealing qualities that an operator
should have. First, as a general rule, it should ‘balance’ the impact of the selection
operator: in particular, a good crossover strategy should mantain a reasonable amount
of variance in the initial stages, when the operators are expected to focus on the
exploration on certain areas of the the search space.

Furthermore, as noted by di Tollo et al. (2015), the correlation of the absolute
value of fitness and entropy is generally low, i.e. they are not mutually exclusive.
An operator able to increase entropy when the search is stuck in local optima is for
sure a good one; the same goes for those crossovers which can manage to increase
simultaneously quality and the entropy, displaying a self-adaptive behaviour. This is
exactly what we expect, at least from those operators which are ‘distribution-based’
and allow to a certain extent some flexibility.

76 Computational analysis

(a) Instance: Nikkei 225

Figure 4.1

Figure 4.1 shows the convergence of the average fitness of the population and its
entropy for different configurations of instances and crossovers. We focus on the most
interesting combinations of risk measures and benchmarks; the objective function
taken into account here is the Omega ratio. Due to the stochastic nature of the
algorithm, the behaviour of each of them is not completely stable. Nonetheless, note
that the behaviour of each operator across various instances is not homogeneous
and this could for sure suggest that some operators may be able to adjust to the
structure of each benchmark. Though for NFL theorem (Wolpert and Macready
(1997)) the crossovers are inherently designed to display a good performance in a
subset of problems (or even in certain stages of a problem) rather than others, in
general, an effective operator should adjust its search bias to the structure of the
problem to be solved (Herrera et al. (2005)).

In particular, the operators belonging to the family of self-adaptive crossovers,
display some very promising features. For example, note that for all the benchmarks
considered, the SBX crossover and, to a certain extent, also the LX crossover, manage
to reduce quickly the entropy, with a considerable and fast improvement in the average
fitness. Furthermore, when improvements become harder, the operator, in order
to escape local optima, seems to be turning to exploration. Though exploration is
typically encouraged in the initial stage of the search, this behaviour is what we are
looking for, in terms of ‘adaptivity’ and ‘responsiveness’. In some cases, both the
SBX and the LX crossover are able to increase the diversity of the population and
to improve its fitness at the same time, especially in the latter stages of the search.
This is consistent with the low correlation between entropy and fitness displayed
by the operators discussed in di Tollo et al. (2015) and Maturana et al. (2010) for
combinatorial optimization problems. Finally, note that the two operators above
mentioned, in some cases, are also the best performing ones. Recall that the settings
of the tunable parameters defined in Table 4.1 are tilted towards exploration.

There are three more ‘distribution-based’ operators which are expected to display
a self-adaptive behaviour or, possibly, to perform a sort of shift between exploration/-
exploitation during the search. In this sense, we highlight the slow convergence and
‘saw-toothed’ shape of the fitness-entropy functions computed with PNX crossover,
likely determined by the very explorative setting of the strategic parameter µ (see
Table 4.1), which has an impact on the variance of the normal distribution, tending
in turn to produce sparse offsprings repeatedly.

Surprisingly, fuzzy recombination (FR) seems to be enacting a pretty exploitative
policy, which, after all, resembles that of the ‘basic’ crossover operators; basically, it

Computational analysis 77

(b) Instance: FTSE 100

(c) Instance: Hang Seng Index

(d) Instance: FTSE MIB

Figure 4.1

78 Computational analysis

(e) Instance: CAC 40

Figure 4.1: GA average fitness and entropy convergence curves

tends to reduce the diversity of the population very quickly, converging smoothly to
a (potential) approximated global optimum.

The UNDX displays a different behaviour, which seems to be affected by the given
problem instance. In particular, we note that for two out of five instances (Nikkei 225
and FTSE100), it succeeds in retaining some diversity, also in the latter phases of the
search; in particular, in the case of Nikkei 225 benchmark, both the fitness and the
entropy function do not converge smoothly, rather they tend to show a saw-toothed
behaviour in the latter stages of the process.

The FX and the BLX-A crossover, despite being parent-centric strategies, based
on the hypothesis of uniformly distributed individuals (i.e. the simplest available),
do not present a noteworthy performance. Preliminary tests with different settings
of the tunable parameter α have shown a little impact on the behaviour of the blend
crossover. This could suggest that our results are consistent with findings in the
available literature (e.g. Deb et al. (2002)), which basically show that the use of a
uniform p.d.f. for generating offsprings has not the same desirable properties of those
strategies which use a biased p.d.f., favoring the regions represented by the parent
solutions.

We comment now the operators which, by construction, are designed to use fitness
information explicitly, so that they tend to give up some diversification in order to
generate fitter individuals.

In this sense, the operators which include fitness information (QBX, LNX, DBX,
SPX) converge steadily to an approximated solution, with both the fitness and the
entropy basically flat in the last stages of the search, likely due to the fitness-based
mating rule, which by design, restricts the search in a very limited region, with few
chances of exploring widely the search space. As noted by Lardeux et al. (2006), an
efficient crossover is not necessarily the one which quickly improves the whole popu-
lation, but rather which ensures a good trade-off between quality and entropy. The
point of diversification is to allow the algorithm to benefit from a better exploration
of the search space, preventing the population from getting stuck in local optima.

Finally, we consider the remaining operators: most of them come from seminal
contributions in literature (UX, GUX, OPX, TPX), while others have been largely
used to solve constrained optimization problems (AX, GX, HX, AVX). Essentially, we
confirm their exploitative nature, as they typically use the same information provided
by the parents to generate new individuals or alternatively, the offsprings are created
by combining numerically the values of the genes of the parents. The impact over
diversity, in these cases, is very limited, as shown in this first experiment.

Computational analysis 79

(a)

Figure 4.2

In general, the tests carried out so far seem to confirm that most of the atten-
tion in literature has been focused on exploitative strategies for a long time, with
an emerging interest in more sophisticated and explorative-oriented designs in more
recent literature.

Though the sample of operators discussed in this chapter and used in the tests
presented above is limited, further analysis and preliminary tests (in which we have
also considered certain strategies that have performed very poorly in tackling sim-
ple portfolio selection problems) have suggested that few real-parameter operators
are designed for exploration purposes (see also Maturana et al. (2010) with respect
to the SAT problem), therefore we suppose that most of the efforts have been put
into exploitative or problem-specific crossovers, with some interest in EvE trade-off
and hybrid or self-adaptive strategies arising at the end of the 20th century. In par-
ticular, the problem of developing a set of theoretical principles to design properly
the crossover operators in a general framework, has been posed by e.g. Kita and
Yamamura (1999) and Beyer and Deb (2001).

Moreover, we highlight the fact that some operators show, to a certain extent,
an appealing behaviour when determining the average fitness of the Nikkei 225-based
portfolios, so we consider that instance from now on, by taking into account all risk
measures. In figure 4.2 we plot respectively the convergence towards near-optimal
solution for all the risk measures described in Table 2.1 and the level of entropy
of the population of individuals at each generation. Though the complexity of the
fitness landscape is both related to the objective function and the instance considered,
we conclude that the results described previously are quite robust for different risk
measures, i.e. the operators show a consistent strategy across different risk measures.
From this perspective, the test essentially confirms the exploitative nature of many
of them, with a few exceptions. Note that in figures 4.2c and 4.2d, many operators
manage to improve considerably the average fitness in the latter stages of the search;
in particular, we highlight the nice behaviour of the LX crossover, which performs a
sequence of ‘jumps’, reaching in the end a good solution. The PNX and the UNDX
display a saw-toothed behaviour, with the former failing to achieve a high-quality
solutions. However, they both retain a good amount of entropy and the former, in
some cases, manages to improve the fitness and/or the entropy towards the end of
the search. Excessive exploration induced by an operator may explain in some cases
poor results, however it could turn out to be very useful when tackling problems with
a dynamic AOS strategy. In general, we find the performance of the SBX, LX, PNX
and UNDX crossover appealing; in particular, the latter configuration is able to retain

80 Computational analysis

(b)

(c)

(d)

Figure 4.2

Computational analysis 81

(e)

(f)

Figure 4.2: GA average fitness and entropy convergence curves. All the GAs are
trained on the Nikkei 225 problem instance, for vaying cost functions.

82 Computational analysis

(a) Instance: Nikkei 225

Figure 4.3

a considerable amount of diversity after generation 500 and to reach good levels of
fitness; as it moves towards the final stages of the genetic process, the shape of the
average fitness function and especially that of entropy tend to exhibit a less ‘stable’
and saw toothed shape. In the second test with different risk measures, there is little
or no evidence of a strong upward trend of diversity in latter stages of the search
for most operators, apart from LX and SBX, which display a weak tendency to raise
diversity when the search is stagnating in local optima.

4.1.4 Testing the crossover performance without the selection
process

In this subsection we repeat the same experiments proposed in the previous one,
by considering one by one the behaviour of each operator when only the crossover
operation is performed: this means that neither selection nor mutation is allowed.
The new population generated with recombination is sent to the following generation
and simply selected as it is. The point of this experiment is to single out the behaviour
of the crossover strategy.

In the previous section we have put our attention on the influence of the recombi-
nation on the optimization process, with the aim of showing the effectiveness of each
crossover operator in striking out a balance between quality and diversity. It is well
known that these two factors are strongly related (Arabas et al. (1994)): a too strong
selective pressure favors the premature convergence of the EA search, while a weak se-
lective pressure makes the search ineffective. Somehow, we have shed light on a broad
variety of strategies (with some operators being too explorative or self-adaptive, others
being exploitative and fast-converging): in this way, we have evaluated the dynamic
interaction between the operators and in particular we have pointed out the role of
the variation operator in keeping a reasonable diversity during the search.

The essence of this test, instead, is to take a look at the performance of the vari-
ation operators themselves, in order to check whether some of the guidelines/design
principles outlined at the beginning of this chapter are fulfilled. In particular, if the
previous test has been helpful to analyze also the overall performance of the standard
genetic algorithm, this one is structured exclusively to study whether the operators
are able to increase the population variance; moreover, we recall that the crossover
operator should not have an impact on average fitness, at least theoretically. In prac-
tical terms, we have already pointed out that a few operators using fitness information
are included in the sample: they are expected to perform a sort of ‘greedy’ approach,

Computational analysis 83

(b) Instance: FTSE 100

(c) Instance: Hang Seng Index

(d) Instance: FTSE MIB

Figure 4.3

84 Computational analysis

(e) Instance: CAC 40

Figure 4.3: GA average fitness and entropy convergence curves without the selection
operator.

by focusing immediately on the areas of the search space that are of high fitness; as
a consequence, certain regions are not visited systematically.

Essentially, each of the three categories of crossover operators manage the popu-
lation with strategies radically dissimilar to each other. On the one hand the above
described approaches include some fitness information: these operators should favor
a consistent and stable upward trend of the average fitness. On the other hand the
class of ‘basic’ operators is expected to have little or no impact on the population
fitness and diversity, which is indeed their main weakness. As we have pointed out
multiple times, the problem is that they focus the search on a limited region from
the beginning, which is for sure an important shortcoming, as this is one of the main
sources of premature convergence of the search process.

Some further experiments not presented here have confirmed this intuition: a
considerable number of operators (in particular: OPX, QBX, AX, AX, GX, HX,
AVX, FX, GUX) tested on different instances have shown a wide array of behaviours,
but all of them have performed variations in a very limited area of the search space.
As a consequence, the average fitness and the entropy tended to move in a restricted
interval. UX and TPX, instead, fluctuated in a slightly wider area. Locally, some
of them have displayed a kind of oscillating and rising trend of fitness (OPX, TPX,
and AX in particular), others have shown -on average- moderate fluctuations in a
limited area. Finally, self adaptive operators, which are typically characterized by an
underlying distribution hypothesis, are expected to perform larger variations in the
search space. Figure 4.3 which report the final tests run on five different instances,
provide further evidence with respect to the issues we have sketched in the paragraph
above. The behaviour of these twenty operators is consistent across different risk
measures and instances: as before, we set the same scale for each operator, in order
to favor proper comparisons (though, the ‘local’ behaviour of certain operators is not
visible anymore). Most of them, indeed, present a basically flat entropy/a flat average
fitness (in particular OPX, QBX, AX, GX, HX, AVX, BLX-A, FX, GUX), others
display modest variation (UX, TPX). Two more operators (QBX and UNDX) display
small variations of entropy and fitness, with the former being rather exploitative
and the latter explorative. In general, LX, SBX, BLX-A and PNX crossover do not
perform greatly as well: on the one hand they do not manage to keep the fitness steady
and on the other hand, the entropy function shows a downward trend, whereas both
fitness and entropy look almost flat in the case of the fuzzy recombination operator
(FR). However, we remark that these operators at least have a tendency to visit larger

Computational analysis 85

(a)

(b)

(c)

Figure 4.4

86 Computational analysis

(d)

(e)

(f)

Figure 4.4: GA average fitness and entropy convergence curves without the selection
operator. All the GAs are trained on the Nikkei 225 problem instance for varying
cost functions.

Computational analysis 87

areas in the search space, and that has actually a substantial impact on the variation
of fitness and entropy. The diversity in the population, though generally declining, is
likely retained by their self-adaptive property, which tends to distribute offsprings by
using information inherited from parents, i.e. generally a distance measure between
them. Without selective pressure, it is highly predictable that the offsprings are
generated far away from each other as well. Apart from DBX, two out of four operators
which include fitness information in the recombination strategy improve effectively
the quality solution, in particular the simplex crossover (SPX) is able to achieve good
results in terms of fitness.

Overall, the results discussed in the present subsection (4.1.4) and in subsection
4.1.3) will turn out to be useful in section 4.2, in which the behaviour of the controller
is examined: in particular, the classification we have proposed above, in which we
distinguish exploitation and exploration operators, is necessary to assess its actual
performance and the its effectiveness in enforcing the desired search direction.

4.2 Test 2: evaluating the operators management
In this section we assess the performance of an adaptive operator selection (AOS)
strategy, a dynamic approach by which we perform on-line selection of the best op-
erator: we discuss briefly the structure of the controller (i.e. the architecture which
tackes AOS) briefly sketched in Chapter 1 and then we present some results. In
particular, we aim to address the EvE trade-off in a dynamic way: given a set of op-
erators, the controller tries to strike a balance between exploration and exploitation
at a specific stage of search. By construction, some operators manage self-adaptively
the EvE balance, i.e. they are able to focus on exploitation on their own as the search
evolves and solutions are closer to each other, while most of them usually put all
the effort into a limited search space from scratch. This gives further evidence about
the importance of adopting a high level and reward-based policy which controls rig-
orously the amount of quality and diversity in the population. Moreover, high level
search strategies are employed to guide the search process, according to an adaptive
or deterministic schedule.

Actually, the experiments carried out in the previous section back the fundamental
idea of parameter control, namely it is possible to boost the algorithm performance
by using multiple crossover operators to obtain better results than could be obtained
from any of the constituent crossover strategies alone. In the following paragraph, an
outline of an automated controller to perform this kind of process is proposed.

As a consequence, in this section we proceed by assessing the performance of
the controller, i.e. in particular we evaluate the operator selection frequency and
the probability of selection at different stages of search as well. Furthermore, the
capability of reaching a good mix of entropy and fitness over time is also considered,
in particular with respect to the high level strategy chosen.

The theoretical background of the following experiments is provided mainly by
Maturana et al. (2010) with respect to the AOS framework, while di Tollo et al.
(2015) provides a referring point for the implementation of high level strategies.

4.2.1 Experimental setting
First of all, recall the discussion in section 4.1 and the outline presented in Chapter 1
about adaptive operator selection: the selection of variation operators is based on a
I/O interface (di Tollo et al. (2015)): the EA (solver) sends the last applied operator
identifier and its performance; hence, the controller tells the EA which operator should
be chosen in next iteration. We sum up now the theoretical background briefly, then
we move on to practical issues, involving mainly the setting and the design of the
controller.

The AOS is a generic framework to control parameters in EAs: the main idea is
to implement a controller which interacts continuously with the solver, which in turn

88 Computational analysis

yields useful performance measures, that is average fitness, best fitness and entropy.
Hence, these quantities are sent to the AOS. The impact assessment of an operator
during the search process is conveniently converted into a credit/reward measure, then
stored in a credit registry, which in turn is updated according to a credit assignment
scheme. Finally, a module is exclusively designated to perform operator selection, in a
reinforcement learning fashion. Overall, the controller is composed of four modules, as
they are proposed in di Tollo et al. (2015) (Aggregated Criteria Computation, Reward
Computation, Credit Assignment, Operator Selection) and each of them is executed
in a chronological order, as follows.

• Aggregated Criteria Computation: This module stores the impact of successive
applications of a variation operator during the search process, i.e. the variation
of the value of fitness and entropy. In particular, the values are recorded in
a sliding window Wij of size T , with ij denoting the operator/criterion pair.
Finally, a function F (·) computes the final impact, which could be instantiated
tomax (to detect outliers) ormean if one wants to register smoother behaviours
(di Tollo et al. (2015)). The input of the module are the identifier of the last
applied operator and the observed variation of each criteria. The output sent
to to the Reward Computation module consists in a vector contain a scalar
value for each criterion (two in our case); in the following tests F (·) will be
instantiated with mean(·). See Algorithm 26 for further details.

Algorithm 26: Aggregated Criteria Computation
Input : opi: Operator i

∆D: Observed variation of diversity criterion
∆Q: Observed variation of quality criterion

Output: [opi, F (Wi∆D, T), F (Wi∆Q, T)]
1 if type = extreme then
2 F (Wi∆D, T) = max(Wi∆D, T)
3 F (Wi∆Q, T) = max(Wi∆Q, T)

4 else
5 F (Wi∆D, T) = avg(Wi∆D, T)
6 F (Wi∆Q, T) = avg(Wi∆Q, T)

7 end
8 if normalize = True then
9 norm_func = maxi=1,...,K F (·)i=1,...,K

10 F (·) = F (·)/norm_func
11 else
12 end

• Reward Computation: The reward strategy is based on the application of two
modules: the first one rewards operators that can improve the fitness while
simultaneously keeping a reasonable amount of diversity in the solution popula-
tion (this is the so-called Compass, proposed by Maturana and Saubion (2008)),
while the second one stores the rewards in a sliding window. The compass
employs the input from the previous module (a vector) and it takes an hyper-
parameter θ ∈ [0, π/2], a search angle in the ∆D/∆Q plane. The angle could be
set manually (see e.g. Maturana et al. (2009)) or it could be based on an auto-
mated dynamic strategy. Therefore, each operator is represented in this plane,
according to the aggregated impact vector previously computed and associated
to an additional vector, used to store rewards. The search policy is defined by
θ, by which the user may favor diversity and neglect quality (θ = 0), otherwise
quality (θ = π/2) may be fostered at the expense of diversity; of course, less
extreme policies could be enforced. The main idea behind this is to attribute a

Computational analysis 89

reward measure to each data point by computing the perpendicular distance be-
tween the performance point and the plane defined by θ. Algorithm 27 provides
additional insights.

Figure 4.5: Reward computation based on a compass method, adapted fromMaturana
et al. (2010) and di Tollo et al. (2015)

As noted by Fialho (2010), the controller displays an interesting RL-like be-
haviour, as the the four main steps are iterated in a state-action-reward fash-
ion. Furthermore, note that, before passing a credit U to the final module, these
methods typically tend to control a balance between immediate and past reward
by taking a linear combination of them, just like classic RL-techniques.

Algorithm 27: Reward Computation (Compass)
Input : [opi, F (Wi∆D, T), F (Wi∆Q, T)]
Output: Ropi , reward of operator opi

1 Dopi = avg(diversityopi)
2 Qopi = avg(qualityopi)
3 Vopi = (Dopi , Qopi)

4 αopi = |atan(
Qopi

Dopi
)− θ|

5 Ropi = |Vopi · cos(αopi)−mini=1,...,K(|Vi| · cos(αi)|

• Credit Assignment : the credit amount summarizes the reward obtained by an
operator during recent applications: it takes as input the reward of each operator
opi at time t and stores it into a sliding window of size T ′. Thus, the module
computes an aggregate reward by specifying an aggregation function F (·) (which
could be instantiated tomax(·) ormean(·) over the period T ′. These aggregated
values represent the credit, i.e. the output of the module sent to Operator
Selection.

• Operator Selection: this module receives as input the credit of all operators and
determines the next variation operator to be applied by the solver, according to

90 Computational analysis

Algorithm 28: Credit Assignment
Input : Reward Ri
Output: Credit Ui

1 if type = extreme then
2 F ′(W ′i , T

′, Ri) = max(W ′i , T
′, Ri)

3 else
4 F ′(W ′i , T

′, Ri) = avg(W ′i , T
′, Ri)

5 end
6 if normalize = True then
7 norm_func = maxi=1,...,K F

′(·)i=1,...,K

8 F (·) = F ′(·)/norm_func
9 else

10 end
11 Ui = F ′(W ′i , T

′, Ri)

a predefined selection scheme. The input of the operator selection module is the
credit estimate Ui, while the output is the identifier opnext, which is sent to the
EA. In the following experiment we perform selection with Probability Matching
(PM), proposed in Algorithm 7, which is actually the simplest available. For
a summary of selection methods, recall that in subsection 1.3.3.2 the main
features of selection methods are briefly addressed. We refer the reader to the
contributions of Maturana et al. (2009), Lardeux et al. (2006), Maturana et al.
(2010) for a deep dive into this topic, with respect to combinatorial optimization
problems.

In the following experiments, we use the performance criteria described in subsec-
tion 4.1.1, namely entropy and average fitness.

As usual, the EA is stopped when 1000 iterations have been performed. The
objective functions adopted in this section are ES, Mean-Var and Omega, while pmin
in the last module is set equal to 0.01, while K = 20. Some other hyperparameters
have to be considered. We set the rolling windows W and W ′ equal to 10, and as
aggregation function we employ mean(·).

Finally, there is one more hyperparameter to be considered, namely the value of
θ. To tackle this problem, we take into account the framework devised in di Tollo
et al. (2015), by using four high level dynamic strategies. The schedule is either
deterministic or naively self-adaptive/reactive:

• Increasing : Split the number of iterations into n epochs and increase the angle
value in equally spaced steps in [0, π/2];

• Decreasing : Split the number of iterations into n epochs and decrease the angle
value in equally spaced steps in [0, π/2];

• Always moving : Split the number of iterations into n epochs and alternate
θ ∈ {0, π/2} in equally spaced steps;

• Reactive moving : Set θ = 0 if ∆entropy(P,t)
entropy(P,t−1) < 1e − 01, else if ∆fitness(P,t)

fitness(P,t−1) <

1e− 01, set θ = π/2. Otherwise, if neither conditions are satisfied, θ = 0.

The benchmark instances used in this section are the same discussed in the pre-
vious one, for which we refer the reader to subsection 4.1.2. In particular, some pre-
liminary tests have shown that the behaviour of the search policies is not completely
homogeneous across instances: therefore, in the next subsection we will discuss the
impact of high level search strategies and the pivotal role played by search policies
when determining the algorithm performance. Henceforth, for space limits, we have
decided not to report the results for Mean-MAD portfolios, whose behaviour is actu-
ally very similar to that of Mean-Variance portfolios.

Computational analysis 91

(a) Always moving strategy

Figure 4.6

4.2.2 Testing dynamic search policies

Now we move on to consider more practical issues, as we want to evaluate the per-
formance of dynamic search policies: the idea is to put together the results of section
4.1 and the building blocks of adaptive operator selection (AOS) introduced in Chap-
ter 1 to improve the overall performance the algorithm. As a consequence, we look
carefully at the interaction of four crucial features. First of all, recall that the goal
of the controller is to strike a balance between exploration and exploitation. The
extensive discussion stemming from the experimental results in section 4.1 motivate
an additional test of adaptive selection of variation operators, as we have noted that
certain operators display generally an explorative behaviour, while others are more
tilted towards exploitation: their design of course affects deeply the performance of
the algorithm. Furthermore, recall that some operators display different behaviour as
a function of the state of the search, so putting them together may boost performance
in terms of quality/diversity trade-off.

Figures 4.6a, 4.6b, 4.6c, 4.6d present the variation of individual fitness, coupled
with its entropy, for changing values of θ ∈ [0, π/2]: each figure reports the results
with a different strategy. Moreover, the operator selection frequency histogram is
meaningful, because it allows a proper evaluation of the impact of the changing angle
on the operator selection process. Though the frequency is based on a highly erratic
stochastic selection policy, so that less relevant operators keep being selected, actually
the results are pretty much stable, so in the end we find out that the two main sources
of variability in selection frequency are given by the hyperparameter θ (which fully
defines a search policy) and also by the problem instances to be addressed. With
respect to the FTSEMIB instance, we note that figures 4.6b and 4.6c display mild
improvements of diversity during the search triggered by a reduction/increase in θ,
especially for the Omega objective function. This also generates an immediate varia-
tion of cost for some individuals for a few generations. Overall, we note that generally
exploration operators are usually selected when small or no improvements are possi-
ble, especially when they display self-adaptive features. A variation in the angle value
generally leads to an important impact on selection probability and consequently on
performance, though it is not always direct and straightforward; sometimes it is even
tenuous and the upward trend of diversity in some cases is possibly affected by the
self-adaptive nature of the operator itself. In particular, note that operators 04, 08

92 Computational analysis

(b) Decreasing strategy

(c) Increasing strategy

(d) Reactive moving strategy

Figure 4.6: Experiments with the AOS: every portfolio selection strategy is fitted
to the FTSEMIB dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Computational analysis 93

(a) Always moving strategy

Figure 4.7

and 019 for this instance (respectively, LX, SBX and PNX) provide a good trade-off
of exploration and exploitation; therefore, especially at advanced stages of search,
they seem to be more effective when small or no improvements are possible. Some
preliminary experiments show that the probability of selection of these exploration
operators turns to be very high when the solver is stagnating, so that the controller
turns to exploration, by rewarding them.

Instead, the selection probability of all mildly relevant operators tends to tumble
to small values towards later stages of the process, close to the value pmin established
before running the process, with most of the selection frequency concentrated at initial
or intermediate stages of search. Furthermore, we observe in figures 4.6b and 4.6c an
almost symmetrical behaviour of less relevant operators, regardless of the angle value
(which still seems to have a moderate, though not regular, impact on the selection
of exploration operators, whichever the stage of search); for θ = π/2, there seems to
be a more straightforward relationship between search policy and selection frequency,
i.e. the controller is able to enforce the desidered direction of search.

Overall, the behaviour of the controller looks quite promising, because it displays
exactly an adaptive behaviour, correlated with the state of search and generally con-
sistent with changing search policies, which seems to be able, at least in part, to steer
the overall direction of search when there is small or no advancement in the optimiza-
tion process, with immediate impact on quality and diversity. Unsurprisingly, the
operator 16 (UNDX), which has been denoted as an explorative one (see e.g. sub-
section 4.1.3) has a low selection frequency. Indeed, we have previously argued that
UNDX is able to strike a good balance between exploration and exploitation, though
only for one instance out of five, while for other problems it has generally mimicked
the exploitative behaviour of the mildly relevant variation operators.

An analysis of the results for the Nikkei 225 instance confirms that for certain
problems some operators are almost neglected, while for others they stand out in a
specific stage of search. Due to the role played by operator 16 (UNDX), the entropy
plots take a saw-toothed shape for most of the combinations of objective functions
and high level strategies. We note for instance that in figure 4.7a (see in particular
the plots below ‘Omega’), basically a shift to θ = π/2 flattens both the entropy and
the cost function, likely due to the fact that UNDX is not applied after generation
800.

A similar behaviour can be easily detected in figure 4.7c (see in particular the

94 Computational analysis

(b) Decreasing strategy

(c) Increasing strategy

(d) Reactive moving strategy

Figure 4.7: Experiments with the AOS: every portfolio selection strategy is fitted to
the Nikkei 225 dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Computational analysis 95

(a) Always moving strategy

Figure 4.8

results for Omega), in which the entropy function, after tumbling to a plateau, sud-
denly rises to greater values at the final stage of search, leading to a small progress
both in terms of best fitness and in terms of best individual cost. Looking at dif-
ferent risk measures, we observe in figure 4.7a and 4.7b small improvements driven
either by shifts in the angle value or, more in general, by unpredictable and sudden
variation in entropy, likely linked to the properties of some operators. In terms of
frequency, we note again that LX, SBX and PNX seem to be among the most selected
operators, due to their compelling features in terms of EvE tradeoff (as they manage
to reduce cost and simultaneously they are able to retain a reasonable amount of
diversity). This feature, along with swift progress at early stages of search driven
by standard exploitation operators, usually leads the controller to reward the most
effective operators in the set.

Overall, we highlight the fact that no strategy can actually able to outperform
the others, so that no search policy manages to produce better results in a clear way:
increasing, decreasing or always moving, which benefit from better interpretability,
address the optimization problem in different ways but altogether with little impact.
Moreover, the reactive policy (figure 4.7d) display a much less stable behaviour across
different risk measures and consequently, as it suffers of lower predictability, it is not
always that easy to discuss its performance in general, though we can comfortably
state that the approach described in the previous section typically steers the controller
towards an exploitative or mixed policy at the initial stage of search, then the angle
tends to converge, sooner or later, to θ = π/2.

Similar tests have been run on the remaining instances in the testbed (see appendix
C), confirm that a few operators (LX, SBX, PNX) can manage optimally each problem
instance at hand and typically tend to outperform the others in terms of frequency. As
we have observed for the FTSEMIB dataset, for the remaining instances the operator
UNDX displays a low selection frequency, which generally results in a greater amount
of generations spent by the solver applying exploitation operators. Among them,
we shed light on SPX (18), which shows a significant frequency of selection across
different instances and angle values.

As search policies change, we do not observe any particular patterns in terms of
selection frequency, as there is not an outstanding strategy in terms of performance,
though in many cases it is worth mentioning a desirable behaviour stemming from
a variation of the angle value (see for instance the late progress for some of the

96 Computational analysis

(b) Decreasing strategy

(c) Increasing strategy

(d) Reactive moving strategy

Figure 4.8: Experiments with the AOS: every portfolio selection strategy is fitted
to the CAC 40 dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Computational analysis 97

(a) Always moving strategy

Figure 4.9

problems presented in figures 4.8a and 4.8b), which actually causes the operator
selection probability to bounce and that ultimately drives a simultaneous upsurge
both in quality and entropy. For what concerns the ES risk measure, the increasing
strategy slightly outperforms the decreasing one in terms of best fitness in figure 4.8b
and 4.8c, while the opposite happens in the case of the Hang Seng instance, where
the decreasing strategy seems to achieve slightly better results towards later stages
of search (see figures 4.9b and 4.9c). The behaviour of the controller looks promising
when considering a reactive policy (figure 4.9d) as well, as both cost and entropy
react promptly to shifting angle value. Further preliminary tests, not reported here,
have been arranged to address the robustness of the results. In particular, our goal
was to check if the algorithm was robust with respect to different starting solutions,
especially with regards to the operator selection frequency. As a result, we have
considered two main strategies. On the one hand, we have established a cardinality
constraint, by imposing the condition that the portfolio is composed by no more than
K assets, randomly picked from N available assets, with K < P . On the other hand,
we have established a pre-assignment set, by which we have included P assets in the
portfolio manually, with K < P ; the residual K − P assets are selected randomly.
We have then run these two strategies on each instance, with K ∈ {10, 20, 30}. No
significant differences have been found, with minimal modifications to the frequency
histogram, apart from UNDX, whose performance proved to be quite sensitive to the
problem instance at hand.

4.3 Test 3: evaluating the adaptive strategy on MIP
problems

In this section we evaluate the performance of the adaptive operator selection strategy
(AOS) on a variety of mixed-integer programming problems (MIPs). In particular,
we consider the budget and no-short selling constraints described in subsection 4.1.2
and then we combine them with two standard integer constraints, i.e. the cardinality
constraint and the floor and ceiling constraints, which we have discuss in depth in sub-
section 2.1.2. Recall that many of the risk measures proposed in subsection 4.1.2 deal
with some recurring patterns in financial markets, such as fat-tailed and asymmetric
returns. The problems described above cannot be tackled with standard optimization

98 Computational analysis

(b) Decreasing strategy

(c) Increasing strategy

(d) Reactive moving strategy

Figure 4.9: Experiments with the AOS: every portfolio selection strategy is fitted to
the Hang Seng dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Computational analysis 99

(a) Always moving strategy

Figure 4.10

techniques and as we have stated before, a reformulation of optimization problems
cannot anyway accomodate integer constraints, which make them even more complex,
as integer-constrained problems typically exhibit discontinuities (Gilli et al. (2006)).
Moral-Escudero et al. (2006) has proven that cardinality-constrained problems are
NP-hard, so they cannot be solved optimally within polynomially-bounded compu-
tational time. In layman’s terms this implies that for some problem instances the
computational cost is so large that it is pretty much unmanageable for any conceiv-
able amount of computational power. A discussion of the two most popular methods
for solving mixed integer linear programs„ i.e. the cutting planes and the branch and
bound algorithms goes well beyond the scope of this chapter; however, the intuition
behind both algorithm is based on linear programming relaxation, i.e. the linear pro-
gram obtained by dropping the integrality constraint. Both algorithm find a solution
by solving systematically a sequence of linear programming relaxations, which are
more tractable. Furthermore, recall that EAs are able to deal properly with global
unconstrained optimization problems; therefore various methods have been proposed
for constraint handling, i.e. penalty functions, special representations and opera-
tors, repar algorithms, separation of objectives and constraints and hybrid methods
(Coello-Coello (2002)). For a thorough discussion of penalty approaches, we refer
the reader to the penalty methods based on parameter control reviewed in subsection
1.3.3. Finally, in subsection 4.3.2.2 we propose an out-of-sample experiment by which
we backtest the performance of the adaptive strategy and the performance of each
operator on five instances. In particular, we implement a rolling-window backtest,
in order to train the algorithm on new and more recent data at some point t; this
strategy is generally more effective but it generally leads to higher transaction costs.
As a consequence, we evaluate the impact of turnover of each approach; we take into
account also standard performance measure, such as cumulative returns, standard
deviation and the Sharpe Ratio. We do not compare the adaptive strategy with tra-
ditional benchmarks (such as naive 1/N strategies or stock market indexes), rather,
we want to contrast the adaptive approach with simple genetic algorithms (SGAs);
for this purpose, we also assess the quality of each solution, especially in terms of
constraints violation.

100 Computational analysis

(b) Increasing strategy

(c) Decreasing strategy

(d) Reactive moving strategy

Figure 4.10: Experiments with the AOS: every portfolio selection strategy is fitted
to the FTSE 100 dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Computational analysis 101

(a) Always moving strategy

Figure 4.11

4.3.1 Experimental setting

In the next subsections we perform a set of in-sample (4.3.2.1) and out-of-sample
(4.3.2.2) experiments in order to evaluate the performance of the adaptive strategy
on training data and then we run the model on an independent dataset repeatedly,
with a rolling-window backtest. The essence of this approach is to study the ro-
bustness of a parameter control strategy applied to genetic algorithms, which we
subsequently compare to simple genetic algorithms (SGAs), as defined in section 4.1,
for which neither parameter tuning nor parameter control policies are considered. In
other words, we want to detect the potential benefits of a procedure by which we
encourage the controller to adjust the EvE balance in order to find a near-optimal
solution; overall, we take into account the adaptive strategy and we compare it with
twenty variation operators, which should serve as a benchmark of the parameter
control approach. We construct portfolios with various combinations of cardinality
constraints, lower/upper bound constraints and risk measures, so as to obtain more
robust results across different portfolios. The results are reported for five different
problem instances (whose properties are commented in section 4.1). We consider first
the minimization capabilities of each algorithm, i.e. we report the average and the
best in-sample value of the `1 penalty function 2.30, with the aim of obtaining a raw
measure of in-sample performance of the algorithm in terms of cost. Furthermore, we
implement a rolling-window backtest for each strategy, which is applied to our model
based on parameter control and to standard genetic algorithms as well. The main
reference for this rebalancing policy is Gilli et al. (2011). Essentially, we optimize the
model on training data at time t1 from t1− τ ; for this set of tests, we set the window
τ equal to two years (about 500 data points). The portfolio is held for F = 125 days,
i.e. until t2 = t1 + F . Therefore, the portfolio is trained on new data starting from
t2 − τ until t2 − 1 and held for 125 more days, i.e. t3 = t2 + F . Basically, with the
rolling-window procedure each time we include data for the next six month and we
drop data for the earliest six months: overall, we repeat this procedure five times
and this amounts to holding the portfolio for approximately 600 days. With T we
denote the total number of returns in the dataset, while with I we denote the num-
ber of holding periods of each rebalanced portfolio. In this section we compute across
five datasets the out-of-sample empirical performance using four performance metrics:
the annualized portfolio returns, the annualized standard deviation, the out-of-sample

102 Computational analysis

(b) Decreasing strategy

(c) Increasing strategy

(d) Reactive moving strategy

Figure 4.11: Experiments with the AOS: every portfolio selection strategy is fitted
to the CAC 40 dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Computational analysis 103

Table 4.3

K lb up ε τ F T

Test 1 10 0.05 0.15 1e− 001 600 125 1225
Test 2 20 0.04 0.12 1e− 001 600 125 1225

Sharpe Ratio and turnover. For a given i portfolio strategy we use the time series of
returns:

µ̂i =
1

IF

I∑
j=1

F∑
k=1

xi
T

tj r
i
tj+k average daily out-of-sample returns

σ̂i =

√√√√(1

IF − 1

I∑
j=1

F∑
k=1

xi
T

tj r
i
tj+k − µ̂i

)2

daily out-of-sample standard deviation

ˆSRi =
µ̂i

σ̂i
out-of-sample Sharpe Ratio

Turnover =
1

I − 1

I−1∑
j=1

N∑
k=1

(∣∣∣xik,tj+1
− xik,tj

∣∣∣)
(4.4)

Furthermore, we report simple graphs in which we show the out-of-sample daily cu-
mulative returns; we compute the latter by taking the cumulative product of the
daily out-of-sample returns. The indexed time series are constructed starting from an
initial value Ci = 100.

For what concerns the impact of transaction costs, some preliminary backtests
have shown that transaction costs do not influence considerably the portfolio per-
formance, which is consistent with the results presented in Gilli et al. (2011). In
particular, we have considered a wide range of transaction costs, from 10 basis points
to 50 basis points for each position in the portfolio, with a small impact on portfolio
performance. Likely, this is due to the fact that the portfolio is rebalanced at a quite
low frequency.

Nonetheless, in order to evaluate how transaction costs could actualy affect each
portfolio strategy, we compute the average turnover over the out-of-sample period, as
reported in 4.4 (see, for instance, DeMiguel et al. (2009)). xik,tj is the i-th portfolio
weight of asset k and xik,tj+1

is the same portfolio weight after rebalancing. The
turnover measure is equal to the sum of rebalancing trades across N assets over
the out-of-sample time period divided by the number of rebalancements. For our
experiments, we choose first all the parameters involving the adaptive algorithm: for
what concerns the general parameter setting choices, we refer the reader to subsection
4.1.1, in particular to table 4.1, in which all the strategic parameters are detailed. The
only exception is that here we perform tests with the increasing strategy straight away,
as it is both theoretically and empirically the most promising (see 4.2.2). As far as
the portfolio selection problem is concerned, we basically perform two set of tests:
the parameters setting are reported in table 4.3, in which, for the sake of readability,
we also report the key parameters involved in the rolling-window backtest.

4.3.2 Results

In what follows, we evaluate the in-sample and out-of-sample performance of the adap-
tive strategy. In the following subsection we simply check the convergence towards a
good solution for each algorithm, then we evaluate the out-of-sample performance of
rebalanced portfolios with four different performance metrics.

104 Computational analysis

4.3.2.1 Evaluating the in-sample performance of the adaptive policy

The first analysis is a basic in-sample test which serves as sanity check, with the aim of
verifying whether each strategy can converge at least to a good solution across different
problem instances and across different risk measures. The cost is computed according
to the `1 exact penalty function 2.30. It is especially important to examine the cost
for different combinations of risk measures and problem instances of the adaptive
strategy, given that the basic genetic algorithms, which are based on a standard
construction, mainly serve as a benchmark for the dynamic policy. By managing a
variety of operators in an adaptive fashion, according to an optimal policy of EvE, we
address a typical issue of evolutionary algorithms (for instance, some algorithms may
perform better on a problem rather than another, or sometimes other an algorithm
may outperform another one at a specific stage of the problem, a topic we have
abundantly discussed in 1.1). Moreover, the discussion in section 3.1 has shown that
only a few operators display, at least in part, self-adaptive features, by which they
steer the search process on the basis of some dispersion measures, adjusting the EvE
balance accordingly. Most operators, instead, are typically tilted towards exploitation
and this could lead the algorithm to converge to solutions of poor quality. The basic
idea behind parameter control is exactly to find a suitable parameter choice to cope
with different structures of the problem at hand.

Ω+penalty V aR95%+penalty ES95%+penalty MV0.5+penalty ρ0.25,2+penalty ERC+penalty

Nikkei 225 avg. best avg. best avg. best avg. best avg. best avg. best

OPX 1.0344 0.0067 0.2255 0.0066 0.2362 0.0069 0.1248 0.0069 1.7108 0.0065 0.1830 0.0079
UX 1.0518 0.0083 0.2906 0.0069 0.2995 0.0071 0.1302 0.0074 1.7289 0.0111(U) 0.2308 0.0083
HX 1.0092 0.0069 0.2161 0.0068 0.2301 0.0069 0.1422 0.0072 1.6842 0.0074 0.1779 0.0067
LX 1.0394 0.5039(U) 0.2408 0.0071 0.2104 0.0074 0.1309 0.0075 2.2413 0.0073 0.2067 0.0188(U)

QBX 1.0218 0.0071 0.2349 0.0071 0.2962 0.0071 0.1754 0.0068 1.7233 0.0068 0.1571 0.0076
TPX 0.9956 0.0077 0.2409 0.0072 0.2686 0.0071 0.1228 0.0075 1.7183 0.0098(U) 0.1949 0.0104(U)
AX 0.9986 0.0069 0.2483 0.0071 0.2686 0.0067 0.1246 0.0073 1.7031 0.0065 0.1884 0.0075
GX 0.9899 0.0072 0.2212 0.0068 0.2662 0.0069 0.1059 0.0076 1.6956 0.0065 0.2001 0.0085
SBX 1.0192 0.0073 0.2786 0.0071 0.2869 0.0069 0.1611 0.0072 1.6951 0.0065 0.1981 0.0114(U)
AVX 0.9826 0.0071 0.2488 0.0069 0.2541 0.0067 0.1038 0.0072 1.7527 0.0066 0.1891 0.0068
BLX 1.0462 0.0071 0.2625 0.0072 0.3081 0.0067 0.1266 0.0067 1.6631 0.0064 0.1817 0.0069
FX 0.9815 0.0072 0.2728 0.0068 0.2711 0.0065 0.1413 0.0072 1.6808 0.0063 0.1695 0.0067

GUX 1.0409 0.0069 0.2955 0.0073 0.2858 0.0073 0.1254 0.0074 1.7318 0.0068 0.2268 0.0078
TPX 0.9731 0.0095 0.2061 0.5041(U) 0.2401 0.0081 0.1365 0.0068 1.6795 0.0082 0.1931 0.0112(U)
LNX 1.5401 0.0067 0.2971 0.0073 0.2983 0.0082 0.1851 0.0067 1.7201 0.0076 0.1855 0.0093
DBX 1.3054 0.0077 0.4567 0.0077 0.4783 0.0078 0.2531 0.0079 1.9232 0.0151(U) 0.1959 0.0071

UNDX 1.0863 0.0073 0.3540 0.0068 0.2881 0.0068 0.1933 0.0071 1.6671 0.0071 0.2399 0.0075
FR 0.9872 0.0068 0.2251 0.0071 0.2543 0.0067 0.1251 0.0072 1.7178 0.0112(U) 0.1811 0.0067
SPX 1.0095 0.2431(U). 0.2956 0.0781 0.2654 0.0089. 0.1768 0.0079 1.6943 0.0064 0.2031 0.0109(U)
PNX 0.9991 0.0075 0.2589 0.0071 0.2411 0.0088 0.3031 0.0070 1.8555 0.0068 0.2111 0.0091

Adaptive 0.9654 0.0069 0.1935 0.0072 0.2322 0.0086 0.1412 0.0069 1.6417 0.0068 0.1637 0.0091

FTSE 100 avg. best avg. best avg. best avg. best avg. best avg. best

OPX 1.0375 0.0055 0.2202 0.0052 0.2354 0.0051 0.1083 0.0051 1.2221 0.0074 0.1473 0.0081
UX 1.5515 0.4984(U) 0.2018 0.0051 0.2098 0.0055 0.1081 0.0052 1.2367 0.0062 0.1563 0.0055
HX 1.0333 0.0055 0.1889 0.0051 0.2017 0.0049 0.1005 0.0053 1.2225 0.0049 0.1482 0.0048
LX 1.0051 0.0051 0.2141 0.0059 0.2535 0.0051 0.1576 0.0071 1.5602 0.0055 0.1227 0.0081

QBX 1.0081 0.0052 0.2531 0.0051 0.2385 0.0047 0.1511 0.0053 1.2668 0.0061 0.1231 0.0061
TPX 1.0160 0.0053 0.2308 0.0054 0.2115 0.0053 0.1226 0.0053 1.2451 0.0064 0.1467 0.0051
AX 1.0172 0.0053 0.1953 0.0050 0.1986 0.0051 0.1054 0.0057 1.3151 0.0057 0.1696 0.0047
GX 1.0392 0.0053 0.1883 0.0051 0.1992 0.0050 0.1287 0.0053 1.2271 0.0048 0.1825 0.0051
SBX 1.0082 0.0054 0.1984 0.0057 0.2120 0.0052 0.1168 0.0053 1.2429 0.0047 0.2192 0.0052
AVX 0.9918 0.0053 0.1686 0.0052 0.1815 0.0051 0.1094 0.0049 1.2326 0.0048 0.1435 0.0074
BLX 1.0525 0.0053 0.2321 0.0051 0.2849 0.0051 0.1664 0.0054 1.2525 0.0045 0.1488 0.0047
FX 1.0576 0.0062 0.2115 0.0053 0.2184 0.0052 0.1396 0.0057 1.2747 0.0057 0.1713 0.0061

GUX 1.0536 0.0059 0.2097 0.0051 0.2055 0.0052 0.1170 0.0053 1.8771 0.0057 0.1645 0.0076
TPX 1.0641 0.0052 1.1893 0.9162(U) 0.2227 0.0049 0.1652 0.0051 1.8184 0.0051 0.1406 0.0078
LNX 1.1606 0.0051 0.3846 0.0053 0.3521 0.0054 0.3701 0.0059 1.3849 0.0051 0.2031 0.0095(U)
DBX 1.1811 0.0055 0.3355 0.0054 0.3039 0.0053 0.2052 0.0053 1.3401 0.0048 0.2656 0.0049

UNDX 0.9939 0.0053 0.2135 0.0061 0.2421 0.0051 0.1217 0.0057 1.2796 0.0067 0.1570 0.0046
FR 1.0721 0.0054 0.2051 0.0065 0.2329 0.0053 0.1552 0.0058 1.3178 0.0062 0.1911 0.0067
SPX 1.0923 0.0065 0.2298 0.0063 0.2237 0.0059 0.1499 0.0062 1.7944 0.0069 0.1928 0.0078
PNX 1.0201 0.0059 0.1998 0.0069 0.2772 0.0065 0.2435 0.0059 1.3002 0.0059 0.1326 0.0080

Adaptive 1.0031 0.0051 0.1936 0.0053 0.1921 0.0051 0.0776 0.0052 1.2190 0.0049 0.1198 0.0050

Hang Seng avg. best avg. best avg. best avg. best avg. best avg. best

OPX 0.9625 0.0077 0.2505 0.0078 0.2566 0.0077 0.1508 0.0078 1.8924 0.0078 0.1580 0.0099(U)

Computational analysis 105

UX 0.9828 0.0081 0.2507 0.0081 0.2564 0.0077 0.1342 0.0079 2.9282 0.9510(U) 0.2122 0.0078
HX 0.9861 0.0081 0.2252 0.0077 0.2566 0.0077 0.1093 0.0078 1.9214 0.0073 0.1446 0.0075
LX 1.0766 0.0085 0.7404 0.0051 0.2555 0.0078 0.1218 0.0081 1.9183 0.0108(U) 0.1524 0.0077

QBX 0.9615 0.0079 0.2398 0.0076 0.2870 0.0076 0.1205 0.0077 1.9187 0.0075 0.2294 0.0084
TPX 0.9227 0.0079 0.2493 0.0081 0.2618 0.0082 0.3853 0.2547(U) 1.9452 0.0088 0.2455 0.0083
AX 0.9223 0.0080 0.2621 0.0077 0.2984 0.0078 0.0933 0.0078 1.9331 0.0075 0.1477 0.0011
GX 0.9022 0.0081 0.2297 0.0078 0.2637 0.0078 0.1303 0.0079 1.9213 0.0081 0.1711 0.1083(U)
SBX 0.9696 0.0082 0.2998 0.0081 0.2784 0.0079 0.1419 0.0079 1.9203 0.0079 0.1844 0.0131(U)
AVX 0.9472 0.0081 0.2516 0.0079 0.2874 0.0076 0.1193 0.0077 1.9305 0.0081 0.2223 0.0074
BLX 0.9461 0.0081 0.3191 0.0076 0.3641 0.0077 0.2399 0.0079 2.0317 0.0076 0.1846 0.0075
FX 0.9708 0.0083 0.2534 0.0076 0.2418 0.0076 0.1505 0.0078 1.8784 0.0076 0.1581 0.0074

GUX 0.9542 0.0081 0.2675 0.0078 0.2925 0.0052 0.1114 0.0078 1.8795 0.0094 0.1981 0.0084
TPX 0.9323 0.0084 0.3142 0.0077 0.3036 0.0081 0.1226 0.0078 1.9081 0.0083 0.2473 0.0078
LNX 0.9605 0.0084 0.7839 0.4824(U) 1.2759 0.0054 0.1266 0.0075 1.9357 0.0075 0.1633 0.0101(U)
DBX 1.0213 0.0079 0.2928 0.0081 0.4411 0.0081 0.4949 0.0081 2.2223 0.0081 0.1773 0.0081

UNDX 1.0691 0.0082 0.3572 0.0078 0.4119 0.0079 0.2665 0.0079 2.0507 0.0088 0.2889 0.0077
FR 0.9866 0.0078 0.2261 0.0078 0.2747 0.0077 0.1795 0.0085 1.9490 0.0081 0.2292 0.0103(U)
SPX 1.0119 0.0085 0.2678 0.0085 0.2965 0.0078 0.2908 0.0091 1.8698 0.0077 0.2301 0.0081
PNX 0.9821 0.0089 0.2133 0.0089 0.2919 0.0080 0.1554 0.0092 1.9381 0.0084 0.2431 0.0071

Adaptive 0.9002 0.0072 0.1991 0.0079 0.2111 0.0077 0.0934 0.0049 1.2190 0.0059 0.2071 0.0079

FTSE MIB avg. best avg. best avg. best avg. best avg. best avg. best

OPX 1.0225 0.0069 0.2305 0.0078 0.2342 0.0069 0.1718 0.0068 1.6921 0.0071 0.1980 0.0079
UX 0.9978 0.0071 0.2607 0.0071 0.2464 0.0075 0.1434 0.0069 1.8276 0.0110(u) 0.1922 0.0077
HX 1.0861 0.0075 0.2152 0.0067 0.2506 0.0076 0.1183 0.0073 1.7204 0.0073 0.1855 0.0077
LX 0.9966 0.0075 0.2404 0.0071 0.2425 0.0077 0.1429 0.0071 1.6883 0.0098(U) 0.1474 0.0077

QBX 0.9915 0.0079 0.2158 0.0077 0.2870 0.0072 0.1305 0.0077 1.8149 0.0091 0.1291 0.0074
TPX 1.0227 0.0078 0.1993 0.0177(U) 0.2218 0.0072 0.1853 0.0067 1.3752 0.0091 0.1495 0.0083
AX 0.9923 0.0080 0.2241 0.0078 0.2774 0.0081 0.1123 0.0059 1.8531 0.0079 0.1677 0.0071
GX 0.9922 0.0086 0.2097 0.0068 0.2257 0.0078 0.1303 0.0069 1.6918 0.0088 0.1815 0.093
SBX 0.9896 0.0072 0.1998 0.0081 0.2584 0.0079 0.1519 0.0075 1.9293 0.0077 0.2044 0.0098(U)
AVX 1.0452 0.0071 0.2116 0.0075 0.2314 0.0075 0.1853 0.0074 1.8305 0.0081 0.2153 0.0094
BLX 1.0421 0.0071 0.2191 0.0072 0.2617 0.0072 0.2145 0.0071 1.9987 0.0079 0.1646 0.0079
FX 1.0718 0.0073 0.2134 0.0072 0.2418 0.0071 0.1708 0.0078 1.7754 0.0076 0.1891 0.0078

GUX 1.0522 0.0081 0.2075 0.0071 0.2954 0.0062 0.1348 0.0079 1.8785 0.0090 0.1832 0.0084
TPX 1.0333 0.0074 0.2182 0.0079 0.2346 0.0071 0.1896 0.0071 1.8091 0.0081 0.2269 0.0077
LNX 1.0605 0.0074 0.1979 0.0080 0.2779 0.0064 0.1419 0.0065 1.6397 0.0085 0.1921 0.0076
DBX 1.0313 0.0069 0.2128 0.0079 0.2451 0.0071 0.2446 0.0081 2.0593 0.0076 0.1903 0.0088

UNDX 1.0132 0.0082 0.2572 0.0078 0.2316 0.0079 0.2165 0.0070 1.9587 0.0078 0.2109 0.0095
FR 0.9951 0.0068 0.2361 0.0083 0.2528 0.0074 0.1965 0.0084 1.8450 0.0079 0.2099 0.0093
SPX 1.0354 0.0085 0.2098 0.0085 0.2876 0.0082 0.2354 0.0089 1.6876 0.0071 0.2269 0.0081
PNX 1.0543 0.0083 0.2367 0.0082 0.2112 0.0086 0.1987 0.0076 1.6993 0.0069 0.1903 0.0075

Adaptive 0.9946 0.0079 0.1977 0.0077 0.2212 0.0079 0.1839 0.0085 1.7190 0.0069 0.1671 0.0065

CAC 40 avg. best avg. best avg. best avg. best avg. best avg. best

OPX 1.0112 0.0075 0.2143 0.0078 0.2259 0.0071 0.1348 0.0071 1.2953 0.0069 0.1823 0.0089
UX 0.9928 0.0080 0.2054 0.0071 0.2167 0.0073 0.1349 0.0072 1.3369 0.0061 0.1917 0.0074
HX 1.0162 0.0079 0.2152 0.0069 0.2336 0.0077 0.1693 0.0075 1.4248 0.0063 0.2005 0.0065
LX 1.0031 0.0079 0.2044 0.0059 0.2041 0.0075 0.1755 0.0068 1.2192 0.0069 0.1994 0.0069

QBX 0.9595 0.0076 0.2195 0.0069 0.2237 0.0071 0.1921 0.0067 1.3121 0.0061 0.2012 0.0059
TPX 0.9727 0.0078 0.2233 0.0079 0.2504 0.0088 0.2249 0.0077 1.3406 0.0059 0.2032 0.0073
AX 0.8998 0.0072 0.2572 0.0074 0.2777 0.0079 0.1171 0.0079 1.2301 0.0063 0.1998 0.0069
GX 0.9029 0.0079 0.2007 0.0074 0.2653 0.0072 0.1101 0.0175(U) 1.2285 0.0071 0.1857 0.0089
SBX 0.9997 0.0085 0.1991 0.0068 0.2282 0.0073 0.1009 0.0089 1.2245 0.0069 0.1799 0.0079
AVX 0.9443 0.0086 0.1905 0.0069 0.2589 0.0069 0.1423 0.0089 1.2201 0.0051 0.2147 0.0064
BLX 1.0162 0.0072 0.2231 0.0059 0.2985 0.0067 0.1739 0.0085 1.4312 0.0066 0.1896 0.0088
FX 0.9968 0.0085 0.2137 0.0065 0.3018 0.0066 0.1293 0.0079 1.2774 0.0059 0.2052 0.0071

GUX 0.9867 0.0075 0.2479 0.0059 0.2921 0.0070 0.1019 0.0069 1.2722 0.0084 0.1901 0.0054
TPX 1.0123 0.0079 0.2772 0.0067 0.3235 0.0065 0.1226 0.0068 1.2024 0.0101(U) 0.2332 0.0095
LNX 0.9765 0.0078 0.3049 0.0058 0.2759 0.0069 0.2156 0.0059 1.2337 0.0057 0.1435 0.0067
DBX 0.9564 0.0081 0.2018 0.0061 0.3911 0.0072 0.1402 0.0071 1.2423 0.0089 0.1991 0.0092

UNDX 0.9811 0.0082 0.1892 0.0069 0.4714 0.0075 0.1768 0.0069 1.3508 0.0063 0.2453 0.0108(U)
FR 1.0232 0.0078 0.2102 0.0059 0.2601 0.0064 0.1348 0.0069 1.4460 0.0068 0.2812 0.0079
SPX 1.0349 0.0089 0.2878 0.0069 0.3562 0.0077 0.1669 0.0078 1.4987 0.0074 0.1902 0.0069
PNX 1.0341 0.0091 0.2684 0.0075 0.2954 0.0075 0.1901 0.0070 1.4903 0.0089 0.2384 0.0109(U)

Adaptive 0.9146 0.0076 0.2487 0.0081 0.2511 0.0077 0.1134 0.0081 1.8190 0.0075 0.1371 0.0075

Table 4.4: In-sample tests with cardinality and upper/lower bound constraints, K =
10, lb = 0.05 and ub = 0.15, ε = 1e− 001. (U) denotes an infeasible solution.

In table 4.4 we report the results with the settings listed in the first row of table
4.3. We can draw some conclusions on the basis of the reported costs, for which
we make a distinction between average and best cost; for the latter, we also specify
the feasibility of the solution. The penalty approach indeed allows the optimization
algorithm to visit infeasible solution during the search process: a preliminary exper-
iment in which we compared infeasibility handling both with an embedded repair

106 Computational analysis

mechanism and with the penalty function 2.30 has shown that exploration operators
tend to underperform all the others when the penalty approach is applied, some-
times converging to very poor solutions and leading generally to infeasible solutions.
The repair approach, instead, by forcing to satisfy the constraints at each generation,
keeps the diversification in the population under control; overall, it induces the search
algorithm to limit the exploration of vast areas of the search space, so that in the
end this latter strategy of constraint handling usually leads to more uniform solution
across operators. Consequently, some operators need to receive a larger amount of
penalty for constraint violation to perform better and this can be achieved through
the parameter ε, which is equal to 0.1 for this test, though it may need even lower
values to encourage the convergence towards optimal solutions and preventing the
search process from getting stuck in infeasible solutions.

Note that certain operators cannot manage to converge towards good solutions
(table 4.4) in some cases, with a few solutions under the best columns resulting in
particularly modest performance, though generally most operators are able to achieve
low costs. The average costs are in general quite homogeneous for most operators:
hence, the identification of an outperforming operator is not straightforward; this does
not come as a surprise, given that most operators are highly specialized in solving
particular problems, while others may be more successful at solving others. A similar
conclusion can be drawn when various objective functions are taken into account:
we note that on average only the last two operators in table 4.4 tend to slightly
underperform the others, especially in terms of the best solution found; the results
are reasonably consistent with the findings of section 3.1.

The adaptive parameter control policy seems to slightly outperform on average
the simple genetic algorithm (SGA) approach, though not substantially. To recap,
an in-sample test itself is not enough to evaluate the goodness of a model, but rather
to provide a first impression of the operators behaviour. This introductory test has
successfully shown the tendency of each operator to display an above-average perfor-
mance only on a small subset of optimization problems, while on average we cannot
pick a systematically outperforming operator. The adaptive policy has proven to be
an effective approach to deal with a variety of optimization problems, leading to good
results on every dataset and for most cost functions, though in general we do not find
evidence of robust outperformance.

4.3.2.2 Testing the out-of-sample performance of the adaptive policy

In this out-of-sample experiment we evaluate the performance of the adaptive policy
and we use simple genetic algorithms as benchmarks. In particular, we consider some
basic performance metrics (see equation 4.4) to understand in depth its behaviour
across a variety of problem instances and cost functions. The idea, indeed, is to
verify whether a parameter control policy can produce above-average results when
compared to standard heuristic optimization techniques. Moreover, it is especially
important to evaluate the robustness of this policy, i.e. with some oversimplification,
we want to check whether the output of the model is accurate and outperforming even
for changing problems. One of the main advantages of parameter control discussed
in section 1.3 is related to its flexibility, namely it allows the EA to use appropriate
parameter values at different stages of the search process (e.g. Karafotias et al. (2015).
A crossover operator, as Herrera et al. (2005) argues, is more effective when its search
bias is adjusted to the structure of the problem at hand. In this case, we rather select
each time a different operator, in order to encourage a ‘dynamic approach’ when
solving different optimization problems.

In order to provide a first impression about the quality of the adaptive policy,
we plot the cumulative daily returns of each strategy with K = 10 in Figures 4.12-
4.16 and with K = 20 in Figures 4.17-4.21. Overall, the adaptive portfolio performs
positively, outperforming most simple genetic algorithms for both classes of cardinality

Computational analysis 107

Figure 4.12: Rolling-window backtest of the adaptive strategy on Nikkei 225 index,
with K = 10, lb = 0.05 and ub = 0.15

constrained portfolios1 (i.e. K = 10 and K = 20); specifically, note that the adaptive
approach displays a particular appealing performance when applied to the two-sided
risk measure and to risk parity: for some datasets, indeed, the adaptive algorithm
manages to outperform all the operators, in some cases even by a wide margin, while
for other instances we note a good overall performance. As far as ’standard’ risk
measures are involved, the benefits of parameter control are less clear, but on average
we observe the adaptive strategy is regularly among the best performing ones in terms
of cumulative returns, whereas the basic strategies are less consistent across datasets.

Tables 4.5-4.10 report the performance statistics of each strategy for each risk
measure, relative to biyearly rebalanced portfolios. Each table includes the results
for all datasets, for a varying amount of the cardinality K. In terms of Sharpe Ratio
performance, we note that the best results are achieved with K = 10 for three out
of five instances (Nikkei 225, FTSE 100 and CAC 40), though for a few operators
we observe an opposite trend. The other two datasets (Hang Seng and FTSE MIB)
display a larger Sharpe Ratio for K = 20; therefore, we conclude that the impact
of the cardinality constraint on portfolio performance is mostly related to the data
cointaned in each sample and consequently we cannot generalize the results, as the
relationship between portfolio performance and the value of K is not clear-cut at all:
selecting a smaller subset of assets from the stock market index is not necessarily
desirable.

The most profitable strategy in terms of annualized Sharpe Ratio is definitely the
one based on the two-sided risk measure, though also the portfolios constructed with
the Omega Ratio and the ERC approach display a fair performance. If we consider the
Nikkei 225 instance, for the former the average SR is well above one, while the Sharpe

1Actually, for what concern risk parity, we are not constructing equally-weighted risk contribution
portfolios; we rather enforce integer-constraints and at the same time we obtain ‘as ERC as possible’
portfolios, see Gilli and Schumann (2021).

108 Computational analysis

Figure 4.13: Rolling-window backtest of the adaptive strategy on FTSE100 index
with K = 10, lb = 0.05 and ub = 0.15

Figure 4.14: Rolling-window backtest of the adaptive strategy on Hang Seng index
with K = 10, lb = 0.05 and ub = 0.15

Computational analysis 109

Figure 4.15: Rolling-window backtest of the adaptive strategy on FTSE MIB index
with K = 10, lb = 0.05 and ub = 0.15

Figure 4.16: Rolling-window backtest of the adaptive strategy on CAC 40 index with
K = 10, lb = 0.05 and ub = 0.15

110 Computational analysis

Figure 4.17: Rolling-window backtest of the adaptive strategy on Nikkei 225 index
with K = 20, lb = 0.04 and ub = 0.12

Figure 4.18: Rolling-window backtest of the adaptive strategy on FTSE 100 index
with K = 20, lb = 0.04 and ub = 0.12

Computational analysis 111

Figure 4.19: Rolling-window backtest of the adaptive strategy on Hang Seng index
with K = 20, lb = 0.04 and ub = 0.12

Figure 4.20: Rolling-window backtest of the adaptive strategy on FTSE MIB index
with K = 20, lb = 0.04 and ub = 0.12

112 Computational analysis

Figure 4.21: Rolling-window backtest of the adaptive strategy on CAC 40 index with
K = 20, lb = 0.04 and ub = 0.12

Ratio of portfolios constructed with the Omega Ratio and with the ERC approach are,
on average, a bit below one. The remaining risk measures display a moderately below-
average performance across all datasets. Unsurprisingly, the mean-variance approach
performs modestly, though also V aR95% and ES95% strategies present comparable
performance metrics; moreover, we note that one portfolio constructed from a subset
of the FTSE MIB regularly exhibits a negative Sharpe Ratio, with the exception of
Omega Ratio portfolios, which always display positive values.

As far as transaction costs are involved, there is little evidence in favor of any
strategy, including the adaptive one, as turnover values are not particularly consistent;
actually, we do not observe particular patterns across datasets, as Tables 4.5-4.10
show pretty clearly that some strategies can be at times expensive, at others quite
cheap. Similar results are observed for different risk measures, controlling for the
input dataset we pass to each model.

Finally, we observe a more robust relationship between K, i.e. the subset of assets
included in the portfolio and its turnover, which is substantially larger turnover for
portfolios with K = 20. A lower turnover is an attractive feature and actually it
could be also influenced by input sensitivity (which is a well-known shortcoming of
mean-variance portfolios) or by lower and upper bounds constraint. By enforcing
strict floor and ceiling constraints, we avoid indeed large swings in the composition
of the portfolio due to rebalancing operations; as a result, small perturbations in the
values of the estimates never lead to innatural and highly concentrated mean-variance
portfolios. The remaining risk measures are more robust to input estimates; yet, they
benefit in terms of transaction costs from constraining the amount invested in each
asset. The flip side of this approach, of course, is that it may be too limiting for
outperforming strategies, leading in practice to portfolios that resemble each other.

µ̂i σ̂i ˆSRi Turnover

Nikkei 225 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

Computational analysis 113

OPX 0.1901 0.1574 0.2040 0.1927 0.9322 0.8165 0.0809 0.1541
UX 0.1915 0.1599 0.2053 0.1911 0.9329 0.8368 0.0936 0.1663
HX 0.2074 0.1653 0.2043 0.1928 1.0154 0.8574 0.0740 0.1541
LX 0.1874 0.1591 0.2061 0.1932 0.9093 0.8235 0.0746 0.1765

QBX 0.1931 0.1785 0.2032 0.1878 0.9502 0.9505 0.1010 0.1906
TPX 0.1896 0.1644 0.2055 0.1890 0.9228 0.8700 0.0831 0.1777
AX 0.1890 0.1747 0.2096 0.1899 0.9017 0.9202 0.0815 0.1839
GX 0.1938 0.1644 0.2020 0.1917 0.9594 0.8575 0.0739 0.1627
SBX 0.1778 0.1535 0.2086 0.1918 0.8521 0.8003 0.1038 0.1613
AVX 0.1807 0.1580 0.2075 0.1924 0.8712 0.8212 0.0629 0.1971
BLX 0.2174 0.1533 0.1987 0.1944 1.0938 0.7884 0.0928 0.1575
FX 0.1953 0.1507 0.2021 0.1925 0.9663 0.7829 0.0876 0.1688

GUX 0.2309 0.1643 0.2025 0.1895 1.1401 0.8671 0.0844 0.1640
TPX 0.2017 0.1540 0.2082 0.1928 0.9689 0.7989 0.0693 0.1672
LNX 0.1903 0.1484 0.2130 0.1971 0.8934 0.7531 0.0755 0.1464
DBX 0.1790 0.1673 0.2180 0.1897 0.8212 0.8817 0.0726 0.1532

UNDX 0.1927 0.1467 0.2076 0.1902 0.9286 0.7711 0.1081 0.1613
FR 0.2032 0.1557 0.2077 0.1942 0.9782 0.8014 0.0956 0.2163
SPX 0.1771 0.1602 0.2166 0.1908 0.8175 0.8393 0.1192 0.1873
PNX 0.1614 0.1621 0.2132 0.1909 0.7570 0.8495 0.0706 0.2308

Adaptive 0.2136 0.1505 0.2005 0.1889 1.0653 0.7966 0.1327 0.1550

FTSE 100 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0986 0.0958 0.1506 0.1687 0.6547 0.5682 0.0780 0.1850
UX 0.0947 0.1034 0.1515 0.1650 0.6254 0.6264 0.0754 0.1636
HX 0.0985 0.0969 0.1505 0.1647 0.6547 0.5882 0.0655 0.1850
LX 0.0963 0.1005 0.1513 0.1657 0.6364 0.6067 0.0670 0.1626

QBX 0.0972 0.1019 0.1491 0.1653 0.6518 0.6166 0.1078 0.1622
TPX 0.0957 0.0977 0.1538 0.1644 0.6221 0.5944 0.0823 0.1780
AX 0.0939 0.1004 0.1492 0.1660 0.6292 0.6050 0.1072 0.2000
GX 0.0994 0.1011 0.1524 0.1639 0.6522 0.6170 0.0941 0.1721
SBX 0.0944 0.0985 0.1548 0.1627 0.6096 0.6050 0.0823 0.1835
AVX 0.0919 0.1078 0.1550 0.1634 0.5925 0.6595 0.0728 0.1795
BLX 0.0972 0.1083 0.1512 0.1626 0.6432 0.6659 0.0859 0.1523
FX 0.0987 0.1011 0.1516 0.1630 0.6507 0.6204 0.0831 0.1828

GUX 0.0853 0.0978 0.1560 0.1665 0.5469 0.5876 0.1067 0.1564
TPX 0.0918 0.1056 0.1542 0.1661 0.5955 0.6356 0.1115 0.1923
LNX 0.0927 0.0974 0.1547 0.1654 0.5993 0.5885 0.0654 0.2030
DBX 0.0867 0.1007 0.1532 0.1661 0.5657 0.6058 0.0801 0.1547

UNDX 0.0963 0.1032 0.1534 0.1648 0.6279 0.6259 0.0906 0.2130
FR 0.1003 0.1025 0.1501 0.1637 0.6678 0.6260 0.1237 0.1750
SPX 0.0929 0.1030 0.1516 0.1666 0.6129 0.6184 0.1131 0.2207
PNX 0.0844 0.0984 0.1561 0.1642 0.5406 0.5994 0.0783 0.1758

Adaptive 0.1071 0.0959 0.1478 0.1651 0.7251 0.5809 0.1043 0.1608

Hang Seng K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0557 0.1246 0.2487 0.2082 0.2238 0.5983 0.0686 0.1351
UX 0.0411 0.1201 0.2377 0.2128 0.1729 0.5644 0.0812 0.1583
HX 0.0484 0.1297 0.2497 0.2137 0.1940 0.6068 0.0705 0.1351
LX 0.0532 0.1056 0.2450 0.2136 0.2171 0.4944 0.0909 0.1714

QBX 0.0545 0.1270 0.2512 0.2092 0.2170 0.6071 0.0712 0.1705
TPX 0.0467 0.1079 0.2504 0.2093 0.1865 0.5156 0.0806 0.1580
AX 0.0460 0.1160 0.2496 0.2094 0.1844 0.5539 0.0785 0.1530
GX 0.0644 0.1225 0.2437 0.2095 0.2641 0.5850 0.1105 0.1520
SBX 0.0573 0.1170 0.2411 0.2154 0.2375 0.5432 0.0831 0.2062
AVX 0.0507 0.1219 0.2496 0.2110 0.2033 0.5777 0.0950 0.1801
BLX 0.0567 0.1157 0.2491 0.2125 0.2277 0.5448 0.0601 0.1793
FX 0.0551 0.1273 0.2489 0.2087 0.2213 0.6098 0.0696 0.1408

GUX 0.0338 0.1197 0.2461 0.2124 0.1374 0.5634 0.0850 0.1821
TPX 0.0524 0.1246 0.2506 0.2119 0.2092 0.5881 0.1332 0.1740
LNX 0.0417 0.1205 0.2442 0.2132 0.1709 0.5654 0.0789 0.2067
DBX 0.0444 0.1111 0.2386 0.2137 0.1862 0.5200 0.0717 0.1617

UNDX 0.0470 0.1309 0.2397 0.2193 0.1962 0.5970 0.1443 0.1621
FR 0.0604 0.1366 0.2418 0.2173 0.2497 0.6287 0.0753 0.2295
SPX 0.0392 0.1319 0.2505 0.2110 0.1564 0.6253 0.0750 0.1690
PNX 0.0379 0.1228 0.2394 0.2096 0.1581 0.5859 0.0952 0.1850

Adaptive 0.0812 0.1353 0.2347 0.2153 0.3458 0.6283 0.0845 0.1981

FTSE MIB K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0143 0.0383 0.2770 0.3021 0.0516 0.1269 0.0734 0.1647
UX 0.0228 0.0638 0.2905 0.3014 0.0785 0.2116 0.1132 0.1905
HX 0.0134 0.0587 0.2857 0.3018 0.0469 0.1945 0.0626 0.1647
LX 0.0411 0.0484 0.2930 0.3028 0.1403 0.1599 0.0739 0.1509

QBX 0.0296 0.0448 0.2786 0.2998 0.1061 0.1495 0.1036 0.1496
TPX 0.0487 0.0378 0.2862 0.3031 0.1703 0.1248 0.0975 0.1833
AX 0.0398 0.0555 0.2808 0.2999 0.1416 0.1850 0.1059 0.1669
GX 0.0474 0.0505 0.2776 0.2992 0.1708 0.1689 0.0652 0.2204
SBX 0.0360 0.0585 0.2793 0.3010 0.1288 0.1945 0.0897 0.1450
AVX 0.0302 0.0465 0.2796 0.3012 0.1080 0.1543 0.0795 0.1836
BLX 0.0302 0.0515 0.2743 0.3065 0.1100 0.1681 0.0806 0.1591
FX 0.0482 0.0435 0.2757 0.3020 0.1747 0.1440 0.0739 0.2009

114 Computational analysis

GUX 0.0368 0.0541 0.2757 0.2978 0.1334 0.1817 0.0736 0.1673
TPX 0.0407 0.0663 0.2769 0.3019 0.1471 0.2195 0.0787 0.1578
LNX 0.0384 0.0426 0.3156 0.2985 0.1216 0.1428 0.0721 0.1614
DBX 0.0103 0.0536 0.3154 0.3002 0.0326 0.1787 0.0805 0.1717

UNDX 0.0389 0.0786 0.2826 0.3040 0.1375 0.2586 0.1272 0.1831
FR 0.0067 0.0390 0.2847 0.2990 0.0237 0.1304 0.0914 0.2491
SPX 0.0252 0.0302 0.2971 0.3007 0.0848 0.1005 0.0908 0.1797
PNX 0.0125 0.0532 0.3088 0.2988 0.0406 0.1779 0.0838 0.1499

Adaptive 0.0229 0.0469 0.2662 0.2889 0.0861 0.1624 0.1522 0.1721

CAC 40 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1055 0.1014 0.2196 0.2313 0.4805 0.4385 0.0941 0.1672
UX 0.1060 0.1042 0.2204 0.2281 0.4807 0.4568 0.0755 0.1816
HX 0.1190 0.1064 0.2132 0.2309 0.5580 0.4609 0.0922 0.1672
LX 0.0955 0.1036 0.2228 0.2288 0.4285 0.4526 0.0654 0.1933

QBX 0.1234 0.0958 0.2119 0.2337 0.5824 0.4098 0.1090 0.1560
TPX 0.1101 0.1119 0.2252 0.2279 0.4888 0.4911 0.0701 0.1861
AX 0.1022 0.0942 0.2265 0.2350 0.4514 0.4006 0.0824 0.1600
GX 0.1141 0.1117 0.2124 0.2334 0.5370 0.4784 0.0658 0.1830
SBX 0.1069 0.1169 0.2261 0.2319 0.4729 0.5042 0.1016 0.1423
AVX 0.1180 0.1009 0.2200 0.2309 0.5364 0.4371 0.0853 0.2058
BLX 0.1222 0.1092 0.2155 0.2337 0.5672 0.4672 0.0804 0.1693
FX 0.1119 0.1069 0.2120 0.2307 0.5280 0.4632 0.0803 0.1657

GUX 0.0965 0.0986 0.2320 0.2340 0.4160 0.4216 0.0795 0.1789
TPX 0.1219 0.1147 0.2147 0.2291 0.5680 0.5008 0.1029 0.1791
LNX 0.1041 0.1055 0.2354 0.2311 0.4422 0.4566 0.0911 0.1566
DBX 0.1082 0.1064 0.2384 0.2328 0.4538 0.4571 0.0886 0.1896

UNDX 0.1112 0.1095 0.2219 0.2324 0.5011 0.4710 0.0926 0.1930
FR 0.1259 0.1056 0.2201 0.2322 0.5722 0.4549 0.0797 0.1947
SPX 0.1254 0.1121 0.2236 0.2301 0.5608 0.4873 0.0644 0.1573
PNX 0.1107 0.1013 0.2227 0.2300 0.4969 0.4403 0.1061 0.1772

Adaptive 0.1109 0.1140 0.2159 0.2269 0.5134 0.5025 0.0800 0.1992

Table 4.5: Out-of-sample portfolio metrics. Risk measure: Omega ratio. Tests with
cardinality and upper/lower bound constraints, ε = 1e− 001.

µ̂i σ̂i ˆSRi Turnover

Nikkei 225 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1893 0.1606 0.2091 0.1941 0.9283 0.8335 0.0694 0.1494
UX 0.2099 0.1781 0.2082 0.1894 1.0225 0.9320 0.0974 0.1826
HX 0.2140 0.1495 0.2051 0.1918 1.0476 0.7752 0.0956 0.1494
LX 0.1734 0.1589 0.2119 0.1943 0.8413 0.8222 0.0712 0.1737
QBX 0.2146 0.1452 0.2034 0.1945 1.0563 0.7733 0.0978 0.1545
TPX 0.2134 0.1629 0.2104 0.1888 1.0386 0.8621 0.0775 0.1799
AX 0.1890 0.1641 0.2058 0.1921 0.9017 0.8642 0.0831 0.1749
GX 0.1988 0.1626 0.2042 0.1922 0.9842 0.8480 0.0797 0.1612
SBX 0.1714 0.1571 0.2053 0.1912 0.8216 0.8187 0.0802 0.1596
AVX 0.1902 0.1699 0.2105 0.1909 0.9166 0.8828 0.0775 0.1593
BLX 0.1956 0.1715 0.2117 0.1904 0.9843 0.8819 0.0928 0.1663
FX 0.1984 0.1600 0.2086 0.1920 0.9818 0.8310 0.0897 0.1706
GUX 0.2031 0.1537 0.2116 0.1912 1.0026 0.8113 0.0933 0.1692
TPX 0.1911 0.1619 0.2122 0.1934 0.9177 0.8399 0.0600 0.1975
LNX 0.1913 0.1530 0.2140 0.1923 0.8981 0.7763 0.1009 0.1624
DBX 0.1458 0.1518 0.2259 0.1916 0.6691 0.8001 0.0849 0.1738
UNDX 0.1920 0.1540 0.2158 0.1945 0.9251 0.8094 0.1325 0.1702
FR 0.1916 0.1601 0.2104 0.1900 0.9224 0.8241 0.0909 0.2399
SPX 0.1659 0.1703 0.2166 0.1888 0.7657 0.8925 0.0796 0.1730
PNX 0.1575 0.1637 0.2139 0.1917 0.7385 0.8577 0.0720 0.1650

Adaptive 0.2033 0.1650 0.2013 0.1913 1.0143 0.8737 0.1144 0.1478

FTSE 100 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0886 0.0967 0.1516 0.1669 0.5882 0.5730 0.0919 0.1651
UX 0.0956 0.0926 0.1491 0.1678 0.6309 0.5612 0.0602 0.1604
HX 0.1051 0.1046 0.1473 0.1621 0.6987 0.6351 0.0883 0.1651
LX 0.0980 0.0981 0.1474 0.1641 0.6473 0.5921 0.0962 0.1908
QBX 0.1141 0.1013 0.1451 0.1616 0.7657 0.6127 0.0695 0.1871
TPX 0.0995 0.0925 0.1518 0.1657 0.6472 0.5629 0.0714 0.1788
AX 0.1065 0.1066 0.1495 0.1673 0.7138 0.6424 0.0991 0.1400
GX 0.0911 0.1045 0.1488 0.1644 0.5974 0.6377 0.0826 0.2076
SBX 0.1011 0.0974 0.1511 0.1659 0.6529 0.5982 0.0873 0.1991
AVX 0.1000 0.1030 0.1488 0.1657 0.6450 0.6301 0.0711 0.1786
BLX 0.0941 0.1013 0.1478 0.1648 0.6225 0.6230 0.0675 0.1612
FX 0.1004 0.0999 0.1469 0.1640 0.6622 0.6132 0.1072 0.1602
GUX 0.0939 0.0980 0.1512 0.1640 0.6020 0.5888 0.1183 0.1818
TPX 0.0969 0.0965 0.1513 0.1669 0.6285 0.5811 0.0677 0.1890
LNX 0.1011 0.0957 0.1515 0.1656 0.6538 0.5784 0.0633 0.1573

Computational analysis 115

DBX 0.0758 0.0994 0.1596 0.1655 0.4947 0.5982 0.0988 0.1489
UNDX 0.0898 0.1036 0.1524 0.1643 0.5857 0.6287 0.1056 0.1884
FR 0.0952 0.1002 0.1567 0.1659 0.6341 0.6119 0.0802 0.2439
SPX 0.0973 0.1013 0.1513 0.1640 0.6419 0.6079 0.0979 0.1570
PNX 0.0921 0.0960 0.1543 0.1645 0.5904 0.5847 0.0975 0.1750

Adaptive 0.1071 0.0997 0.1466 0.1637 0.7246 0.6042 0.0772 0.1776

Hang Seng K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0376 0.1153 0.2377 0.2084 0.1510 0.5537 0.0740 0.1606
UX 0.0669 0.1194 0.2299 0.2156 0.2812 0.5611 0.0898 0.1931
HX 0.0585 0.1127 0.2382 0.2093 0.2342 0.5274 0.1117 0.1606
LX 0.0471 0.1100 0.2437 0.2112 0.1924 0.5150 0.1090 0.2172
QBX 0.0567 0.1130 0.2361 0.2101 0.2256 0.5402 0.0678 0.1773
TPX 0.0316 0.1228 0.2349 0.2105 0.1261 0.5865 0.0755 0.1546
AX 0.0614 0.1221 0.2401 0.2096 0.2459 0.5831 0.0859 0.1735
GX 0.0421 0.1033 0.2372 0.2178 0.1727 0.4932 0.0620 0.1710
SBX 0.0351 0.1192 0.2292 0.2158 0.1456 0.5533 0.0744 0.1745
AVX 0.0479 0.1162 0.2380 0.2168 0.1918 0.5505 0.0767 0.1327
BLX 0.0459 0.1117 0.2357 0.2047 0.1842 0.5258 0.0628 0.1587
FX 0.0435 0.1233 0.2359 0.2106 0.1749 0.5907 0.0793 0.1707
GUX 0.0401 0.1077 0.2443 0.2056 0.1629 0.5069 0.0877 0.1629
TPX 0.0527 0.1136 0.2346 0.2158 0.2103 0.5362 0.1043 0.1924
LNX 0.0374 0.1056 0.2522 0.2118 0.1533 0.4953 0.0972 0.1735
DBX 0.0547 0.1204 0.2518 0.2104 0.2292 0.5634 0.0602 0.1647
UNDX 0.0543 0.1165 0.2402 0.2080 0.2264 0.5315 0.0941 0.1710
FR 0.0593 0.1263 0.2381 0.2155 0.2454 0.5812 0.0690 0.1855
SPX 0.0356 0.1157 0.2411 0.2093 0.1422 0.5485 0.1139 0.1509
PNX 0.0534 0.1222 0.2577 0.2145 0.2229 0.5828 0.0824 0.2117

Adaptive 0.0544 0.1177 0.2328 0.2138 0.2319 0.5468 0.1146 0.1938

FTSE MIB K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0213 0.0445 0.2845 0.3048 0.0769 0.1472 0.1060 0.1981
UX 0.0038 0.0469 0.2917 0.3022 0.0130 0.1554 0.0924 0.1563
HX 0.0270 0.0645 0.2821 0.2985 0.0946 0.2137 0.0780 0.1981
LX 0.0323 0.0579 0.2870 0.3007 0.1104 0.1911 0.0718 0.1535
QBX 0.0130 0.0601 0.2862 0.3008 0.0467 0.2006 0.0968 0.1554
TPX 0.0146 0.0515 0.2834 0.2985 0.0509 0.1698 0.0788 0.1667
AX 0.0232 0.0605 0.2864 0.3039 0.0828 0.2019 0.0655 0.1595
GX 0.0345 0.0537 0.2861 0.3014 0.1244 0.1795 0.0980 0.1793
SBX 0.0143 0.0559 0.3018 0.2985 0.0511 0.1857 0.0993 0.1842
AVX 0.0154 0.0522 0.2790 0.2997 0.0551 0.1734 0.0916 0.1832
BLX 0.0072 0.0515 0.2894 0.2999 0.0262 0.1681 0.1125 0.1863
FX 0.0334 0.0359 0.2837 0.3031 0.1211 0.1189 0.1038 0.1852
GUX 0.0199 0.0547 0.2915 0.2984 0.0722 0.1838 0.0818 0.2018
TPX 0.0337 0.0383 0.2869 0.3033 0.1219 0.1268 0.0816 0.1853
LNX 0.0266 0.0466 0.2998 0.3059 0.0843 0.1560 0.0996 0.2226
DBX 0.0250 0.0498 0.3203 0.3011 0.0793 0.1660 0.0922 0.1786
UNDX 0.0230 0.0526 0.2907 0.3034 0.0812 0.1729 0.1258 0.1778
FR -0.0151 0.0674 0.2963 0.3031 -0.0531 0.2253 0.1229 0.2699
SPX 0.0130 0.0428 0.3012 0.2998 0.0438 0.1422 0.0806 0.1865
PNX 0.0093 0.0516 0.3051 0.3022 0.0300 0.1726 0.0640 0.1774

Adaptive 0.0043 0.0527 0.2873 0.2921 0.0160 0.1824 0.0830 0.1786

CAC 40 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1050 0.1086 0.2188 0.2279 0.4778 0.4695 0.0646 0.1622
UX 0.1033 0.1076 0.2269 0.2308 0.4689 0.4718 0.0751 0.1606
HX 0.1109 0.1074 0.2182 0.2296 0.5199 0.4651 0.0896 0.1622
LX 0.1055 0.1135 0.2279 0.2310 0.4736 0.4962 0.0885 0.1739
QBX 0.1268 0.1075 0.2136 0.2303 0.5983 0.4598 0.0886 0.1798
TPX 0.1092 0.1042 0.2226 0.2268 0.4848 0.4573 0.0970 0.1690
AX 0.1110 0.1016 0.2153 0.2318 0.4902 0.4323 0.0895 0.1936
GX 0.1284 0.1142 0.2187 0.2289 0.6043 0.4892 0.0892 0.1687
SBX 0.0924 0.1065 0.2316 0.2321 0.4089 0.4594 0.0668 0.1726
AVX 0.1144 0.1053 0.2169 0.2310 0.5198 0.4562 0.0869 0.1741
BLX 0.1119 0.1012 0.2259 0.2314 0.5193 0.4331 0.0873 0.1691
FX 0.1051 0.1052 0.2202 0.2318 0.4957 0.4559 0.1075 0.1582
GUX 0.1082 0.0982 0.2261 0.2317 0.4665 0.4196 0.0690 0.2045
TPX 0.1172 0.1145 0.2206 0.2305 0.5458 0.4998 0.0952 0.1604
LNX 0.1027 0.1011 0.2359 0.2326 0.4365 0.4376 0.0710 0.1945
DBX 0.1066 0.1038 0.2470 0.2331 0.4472 0.4458 0.0866 0.1529
UNDX 0.1004 0.1082 0.2240 0.2303 0.4526 0.4657 0.1202 0.1551
FR 0.1177 0.1133 0.2353 0.2294 0.5346 0.4878 0.0891 0.1945
SPX 0.1066 0.1050 0.2409 0.2293 0.4768 0.4562 0.0904 0.1669
PNX 0.1114 0.1113 0.2261 0.2301 0.5001 0.4838 0.0777 0.1866

Adaptive 0.1184 0.1128 0.2114 0.2246 0.5482 0.4974 0.1151 0.1584

Table 4.6: Out-of-sample portfolio metrics. Risk measure: V aR95%. Tests with
cardinality and upper/lower bound constraints, ε = 1e− 001.

116 Computational analysis

µ̂i σ̂i ˆSRi Turnover

Nikkei 225 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1973 0.1629 0.2069 0.1908 0.9675 0.8453 0.0781 0.1478
UX 0.1879 0.1620 0.2084 0.1900 0.9152 0.8476 0.1051 0.2007
HX 0.1966 0.1644 0.2114 0.1915 0.9623 0.8528 0.0822 0.1478
LX 0.1787 0.1679 0.2125 0.1901 0.8672 0.8690 0.0903 0.1701
QBX 0.2381 0.1469 0.2050 0.1937 1.1717 0.7823 0.1042 0.1819
TPX 0.1935 0.1637 0.2046 0.1909 0.9419 0.8659 0.0772 0.1674
AX 0.2101 0.1583 0.2044 0.1965 1.0026 0.8338 0.1064 0.1685
GX 0.1912 0.1421 0.2094 0.1959 0.9467 0.7411 0.0695 0.2163
SBX 0.2184 0.1552 0.2055 0.1947 1.0469 0.8089 0.0838 0.1398
AVX 0.1902 0.1579 0.2090 0.1932 0.9170 0.8204 0.0830 0.1769
BLX 0.2042 0.1659 0.2078 0.1923 1.0278 0.8533 0.0745 0.1813
FX 0.1983 0.1655 0.2032 0.1912 0.9813 0.8595 0.0894 0.1576
GUX 0.1956 0.1602 0.2126 0.1932 0.9655 0.8453 0.0820 0.1683
TPX 0.1943 0.1576 0.2058 0.1909 0.9332 0.8175 0.0901 0.1522
LNX 0.1777 0.1638 0.2096 0.1913 0.8341 0.8314 0.0817 0.1956
DBX 0.1462 0.1559 0.2268 0.1954 0.6706 0.8215 0.0650 0.2086
UNDX 0.1820 0.1537 0.2094 0.1924 0.8770 0.8083 0.1047 0.1539
FR 0.1870 0.1566 0.2085 0.1913 0.9003 0.8062 0.0967 0.1838
SPX 0.1872 0.1584 0.2125 0.1920 0.8640 0.8301 0.1070 0.1626
PNX 0.1858 0.1602 0.2165 0.1930 0.8713 0.8391 0.0785 0.1719

Adaptive 0.2239 0.1585 0.1978 0.1891 1.1167 0.8393 0.1049 0.1607

FTSE 100 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0975 0.1070 0.1498 0.1652 0.6478 0.6343 0.0768 0.1505
UX 0.1006 0.0968 0.1525 0.1651 0.6643 0.5869 0.0847 0.1637
HX 0.0935 0.0972 0.1482 0.1636 0.6211 0.5899 0.0715 0.1505
LX 0.1051 0.1044 0.1506 0.1632 0.6947 0.6298 0.0932 0.1558
QBX 0.1007 0.0994 0.1475 0.1645 0.6757 0.6016 0.0771 0.1666
TPX 0.1073 0.1025 0.1471 0.1660 0.6979 0.6235 0.0746 0.1425
AX 0.0928 0.1019 0.1506 0.1622 0.6218 0.6139 0.0861 0.1518
GX 0.1004 0.1132 0.1490 0.1628 0.6584 0.6908 0.0626 0.1980
SBX 0.0901 0.1022 0.1531 0.1667 0.5820 0.6282 0.0581 0.1433
AVX 0.1015 0.1047 0.1484 0.1644 0.6549 0.6406 0.0811 0.1544
BLX 0.1010 0.1042 0.1493 0.1634 0.6681 0.6407 0.0818 0.1743
FX 0.1018 0.1041 0.1509 0.1660 0.6713 0.6387 0.0849 0.1539
GUX 0.1002 0.1006 0.1467 0.1653 0.6420 0.6045 0.0872 0.1792
TPX 0.1060 0.0987 0.1477 0.1668 0.6875 0.5939 0.0837 0.1583
LNX 0.0996 0.0998 0.1530 0.1627 0.6440 0.6034 0.0732 0.1814
DBX 0.0801 0.1061 0.1602 0.1627 0.5230 0.6387 0.0881 0.1485
UNDX 0.1013 0.0973 0.1481 0.1608 0.6608 0.5904 0.0813 0.1810
FR 0.0893 0.1006 0.1535 0.1669 0.5948 0.6143 0.1234 0.2368
SPX 0.0884 0.1072 0.1525 0.1644 0.5832 0.6431 0.0829 0.2005
PNX 0.0856 0.0995 0.1519 0.1652 0.5483 0.6057 0.0687 0.1939

Adaptive 0.1154 0.1062 0.1465 0.1607 0.7814 0.6434 0.0704 0.1357

Hang Seng K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0553 0.1119 0.2328 0.2229 0.2222 0.5376 0.0839 0.1820
UX 0.0488 0.1154 0.2378 0.2139 0.2053 0.5423 0.1028 0.1726
HX 0.0500 0.1129 0.2375 0.2128 0.2003 0.5283 0.0771 0.1820
LX 0.0313 0.1281 0.2439 0.2072 0.1278 0.5998 0.0803 0.1546
QBX 0.0487 0.1169 0.2311 0.2096 0.1939 0.5590 0.1123 0.1573
TPX 0.0442 0.1118 0.2426 0.2140 0.1767 0.5343 0.0989 0.2185
AX 0.0425 0.1211 0.2340 0.2105 0.1705 0.5784 0.0907 0.1712
GX 0.0462 0.1051 0.2350 0.2097 0.1897 0.5016 0.0941 0.1735
SBX 0.0470 0.1384 0.2358 0.2117 0.1951 0.6422 0.0756 0.2038
AVX 0.0410 0.1132 0.2361 0.2142 0.1644 0.5366 0.0747 0.1792
BLX 0.0358 0.1202 0.2405 0.2120 0.1436 0.5656 0.0764 0.1620
FX 0.0368 0.1215 0.2335 0.2131 0.1478 0.5820 0.0910 0.1704
GUX 0.0466 0.1094 0.2440 0.2128 0.1895 0.5153 0.0759 0.1917
TPX 0.0305 0.1122 0.2399 0.2127 0.1216 0.5295 0.0862 0.1612
LNX 0.0165 0.1111 0.2451 0.2109 0.0675 0.5211 0.0841 0.1388
DBX 0.0389 0.1306 0.2534 0.2091 0.1629 0.6112 0.0640 0.1537
UNDX 0.0599 0.1196 0.2424 0.2159 0.2500 0.5456 0.0839 0.1354
FR 0.0320 0.1041 0.2411 0.2123 0.1322 0.4792 0.0977 0.1833
SPX 0.0406 0.1048 0.2408 0.2150 0.1621 0.4970 0.0780 0.2107
PNX 0.0726 0.1179 0.2588 0.2086 0.3033 0.5627 0.0884 0.1944

Adaptive 0.0640 0.1119 0.2300 0.2095 0.2729 0.5197 0.1025 0.1934

FTSE MIB K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0026 0.0522 0.2867 0.3011 0.0094 0.1727 0.0772 0.1560
UX 0.0128 0.0568 0.2889 0.3020 0.0440 0.1884 0.0930 0.2007
HX 0.0075 0.0479 0.2833 0.2960 0.0264 0.1588 0.0862 0.1560
LX 0.0041 0.0633 0.2911 0.2992 0.0139 0.2090 0.0988 0.1753
QBX 0.0372 0.0453 0.2773 0.2984 0.1335 0.1512 0.0758 0.1776
TPX 0.0140 0.0435 0.2874 0.3015 0.0490 0.1436 0.0632 0.1534

Computational analysis 117

AX 0.0119 0.0552 0.2833 0.3021 0.0422 0.1841 0.0886 0.1670
GX -0.0051 0.0524 0.2873 0.2987 -0.0184 0.1752 0.1119 0.1793
SBX 0.0301 0.0688 0.2853 0.3012 0.1077 0.2287 0.0960 0.2134
AVX 0.0159 0.0445 0.2934 0.3033 0.0568 0.1479 0.0792 0.1919
BLX 0.0183 0.0595 0.2875 0.3016 0.0666 0.1943 0.1018 0.1505
FX 0.0170 0.0406 0.2825 0.3052 0.0615 0.1344 0.0843 0.1778
GUX 0.0120 0.0454 0.2818 0.2983 0.0434 0.1524 0.0987 0.1713
TPX 0.0104 0.0627 0.2985 0.2969 0.0376 0.2077 0.0815 0.1752
LNX 0.0137 0.0538 0.2972 0.3017 0.0435 0.1801 0.0918 0.1645
DBX 0.0367 0.0365 0.3200 0.3038 0.1164 0.1217 0.0787 0.1847
UNDX 0.0028 0.0595 0.2907 0.2965 0.0100 0.1957 0.1150 0.1647
FR 0.0115 0.0672 0.2955 0.3014 0.0405 0.2248 0.0759 0.2205
SPX 0.0252 0.0566 0.2980 0.3015 0.0847 0.1882 0.0993 0.1573
PNX 0.0289 0.0605 0.2905 0.3047 0.0936 0.2025 0.0632 0.1839

Adaptive 0.0352 0.0558 0.2787 0.2935 0.1321 0.1931 0.0884 0.1598

CAC 40 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1190 0.0963 0.2277 0.2327 0.5417 0.4165 0.0865 0.1786
UX 0.1093 0.1057 0.2257 0.2337 0.4960 0.4633 0.0956 0.1968
HX 0.1139 0.1002 0.2140 0.2309 0.5340 0.4340 0.1045 0.1786
LX 0.1197 0.1043 0.2195 0.2310 0.5372 0.4558 0.0825 0.1816
QBX 0.1182 0.1017 0.2149 0.2337 0.5576 0.4350 0.0744 0.1595
TPX 0.1008 0.1054 0.2234 0.2277 0.4477 0.4627 0.0651 0.1653
AX 0.1151 0.1055 0.2227 0.2328 0.5084 0.4487 0.1126 0.1911
GX 0.1078 0.1071 0.2196 0.2291 0.5073 0.4589 0.0857 0.1865
SBX 0.1083 0.1019 0.2207 0.2323 0.4790 0.4396 0.0959 0.1777
AVX 0.1042 0.1026 0.2268 0.2317 0.4738 0.4441 0.0814 0.1535
BLX 0.1125 0.1075 0.2188 0.2278 0.5223 0.4601 0.0933 0.1781
FX 0.1120 0.1078 0.2138 0.2318 0.5285 0.4674 0.0815 0.1828
GUX 0.1178 0.1016 0.2149 0.2312 0.5078 0.4344 0.1113 0.1676
TPX 0.1077 0.1020 0.2123 0.2323 0.5019 0.4453 0.0921 0.1794
LNX 0.1092 0.0931 0.2288 0.2318 0.4637 0.4028 0.0912 0.1657
DBX 0.1044 0.1080 0.2435 0.2300 0.4378 0.4639 0.0799 0.1835
UNDX 0.0939 0.1018 0.2321 0.2354 0.4233 0.4380 0.1149 0.1680
FR 0.1048 0.1040 0.2233 0.2286 0.4762 0.4479 0.0787 0.2129
SPX 0.0926 0.1119 0.2361 0.2290 0.4143 0.4863 0.0698 0.1709
PNX 0.1070 0.1041 0.2337 0.2335 0.4804 0.4523 0.0836 0.1818

Adaptive 0.1180 0.1010 0.2042 0.2259 0.5464 0.4453 0.0970 0.1574

Table 4.7: Out-of-sample portfolio metrics. Risk measure: ES95%. Tests with cardi-
nality and upper/lower bound constraints, ε = 1e− 001.

µ̂i σ̂i ˆSRi Turnover

Nikkei 225 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1727 0.1617 0.2175 0.1920 0.8468 0.8389 0.0621 0.1661
UX 0.1806 0.1605 0.2118 0.1926 0.8800 0.8398 0.1120 0.1830
HX 0.1991 0.1639 0.2159 0.1924 0.9749 0.8502 0.0776 0.1661
LX 0.1689 0.1408 0.2155 0.1947 0.8199 0.7285 0.0656 0.1815
QBX 0.1896 0.1517 0.2052 0.1942 0.9330 0.8078 0.1129 0.1726
TPX 0.1570 0.1587 0.2170 0.1923 0.7640 0.8399 0.0914 0.1939
AX 0.1726 0.1719 0.2149 0.1914 0.8236 0.9055 0.0904 0.1847
GX 0.1863 0.1472 0.2091 0.1912 0.9221 0.7680 0.0711 0.2102
SBX 0.1991 0.1665 0.2104 0.1910 0.9541 0.8676 0.0856 0.1731
AVX 0.1699 0.1676 0.2135 0.1902 0.8191 0.8709 0.0749 0.1663
BLX 0.1787 0.1637 0.2169 0.1908 0.8994 0.8418 0.0859 0.1475
FX 0.1701 0.1623 0.2121 0.1943 0.8418 0.8428 0.0978 0.1702
GUX 0.1918 0.1653 0.2157 0.1882 0.9469 0.8722 0.0955 0.1903
TPX 0.1727 0.1464 0.2129 0.1931 0.8294 0.7594 0.0888 0.1620
LNX 0.2002 0.1634 0.2174 0.1906 0.9400 0.8290 0.0838 0.1833
DBX 0.1402 0.1604 0.2280 0.1926 0.6434 0.8454 0.0770 0.1565
UNDX 0.1852 0.1489 0.2194 0.1916 0.8925 0.7827 0.1515 0.1744
FR 0.1865 0.1577 0.2119 0.1925 0.8978 0.8120 0.0762 0.3012
SPX 0.2070 0.1590 0.2086 0.1910 0.9555 0.8332 0.0794 0.1372
PNX 0.1919 0.1556 0.2119 0.1900 0.9000 0.8152 0.0627 0.1692

Adaptive 0.1965 0.1691 0.2068 0.1876 0.9803 0.8952 0.1278 0.1587

FTSE 100 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0927 0.0986 0.1501 0.1656 0.6156 0.5845 0.0860 0.1690
UX 0.0889 0.1004 0.1548 0.1635 0.5870 0.6086 0.0970 0.1693
HX 0.0961 0.1060 0.1496 0.1615 0.6387 0.6437 0.0891 0.1690
LX 0.0876 0.1047 0.1552 0.1653 0.5792 0.6320 0.0894 0.1419
QBX 0.0984 0.0980 0.1442 0.1653 0.6599 0.5926 0.0790 0.1612
TPX 0.0841 0.1001 0.1560 0.1645 0.5470 0.6086 0.1174 0.1813
AX 0.0820 0.1005 0.1521 0.1663 0.5492 0.6055 0.0909 0.2084
GX 0.0940 0.0968 0.1498 0.1663 0.6168 0.5907 0.0780 0.1734
SBX 0.0891 0.1033 0.1504 0.1626 0.5753 0.6346 0.1045 0.1566

118 Computational analysis

AVX 0.0904 0.0942 0.1529 0.1670 0.5832 0.5766 0.0763 0.2118
BLX 0.0942 0.1029 0.1507 0.1642 0.6233 0.6330 0.0990 0.1738
FX 0.0933 0.0977 0.1532 0.1670 0.6151 0.5995 0.0959 0.1824
GUX 0.0979 0.1001 0.1488 0.1649 0.6273 0.6014 0.0949 0.1725
TPX 0.0966 0.0950 0.1544 0.1655 0.6268 0.5721 0.0652 0.1700
LNX 0.0937 0.0958 0.1522 0.1655 0.6060 0.5789 0.0879 0.1725
DBX 0.0805 0.0999 0.1584 0.1667 0.5255 0.6012 0.0702 0.1510
UNDX 0.0855 0.1045 0.1488 0.1626 0.5577 0.6340 0.1659 0.1637
FR 0.0941 0.1002 0.1498 0.1641 0.6270 0.6120 0.0807 0.2440
SPX 0.0905 0.0987 0.1537 0.1641 0.5970 0.5925 0.0999 0.1857
PNX 0.0884 0.1044 0.1559 0.1631 0.5662 0.6357 0.0840 0.1608

Adaptive 0.1030 0.1055 0.1497 0.1648 0.6970 0.6393 0.1335 0.1779

Hang Seng K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0328 0.1259 0.2471 0.2093 0.1319 0.6048 0.1034 0.1970
UX 0.0261 0.1295 0.2467 0.2157 0.1098 0.6084 0.0940 0.1801
HX 0.0497 0.1272 0.2434 0.2133 0.1989 0.5953 0.0871 0.1970
LX 0.0481 0.1139 0.2383 0.2135 0.1962 0.5332 0.1028 0.1674
QBX 0.0762 0.1153 0.2315 0.2166 0.3035 0.5509 0.0916 0.2001
TPX 0.0592 0.1115 0.2428 0.2163 0.2362 0.5329 0.1089 0.1982
AX 0.0398 0.1084 0.2343 0.2119 0.1594 0.5176 0.0878 0.1855
GX 0.0408 0.1162 0.2476 0.2083 0.1674 0.5549 0.0837 0.1845
SBX 0.0377 0.1246 0.2475 0.2127 0.1564 0.5783 0.1108 0.1578
AVX 0.0439 0.1210 0.2415 0.2119 0.1760 0.5733 0.0832 0.1616
BLX 0.0507 0.1182 0.2389 0.2109 0.2034 0.5562 0.1013 0.1591
FX 0.0554 0.1059 0.2419 0.2124 0.2224 0.5075 0.0777 0.1725
GUX 0.0511 0.1107 0.2395 0.2107 0.2076 0.5210 0.0755 0.1721
TPX 0.0622 0.1244 0.2439 0.2124 0.2482 0.5870 0.0708 0.1619
LNX 0.0565 0.1225 0.2416 0.2113 0.2315 0.5747 0.0821 0.1412
DBX 0.0369 0.1177 0.2563 0.2129 0.1545 0.5510 0.0773 0.1836
UNDX 0.0479 0.1261 0.2485 0.2144 0.1999 0.5752 0.1091 0.1674
FR 0.0638 0.1163 0.2422 0.2067 0.2638 0.5353 0.1092 0.1994
SPX 0.0360 0.1022 0.2419 0.2136 0.1437 0.4843 0.0942 0.2039
PNX 0.0585 0.1120 0.2452 0.2114 0.2444 0.5341 0.0760 0.1647

Adaptive 0.0509 0.1166 0.2420 0.2112 0.2168 0.5415 0.0950 0.1700

FTSE MIB K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0290 0.0509 0.3000 0.3036 0.1048 0.1684 0.1074 0.1783
UX 0.0384 0.0321 0.2957 0.3067 0.1323 0.1064 0.1136 0.1837
HX 0.0317 0.0527 0.2952 0.3000 0.1111 0.1747 0.1042 0.1783
LX 0.0480 0.0326 0.3086 0.3042 0.1637 0.1076 0.0845 0.1655
QBX 0.0062 0.0584 0.2904 0.3014 0.0222 0.1946 0.0814 0.1782
TPX 0.0102 0.0504 0.2930 0.2973 0.0356 0.1662 0.0942 0.1737
AX 0.0152 0.0482 0.2974 0.2978 0.0542 0.1607 0.0837 0.1641
GX 0.0352 0.0604 0.2989 0.2983 0.1267 0.2019 0.0899 0.1906
SBX 0.0339 0.0413 0.2913 0.3028 0.1215 0.1373 0.1047 0.1755
AVX 0.0367 0.0515 0.3046 0.3016 0.1314 0.1708 0.0722 0.1860
BLX 0.0422 0.0533 0.2932 0.2994 0.1537 0.1739 0.0746 0.1436
FX 0.0166 0.0435 0.2958 0.3009 0.0603 0.1442 0.0785 0.1816
GUX 0.0224 0.0586 0.3051 0.2991 0.0813 0.1968 0.0939 0.1809
TPX 0.0278 0.0525 0.3054 0.2994 0.1005 0.1739 0.0808 0.1841
LNX 0.0313 0.0633 0.3041 0.3016 0.0991 0.2121 0.1021 0.1683
DBX 0.0092 0.0487 0.3262 0.3028 0.0291 0.1621 0.0977 0.1988
UNDX -0.0126 0.0649 0.3039 0.3006 -0.0447 0.2134 0.1023 0.1649
FR 0.0391 0.0586 0.3058 0.3008 0.1373 0.1961 0.1002 0.2012
SPX 0.0267 0.0491 0.2993 0.2998 0.0899 0.1634 0.0790 0.1589
PNX 0.0014 0.0513 0.3024 0.2997 0.0045 0.1716 0.0822 0.1571

Adaptive 0.0287 0.0506 0.2797 0.3004 0.1077 0.1752 0.1057 0.1742

CAC 40 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1206 0.1032 0.2262 0.2309 0.5492 0.4463 0.0857 0.1808
UX 0.1134 0.1001 0.2416 0.2355 0.5143 0.4386 0.0853 0.1418
HX 0.1065 0.1063 0.2391 0.2297 0.4997 0.4603 0.1005 0.1808
LX 0.1140 0.1109 0.2367 0.2309 0.5116 0.4848 0.0710 0.1993
QBX 0.1112 0.1062 0.2191 0.2296 0.5245 0.4544 0.0714 0.1740
TPX 0.1263 0.1034 0.2289 0.2353 0.5609 0.4535 0.1044 0.1567
AX 0.1158 0.0992 0.2348 0.2291 0.5112 0.4222 0.0862 0.1892
GX 0.1093 0.1030 0.2349 0.2341 0.5148 0.4413 0.0803 0.1604
SBX 0.1097 0.1106 0.2233 0.2285 0.4852 0.4769 0.0928 0.1591
AVX 0.1094 0.1056 0.2276 0.2287 0.4971 0.4574 0.0874 0.1953
BLX 0.1055 0.1012 0.2334 0.2318 0.4897 0.4332 0.0887 0.1771
FX 0.1100 0.1086 0.2325 0.2291 0.5191 0.4706 0.0943 0.1732
GUX 0.0939 0.0996 0.2377 0.2341 0.4047 0.4258 0.0873 0.1977
TPX 0.1142 0.1097 0.2350 0.2325 0.5322 0.4790 0.0818 0.1638
LNX 0.1140 0.1064 0.2205 0.2343 0.4844 0.4603 0.0797 0.1674
DBX 0.1080 0.1052 0.2463 0.2319 0.4531 0.4519 0.0721 0.1973
UNDX 0.1093 0.1056 0.2201 0.2284 0.4925 0.4546 0.1126 0.1643
FR 0.1051 0.1025 0.2362 0.2311 0.4775 0.4414 0.0692 0.2294
SPX 0.1215 0.1024 0.2306 0.2313 0.5432 0.4452 0.0856 0.1571
PNX 0.1138 0.1109 0.2341 0.2308 0.5110 0.4821 0.0938 0.1983

Computational analysis 119

Adaptive 0.1072 0.1137 0.2277 0.2279 0.4963 0.5013 0.1057 0.1946

Table 4.8: Out-of-sample portfolio metrics. Risk measure: Mean-Variance. Tests
with cardinality and upper/lower bound constraints, ε = 1e− 001.

µ̂i σ̂i ˆSRi Turnover

Nikkei 225 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.2312 0.1570 0.1990 0.1925 1.1336 0.8146 0.0922 0.1759
UX 0.2375 0.1560 0.1979 0.1928 1.1570 0.8166 0.0758 0.1603
HX 0.2354 0.1726 0.1993 0.1898 1.1522 0.8954 0.0792 0.1759
LX 0.2331 0.1627 0.1974 0.1922 1.1315 0.8421 0.0665 0.1984
QBX 0.2335 0.1608 0.2003 0.1937 1.1490 0.8562 0.0941 0.1444
TPX 0.2253 0.1507 0.2025 0.1929 1.0964 0.7971 0.0838 0.1721
AX 0.2332 0.1679 0.1982 0.1906 1.1125 0.8842 0.0749 0.1688
GX 0.2204 0.1638 0.1988 0.1906 1.0910 0.8545 0.0840 0.1672
SBX 0.2314 0.1619 0.1982 0.1913 1.1093 0.8437 0.0811 0.1816
AVX 0.2279 0.1602 0.1971 0.1895 1.0986 0.8324 0.0843 0.1527
BLX 0.2540 0.1660 0.1954 0.1918 1.2785 0.8538 0.0787 0.1806
FX 0.2311 0.1507 0.1982 0.1916 1.1436 0.7827 0.0926 0.1856
GUX 0.2381 0.1795 0.1993 0.1882 1.1757 0.9470 0.0885 0.1771
TPX 0.2320 0.1621 0.1970 0.1914 1.1140 0.8408 0.0826 0.1467
LNX 0.1831 0.1622 0.2112 0.1914 0.8596 0.8231 0.1123 0.1632
DBX 0.1730 0.1561 0.2096 0.1911 0.7937 0.8228 0.0975 0.2000
UNDX 0.2025 0.1507 0.2043 0.1934 0.9756 0.7920 0.1152 0.1915
FR 0.1996 0.1632 0.2074 0.1915 0.9609 0.8402 0.0695 0.2243
SPX 0.1731 0.1677 0.2103 0.1932 0.7990 0.8786 0.0870 0.1628
PNX 0.1934 0.1510 0.2113 0.1892 0.9070 0.7911 0.0819 0.1660

Adaptive 0.2330 0.1635 0.1925 0.1832 1.1621 0.8658 0.0841 0.1890

FTSE 100 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.2312 0.1570 0.1990 0.1925 1.1336 0.8146 0.0922 0.1759
UX 0.2375 0.1560 0.1979 0.1928 1.1570 0.8166 0.0758 0.1603
HX 0.2354 0.1726 0.1993 0.1898 1.1522 0.8954 0.0792 0.1759
LX 0.2331 0.1627 0.1974 0.1922 1.1315 0.8421 0.0665 0.1984
QBX 0.2335 0.1608 0.2003 0.1937 1.1490 0.8562 0.0941 0.1444
TPX 0.2253 0.1507 0.2025 0.1929 1.0964 0.7971 0.0838 0.1721
AX 0.2332 0.1679 0.1982 0.1906 1.1125 0.8842 0.0749 0.1688
GX 0.2204 0.1638 0.1988 0.1906 1.0910 0.8545 0.0840 0.1672
SBX 0.2314 0.1619 0.1982 0.1913 1.1093 0.8437 0.0811 0.1816
AVX 0.2279 0.1602 0.1971 0.1895 1.0986 0.8324 0.0843 0.1527
BLX 0.2540 0.1660 0.1954 0.1918 1.2785 0.8538 0.0787 0.1806
FX 0.2311 0.1507 0.1982 0.1916 1.1436 0.7827 0.0926 0.1856
GUX 0.2381 0.1795 0.1993 0.1882 1.1757 0.9470 0.0885 0.1771
TPX 0.2320 0.1621 0.1970 0.1914 1.1140 0.8408 0.0826 0.1467
LNX 0.1831 0.1622 0.2112 0.1914 0.8596 0.8231 0.1123 0.1632
DBX 0.1730 0.1561 0.2096 0.1911 0.7937 0.8228 0.0975 0.2000
UNDX 0.2025 0.1507 0.2043 0.1934 0.9756 0.7920 0.1152 0.1915
FR 0.1996 0.1632 0.2074 0.1915 0.9609 0.8402 0.0695 0.2243
SPX 0.1731 0.1677 0.2103 0.1932 0.7990 0.8786 0.0870 0.1628
PNX 0.1934 0.1510 0.2113 0.1892 0.9070 0.7911 0.0819 0.1660

Adaptive 0.2330 0.1635 0.1925 0.1832 1.1621 0.8658 0.0841 0.1890

Hang Seng K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0613 0.1126 0.2314 0.2140 0.2464 0.5405 0.0784 0.1544
UX 0.0467 0.1115 0.2275 0.2147 0.1966 0.5239 0.0956 0.1868
HX 0.0403 0.1147 0.2276 0.2108 0.1612 0.5365 0.0687 0.1544
LX 0.0451 0.0997 0.2278 0.2162 0.1841 0.4667 0.1064 0.1491
QBX 0.0393 0.1196 0.2302 0.2151 0.1566 0.5717 0.0730 0.2017
TPX 0.0526 0.1113 0.2278 0.2138 0.2101 0.5317 0.1055 0.1806
AX 0.0516 0.1315 0.2292 0.2105 0.2066 0.6281 0.0654 0.1695
GX 0.0429 0.1153 0.2305 0.2113 0.1760 0.5505 0.0875 0.1780
SBX 0.0359 0.1211 0.2350 0.2140 0.1490 0.5619 0.0984 0.1702
AVX 0.0375 0.1113 0.2279 0.2150 0.1503 0.5272 0.1139 0.1911
BLX 0.0324 0.1131 0.2258 0.2127 0.1303 0.5324 0.1032 0.2037
FX 0.0444 0.1121 0.2271 0.2088 0.1784 0.5371 0.0710 0.2070
GUX 0.0426 0.1217 0.2295 0.2118 0.1733 0.5728 0.1280 0.1592
TPX 0.0236 0.1215 0.2313 0.2138 0.0943 0.5734 0.0936 0.2463
LNX 0.0174 0.1246 0.2380 0.2141 0.0713 0.5847 0.0752 0.1844
DBX 0.0458 0.1168 0.2426 0.2136 0.1919 0.5467 0.0980 0.1693
UNDX 0.0312 0.1270 0.2354 0.2107 0.1301 0.5791 0.1197 0.1852
FR 0.0439 0.1273 0.2289 0.2112 0.1815 0.5858 0.0834 0.2375
SPX 0.0605 0.1156 0.2456 0.2085 0.2414 0.5482 0.1074 0.1843
PNX 0.0929 0.1223 0.2565 0.2123 0.3881 0.5833 0.0957 0.1825

Adaptive 0.0715 0.1058 0.2218 0.1989 0.3045 0.4912 0.1145 0.1961

FTSE MIB K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

120 Computational analysis

OPX 0.0147 0.0532 0.2706 0.3007 0.0530 0.1760 0.0881 0.1892
UX 0.0070 0.0494 0.2697 0.2982 0.0240 0.1640 0.1010 0.1898
HX 0.0075 0.0529 0.2714 0.3013 0.0261 0.1751 0.0985 0.1892
LX 0.0356 0.0382 0.2812 0.3027 0.1214 0.1262 0.0907 0.1837
QBX 0.0125 0.0593 0.2666 0.3027 0.0449 0.1978 0.0858 0.1902
TPX 0.0047 0.0492 0.2726 0.3037 0.0163 0.1624 0.0597 0.1588
AX 0.0170 0.0686 0.2664 0.2989 0.0604 0.2288 0.0823 0.1522
GX 0.0239 0.0484 0.2732 0.3042 0.0860 0.1619 0.0905 0.1697
SBX -0.0013 0.0505 0.2759 0.3021 -0.0047 0.1678 0.0873 0.1658
AVX 0.0114 0.0423 0.2719 0.3006 0.0407 0.1404 0.0899 0.1533
BLX 0.0234 0.0543 0.2683 0.2987 0.0852 0.1770 0.0863 0.1985
FX 0.0086 0.0595 0.2715 0.2988 0.0313 0.1971 0.0668 0.2043
GUX 0.0148 0.0495 0.2671 0.3002 0.0536 0.1661 0.0630 0.1694
TPX 0.0466 0.0407 0.2808 0.2993 0.1682 0.1348 0.0816 0.1619
LNX 0.0031 0.0377 0.2975 0.3022 0.0100 0.1264 0.0894 0.1591
DBX 0.0384 0.0434 0.2918 0.3008 0.1217 0.1446 0.0910 0.1912
UNDX 0.0068 0.0470 0.2784 0.3044 0.0242 0.1545 0.0941 0.1641
FR 0.0101 0.0600 0.2774 0.3045 0.0354 0.2005 0.0738 0.1990
SPX 0.0007 0.0543 0.2971 0.3011 0.0024 0.1805 0.0913 0.1879
PNX 0.0236 0.0381 0.2834 0.3001 0.0765 0.1275 0.0988 0.1837

Adaptive 0.0155 0.0860 0.2651 0.2785 0.0581 0.2977 0.1113 0.1670

CAC 40 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1081 0.0947 0.2120 0.2326 0.4921 0.4095 0.0964 0.1913
UX 0.1030 0.1060 0.2137 0.2292 0.4674 0.4648 0.0871 0.1966
HX 0.1189 0.1105 0.2062 0.2270 0.5577 0.4784 0.0925 0.1913
LX 0.1063 0.1032 0.2138 0.2321 0.4770 0.4510 0.0722 0.1788
QBX 0.1143 0.1077 0.2066 0.2315 0.5394 0.4607 0.1218 0.1624
TPX 0.1140 0.1108 0.2108 0.2307 0.5062 0.4860 0.0563 0.2012
AX 0.1141 0.1019 0.2064 0.2305 0.5037 0.4334 0.0819 0.1530
GX 0.1151 0.1031 0.2074 0.2286 0.5421 0.4415 0.0907 0.1572
SBX 0.1193 0.0875 0.2039 0.2309 0.5278 0.3774 0.0891 0.1677
AVX 0.1134 0.0985 0.2078 0.2326 0.5151 0.4266 0.1015 0.1965
BLX 0.1270 0.1010 0.2032 0.2325 0.5895 0.4322 0.0761 0.1754
FX 0.1182 0.0915 0.2040 0.2346 0.5574 0.3963 0.0762 0.1652
GUX 0.1162 0.1096 0.2126 0.2328 0.5008 0.4685 0.0948 0.1690
TPX 0.1178 0.1055 0.2073 0.2331 0.5487 0.4603 0.0641 0.1762
LNX 0.1095 0.1055 0.2313 0.2290 0.4651 0.4568 0.0780 0.1659
DBX 0.1133 0.1075 0.2267 0.2297 0.4753 0.4619 0.0535 0.1579
UNDX 0.1212 0.1028 0.2087 0.2316 0.5462 0.4423 0.0857 0.1474
FR 0.1186 0.0983 0.2093 0.2284 0.5389 0.4234 0.0879 0.1946
SPX 0.1205 0.1178 0.2298 0.2251 0.5389 0.5118 0.0929 0.1572
PNX 0.1017 0.1066 0.2258 0.2304 0.4566 0.4636 0.1055 0.1923

Adaptive 0.1316 0.1172 0.1982 0.2208 0.6097 0.5164 0.0695 0.1881

Table 4.9: Out-of-sample portfolio metrics. Risk measure: Two-sided. Tests with
cardinality and upper/lower bound constraints, ε = 1e− 001.

µ̂i σ̂i ˆSRi Turnover

Nikkei 225 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.2241 0.1506 0.1989 0.1933 1.0987 0.7816 0.0880 0.1841
UX 0.2264 0.1589 0.1986 0.1924 1.1028 0.8314 0.0798 0.1859
HX 0.2179 0.1694 0.1994 0.1935 1.0665 0.8788 0.0796 0.1841
LX 0.2193 0.1664 0.1999 0.1894 1.0643 0.8610 0.0857 0.1668
QBX 0.2259 0.1440 0.2006 0.1939 1.1118 0.7667 0.0856 0.1639
TPX 0.2040 0.1573 0.2018 0.1943 0.9927 0.8321 0.1018 0.1863
AX 0.2198 0.1587 0.1994 0.1929 1.0485 0.8359 0.0982 0.1682
GX 0.2166 0.1638 0.2001 0.1920 1.0721 0.8546 0.0703 0.1900
SBX 0.2259 0.1451 0.2018 0.1947 1.0828 0.7565 0.1104 0.1710
AVX 0.2185 0.1613 0.2015 0.1888 1.0530 0.8385 0.1120 0.2052
BLX 0.2254 0.1592 0.2026 0.1918 1.1343 0.8189 0.0971 0.2176
FX 0.2184 0.1498 0.1995 0.1955 1.0808 0.7780 0.0943 0.1846
GUX 0.2078 0.1562 0.2017 0.1928 1.0261 0.8244 0.0924 0.1701
TPX 0.2215 0.1581 0.1996 0.1888 1.0638 0.8200 0.0615 0.1528
LNX 0.1853 0.1748 0.2112 0.1895 0.8699 0.8871 0.0861 0.1285
DBX 0.2107 0.1554 0.2025 0.1918 0.9668 0.8187 0.0817 0.1628
UNDX 0.2205 0.1570 0.1993 0.1960 1.0624 0.8256 0.1256 0.2152
FR 0.2241 0.1672 0.1986 0.1916 1.0789 0.8610 0.0949 0.2448
SPX 0.1686 0.1619 0.2098 0.1886 0.7781 0.8487 0.0720 0.1708
PNX 0.1893 0.1597 0.2107 0.1917 0.8876 0.8368 0.0790 0.1568

Adaptive 0.2333 0.1848 0.1931 0.1823 1.1635 0.9782 0.0583 0.1728

FTSE 100 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1099 0.1037 0.1445 0.1630 0.7296 0.6145 0.0791 0.1660
UX 0.1135 0.1007 0.1442 0.1642 0.7490 0.6103 0.0847 0.1921
HX 0.1111 0.0990 0.1444 0.1673 0.7386 0.6010 0.0656 0.1660

Computational analysis 121

LX 0.1126 0.1020 0.1440 0.1649 0.7441 0.6155 0.0732 0.1661
QBX 0.1104 0.1031 0.1443 0.1639 0.7407 0.6236 0.0812 0.1605
TPX 0.1099 0.0930 0.1447 0.1651 0.7144 0.5657 0.0783 0.1654
AX 0.1113 0.0955 0.1444 0.1658 0.7455 0.5757 0.0818 0.1713
GX 0.1106 0.0953 0.1440 0.1631 0.7256 0.5814 0.0952 0.1493
SBX 0.1100 0.1079 0.1446 0.1629 0.7105 0.6633 0.1017 0.1834
AVX 0.1113 0.1051 0.1442 0.1624 0.7179 0.6431 0.0883 0.1798
BLX 0.1106 0.0943 0.1442 0.1655 0.7315 0.5803 0.0797 0.1905
FX 0.1118 0.1033 0.1441 0.1654 0.7374 0.6338 0.0852 0.1589
GUX 0.1143 0.0986 0.1437 0.1645 0.7326 0.5921 0.0531 0.1794
TPX 0.1113 0.0974 0.1448 0.1654 0.7221 0.5862 0.0781 0.1669
LNX 0.0893 0.1007 0.1548 0.1665 0.5776 0.6086 0.0911 0.1637
DBX 0.1091 0.0998 0.1456 0.1631 0.7119 0.6009 0.0977 0.1571
UNDX 0.1102 0.0988 0.1443 0.1649 0.7184 0.5993 0.1036 0.1841
FR 0.1101 0.1000 0.1450 0.1634 0.7334 0.6106 0.0856 0.1918
SPX 0.0994 0.0953 0.1553 0.1638 0.6558 0.5720 0.0700 0.1732
PNX 0.1066 0.1018 0.1492 0.1645 0.6832 0.6197 0.0818 0.1616

Adaptive 0.1257 0.1121 0.1393 0.1563 0.8506 0.6789 0.1386 0.1720

Hang Seng K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0456 0.1199 0.2305 0.2121 0.1835 0.5758 0.0570 0.1371
UX 0.0419 0.1151 0.2320 0.2166 0.1761 0.5411 0.0911 0.1986
HX 0.0426 0.1223 0.2330 0.2109 0.1708 0.5722 0.0897 0.1371
LX 0.0446 0.1223 0.2303 0.2100 0.1820 0.5726 0.0830 0.1646
QBX 0.0455 0.1219 0.2312 0.2103 0.1812 0.5826 0.0550 0.1720
TPX 0.0466 0.1139 0.2318 0.2165 0.1860 0.5440 0.1437 0.1657
AX 0.0427 0.1103 0.2319 0.2145 0.1712 0.5269 0.1172 0.2158
GX 0.0373 0.1063 0.2300 0.2132 0.1529 0.5076 0.1205 0.2295
SBX 0.0451 0.1037 0.2305 0.2153 0.1871 0.4815 0.0786 0.1932
AVX 0.0454 0.1071 0.2325 0.2130 0.1817 0.5074 0.0789 0.1509
BLX 0.0439 0.1082 0.2308 0.2117 0.1762 0.5092 0.0617 0.1533
FX 0.0453 0.1246 0.2316 0.2126 0.1818 0.5969 0.0957 0.1363
GUX 0.0320 0.1124 0.2374 0.2131 0.1299 0.5291 0.0766 0.1725
TPX 0.0504 0.1068 0.2319 0.2133 0.2012 0.5040 0.1017 0.1453
LNX 0.0526 0.1117 0.2432 0.2111 0.2155 0.5239 0.0903 0.1801
DBX 0.0499 0.1283 0.2333 0.2104 0.2092 0.6006 0.0645 0.1766
UNDX 0.0449 0.1468 0.2313 0.2156 0.1874 0.6693 0.0971 0.1556
FR 0.0440 0.1196 0.2310 0.2136 0.1818 0.5504 0.0859 0.1979
SPX 0.0607 0.1200 0.2489 0.2129 0.2425 0.5690 0.1025 0.1821
PNX 0.0389 0.1097 0.2337 0.2108 0.1623 0.5234 0.0643 0.2039

Adaptive 0.0612 0.1096 0.2230 0.2041 0.2609 0.5089 0.0434 0.1786

FTSE MIB K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.0122 0.0488 0.2740 0.3037 0.0440 0.1616 0.0662 0.1435
UX 0.0142 0.0482 0.2731 0.3051 0.0488 0.1599 0.0888 0.1740
HX 0.0120 0.0575 0.2751 0.3024 0.0420 0.1906 0.0746 0.1435
LX 0.0157 0.0522 0.2740 0.3063 0.0534 0.1722 0.0782 0.1543
QBX 0.0137 0.0529 0.2742 0.2951 0.0493 0.1764 0.0984 0.1938
TPX 0.0113 0.0703 0.2747 0.3009 0.0396 0.2318 0.0807 0.1782
AX 0.0111 0.0526 0.2748 0.3017 0.0396 0.1755 0.0818 0.1719
GX 0.0132 0.0429 0.2758 0.2966 0.0476 0.1434 0.0615 0.1626
SBX 0.0074 0.0738 0.2744 0.3098 0.0266 0.2453 0.0811 0.1395
AVX 0.0153 0.0636 0.2754 0.3043 0.0546 0.2112 0.1056 0.1470
BLX 0.0137 0.0529 0.2749 0.3003 0.0499 0.1727 0.0990 0.1944
FX 0.0115 0.0467 0.2751 0.2981 0.0416 0.1547 0.1132 0.1642
GUX 0.0017 0.0654 0.2771 0.2980 0.0061 0.2197 0.0881 0.2134
TPX 0.0131 0.0495 0.2737 0.3010 0.0475 0.1639 0.0907 0.1612
LNX -0.0063 0.0459 0.3056 0.3000 -0.0200 0.1538 0.0742 0.1572
DBX 0.0126 0.0766 0.2807 0.2984 0.0398 0.2551 0.0941 0.1485
UNDX 0.0139 0.0634 0.2745 0.3023 0.0493 0.2086 0.1007 0.1924
FR 0.0193 0.0610 0.2755 0.3036 0.0678 0.2040 0.0911 0.2436
SPX 0.0450 0.0377 0.3020 0.3024 0.1514 0.1253 0.1010 0.1722
PNX 0.0180 0.0516 0.2871 0.2986 0.0584 0.1726 0.1004 0.1788

Adaptive 0.0310 0.0503 0.2626 0.2844 0.1166 0.1742 0.0757 0.2206

CAC 40 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1131 0.1013 0.2117 0.2305 0.5149 0.4380 0.0734 0.1724
UX 0.1156 0.1112 0.2102 0.2297 0.5246 0.4873 0.0688 0.1516
HX 0.1136 0.1150 0.2098 0.2323 0.5329 0.4979 0.0872 0.1724
LX 0.1164 0.1066 0.2094 0.2318 0.5224 0.4661 0.1083 0.1628
QBX 0.1142 0.1007 0.2103 0.2345 0.5389 0.4310 0.0964 0.1777
TPX 0.1141 0.1010 0.2096 0.2332 0.5067 0.4434 0.0936 0.1887
AX 0.1147 0.1081 0.2103 0.2300 0.5067 0.4600 0.0991 0.1513
GX 0.1170 0.1020 0.2106 0.2288 0.5510 0.4370 0.0874 0.1702
SBX 0.1163 0.1097 0.2102 0.2332 0.5145 0.4731 0.0665 0.1717
AVX 0.1162 0.0990 0.2108 0.2306 0.5280 0.4286 0.0750 0.1661
BLX 0.1151 0.1094 0.2096 0.2324 0.5343 0.4680 0.0952 0.1685
FX 0.1140 0.1096 0.2101 0.2311 0.5379 0.4748 0.0613 0.1612
GUX 0.1155 0.1062 0.2098 0.2295 0.4976 0.4538 0.0786 0.1620
TPX 0.1152 0.1141 0.2099 0.2315 0.5368 0.4978 0.0704 0.1698
LNX 0.1188 0.1090 0.2306 0.2312 0.5049 0.4718 0.0937 0.1621

122 Computational analysis

DBX 0.1112 0.1008 0.2121 0.2290 0.4664 0.4331 0.1113 0.1807
UNDX 0.1153 0.0991 0.2094 0.2287 0.5196 0.4262 0.0804 0.1881
FR 0.1165 0.1023 0.2093 0.2294 0.5291 0.4404 0.0904 0.1805
SPX 0.1131 0.1083 0.2350 0.2303 0.5057 0.4709 0.1086 0.1932
PNX 0.1130 0.1055 0.2268 0.2283 0.5072 0.4585 0.0745 0.2080

Adaptive 0.1294 0.1078 0.2023 0.2207 0.5993 0.4751 0.0943 0.1651

Table 4.10: Out-of-sample portfolio metrics. Risk measure: Risk parity. Tests with
cardinality and upper/lower bound constraints, ε = 1e− 001.

Conclusions

Before discussing the main conclusions of our work, we would like to point out some
useful insights into the analysis and the experiments we have proposed before:

• Although we have used a combination of exploration and exploitation operators,
actually most real-valued crossover operators behave similarly, with a strong
focus on quality improvement, whereas only a few are actually able to enforce
a tradeoff between quality and diversity. This is particularly relevant for the
algorithm performance, as a good exploration of the search space is necessary
to prevent the algorithm from getting stuck in local optima;

• The incorporation of a set of crossover into the algorithm has not been as
straightforward as we expected: in order to implement effectively the adaptive
operator selection, we first had to select them thoroughly, in order to remove
the nonconverging ones;

• Despite the fact that the high-level search strategies have robustly influenced
the selection probability and ultimately the EvE balance, we have found modest
evidence of a strategy outperforming the others. A larger and more diversified
set of operators may lead to different results.

Now, let us recap the key findings of our work. First, we have taken into account
the general framework outlined by Maturana et al. (2010) in order to detect the
potential benefits of a parameter control strategy for genetic algorithms; then, we
have considered an extension of this approach proposed by di Tollo et al. (2015). We
have implemented a controller -which allows to perform adaptive operator selection-
and then we have included a set of high level search strategies, in order to achieve a
dynamic EvE balance. This approach has several benefit:

• At each iteration, the controller chooses an optimal operator, according to sev-
eral performance criteria and to a given search strategy;

• At each iteration, the EvE balance is managed in a dynamic fashion, in order to
address robustly several optimization problems for varying problem instances.

We have proposed an extension of standard metaheuristic solvers, in the context
of portfolio selection problems with mixed-integer constraints, where a real-valued
population of portfolios is managed by an EA connected to a controller with an I/O
interface, by which the EA transmits the identifier of the last applied operator and
its performance; then, the controller yields the identifier of the operator to be applied
at the next iteration (di Tollo et al. (2015)).

In order to assess the benefits of this approach, we have considered a range of con-
strained portfolio selection problems; then, each constrained model has been reformu-
lated as an unconstrained one by means of an `1 exact penalty method, a widespread
approach for handling nonlinear programs.

The computational analysis on a set of real-world test problems shows that generic
EAs do not perform homogeneously across problem instances, whereas using an op-
timal operator at different stages of the search process leads to slightly improved so-
lutions. Furthermore, we note that the adaptive policy behaves exactly as expected,

123

124 Computational analysis

turning to exploration when improvements become harder, in order to escape from
local optima, and opting for exploitation when the average quality of the population
is poor. Finally, the probability of selection of each operator, the entropy and the fit-
ness levels display high sensitivity to the search policy, which is a desirable property.
An out-of-sample test with periodically-rebalanced portfolios has then confirmed the
effectiveness of the adaptive strategy, which tends to outperform most standard EAs.

Appendix A

KKT Conditions

Consider again the general minimization problem 2.25 with equality and inequality
constraints:

min
x

φ(x)

s.t. gi(x) = 0 i = 1, . . . ,m

ki(x) ≤ 0 i = m+ 1, . . . , p

(A.1)

Let x∗ be a local minimum and I = {i : ki(x) = 0}, i.e. the set of binding constraints
for which ki(x) ≤ 0 is satisfied with equality. Furthermore, we say that x∗ is a regular
point of the constraints of problem A.1 if the gradient vectors ∇ki(x∗) for i ∈ I and
∇gi(x∗) for gi = 1, . . . ,m are linearly independent (equivalently, we also say that the
Linear Independent Constraint Qualification is satisfied). The first order necessary
conditions are the following:

Theorem A.1 (KKT First Order Necessary Conditions). Given a point x∗ denoting
a local minimizer of problem A.1, assume that x∗ is a regular point. Then there is a
unique Lagrange multiplier vector (u∗i , λ

∗
i) such that:

∇φ(x∗) +

m∑
i=1

ui∇gi(x∗) +
∑
i∈I

λi∇ki(x∗) = 0

gi(x
∗) = 0 for i = 1, . . . ,m

λ∗i ki(x
∗) = 0 for i ∈ I

ki(x
∗) ≤ 0 for i ∈ I

λi ≥ 0 for i ∈ I

(A.2)

The second order necessary and sufficient conditions could be stated as follows:

Theorem A.2 (KKT Second Order Necessary Conditions). Given a point x∗ denot-
ing a local minimizer of problem A.1, assume that x∗ is a regular point. Furthermore,
suppose that f is twice continuously differentiable; then there exist ui for i = 1, . . . ,m
and λi for i ∈ I, such that:

∇2φ(x∗) +

m∑
i=1

ui∇2gi(x
∗) +

∑
i∈I

λi∇2ki(x
∗) (A.3)

is positive semidefinite on the tangent subspace T (x∗) of active constraints, where
T (x∗) = {d ∈ Rn : ∇gi(x∗)Td = 0, i = 1, . . . ,m and ∇ki(x∗)Td = 0, i ∈ I}

Theorem A.3 (KKT Second Order Sufficient Conditions). Given a point x∗ denoting
a local minimizer of problem A.1, assume that x∗ is a regular point. Furthermore,
suppose that f is twice continuously differentiable; then there exist ui for i = 1, . . . ,m

125

126 KKT Conditions

and λi for i ∈ I, such that:

∇2φ(x∗) +

m∑
i=1

ui∇2gi(x
∗) +

∑
i∈I

λi∇2ki(x
∗) (A.4)

is positive definite on the tangent subspace T (x∗) of active constraints.

Appendix B

Source code

import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
import scipy.interpolate as sci
import random
import seaborn as sns
import scipy.optimize as sco
import time
import scipy.stats as scis

##Cleaning data and computing historical returns/covariance matrix

data=pd.read_csv(’C:\\ Users \\ nonloso \\ OneDrive \\ Desktop \\ codici_ga \\ FTSE_MIB1.CSV
’,header=None)

data.sort_index(inplace=True)
n_stocks=len(data.columns)
returns_set_1=data.pct_change ().dropna ()
average_returns_set_1=returns_set_1.mean()
covariance_matrix_1=returns_set_1.cov()

##Risk measures and standard portfolio statistics

def returns(pop):
portfolio_returns=np.dot(average_returns_set_1 ,pop.T)
weights_init=pop
portfolio_returns=np.zeros(len(weights_init))
for i in range(len(weights_init)):

portfolio_returns[i] = np.sum(average_returns_set_1 * weights_init[i])
return portfolio_returns

def vol(pop):
covariance_matrix_1=returns_set_1.cov()
weights_init=pop
std_dev_portfolio=np.zeros(len(weights_init))
for i in range(len(pop)):

std_dev_portfolio[i]=np.sqrt(np.dot(weights_init[i].T,np.dot(
covariance_matrix_1 ,weights_init[i])))

return std_dev_portfolio

def risk_parity(pop):
weights_init=pop
fRP=np.zeros(np.shape(weights_init))
portvar=vol(weights_init)**2
Cx=(np.dot(covariance_matrix_1 ,weights_init.T))
for j in range(len(weights_init.T)):

#fRP[:,j]=(((weights_init [:,j]*Cx[j,:])/portvar) -(1/ genes))**2 #
second option with squared cost

fRP[:,j]=np.abs (((weights_init [:,j]*Cx[j,:])/portvar) -(1/genes)) #
first option with absolute cost

rp=-np.sum(fRP ,axis =1)
return rp

def mean_absolute_deviation(pop):
weights_init=pop
portfolio_returns_mm=returns_set_1@weights_init.T
mad=np.mean(np.abs(portfolio_returns_mm -np.mean(portfolio_returns_mm)))
return mad

def omega_ratio(pop):

127

128 Source code

weights_init=pop
portfolio_returns_mm=returns_set_1@weights_init.T
omega=(np.sum(np.minimum(portfolio_returns_mm ,0),axis =0)/np.sum(np.maximum(

portfolio_returns_mm ,0),axis =0))
return omega

def twosided(pop):
a=0.25
weights_init=pop
portfolio_returns_mm=returns_set_1@weights_init.T
twoside=np.zeros(len(portfolio_returns_mm.T))
upside=np.maximum(portfolio_returns_mm -portfolio_returns_mm.mean() ,0)
downside=np.maximum(portfolio_returns_mm.mean()-portfolio_returns_mm ,0)
for z in range(len(portfolio_returns_mm.T)):

twoside[z]=-a*np.linalg.norm(upside.iloc[:,z],ord=1) -(1-a)*np.linalg.norm(
downside.iloc[:,z],ord =2)+portfolio_returns_mm.mean()[z]

#twosided=a*np.linalg.norm(upside ,ord =1)+(1-a)*np.linalg(downside ,ord=2)-
portfolio_returns_mm

return twoside

def mean_variance(pop):
lambda_1 =0.5
delta =0.1
return -lambda_1*vol(pop)+(1- lambda_1)*returns(pop)

def mean_mad(pop):
lambda_1 =0.5
return -lambda_1*mean_absolute_deviation(pop)+(1- lambda_1)*returns(pop)

def value_at_risk(pop):
alpha =0.05
rend=returns(pop)
stdev=vol(pop)
var=norm.ppf(alpha ,rend ,stdev)*np.sqrt (21) #monthly VaR
return var

def expected_shortfall(pop):
alpha =0.05
rend=returns(pop)
std=vol(pop)
es=-(alpha **-1* norm.pdf(norm.ppf(alpha))*std - rend)*np.sqrt (21) #monthly

CVaR
return es

def compute_entropy(pop):
aux=np.zeros((chromosomes ,genes))
for i in range(len(pop)):

for j in range(genes):
aux[i,j]=-(pop[i,j]/ chromosomes)*(np.log(pop[i,j]/ chromosomes))/(np.

log (2)*genes)
aux1=np.sum(aux ,axis =1)
aux2=np.sum(aux1 ,axis =0)
return aux2

def compute_pop_fitness(pop):
cost=omega_ratio(pop)

cost=risk_parity(pop)
cost=twosided(pop)
cost=mean_variance(pop)
cost=mean_mad(pop)
cost=value_at_risk(pop)
cost=expected_shortfall(pop)

return cost

##Selection

def elitist_selection(pop , fitness , num_parents):
##find max fitness solution , then select without replacement
set a very low fitness to rule out replacement
parents=np.zeros((num_parents , pop.shape [1]))
for i in range(num_parents):

pos_idx_max_fitness = np.where(fitness == np.max(fitness)) ##pos idx
pos_idx_max_fitness = pos_idx_max_fitness [0][0]
parents[i,:] = pop[pos_idx_max_fitness , :]
fitness[pos_idx_max_fitness] = -10000

return parents

##Set of functions implementing crossover. Each operator is sent to the
controller to perform AOS

def crossover(parents , offspring_size): #Goldberg (1975)
offspring=np.zeros(offspring_size)
crossover_point=int(offspring_size [1]/2) ##len columns /2

Source code 129

for i in range(offspring_size [0]): ##loop by rows
parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
offspring[i, :crossover_point] = parents[parent1_pos , :crossover_point]
offspring[i, crossover_point :] = parents[parent2_pos , crossover_point :]

return offspring

def two_point_crossover(parents ,offspring_size): #Goldberg (1975) , Muehlenberger
(1993)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos=i%parents.shape [0]
parent2_pos =(i+1)%parents.shape [0]
crossover_point_1=np.random.randint(1,genes -1)
crossover_point_2=np.random.randint(crossover_point_1 ,genes -1)
if i%2==0:

offspring[i,: crossover_point_1]= parents[parent1_pos ,:
crossover_point_1]

offspring[i,crossover_point_1:crossover_point_2]= parents[parent2_pos ,
crossover_point_1:crossover_point_2]

offspring[i,crossover_point_2 :]= parents[parent1_pos ,crossover_point_2
:]

else:
offspring[i,: crossover_point_1]= parents[parent2_pos ,:

crossover_point_1]
offspring[i,crossover_point_1:crossover_point_2]= parents[parent1_pos ,

crossover_point_1:crossover_point_2]
offspring[i,crossover_point_2 :]= parents[parent2_pos ,crossover_point_2

:]
return offspring

def three_point_crossover(parents ,offspring_size): #Muehlenberger (1993)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos=i%parents.shape [0]
parent2_pos =(i+1)%parents.shape [0]
crossover_point_1=int((offspring_size [1]-1)/3)
crossover_point_2=int ((2* offspring_size [1]-1) /3)
crossover_point_3=int ((3* offspring_size [1]-1) /3)
if i%2==0:

offspring[i,: crossover_point_1]= parents[parent1_pos ,:
crossover_point_1]

offspring[i,crossover_point_1:crossover_point_2]= parents[parent2_pos ,
crossover_point_1:crossover_point_2]

offspring[i,crossover_point_2:crossover_point_3]= parents[parent1_pos ,
crossover_point_2:crossover_point_3]

offspring[i,crossover_point_3 :]= parents[parent2_pos ,crossover_point_3
:]

else:
offspring[i,: crossover_point_1]= parents[parent2_pos ,:

crossover_point_1]
offspring[i,crossover_point_1:crossover_point_2]= parents[parent1_pos ,

crossover_point_1:crossover_point_2]
offspring[i,crossover_point_2:crossover_point_3]= parents[parent2_pos ,

crossover_point_2:crossover_point_3]
offspring[i,crossover_point_3 :]= parents[parent1_pos ,crossover_point_3

:]
return offspring

def uniform_crossover(parents , offspring_size): #Spears , De Jong (1991)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

r=np.random.uniform (0,1)
if r >0.5:

offspring[i,j] = parents[parent1_pos ,j]
else:

offspring[i,j] = parents[parent2_pos ,j]
return offspring

def global_uniform_crossover(parents , offspring_size): #Simon (2013)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

for j in range(genes):
offspring[i,j]= random.choice(parents[:,j])

return offspring

def flat_crossover(parents , offspring_size): #Herrera (1998)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

130 Source code

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

offspring[i,j] =np.random.uniform(min(parents[parent1_pos ,j],
parents[parent2_pos ,j]),max(parents[parent1_pos ,j],parents[
parent2_pos ,j]))

return offspring

def blend_crossover(parents , offspring_size): #Houst (1995) & Herrera (1998)
#alpha is a tunable parameter , which can be used to control the EvE balance
alpha =0.5
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

xmin=min(parents[parent1_pos ,j],parents[parent2_pos ,j])
xmax=max(parents[parent1_pos ,j],parents[parent2_pos ,j])
deltax=xmax -xmin
offspring[i,j]=np.abs(np.random.uniform(xmin -(alpha*deltax),xmax

+(alpha*deltax)))
return offspring

def average_crossover(parents , offspring_size): #Nomura (1997)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

offspring[i,j] =(parents[parent1_pos ,j]+ parents[parent2_pos ,j])/2
return offspring

def multi_parent_average_crossover(parents , offspring_size): #Nomura (1997)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
parent3_pos = (i+2)%parents.shape [0]
for j in range(genes):

offspring[i,j] =(parents[parent1_pos ,j]+ parents[parent2_pos ,j]+
parents[parent3_pos ,j])/3

return offspring

def heuristic_crossover(parents , offspring_size): #Wright (1990)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

w=np.random.uniform (0,1)
if parents[parent1_pos ,j]>parents[parent2_pos ,j]:

offspring[i,j] =parents[parent2_pos ,j]+w*(parents[parent1_pos ,j]-
parents[parent2_pos ,j])

else:
offspring[i,j] =parents[parent1_pos ,j]+w*(parents[parent2_pos ,j]-

parents[parent1_pos ,j])
return offspring

def arithmetic_crossover(parents , offspring_size): #Michalewicz (1996)
beta =0.7
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

if j%2==0:
offspring[i,j]=beta*parents[parent1_pos ,j]+(1- beta)*parents[

parent2_pos ,j]
else:

offspring[i,j]=beta*parents[parent2_pos ,j]+(1- beta)*parents[
parent1_pos ,j]

return offspring

def linear_crossover(parents , offspring_size): #Wright (1990)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos=i%parents.shape [0]
parent2_pos =(i+1)%parents.shape [0]
offspring1=np.zeros(genes)
offspring2=np.zeros(genes)
offspring3=np.zeros(genes)
for j in range(genes):

Source code 131

offspring1[j]=np.abs (0.5* parents[parent1_pos ,j]+0.5* parents[
parent2_pos ,j])

offspring2[j]=np.abs (1.5* parents[parent1_pos ,j]-0.5* parents[
parent2_pos ,j])

offspring3[j]=np.abs(-0.5* parents[parent1_pos ,j]+1.5* parents[
parent2_pos ,j])

offspring_matrix=np.stack((offspring1 ,offspring2 ,offspring3))
offspring_fitness=compute_pop_fitness(offspring_matrix)
pos_offspring=np.where(offspring_fitness ==max(offspring_fitness))[0][0]
offspring[i]= offspring_matrix[pos_offspring]

return offspring

def simulated_binary_crossover(parents ,offspring_size): #Deb and Agrawal (1995)
#beta=1 --> ’stationary crossover ’
mu=0.05
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
r=np.random.uniform (0,1)
if r <0.5:

beta =(2*r)**(1/(mu+1))
else:

beta =(2-2*r)**(-1/(mu+1))
if i%2==0:

offspring[i]=np.abs (0.5*((1 - beta)*parents[parent1_pos]+(1+ beta)*
parents[parent2_pos]))

else:
offspring[i]=np.abs (0.5*((1+ beta)*parents[parent1_pos]+(1- beta)*

parents[parent2_pos]))
return offspring

def queen_bee_crossover(parents ,offspring_size): ##Karc (2004)
offspring=np.zeros(offspring_size)
queen_bee=np.where(compute_pop_fitness(parents)==max((compute_pop_fitness(

parents))))[0][0]
parent1_pos=queen_bee
for i in range(offspring_size [0]):

parent2_pos =(parent1_pos +(i+1))%parents.shape [0]
crossover_point_1=np.random.randint(1,genes -1)
crossover_point_2=np.random.randint(crossover_point_1 ,genes -1)
if i%2==0:

offspring[i,: crossover_point_1]= parents[parent1_pos ,:
crossover_point_1]

offspring[i,crossover_point_1:crossover_point_2]= parents[parent2_pos ,
crossover_point_1:crossover_point_2]

offspring[i,crossover_point_2 :]= parents[parent1_pos ,crossover_point_2
:]

else:
offspring[i,: crossover_point_1]= parents[parent2_pos ,:

crossover_point_1]
offspring[i,crossover_point_1:crossover_point_2]= parents[parent1_pos ,

crossover_point_1:crossover_point_2]
offspring[i,crossover_point_2 :]= parents[parent2_pos ,crossover_point_2

:]
return offspring

def laplace_crossover(parents ,offspring_size): #Deep and Thakur (2007a)
offspring=np.zeros(offspring_size)
a=0
b=5.0
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
alpha=np.random.uniform (0,1)
if alpha >0.5:

beta=a-b*np.log(alpha)
else:

beta=a+b*np.log(alpha)
if i%2==0:

offspring[i]=np.abs(parents[parent1_pos]+beta*np.abs(parents[
parent1_pos]-parents[parent2_pos]))

else:
offspring[i]=np.abs(parents[parent2_pos]+beta*np.abs(parents[

parent1_pos]-parents[parent1_pos]))
return offspring

def direction_based_crossover(parents , offspring_size): #Arumugam et al (2005)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]): ##loop per riga

r=np.random.uniform (0,1)
parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]

132 Source code

vstack=np.vstack ((parents[parent1_pos],parents[parent2_pos]))
if compute_pop_fitness(vstack)[0]>= compute_pop_fitness(vstack)[1]:

offspring[i]=r*(np.abs(parents[parent1_pos]-parents[parent2_pos]))+
parents[parent2_pos]

else:
offspring[i]=r*(np.abs(parents[parent2_pos]-parents[parent1_pos]))+

parents[parent1_pos]
return offspring

def geometrical_crossover(parents , offspring_size): #Michalewicz et al .(1996)
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

offspring[i,j] =np.sqrt(parents[parent1_pos ,j]* parents[parent2_pos ,j
])

return offspring

def simplex_crossover(parents ,offspring_size):
offspring=np.zeros(offspring_size)
for i in range(offspring_size [0]):

parent1_pos=i%parents.shape [0]
parent2_pos =(i+1)%parents.shape [0]
parent3_pos =(i+2)%parents.shape [0]
vstack=np.vstack ((parents[parent1_pos],parents[parent2_pos],parents[

parent3_pos]))
idx_worst_fitness=np.where(compute_pop_fitness(vstack)==min(

compute_pop_fitness(vstack)))[0][0]
idx_best_fitness=np.where(compute_pop_fitness(vstack)==max(

compute_pop_fitness(vstack)))[0][0]
best_parents=np.delete(vstack ,(idx_worst_fitness),axis =0)
centroid=np.sum(best_parents ,axis =0)/(len(vstack) -1)
offspring[i]= centroid +(np.abs(centroid -vstack[idx_worst_fitness]))

return offspring

def fuzzy_crossover(parents ,offspring_size): #Voigt 1995
offspring=np.zeros(offspring_size)
d=0.5
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

if parents[parent1_pos ,j]<parents[parent2_pos ,j]:
phi_1=random.triangular(parents[parent1_pos ,j]-d*np.abs(parents[

parent2_pos ,j]-parents[parent1_pos ,j]),parents[parent1_pos ,j
]+d*np.abs(parents[parent2_pos ,j]-parents[parent1_pos ,j]),
parents[parent1_pos ,j])

phi_2=random.triangular(parents[parent2_pos ,j]-d*np.abs(parents[
parent2_pos ,j]-parents[parent1_pos ,j]),parents[parent2_pos ,j
]+d*np.abs(parents[parent2_pos ,j]-parents[parent1_pos ,j]),
parents[parent2_pos ,j])

else:
phi_2=random.triangular(parents[parent1_pos ,j]-d*np.abs(parents[

parent2_pos ,j]-parents[parent1_pos ,j]),parents[parent1_pos ,j
]+d*np.abs(parents[parent2_pos ,j]-parents[parent1_pos ,j]),
parents[parent1_pos ,j])

phi_1=random.triangular(parents[parent2_pos ,j]-d*np.abs(parents[
parent2_pos ,j]-parents[parent1_pos ,j]),parents[parent2_pos ,j
]+d*np.abs(parents[parent2_pos ,j]-parents[parent1_pos ,j]),
parents[parent2_pos ,j])

offspring[i,j]= random.choice ([np.abs(phi_1),np.abs(phi_2)])
return offspring

def unimodal_crossover(parents ,offspring_size): #Ono 1997
offspring=np.zeros(offspring_size)
std1 =0.25
std2 =0.05
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
parent3_pos = (i+2)%parents.shape [0]
#x_p =0.5*(parents[parent1_pos]+ parents[parent2_pos])
g=0.5*(parents[parent1_pos]+ parents[parent2_pos])
d1=parents[parent1_pos] -0.95*g
d2=parents[parent2_pos] -0.90*g
d3=parents[parent3_pos] -0.85*g
e1=d1/np.abs(d1)
e2=d2/np.abs(d2)
e3=d3/np.abs(d3)
d=parents[parent2_pos]-parents[parent1_pos]
aux=(np.random.normal(0,std1)*e1*np.abs(d1))+(np.random.normal(0,std1)*e2

*np.abs(d2))

Source code 133

D=(1-(np.dot(parents[parent3_pos]-parents[parent1_pos].T,parents[
parent2_pos]-parents[parent1_pos])/np.dot(np.abs(parents[parent3_pos
]-parents[parent1_pos]),np.abs(parents[parent2_pos]-parents[
parent1_pos])))**2) **0.5

D=np.cross(np.abs(parents[parent3_pos]-parents[parent1_pos]),D)
offspring[i,:]=np.abs(g+aux+np.random.normal(0,std2)*D*e3)

return offspring

def parent_centric_normal_crossover(parents ,offspring_size):
offspring=np.zeros(offspring_size)
eta =0.25
for i in range(offspring_size [0]):

parent1_pos = i%parents.shape [0]
parent2_pos = (i+1)%parents.shape [0]
for j in range(genes):

w=np.random.uniform (0,1)
if w <0.5:

offspring[i,j]=np.abs(np.random.normal(parents[parent1_pos ,j],np.
abs(parents[parent2_pos ,j]-parents[parent1_pos ,j])/eta))

else:
offspring[i,j]=np.abs(np.random.normal(parents[parent2_pos ,j],np.

abs(parents[parent2_pos ,j]-parents[parent1_pos ,j])/eta))
return offspring

list_variation_ops =[crossover ,crossover_uniforme ,heuristic_crossover ,
laplace_crossover ,queen_bee_crossover ,two_point_crossover ,

arithmetic_crossover ,geometrical_crossover ,
simulated_binary_crossover ,average_crossover ,
blend_crossover ,flat_crossover ,
crossover_uniforme_globale ,three_point_crossover ,
linear_crossover ,direction_based_crossover ,unimodal_crossover ,

fuzzy_crossover ,simplex_crossover ,parent_centric_crossover]

###AOS

#some parameters
genes=len(data.columns)
chromosomes =30 #number of solutions
num_parents =5 #number of parents for elitism
sim_ga =1
num_generations =1000
#population size
pop_size =(chromosomes ,genes)
#offspring_size =(pop_size [0]- parents.shape [0]
#initialize some counters
counter_fitness_max =[]
counter_fitness_avg =[]
counter_entropy =[]
window =10
num_crossover =20

#initialize vectors and matrices to store operator
fitness_module1=np.zeros((num_generations ,num_crossover))
entropy_module1=np.zeros((num_generations ,num_crossover))
deltafitness_module1=np.zeros((num_generations -window ,num_crossover))
deltaentropy_module1=np.zeros((num_generations -window ,num_crossover))
credit_reward_list=np.zeros((num_generations -window ,num_crossover))
credit_reward_aggregation=np.zeros((num_generations -2*window ,num_crossover))

#mod1

def aggregated_criteria_computation(fitness_module1 ,entropy_module1):
if i>= window:

delta_avg_fitness_list=pd.DataFrame(fitness_module1[i-window:i,:]).diff()
delta_entropy=pd.DataFrame(entropy_module1[i-window:i,:]).diff()
Fwin1=delta_avg_fitness_list.mean()
Fwin2=delta_entropy.mean()
deltafitness_module1[i-window ,:]= Fwin1
deltaentropy_module1[i-window ,:]= Fwin2
return Fwin1 , Fwin2 , deltafitness_module1

#mod2

def reward_computation(theta):
store_reward=np.zeros(num_crossover)
if i>= window:

for s in range(len(store_reward)):
origin =[0,0]
Fwin1=aggregated_criteria_computation(fitness_module1 ,entropy_module1

)[0][s]

134 Source code

Fwin2=aggregated_criteria_computation(fitness_module1 ,entropy_module1
)[1][s]

x=np.linspace(0,np.max (1.5* Fwin1) ,100)
m=np.tan(theta) #slope
y=m*x
dp=abs((Fwin2 -(m*Fwin1)))/(np.sqrt (1+m**2)) #perpendicular distance
dpp=np.sqrt((Fwin1 -origin [0]) **2+(Fwin2 -origin [1]) **2) #distance

between two points
reward=np.sqrt(dpp**2-dp**2)
store_reward[s]= reward

return store_reward

##dynamic strategies for module 3

def increasing_strategy ():
angle=0
if i>= window:

if i<= num_generations /4:
angle =0

elif i>= num_generations /4 and i<= num_generations /2:
angle=np.pi/6

elif i>= num_generations /2 and i<= num_generations *(3/4):
angle=np.pi/3

elif i>= num_generations *(3/4):
angle=np.pi/2

return angle

def decreasing_strategy ():
angle=np.pi/2
if i>= window:

if i<= num_generations /4:
angle=np.pi/2

elif i>= num_generations /4 and i<= num_generations /2:
angle=np.pi/3

elif i>= num_generations /2 and i<= num_generations *(3/4):
angle=np.pi/6

elif i>= num_generations *(3/4):
angle =0

return angle

def always_moving_strategy ():
angle=np.pi/2
if i>= window:

if i<= num_generations /5:
angle=np.pi/2

elif i>= num_generations *(1/5) and i<= num_generations *(2/5):
angle =0

elif i>= num_generations *(2/5) and i<= num_generations *(3/5):
angle=np.pi/2

elif i>= num_generations *(3/5) and i<= num_generations *(4/5):
angle =0

elif i>= num_generations *(4/5):
angle=np.pi/2

return angle

def reactive_moving_strategy ():
angle=0
if i>= window:

if ((entropy_list[i-1]- entropy_list[i-window])/(entropy_list[i-window]))
<(-1/100):
angle =0

elif np.abs((avg_fitness_list[i-1]- avg_fitness_list[i-window])/(
avg_fitness_list[i-window])) <(1/100):
angle=np.pi/2

else:
angle =0

return angle

#mod3

def credit_assignment(strategy):
if i>= window:

angle=strategy
store_reward=reward_computation(angle)
prova[i]= store_reward [19]
credit_reward_list[i-window ,:]= store_reward

if i>=2* window:
credit_reward_aggregation[i-2*window ,:]=np.mean(pd.DataFrame(

credit_reward_list[i-2* window:i-window ,:]).dropna ())
return credit_reward_aggregation

Source code 135

#mod4

def operator_selection(credit_function): #Probability Matching (PM)
p_min =0.01
K=num_crossover
idx=np.random.randint (0,19)
credito=credit_function
if i>=2* window:

#credito=credit_assignment ()
wheel_selection=p_min +(1-K*p_min)*(credito[i-2*window ,:]/(np.sum(

credito[i-2* window ,:])))
#print(wheel_selection)
wheel_selection=np.cumsum(wheel_selection)
u=np.random.uniform (0,1)
for c in range(len(wheel_selection)):

if u<wheel_selection[c]:
idx=c
#print(idx)
break

return idx

###END AOS

#some string variables and initialization of int constraints
selection=’elitist ’
strategy=’always ’
epsilon =1.0e-001
app1=np.zeros((chromosomes ,genes))
app2=np.zeros((chromosomes ,genes))
app3=np.zeros((chromosomes ,genes))
vinc1=np.zeros(chromosomes)
vinc2=np.zeros(chromosomes)
vinc3=np.zeros(chromosomes)
vinc4=np.zeros(chromosomes)
vinc5=np.zeros(chromosomes)
K_u =10
perc_min=np.ones(genes)*0.05
perc_max=np.ones(genes)*0.15

start=time.time()

for w in range (1):

max_fitness_outer =[]
avg_fitness_outer =[]
entropy_list_outer =[]
idx=0
store_operators_matrix=np.zeros((num_crossover ,4))
store_angle=np.zeros(num_generations)
individual_fitness=np.zeros((num_generations ,chromosomes))
counter1 =0

for k in range(sim_ga):

new_pop=np.random.uniform(low=0, high=1, size=pop_size)
fitness_max =[]
avg_fitness_list =[]
entropy_list =[]

for i in range(num_generations):
for a in range(chromosomes):

for b in range(genes):
app1[a,b]=max(0,perc_min[b]-new_pop[a,b])
app2[a,b]=max(0,new_pop[a,b]-perc_max[b])
app3[a,b]=abs(zeta[a,b]*(1- zeta[a,b]))

vinc1[a]=abs(np.sum(new_pop[a,:]) -1)
vinc2[a]=max(0,np.sum(zeta[a,:])-K_u)
vinc3[a]=np.sum(app1[a,:])
vinc4[a]=np.sum(app2[a,:])
vinc5[a]=np.sum(app3[a,:])

fitness=compute_pop_fitness(new_pop) -((1/ epsilon)*(vinc1+vinc2+vinc3+
vinc4+vinc5))

individual_fitness[i,:]=- fitness
entropy=calcola_entropy(new_pop)
average_fitness=np.sum(fitness)/chromosomes
if selection ==’elitist ’:

parents=elitist_selection(new_pop ,fitness ,num_parents)
offspring_crossover=list_variation_ops[idx](parents ,

offspring_size =(pop_size [0]- parents.shape[0], genes))
crossover_sols=np.zeros((num_crossover ,chromosomes ,data.shape [1])

)

136 Source code

for opti in range(num_crossover):
crossover_sols[opti ,:,:]= list_variation_ops[opti](parents ,

offspring_size =(pop_size [0], genes))
avg_fitness_20=np.array([np.sum(compute_pop_fitness(crossover_sols[u

]))/chromosomes for u in range(num_crossover)])
entropy_20=np.array([calcola_entropy(crossover_sols[u]) for u in

range(num_crossover)])
fitness_module1[i,:]= avg_fitness_20
entropy_module1[i,:]= entropy_20
if strategy ==’reactive ’:

current_angle=reactive_moving_strategy ()
store_angle[i]= current_angle
idx=operator_selection(credit_assignment(reactive_moving_strategy

()))
elif strategy ==’always ’:

current_angle=always_moving_strategy ()
store_angle[i]= current_angle
idx=operator_selection(credit_assignment(always_moving_strategy ()

))
elif strategy ==’decreasing ’:

current_angle=decreasing_strategy ()
store_angle[i]= current_angle
idx=operator_selection(credit_assignment(decreasing_strategy ()))

elif strategy ==’increasing ’:
current_angle=increasing_strategy ()
store_angle[i]= current_angle
idx=operator_selection(credit_assignment(increasing_strategy ()))

print(idx)
if i>0:

if counter1 ==0:
store_operators_matrix[idx ,counter1]= store_operators_matrix[

idx ,counter1]+1
if store_angle[i]!= store_angle[i-1]:

counter1=counter1 +1
if counter1 ==1:

store_operators_matrix[idx ,counter1]= store_operators_matrix[
idx ,counter1]+1

if counter1 ==2:
store_operators_matrix[idx ,counter1]= store_operators_matrix[

idx ,counter1]+1
if counter1 ==3:

store_operators_matrix[idx ,counter1]= store_operators_matrix[
idx ,counter1]+1

if selection ==’elitist ’:
new_pop [: parents.shape[0], :] = parents
new_pop[parents.shape [0]:, :] = offspring_crossover

idx_best_fitness=np.where(fitness == np.max(fitness))
idx_best_fitness=idx_best_fitness [0][0]
avg_fitness_list.append(average_fitness)
entropy_list.append(entropy)

avg_fitness_outer.append(avg_fitness_list)
entropy_list_outer.append(entropy_list)

df_avg_fitness_list=pd.DataFrame(np.transpose(avg_fitness_outer))
avg_sim_fitness_list=np.mean(df_avg_fitness_list ,axis =1)
df_entropy=pd.DataFrame(np.transpose(entropy_list_outer))
avg_sim_entropy_list=np.mean(df_entropy ,axis =1)
counter_fitness_avg.append(avg_sim_fitness_list)
counter_entropy.append(avg_sim_entropy_list)
print(avg_sim_fitness_list)
end=time.time()
print(end -start)

Appendix C

Figures

(a) Always moving strategy

(b) Decreasing strategy

137

138 Figures

(c) Increasing strategy

(d) Reactive moving strategy

Figure C.1: Experiments with the AOS: every portfolio selection strategy is fitted to
the FTSE MIB dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Figures 139

(a) Always moving strategy

(b) Decreasing strategy

140 Figures

(c) Increasing strategy

(d) Reactive moving strategy

Figure C.2: Experiments with the AOS: every portfolio selection strategy is fitted
to the Nikkei 225 dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Figures 141

(a) Always moving strategy

(b) Decreasing strategy

142 Figures

(c) Increasing strategy

(d) Reactive moving strategy

Figure C.3: Experiments with the AOS: every portfolio selection strategy is fitted
to the Hang Seng dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Figures 143

(a) Always moving strategy

(b) Increasing strategy

144 Figures

(c) Decreasing strategy

(d) Reactive moving strategy

Figure C.4: Experiments with the AOS: every portfolio selection strategy is fitted
to the FTSE 100 dataset. From top to bottom: histogram of the operator selection
frequency (1), the entropy convergence curve (2), the dynamic angle function driving
the search process (3), the individual cost scatter plot (4).

Bibliography

Adenso-Díaz, B. and M. Laguna (2006). “Fine-tuning of algorithms using fractional
experimental designs and local search”. In: Operations Research 54(1), pp. 99–114.

Aleti, A. and I. Moser (2011). “Predictive parameter control”. In: GECCO ’11: Pro-
ceedings of the 13th annual conference on Genetic and evolutionary computation.
Ed. by N. Krasnogor.

— (2016). “A systematic literature review of adaptive parameter control methods for
evolutionary algorithms”. In: ACM Computing Surveys 49, pp. 1–35.

Alpaydin, E. (2019). Introduction to Machine Learning. MIT Press.
Anagnostopoulos, K. and G. Mamanis (2011). “A portfolio optimization model with

three objectives and discrete variables”. In: Computers & Operations Research
37.7, pp. 1285–1297.

Angeline, P.J. (1995). “Adaptive and Self-Adaptive Evolutionary Computations”. In:
Computational Intelligence: A Dynamic Systems Perspective. IEEE Press, pp. 152–
163.

Arabas, J., Z. Michalewicz, and J. K. Mulawka (1994). “GAVaPS - A Genetic Al-
gorithm with Varying Population Size”. In: Proceedings of the First IEEE Con-
ference on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, Orlando, Florida, USA, June 27-29, 1994. IEEE, pp. 73–78.

Artzner, P. et al. (1999). “Coherent measures of risk”. In: Mathematical finance 9.3,
pp. 203–228.

Arumugam, M. S., M. Rao, and R. Palaniappan (2005). “New hybrid genetic operators
for real coded genetic algorithm to compute optimal control of a class of hybrid
systems”. In: Appl. Soft Comput. 6, pp. 38–52.

Bäck, T. (1993). “Optimal Mutation Rates in Genetic Search”. In: Proceedings of
the 5th International Conference on Genetic Algorithms, Urbana-Champaign, IL,
USA, June 1993. Ed. by S. Forrest. Morgan Kaufmann, pp. 2–8.

Bäck, T., A. E. Eiben, and N. A. L. van der Vaart (2000). “An Empirical Study on GAs
without Parameters”. In: Parallel Problem Solving from Nature, VI, 6th Interna-
tional Conference, Paris, France, September 18-20, 2000, Proceedings. Vol. 1917.
Lecture Notes in Computer Science. Springer, pp. 315–324.

Baker, B. and M. Ayechew (2003). “A genetic algorithm for the vehicle routing prob-
lem”. In: Computers & Operations Research 30.5, pp. 787–800.

Balaprakash, P., M. Birattari, and T. Stützle (2007). “Improvement Strategies for the
F-Race Algorithm: Sampling Design and Iterative Refinement”. In: Hybrid Meta-
heuristics, 4th International Workshop, HM 2007, Dortmund, Germany, October
8-9, 2007, Proceedings. Vol. 4771. Lecture Notes in Computer Science. Springer,
pp. 108–122.

Ballester, P.J. and J.N Carter (2004). “An effective real-parameter genetic algorithm
with parent centric normal crossover for multimodal optimisation”. In: Genetic
and Evolutionary Computation Conference. Springer, pp. 901–913.

Baluja, S. and R. Caruana (1995). “Removing the Genetics from the Standard Ge-
netic Algorithm”. In: Machine Learning, Proceedings of the Twelfth International
Conference on Machine Learning, Tahoe City, California, USA, July 9-12, 1995.
Morgan Kaufmann, pp. 38–46.

145

146 Bibliography

Bazaraa, M., H. Sherali, and C. Shetty (2013). Nonlinear programming: theory and
algorithms. John Wiley & Sons.

Ben Hadj-Alouane, A. and J. C. Bean (1997). “A Genetic Algorithm for the Multiple-
Choice Integer Program”. In: Operations Research 45.1, pp. 92–101.

Beyer, H. and K. Deb (2001). “On self-adaptive features in real-parameter evolution-
ary algorithms”. In: IEEE Trans. Evol. Comput. 5.3, pp. 250–270.

Birattari, M. (2003). “The race package for R Racing methods for the selection of the
best”.

Birattari, M. et al. (2002). “A Racing Algorithm for Configuring Metaheuristics”. In:
GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, New York, USA, 9-13 July 2002. Morgan Kaufmann, pp. 11–18.

Borges, B. and J. Knetsch (1998). “Tests of market outcomes with asymmetric valu-
ations of gains and losses: Smaller gains, fewer trades, and less value”. In: Journal
of Economic Behavior & Organization 33.2, pp. 185–193.

Chang, T-J. et al. (2000). “Heuristics for cardinality constrained portfolio optimisa-
tion”. In: Computers & Operations Research 27.13, pp. 1271–1302.

Chang, T-J., S-C. Yang, and K-J. Chang (2009). “Portfolio optimization problems in
different risk measures using genetic algorithm”. In: Expert Systems with applica-
tions 36.7, pp. 10529–10537.

Chen, Z. and Y. Wang (2008). “Two-sided coherent risk measures and their applica-
tion in realistic portfolio optimization”. In: Journal of Banking & Finance 32.12,
pp. 2667–2673.

Coello-Coello, C. A. (2002). “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: a survey of the state of the art”. In:
Computer methods in applied mechanics and engineering 191.11-12, pp. 1245–
1287.

Corazza, M., G. Fasano, and R. Gusso (2013). “Particle Swarm Optimization with
non-smooth penalty reformulation, for a complex portfolio selection problem”. In:
Applied Mathematics and Computation 224, pp. 611–624.

Corazza, M. et al. (2021). “A novel hybrid PSO-based metaheuristic for costly portfolio
selection problems”. In: Annals of Operations Research, pp. 1–29.

Costa, J. C., R. Tavares, and A. Rosa (1999). “An experimental study on dynamic
random variation of population size”. In: IEEE SMC’99 Conference Proceedings.
1999 IEEE International Conference on Systems, Man and Cybernetics. Vol. 1,
607–612 vol.1.

Costa, L. Da et al. (2008). “Adaptive operator selection with dynamic multi-armed
bandits”. In: Genetic and Evolutionary Computation Conference, GECCO 2008,
Proceedings. ACM, pp. 913–920.

Davis, L. (1989). “Adapting Operator Probabilities in Genetic Algorithms”. In: Pro-
ceedings of the Third International Conference on Genetic Algorithms. Morgan
Kaufmann Publishers Inc., 61–69.

De Jong, K.A. (1975). “An Analysis of the Behavior of a Class of Genetic Adaptive
Systems.” PhD thesis. University of Michigan, USA.

— (2007). “Parameter Setting in EAs: a 30 Year Perspective”. In: Parameter Setting
in Evolutionary Algorithms.

Deb, K. and H.G Beyer (2001). “Self-adaptive genetic algorithms with simulated bi-
nary crossover”. In: Evolutionary computation 9.2, pp. 197–221.

Deb, K., R.B. Agrawal, and R. Bhushan (1995). “Simulated binary crossover for con-
tinuous search space”. In: Complex systems 9.2, pp. 115–148.

Deb, K., A. Anand, and D. Joshi (2002). “A Computationally Efficient Evolutionary
Algorithm for Real-Parameter Optimization”. In: Evolutionary Computation 10.4,
pp. 371–395.

Deep, K. and M. Thakur (2007). “A new crossover operator for real coded genetic
algorithms”. In: Applied mathematics and computation 188.1, pp. 895–911.

Bibliography 147

DeMiguel, V. et al. (2009). “A generalized approach to portfolio optimization: Im-
proving performance by constraining portfolio norms”. In: Management science
55.5, pp. 798–812.

di Tollo, G. and A. Roli (2008). “Metaheuristics for the portfolio selection problem”.
In: International Journal of Operations Research 5.1, pp. 13–35.

di Tollo, G. et al. (2015). “An experimental study of adaptive control for evolutionary
algorithms”. In: Applied Soft Computing 35, pp. 359–372.

Dobslaw, F. (2010). “Recent Development in Automatic Parameter Tuning for Meta-
heuristics”. In:

Eiben, A. E. and S. K. Smit (2011). “Parameter tuning for configuring and analyzing
evolutionary algorithms”. In: Swarm Evol. Comput. 1.1, pp. 19–31.

— (2012). “Evolutionary Algorithm Parameters and Methods to Tune Them”. In:
Autonomous Search. Ed. by Y. Hamadi, E. Monfroy, and F. Saubion. Springer,
pp. 15–36.

Eiben, A. E. and J. E. Smith (2015). Introduction to Evolutionary Computing, Second
Edition. Natural Computing Series. Springer.

Eiben, A. E., R. Hinterding, and Z. Michalewicz (1999). “Parameter control in evo-
lutionary algorithms”. In: IEEE Transactions on Evolutionary Computation 3.2,
pp. 124–141.

Eiben, A. E., M. Schut, and A. D. Wilde (2006a). “Is Self-adaptation of Selection
Pressure and Population Size Possible? - A Case Study”. In: PPSN.

Eiben, A. E. et al. (2007). “Parameter Control in Evolutionary Algorithms”. In: Pa-
rameter Setting in Evolutionary Algorithms. Ed. by F. G. Lobo, C. F. Lima, and
Z. Michalewicz. Vol. 54. Studies in Computational Intelligence. Springer, pp. 19–
46.

Eiben, A.E., E. Marchiori, and V.A. Valko (2004). “Evolutionary Algorithms with
on-the-fly Population Size Adjustment”. In: Proceedings of the 8th international
conference on Parallel Problem Solving from Nature (PPSN VIII). Ed. by X. Yao.
Springer, pp. 41–50.

Eiben, A.E. et al. (2006b). “Reinforcement Learning for Online Control of Evolu-
tionary Algorithms”. In: Proceedings of the 4th International Conference on En-
gineering Self-Organising Systems. ESOA’06. Berlin, Heidelberg: Springer-Verlag,
pp. 151–160.

Eiben, G. and M. C. Schut (2008). “New Ways to Calibrate Evolutionary Algorithms”.
In: Advances in Metaheuristics for Hard Optimization. Ed. by P. Siarry and Z.
Michalewicz. Natural Computing Series. Springer, pp. 153–177.

Eshelman, L.J. and J.D. Schaffer (1993). “Real-coded genetic algorithms and interval-
schemata”. In: Foundations of genetic algorithms. Vol. 2. Elsevier, pp. 187–202.

Farmani, R. and J. A. Wright (2003). “Self-adaptive fitness formulation for constrained
optimization”. In: IEEE Transactions on Evolutionary Computation 7.5, pp. 445–
455.

Fialho, Á. (2010). “Adaptive Operator Selection for Optimization”. PhD thesis. Uni-
versity of Paris-Sud, Orsay, France.

Fishburn, P.C. (1977). “Mean-risk analysis with risk associated with below-target
returns”. In: The American Economic Review 67.2, pp. 116–126.

Fletcher, R. (2013). Practical methods of optimization. John Wiley & Sons.
García-Martínez, C. et al. (2008). “Global and local real-coded genetic algorithms

based on parent-centric crossover operators”. In: Eur. J. Oper. Res. 185.3, pp. 1088–
1113.

Gilli, M. and E. Schumann (2021). “Risk–Reward Ratio Optimisation (Revisited)”.
In: Dynamic Analysis in Complex Economic Environments. Springer, pp. 29–57.

Gilli, M., E. Këllezi, and H. Hysi (2006). “A data-driven optimization heuristic for
downside risk minimization”. In: Swiss Finance Institute Research Paper 06-2.

Gilli, M. et al. (2011). “Constructing 130/30-portfolios with the Omega ratio”. In:
Journal of asset management 12.2, pp. 94–108.

148 Bibliography

Goldberg, D. (1988). “Genetic Algorithms in Search Optimization and Machine Learn-
ing”. In:

Harik, G. R., F. G. Lobo, and D. E. Goldberg (1999). “The compact genetic algo-
rithm”. In: IEEE Transactions on Evolutionary Computation 3.4, pp. 287–297.

Hatta, K. et al. (1997). “On-the-fly crossover adaptation of genetic algorithms”. In:
Herrera, F., M. Lozano, and J.L. Verdegay (1998). “Tackling real-coded genetic al-

gorithms: Operators and tools for behavioural analysis”. In: Artificial intelligence
review 12.4, pp. 265–319.

Herrera, F., M. Lozano, and A.M. Sánchez (2005). “Hybrid crossover operators for
real-coded genetic algorithms: an experimental study”. In: Soft Comput. 9.4, pp. 280–
298.

Hinterding, R., Z. Michalewicz, and A. E. Eiben (1997). “Adaptation in evolutionary
computation: a survey”. In: Proceedings of 1997 IEEE International Conference
on Evolutionary Computation (ICEC ’97), pp. 65–69.

Holland, J.H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Cam-
bridge, MA, USA: MIT Press.

Hoos, H. H. (2012). “Automated Algorithm Configuration and Parameter Tuning”. In:
Autonomous Search. Ed. by Y. Hamadi, E. Monfroy, and F. Saubion. Springer,
pp. 37–71.

Huang, C., Y. Li, and X. Yao (2020). “A Survey of Automatic Parameter Tuning
Methods for Metaheuristics”. In: IEEE Transactions on Evolutionary Computation
24.2, pp. 201–216.

Hutter, F. et al. (2007). “Automatic Algorithm Configuration Based on Local Search”.
In: Proceedings of the 22nd National Conference on Artificial Intelligence - Volume
2. AAAI’07. Vancouver, British Columbia, Canada: AAAI Press, 1152–1157.

Hutter, F. et al. (2009). “ParamILS: An Automatic Algorithm Configuration Frame-
work”. In: J. Artif. Intell. Res. 36, pp. 267–306.

Jagannathan, R. and T. Ma (2003). “Risk reduction in large portfolios: Why imposing
the wrong constraints helps”. In: The Journal of Finance 58.4, pp. 1651–1683.

Joines, J. A. and C. R. Houck (1994). “On the Use of Non-Stationary Penalty Func-
tions to Solve Nonlinear Constrained Optimization Problems with GA’s”. In:
Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE
World Congress on Computational Intelligence, Orlando, Florida, USA, June 27-
29, 1994. IEEE, pp. 579–584.

Kahneman, D. and A. Tversky (2013). “Prospect theory: An analysis of decision under
risk”. In: Handbook of the fundamentals of financial decision making: Part I. World
Scientific, pp. 99–127.

Karafotias, G., A. E. Eiben, and M. Hoogendoorn (2014). “Generic parameter control
with reinforcement learning”. In: Genetic and Evolutionary Computation Con-
ference, GECCO ’14, Vancouver, BC, Canada, July 12-16, 2014. Ed. by D. V.
Arnold. ACM, pp. 1319–1326.

Karafotias, G., M. Hoogendoorn, and A. E. Eiben (2015). “Parameter Control in
Evolutionary Algorithms: Trends and Challenges”. In: IEEE Trans. Evol. Comput.
19.2, pp. 167–187.

Kaucic, M. (2019). “Equity portfolio management with cardinality constraints and risk
parity control using multi-objective particle swarm optimization”. In: Computers
& Operations Research 109, pp. 300–316.

Kazarlis, S. A. and V. Petridis (1998). “Varying Fitness Functions in Genetic Algo-
rithms: Studying the Rate of Increase of the Dynamic Penalty Terms”. In: Parallel
Problem Solving from Nature - PPSN V, 5th International Conference, Amster-
dam, The Netherlands, September 27-30, 1998, Proceedings. Ed. by A. E. Eiben
et al. Vol. 1498. Lecture Notes in Computer Science. Springer, pp. 211–220.

Keating, C. and K.W. Shadwick (2002). “A universal performance measure”. In: Jour-
nal of performance measurement 6.3, pp. 59–84.

Bibliography 149

Kita, H. (2001). “A comparison study of self-adaptation in evolution strategies and
real-coded genetic algorithms”. In: Evolutionary Computation 9.2, pp. 223–241.

Kita, H. and M. Yamamura (1999). “A functional specialization hypothesis for design-
ing genetic algorithms”. In: IEEE SMC’99 Conference Proceedings. Vol. 3, 579–584
vol.3.

Kita, H., I. Ono, and S. Kobayashi (1999). “Theoretical analysis of the unimodal
normal distribution crossover for real-coded genetic algorithms”. In: Transactions
of the Society of Instrument and Control Engineers 35.11, pp. 1333–1339.

Konno, H. and H. Yamazaki (1991). “Mean-absolute deviation portfolio optimization
model and its applications to Tokyo stock market”. In: Management science 37.5,
pp. 519–531.

Koumousis, V.K. and C. P. Katsaras (2006). “A Saw-Tooth Genetic Algorithm Com-
bining the Effects of Variable Population Size and Reinitialization to Enhance
Performance”. In: IEEE Transactions on evolutionary computation 10(1), pp. 10–
28.

Lardeux, F., F. Saubion, and J-K. Hao (2006). “GASAT: a genetic local search algo-
rithm for the satisfiability problem”. In: Evolutionary Computation 14.2, pp. 223–
253.

Laredo, J.L.J. et al. (2009). “Improving genetic algorithms performance via deter-
ministic population shrinkage”. In: Genetic and Evolutionary Computation Con-
ference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009.
Ed. by Franz Rothlauf. ACM, pp. 819–826.

Le Riche, R., C. Knopf-Lenoir, and R.T. Haftka (1995). “A Segregated Genetic Al-
gorithm for Constrained Structural Optimization”. In: Proceedings of the 6th In-
ternational Conference on Genetic Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 558–565.

Ledoit, O. and M. Wolf (2003). “Improved estimation of the covariance matrix of
stock returns with an application to portfolio selection”. In: Journal of empirical
finance 10.5, pp. 603–621.

Lin, C-C. and Y-T. Liu (2008). “Genetic algorithms for portfolio selection problems
with minimum transaction lots”. In: European Journal of Operational Research
185.1, pp. 393–404.

Lwin, K., R. Qu, and B. L. MacCarthy (2017). “Mean-VaR portfolio optimization:
A nonparametric approach”. In: European Journal of Operational Research 260.2,
pp. 751–766.

Maillard, S., T. Roncalli, and J. Teïletche (2010). “The properties of equally weighted
risk contribution portfolios”. In: The Journal of Portfolio Management 36.4, pp. 60–
70.

Markowitz, H. (1959). Portfolio selection.
Maturana, J. et al. (2009). “Extreme compass and Dynamic Multi-Armed Bandits for

Adaptive Operator Selection”. In: 2009 IEEE Congress on Evolutionary Compu-
tation, pp. 365–372.

Maturana, J., F. Lardeux, and F. Saubion (2010). “Autonomous operator management
for evolutionary algorithms”. In: J. Heuristics 16.6, pp. 881–909.

Maturana, Jorge and Frédéric Saubion (2008). “A compass to guide genetic algo-
rithms”. In: International Conference on Parallel Problem Solving from Nature.
Springer, pp. 256–265.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs.
Artificial intelligence. Springer.

— (1995). “A Survey of Constraint Handling Techniques in Evolutionary Computa-
tion Methods”. In: Proceedings of the Fourth Annual Conference on Evolutionary
Programming, EP 1995, San Diego, CA, USA, March 1-3, 1995. Ed. by J. R.
McDonnell, R. G. Reynolds, and D. B. Fogel. A Bradford Book, MIT Press. Cam-
bridge, Massachusetts., pp. 135–155.

150 Bibliography

Michalewicz, Z. and N. Attia (1994). “Evolutionary optimization of constrained prob-
lems”. In: Proceedings of the 3rd Annual Conference on Evolutionary Programming,
pp. 98–108.

Michalewicz, Z. and M. Schoenauer (1996). “Evolutionary Algorithms for Constrained
Parameter Optimization Problems”. In: Evol. Comput. 4.1, pp. 1–32.

Michalewicz, Z., G. Nazhiyath, and M. Michalewicz (1996). “A Note on Usefulness of
Geometrical Crossover for Numerical Optimization Problems”. In: Proceedings of
the Fifth Annual Conference on Evolutionary Programming, EP 1996, San Diego,
CA, USA, February 29 - March 2, 1996. Ed. by Lawrence J. Fogel, Peter J. An-
geline, and Thomas Bäck. MIT Press, pp. 305–312.

Montero, E. and M. C. Riff (2011). “On-the-fly calibrating strategies for evolutionary
algorithms”. In: Inf. Sci. 181.3, pp. 552–566.

Montero, E., M. C. Riff, and B. Neveu (2014). “A beginner’s guide to tuning methods”.
In: Appl. Soft Comput. 17, pp. 39–51.

Moral-Escudero, R., R. Ruiz-Torrubiano, and A. Suárez (2006). “Selection of optimal
investment portfolios with cardinality constraints”. In: 2006 IEEE International
Conference on Evolutionary Computation. IEEE, pp. 2382–2388.

Nannen, V. and A. E. Eiben (2007). “Efficient relevance estimation and value cali-
bration of evolutionary algorithm parameters”. In: 2007 IEEE Congress on Evo-
lutionary Computation, pp. 103–110.

Nocedal, J. and S. Wright (2006). Numerical optimization. Springer Science & Busi-
ness Media.

Ono, I. and S. Kobayashi (1999). “A real-coded genetic algorithm for function op-
timization using unimodal normal distribution”. In: Proceedings of international
conference on genetic algorithms, pp. 246–253.

Radcliffe, N.J. (1991). “Equivalence class analysis of genetic algorithms”. In: Complex
systems 5.2, pp. 183–205.

Renders, J. and H. Bersini (1994). “Hybridizing genetic algorithms with hill-climbing
methods for global optimization: two possible ways”. In: Proceedings of the First
IEEE Conference on Evolutionary Computation. IEEE World Congress on Com-
putational Intelligence, 312–317 vol.1.

Rockafellar, R.T. and S. Uryasev (2000). “Optimization of conditional value-at-risk”.
In: Journal of risk 2, pp. 21–42.

Rockafellar, R.T., S. Uryasev, and M. Zabarankin (2006). “Generalized deviations in
risk analysis”. In: Finance and Stochastics 10.1, pp. 51–74.

Roncalli, T. (2013). Introduction to risk parity and budgeting. CRC Press.
Simon, D. (2013). Evolutionary optimization algorithms. Biologically insipred and

population-based approaches to computer intelligence. Wiley.
Smit, S. K. and A. E. Eiben (2010a). “Parameter Tuning of Evolutionary Algorithms:

Generalist vs. Specialist”. In: Applications of Evolutionary Computation, EvoAp-
plicatons 2010, Istanbul, Turkey, April 7-9, 2010, Proceedings, Part I. Vol. 6024.
Lecture Notes in Computer Science. Springer, pp. 542–551.

— (2010b). “Using Entropy for Parameter Analysis of Evolutionary Algorithms”. In:
Experimental Methods for the Analysis of Optimization Algorithms. Ed. by T.
Bartz-Beielstein et al. Springer, pp. 287–310.

Spears, W. (1995). “Adapting Crossover in Evolutionary Algorithms”. In: Evolutionary
Programming.

Sung, H.J. (June 2007). “Queen-bee and Mutant-bee Evolution for Genetic Algo-
rithms”. In: Journal of Fuzzy Logic and Intelligent Systems 17, pp. 417–422.

Syswerda, G. (1993). “Simulated Crossover in Genetic Algorithms”. In: Foundations
of Genetic Algorithms. Ed. by L. DARRELL WHITLEY. Vol. 2. Foundations of
Genetic Algorithms. Elsevier, pp. 239–255.

Tessema, B. and G. G. Yen (2006). “A Self Adaptive Penalty Function Based Algo-
rithm for Constrained Optimization”. In: 2006 IEEE International Conference on
Evolutionary Computation, pp. 246–253.

Bibliography 151

Thierens, D. (2007). “Adaptive Strategies for Operator Allocation”. In: Parameter
Setting in Evolutionary Algorithms. Ed. by F. G. Lobo, C. F. Lima, and Z.
Michalewicz. Vol. 54. Studies in Computational Intelligence. Springer, pp. 77–
90.

Tuson, A. and P. Ross (1998). “Adapting Operator Settings in Genetic Algorithms”.
In: Evolutionary Computation 6.2, pp. 161–184.

Voigt, H.M., H. Mühlenbein, and D. Cvetkovic (1995). “Fuzzy recombination for the
breeder genetic algorithm”. In: Proc. Sixth Int. Conf. on Genetic Algorithms. Cite-
seer.

Wolpert, D. H. andW. G. Macready (1997). “No free lunch theorems for optimization”.
In: IEEE Transactions on Evolutionary Computation 1.1, pp. 67–82.

Wright, A. H. (1991). “Genetic Algorithms for Real Parameter Optimization”. In:
Foundations of Genetic Algorithms. Morgan Kaufmann, pp. 205–218.

Yoon, H. and B. Moon (2002). “An empirical study on the synergy of multiple
crossover operators”. In: IEEE Transactions on Evolutionary Computation 6.2,
pp. 212–223.

Yuan, B. and M. Gallagher (2007). “Combining Meta-EAs and racing for difficult
EA parameter tuning tasks”. In: Parameter Setting in Evolutionary Algorithms.
Springer, pp. 121–142.

Yuan, Z. et al. (2013). “An Analysis of Post-Selection in Automatic Configuration”.
In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Com-
putation. GECCO ’13. Amsterdam, The Netherlands: Association for Computing
Machinery, 1557–1564.

	Introduction
	A literature review of parameter tuning and parameter control
	Overview
	Parameter tuning: a literature review
	A formal definition of the parameter tuning problem
	Evaluating the tuning algorithm
	Tuning methods
	Simple generate-evaluate methods
	Iterative generate-evaluate methods
	High level generate-evaluate methods

	Parameter control: a literature review and trends
	A formal definition of the parameter control problem
	Evaluating the parameter control algorithm
	Parameter control methods
	Deterministic parameter control
	Adaptive parameter control
	Self-adaptive parameter control
	Some features of parameter independent methods

	Basics on portfolio selection
	Basic formulation of the PSP and formal properties of risk measures
	Dealing with input sensitivity and unstable solutions
	Measuring tail risks
	Assessing the sensitivity of MV portfolios to input estimation

	Mixed-integer programming (MIP) problems

	A reformulation of the mixed-integer portfolio selection problem based on the exact penalty function
	A brief introduction to penalty methods
	Quadratic penalty method
	Nonsmooth exact penalty method
	Augmented Lagrangian method

	Reformulating the portfolio selection problem

	A literature review of crossover operators
	A discussion of crossover operators design principles
	Some guidelines

	A taxonomy of RCGA crossover operators
	Discrete crossover operators: uniform and n-point recombination
	Aggregation-based crossover operators
	Neighborhood-based crossover operators: mean and parent-centric strategies

	Computational analysis
	Test 1: evaluating the crossover performance
	Experimental setting
	Benchmark instances and setup
	Testing the crossover performance with the selection process
	Testing the crossover performance without the selection process

	Test 2: evaluating the operators management
	Experimental setting
	Testing dynamic search policies

	Test 3: evaluating the adaptive strategy on MIP problems
	Experimental setting
	Results
	Evaluating the in-sample performance of the adaptive policy
	Testing the out-of-sample performance of the adaptive policy

	Conclusions
	KKT Conditions
	Source code
	Figures

