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Abstract

Non-rigid transformations problems have recently been largely addressed

by the researchers community due to their importance in various areas,

such as medical research and automatic information retrieval systems.

In this dissertation we use a novel technique to learn a statistical model

based on Riemmannian metric variation on deformable shapes. The vari-

ations learned over different datasets are then used to build a statistical

model of a certain shape that is independent from the pose of the shape

itself. The statistical model can then be used to classify shapes that do

not belong to the original dataset.
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Chapter 1

Introduction

Shape analysis is a discipline which analyses and elaborates geometric ob-

jects. It includes several approaches used in automatic geometric shape

analysis of digital objects in order to identify similarities or partial corre-

spondences between different objects. It usually involves the elaboration

of a discretization of the shape that has to be analysed. In fact, given a

surface, we take its boundary representation to extrapolate information

about the underlying surface. The boundary representation of a surface

is usually a 3D model, often called mesh. Depending on the grain of

the discretization (a mesh can be a dense representation of the underly-

ing surface which means it is composed of an high number of elements,

namely vertices, or sparse if the number of vertices is low), the object

must be simplify before a comparison can be achieved. This simplification

is usually called a shape descriptor (equivalently signature or fingerprint).

The main goal of this process of simplification is to try to preserve in the

shape descriptor most of the information of the surface. Shape analysis

is applied to several different fields. For example, in archaeology (find
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4 CHAPTER 1. INTRODUCTION

similar objects or missing parts), in security applications (faces recon-

naissance), in medicine (recognize shape changes related to illness) or

in virtual environment (on the 3D model market to identify objects for

copyright purpose). Shape descriptors can be classify by their invariance

with respect to certain transformations, like isometric transformations.

In this case we speak of intrinsic shape descriptors. These descriptors

do not change with different isometric embeddings of the shape. This

type of descriptors comes in hand when applied to deformable objects

(like a person in different poses) as these deformations do not involve

much stretching but are nearly isometric. Such descriptors are commonly

based on geodesic distances measures along the surface of an object or

on other isometry invariant characteristics, such as the Laplace-Beltrami

spectrum. Hence, different shape descriptors target different aspects of a

shape and can be used for specific applications. The properties that we

are looking for in a shape descriptor can be summarized as:

• Isometry: congruent solids (or isometric surfaces) should have the

same shape descriptor being independent of the solid’s given rep-

resentation.

• Similarity: similar shaped solids should have similar descriptors.

The shape descriptors should depend continuously on the shape

deformation.

• Efficiency: the effort needed to compute those descriptors should

be reasonable.

• Completeness: ideally, those fingerprints should give a complete

characterization of the shape. One step further it would be desir-
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able that those fingerprints could be used to reconstruct the solid.

• Compression: in addition it would also be desirable that the de-

scriptor data should not be redundant.

• Physicality: finally, it would be nice if an intuitive geometric or

physical interpretation of the meaning of the descriptors would be

available.

As proved in the work of Reuter et al. [23], the spectrum of the Lapla-

cian satisfies most of these properties. In particular, only the complete-

ness property does not holds for this shape descriptor. The Reuter et al.

work differs from the one we are presenting because it uses the Laplace-

Beltrami operator directly on the underlying surface, while we use the

mesh Laplacian based on a discretization of the surface (namely, the

mesh). Our method start from these considerations and aim to build a

statistical model, that allows the comparison between different shapes.

It is a data-driven method in which the first phase consists of a learning

phase whose input is a set of mesh representing the same shape in differ-

ent poses. Once the descriptor of each mesh is computed, we use them

to define a descriptor of the shape itself, i.e. we compute the descriptor

of the dataset. This new descriptor can then be used to make compar-

isons between different shapes, namely meshes that do not belong to the

dataset used for the learning phase. The comparison is done through the

definition of probabilistic distributions, that can be easily compared with

each other through a distribution dissimilarity criteria. This dissertation

has the following structure:

• Chapter 2: in the second chapter we introduce briefly part of the

theory involved in the definition of our method, like basic notions
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of differentiable geometry, Riemannian geometry, differential oper-

ators and spectral theory.

• Chapter 3: in the third chapter we explain in deep our model,

how the statistical method is defined and how we compute the

distributions of the shapes.

• Chapter 4: in the fourth chapter we introduce the dataset used in

the tests and propose a brief introduction to the SCAPE method,

a data-driven method used to generate human shapes.

• Chapter 5: in the fifth chapter we present a schematic overview

of the architecture of the project (namely, the implementation of

the described model) where we explain the two main phase of the

project and the inputs and the outputs of both.

• Chapter 6: in the sixth chapter we present the experimental results

obtained using our model.



Chapter 2

Mathematical background

Differential geometry is a field of mathematics that uses the differential

and integral calculus techniques in order to study geometric problems.

Planes, curved spaces and surfaces theories on the three-dimensional Eu-

clidean space represent the starting point for the development of this

discipline. Differential geometry is probably as old as the others math-

ematical disciplines. Its diffusion is recorded in the period following the

definition of fundamentals of calculus by Newton and Leibnitz. In the

first half of the Nineteenth century, Gauss obtains a lot of results in the

field of three-dimensional surfaces. In 1845 Riemann, a German mathe-

matician, lays the foundation for a more abstract approach. In the end

of that century, Levi-Civitae and Ricci developed the parallel translation

concept in the classical language of tensors. This approach received an

important contribution from Einstein and his studies on the relativity.

During the first years of this century, E. Cartan introduced the first meth-

ods independent from a particular coordinate system. Chevalley’s book

“The Theory of Lie Groups” dated 1946, continued the work started by

7



8 CHAPTER 2. MATHEMATICAL BACKGROUND

Cartan about the basic concepts and notations which still have an im-

pact on the modern study of the discipline. Surfaces differential geometry

studies smooth surfaces with several additional structures, for example

a Riemann metric. Surfaces have been extensively studied from different

perspectives, both in their embedding in a Euclidean space and study-

ing their properties determined uniquely from the inner distance of the

surface measured on the curves which the surface is made of.

2.1 Differentiable geometry

A manifold is a structure that allows to extend in a natural way the

notions of differential calculus. Intuitively, a manifold is an object that

appears locally as an Euclidean space. In order to define a manifold in

a more formal way, it is important to introduce firstly the topological

space.

2.1.1 Topological space

A topological space is defined as a tuple containing a non-empty set X

and a collection V of subsets of X, which are the open sets of X. For

each subset contained in the collection V , the following properties must

be satisfied:

1. X and ∅ belongs to V ;

2. the union of each collection of elements in V belongs to V ;

3. the intersection of a finite collection of elements in V belongs to V .
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The neighbourhood of a point p ∈ X is the subset U which contains

an open set A such that p ∈ A. A function f : X → Y where X and Y are

topological spaces is continuous if for each open set A ⊂ Y , f−1(A) ⊂ X

is open. A topological space X is separable (or of Hausdorff) if for each

pair of distinct points p ∈ X, q ∈ X, p 6= q, exist neighbourhoods Up of

p and Uq of q such that

Up ∩ Uq = ∅ (2.1)

In this case all the spaces will be separated. The cover of a set X is

a collection of non-empty subsets

U = {Ui}i∈I (2.2)

of X such that

X =
⋃
i∈I

Ui (2.3)

A cover {Ui}i∈I is open if all the Ui are open.

2.1.2 Topological manifold

We are now able to formally define a topological manifold.

Definition 1. A separated topological space X is a topological manifold

of dimension n if it admits an open cover U = {Ui}i∈I such that each Ui

is homomorphous to an open set of Rn.

In other words, each point of a manifold has a neighbourhood which is

homomorphous to an open set of the Euclidean space. LetX = {X,U} be
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a manifold, for each Ui ∈ U is possible to define a continuous application

which takes the name of coordinate application

ϕ : Ui → Rn (2.4)

The image Bi = ϕi(Ui) is an open set of Rn and the application

ϕi : Ui → Bi is an homomorphism. Let q ∈ Ui we can define:

ϕi(q) = (x1(q), ..., xn(q)) (2.5)

xk(q) is the k-th coordinate of the point q with respect to the chart

(Ui, ϕi). The open sets Ui are then called coordinate open sets. The

function ϕi coordinates Ui, namely it assigns unequivocally to each point

of the open set a tuple of n scalars which determines the point. The map

ϕi : Ui → Bi is called coordinate chart and the collection of charts Ui, ϕi

is called atlas.

2.1.3 Differentiable manifold

In order to define formally what is a differentiable manifold, it is use-

ful to introduce firstly the transition map concept. Given a topological

manifold of dimension n and two charts Ui and Uj, let:

Uij = Ui ∩ Uj = Uj (2.6)

Let ϕi and ϕj be two functions which can be used to map Uij (namely,

get the coordinates). Let:

Bij = ϕi(Uij) ⊂ Rn, Bji = ϕj(Uji) ⊂ Rnandϕij = ϕiϕ
−1
j : Bji → Rn

(2.7)
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Then ϕij is an homomorphism on the image which is the open set Bij

of Rn. Furthermore, the function ϕij = ϕiϕ
−1
j is defined on an open set

of Rn with values in Rn. It makes sense then require that this function

is differentiable. Two atlases of X may not be compatible from the

differentiable point of view, that is why is necessary to explicitly define

the atlas.

Definition 2. A differentiable manifold of class k, Ck (C∞), is defined

as a topological manifold X and an atlas V , {X, V } = {X,Ui, ϕi} such

that the change of the chart ϕij are differentiable function of class Ck

(C∞). Topological manifolds can be considered as C0 manifolds.

It might be useful to add new charts to an atlas, but in order to do

so we have to check that the differential structure is maintained. Let

ϕ : V → Rn be a chart, which means that V is an open set of X, ϕ(V )

is an open set of Rn and ϕ is an homomorphism on the image. {V, ϕ}
is compatible with the atlas V if for each Ui ∈ V such that Ui ∩ V is

non-empty, the applications:

ϕiϕ
−1 : ϕ(Ui ∩ V )→ Rnandϕϕ−1

i : ϕ(Ui ∩ V )→ Rn (2.8)

are of class Ck(C∞). Hence, given an atlas V we can make use of the

new atlas V ∪{V , ϕ}. More generally, we can add to V all the charts that

are compatible. In this way we obtain a maximal atlas.

Definition 3. A differentiable structure Ck(C∞) is constituted by a dif-

ferential manifold and a maximal atlas {X,U} = {X,Ui, ϕi} such that

the transition map are still in class Ck (C∞).
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2.1.4 Tangent space

The tangent space of a point of a manifold is a generalization of the

concept of tangent plane of a surface and the extension of the definition

vector from affine spaces to general manifold. We can see the concept

of tangent space in differential topology as the space containing all the

possible direction of the curves that belongs to a certain point of a differ-

entiable manifold. The dimension of the tangent space is the same of the

dimension of the associated manifold. The definition of tangent space

can also be generalized to structures as algebraic manifold, where the

dimension of the tangent space is at least equal to the manifold one. The

points where these dimensions are equal are called non-singular, the oth-

ers are singular. Tangent spaces of a manifold can be collapsed together

to form the tangent fibre bundle, a new manifold with doubled dimension

with respect to the original manifold. There are several possible way to

define the tangent space to a point of a manifold. In this paragraph we

will introduce the geometric one. Let M be a differentiable manifold,

defined as a topological space coupled with a collection of charts in Rn

and differentiable transition maps of class Ck with k ≥ 1. Let x be a

point of the manifold and

ϕ : U → Rn (2.9)

a chart defined in an open set U which contains x. Let

γ1 : (−ε, ε)→M (2.10)

γ2 : (−ε, ε)→M (2.11)
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two differentiable curves, that is ϕ ·γ1 and ϕ ·γ2 are derivable in zero.

The curves γ2 and γ2 are called tangent in 0 if they are the same in 0

and even the derivative of the chart are equal.

γ1(0) = γ2(0) = x (2.12)

(ϕ · γ1)′(0) = (ϕ · γ2)′(0) (2.13)

The tangency between curves defines an equivalence relation. The

equivalences class is called the tangent vectors of the manifold M in the

point x and are denoted as γ′(0). The set which contains all the tangent

vectors are independent from the chart φ and take the name tangent

space of M in the point x. Each tangent vector represents the direction

of a curve that pass through the point x.

2.2 Riemannian geometry

Riemannian geometry studies the Riemannian manifold, smooth mani-

fold with a Riemannian metric associated to it. A Riemannian metric

generalizes the concept of distance in a manifold in a similar way to the

distance that we can compute on an Euclidean space. Namely, Rieman-

nian geometry generalizes the Euclidean geometry on spaces which are

not necessarily flat, even though these spaces can be considered Euclidean

spaces locally. Various concepts based on lengths, like the length of the

arc of a curve, the area of a plane region and the volume of a solid, have

an counterpart in the Riemannian geometry. The notion of directional

derivative of a function of the multi-variable calculus has been extended

in the Riemannian geometry to the notion of covariant derivative of a ten-
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sor. A lot of concepts and analysis technique and differential equations

have been generalized to adapt to Riemannian manifolds.

2.2.1 Tensors

The notion of tensor generalizes all the structures defined usually in linear

algebra. An example of tensor is the vector. In differential geometry the

tensors are used on a differentiable manifold to define geometric notion

of distance, angle and volume. This results is reached through the use of

a metric tensor, namely an inner product on the tangent space of each

point. Let V be a vector scape of dimension n over the field K. The dual

space V ∗ is the vector space made of all the linear functional

f : V → K (2.14)

The space V ∗ has the same dimension of V , namely n. The elements

of V and V ∗ are called respectively vectors and covectors. A tensor is a

multi-linear application

T : V × ...× V︸ ︷︷ ︸
h

×V ∗ × ...× V ∗︸ ︷︷ ︸
k

→ K (2.15)

Hence, a tensor T associated to h vectors v1, ..., vh and k covectors

w1, ..., wk a scalar

T (v1, ..., vh, w1, ..., wk) (2.16)

The multi-linearity ensures the function to be linear in each compo-

nent. The order (or type) of the tensor is the pair (h, k). The space T kh

is provided with a natural vector space whose dimension is nh+k.
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After this brief introduction to tensors, we can introduce tensor fields.

A tensor field is obtained by associating to each point of a differentiable

manifold, like an open set of the Euclidean space Rn, a tensor defined in

the tangent space of the point. It is required that this tensor changes with

continuity (or in a differentiable way) while changing the point on the

manifold. This condition can be forced by asking that the coordinates

of the tensors expressed in a chart, namely a local reference system,

to change with continuity (i.e. in a differentiable way) when the point

changes, and this condition does not depend on the chart used. A metric

tensor is a tensor field which characterizes the geometry of a manifold.

Thanks to the metric tensor it is possible to define the notions of distance,

angle, length of a curve, geodesic, curvature. It is a tensor of order (0, 2)

which measure the inner product of two vectors in the tangent space of

a point.

2.2.2 Connection

In mathematics, a connection is a central tool of differential geometry.

It is a mathematical object which connects tangent spaces that belongs

to different points of a differentiable manifold. The connection between

these two tangent spaces is obtained through a curve which links them

together. Intuitively, the connection defines a way to glide the tangent

space along the curve. This operation is called parallel transport. For-

mally, a connection over a differential manifold is defined through the in-

troduction of a differentiable object, which is called covariant derivative.

Conceptually, connection and covariant derivative are the same thing.

Furthermore, a connection can be defined in an analogous way for every
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vector bundle on the manifold, other than the tangent bundle. In differ-

ential geometry, the Levi-Civita connection is the canonical connection

used on Riemannian manifolds, and it is the only connection without tor-

sion that preserves the metric. Thanks to the Levi-Civita connection, the

metric tensor of the Riemannian manifold is enough to define uniquely

more elaborated concepts, like covariant derivative, geodesic and parallel

transport. Let (M, g) be a Riemannian manifold. A connection 5 is of

Levi-Civita if the following properties holds.

1. There is no torsion, which means that 5xY −5yX = [X, Y ].

2. The metric is preserved, that is

5x(g(Y, Z)) = g(5xY, Z) + g(Y,5xZ) (2.17)

or, equivalently

5xg = 0 (2.18)

Finally, we will introduce some notations that will be used in the

following paragraphs. Let 5 be a Levi-Civita connection of (M, g). We

can express the metric and the Levi-Civita connection in terms of local

coordinates. So let (U, x) be a chart and ∂1, ..., ∂n be the corresponding

vector fields on U . We now define gij ∈ C∞(U) by

gij = g(∂i, ∂j) (2.19)

And Christoffel symbols Γkij ∈ C∞(U) by

5∂i∂j =
∑
k

Γkij∂k (2.20)
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2.2.3 Riemannian manifold

A Riemannian manifold is a differentiable manifold where the tangent

space of each point is endowed of an inner product which varies whit

continuity when the point changes (more precisely, it varies smoothly).

Thanks to the inner product we can compute distances between points,

curves lengths, angles, areas and volumes, in a similar way we could have

done in an Euclidean space.

Figure 2.1: A Riemannian manifold and the spaces associated to it.

In particular, a Riemannian manifold is a metric space in which the

concepts of geodesic is defined as the curve that realizes locally the dis-

tance between two points. In other words, a Riemannian manifold in-

cludes all classic geometric operators that we can find in the Euclidean

geometry, even though their behaviour can be hugely different compared

to the behaviour of the same operator in the plane. Recall what has

been introduced in 2.1.1. We can now define a Riemannian metric. Let

M be a manifold with m ∈M , and let Mm denote the vector space of all

tangent vectors at m.
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Definition 4. A Riemannian metric g on M is an inner product gm such

that, for all vector fields X and Y , the function

m 7→ gm(X, Y ) (2.21)

is smooth.

We are now able to define a Riemannian manifold from a formally

point of view.

Definition 5. A Riemannian manifold can be defined as a differentiable

manifold M endowed with a metric tensor g positive definite. The metric

tensor g defines the inner product positive definite on the tangent space

in each point of M . The Riemannian manifold is usually defined as the

pair (M, g).

For example, let (, ) denote the inner product on Rn. An open U ⊂ Rn

gets a Riemannian metric via Um ∼= Rn:

gm(v, w) = (v, w) (2.22)

2.2.4 Geodesic

A geodesic, in differential geometry, is a particular curve which describes

locally the shortest trajectory between two points of a certain space.

The space can be a surface, a more generic Riemannian manifold (a

curve space) or a metric space. For example, in the Euclidean plane

the geodesics are simple straight line, while on a sphere the geodesics

are the great circle arcs. The concept of geodesic is strictly correlated

to the Riemannian metric one, which is connected to the concept of
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distance and of acceleration. Indeed, it can be thought as the path that

a non-accelerated particle could do. The term “geodesic” comes from

geodesy, the science which measure the dimensions and the shape of the

terrestrial globe. In its original meaning, a geodesic was the shortest

path between two points onto the Earth surface, namely a great circle

arc. Hence, meridians and the Equator are geodesics, while the others

circles of latitude are not. Let X be a generic metric space, a geodesic is

a curve

γ : I → X (2.23)

defined on an interval I of the real straight line R, which realize locally

the distance between points. More precisely, each point t that belongs

to the interval I has a neighbourhood J in I such that for each pair of

points t1 and t2 that belongs to J the following equivalence holds

d(γ(t1), γ(t2)) = t 1 - t 2 (2.24)

If this equivalence is valid for each pair of points t1 and t2 in I, the

geodesic is called minimizing geodesic or shortest path. In this case, the

geodesic realizes the minimum distance not only locally, but also globally.

A close geodesic is a curve

γ : S1 → X (2.25)

defined on the circumference S1, which is a geodesic if restricted to

any arc contained in S1. The shortest trajectory between two points on

a curve space can be computed minimizing the curve length equation
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through the standard technique of the variation calculus. The length of

a curve

γ : [a, b]→M (2.26)

over a Riemannian manifold M can be computed using the equation

L(γ) =

∫
|γ′(t)| dt (2.27)

Hence the geodesic is a curve which, inside the space of all curves

with fixed bounds, is a infimum, or more generally a stationary point, for

the function length

L : γ → L(γ) (2.28)

It is possible to define an equivalent quantity, the so called energy of

the curve:

E(γ) =
1

2

∫
|γ′(t)|2 dt (2.29)

Two different concepts that yields the same result: the geodesics are

stationary point both for the length and for the energy. A useful example

that explain this idea is that a rubber band stretched between two points

contracts its length and minimize its potential energy. The resulting

shape of the rubber band is however still a geodesic.

Let us now introduce the concept of existence and uniqueness of

geodesic. For each point p which belongs to a Riemannian manifold

M and for each non-null vector v of the tangent space Tp in p, it exists

exactly one complete geodesic which pass through p and which is tangent

to v. Which means that it exists a, b > 0 and a geodesic
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γ : (−a, b)→M (2.30)

with γ(0) = p and γ′(0) = v such that every other geodesics with

these two properties are still γ defined on a sub-interval of (a, b). The

values a and b can also been infinite. The existence and uniqueness

properties are due to the fact that a geodesic is a solution to a particular

second order Cauchy problem. If the vector v is multiplied by a scalar,

the corresponding geodesic results scaled. We can state then that, like in

the plane geometry, for each point and for each direction exist an unique

complete geodesic which passes through that point and which is oriented

along that direction.

2.3 Laplace-Beltrami contribution

Before study in deep the arguments of this paragraph, a brief historical

introduction is proposed about two mathematicians, whose contributions

are essential to achieve the main goal of this dissertation. Those math-

ematicians were Pierre-Simon Laplace and Eugenio Beltrami. Pierre-

Simon, marquis of Laplace, was a French mathematician, a physicist, an

astronomer and a French noble who lived between the Eighteenth and

Nineteenth century. He was one of the major scientists of the Napoleonic

period. Its contributions in the field of mathematics, astronomy and

probability theory are very important. For example, his work on the

mathematical astronomy, resulted in five volumes that took about 26

years of his life and whose title is “Mécanique Celeste”, which changed

the geometric study of mechanics developed by Newton in the one based

on mathematical analysis. Eugenio Beltrami was an Italian mathemati-
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cian who lived in the Mid-Nineteenth century, notable for his work con-

cerning differential geometry and mathematical physics. His work was

noted especially for clarity of exposition. He was the first to prove consis-

tency of non-Euclidean geometry by modelling it on a surface of constant

curvature, the pseudo-sphere, and in the interior of an n-dimensional unit

sphere, the so-called Beltrami–Klein model. He also developed singular

value decomposition for matrices, which has been subsequently rediscov-

ered several times. Beltrami’s use of differential calculus for problems of

mathematical physics indirectly influenced development of tensor calcu-

lus by Gregorio Ricci-Curbastro and Tullio Levi-Civita.

2.3.1 Laplace operator

The Laplace operator, also known as Laplacian, is a differential operator

given by the divergence of the gradient of a function in the Euclidean

space. It is usually denoted as 5 ·5, 52 or 4. The Laplacian 4f(p) of

a function f in a point p is the rate at which the average value of f in

a sphere centred on p deviate from f(p) when the sphere radius grows.

In a Cartesian coordinate system, the Laplacian is the sum of the second

partial derivative of the function with respect to each independent vari-

able. The Laplace operator is used in differential equations that describe

numerous physical phenomena, like electric and gravitational potential,

the heat diffusion and fluid propagation equation, or in the quantum me-

chanics. The Laplacian represents the flow density of the gradient flux

of a function. For example, the net rate at which a chemical dissolved in

a fluid move toward or away from a certain point is proportional to the

Laplacian of the chemical concentration in that point, that is, symbol-
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ically, the diffusion equation. For this reasons, the Laplace operator is

widely used in science to model any kind of physical phenomena. In the

field of image processing and computer vision, the Laplacian is used for

example for blob and edges detection. After this short introduction, we

can formally define this operator. As aforementioned, the Laplace oper-

ator is a second-order differential operator defined in an n-dimensional

Euclidean space defined as the divergence (5·) of the gradient (4f).

Thus if f is a real-valued second-order differentiable function, the Lapla-

cian of f is defined as:

4f = 52f = 5 · 5f (2.31)

Alternatively, the Laplacian of f can be defined as the sum of each

partial derivative of the second order in the Cartesian coordinates xi

4 =
n∑
i=1

∂2f

∂x2
i

(2.32)

Thanks to the fact that the Laplace operator is a second-order differ-

ential operator, the Laplacian maps function of class Ck to function of

class Ck−2 when k ≥ 2. Both the expression reported above define an

operator whose type is

4 : Ck(Rk)→ Ck(Rn) (2.33)

or more generally an operator

4 : Ck(Ω)→ Ck(Ω) (2.34)

for each open set Ω.
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2.3.2 Laplace-Beltrami operator

Eugenio Beltrami, one of the mathematicians introduced at the begin-

ning of this paragraph, has extended the results reached by Laplace in

order to allow the use of the Laplace operator even in the field of dif-

ferential geometry. During his researches, the Italian mathematicians

has achieved an important goal generalizing the Laplace operator so it

can be used on functions defined on Euclidean space surfaces and, more

generically, on Riemannian manifolds. Like the Laplacian, the Laplace-

Beltrami operator is defined as the divergence of the gradient. It is a

linear operator taking functions into functions. The operator can be

also extended in order to work with tensors, becoming the divergence

of the covariant derivative. In our instance, the aforementioned covari-

ant derivative is nothing but the Levi-Civita connection, which has been

discussed in 2.2.2. The metric and Levi-Civita connection of a Rieman-

nian manifold are all the components needed to generalize the familiar

operators of vector calculus. A couple of definitions follows. Let TM de-

note the tangent bundle on M (namely, the disjoint union of the tangent

spaces of M). Let Γ(TM) be the vector space of all vector fields on M .

Finally, let E be a tangent vector.

The gradient of f ∈ C∞(M) is the vector field grad f such that, for

Y ∈ Γ(TM),

g(grad f, Y ) = Y f (2.35)

The divergence of X ∈ Γ(TM) is the function div f ∈ C∞(M) defined

by
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(div f)(m) = trace(ξ →5ξX) (2.36)

We can define the Laplacian of f ∈ C∞(M) as the function

4f = div grad f (2.37)

In a chart (U, x), set g = det(gij). Let (gij) be the matrix inverse to

(gij). Then

grad f =
∑
k

gij(∂if)∂j (2.38)

and, for X =
∑
i

Xi∂i,

div X =
∑
i

(∂iXi +
∑
j

ΓiijXj) =
1
√

g

∑
j

∂j(
√

gXj) (2.39)

In particular

5f =
1
√

g

∑
i,j

∂i(
√

ggij∂jf) =
∑
i,j

gij(∂i∂jf − Γkij∂kf) (2.40)

2.3.3 Discrete Laplace operator

The Laplace-Beltrami operator, introduced in the previous paragraph,

has been used extensively in the last years in the fields of graphic and

geometric optimization. These applications include the manipulation

of meshes, surface smoothing and shapes interpolation. To accomplish

this purpose, several discretization and approximation schemas of the

Laplace-Beltrami have been studied. The most common approaches were
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based on the so called cotangent formula. The main problem of these ap-

proaches is that these schemas do not allow a point-wise convergence,

which is a widely requested characteristic of several applications. Belkin

et al. [3] proposed an algorithm for the Laplace operator approxima-

tion of a surface starting from a mesh which guarantees a point-wise

convergence for an arbitrary mesh. In their work they show how the

computed Laplacian is very close to the Laplace-Beltrami operator in

each point of a surface. This result is really important because there are

several arguments of computer graphics and geometric modelling which

deal with bi-dimensional surfaces processing on tri-dimensional environ-

ments. These surfaces are typically represented as meshes, that is a set

of coordinates represented by vertices and the information about how

they are connected (vertices triangulation). The class of methods based

on surface discrete differential geometry, and thus the use of the discrete

Laplace operator, is used extensively for various tasks.

The Laplace-Beltrami operator, as mentioned in paragraph 2.3.2, is

an object associated to a Riemannian manifold and which possess several

interesting properties. One of the most interesting for this work is the

capability of the eigenfunctions to form a base which reflect the surface

geometry. Furthermore, the Laplace operator is strictly connected to the

diffusion theory and to the heat equation over a surface. For these reasons

the studies about the discretization of this operator are of particular

interest. The objective of these methods is to obtain a discretization

from a mesh which reflects narrowly the Laplacian of the surface. The

principal contributions of the Belkin et al. work include a method to

compute integrals on a surface using the associated mesh which allows

the approximation of the Laplace-Beltrami operator on a surface granting
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a point-wise convergence for an arbitrary mesh. Let us start from the

algorithm used to compute the Laplace operator on a meshed surface.

Let K be a mesh in R3. We denote with V the set of vertices of the

mesh K. Given a face, a mesh or a surface X, let Area(X) be the area

of X. For a face t ∈ K, the number of vertices in t is denoted by #t,

while V (t) is the set of vertices of t. The algorithm takes as input a

function f : V ∈ R and yield another function LhK : V → R. LhK is

thus the Laplace operator of the mesh K and for each vertex w ∈ V it is

computed as

LhKf(w) =
1

4πh2

∑
t∈K

Area(t)

#t

∑
p∈V (t)

e−
‖p−w‖2

4h
)(f(p)− f(w)) (2.41)

The parameter h is positive and correspond to the size of the neigh-

bourhood considered at each point. Assuming that K is quietly a dense

mesh of the underlying surface S, LhK is close to the Laplacian of the

surface (4S). Before continuing with the other obtained results, we have

to introduce a couple of objects which will be used later. With functional

Laplacian F h
S we denote the intermediate object which allows to link the

mesh Laplace operator LhK with the surface Laplacian 4S. Given a point

w ∈ S and a function f : S → R, this object is defined as

F h
S f(w) =

1

4πh2

∫
x∈S

e−
‖p−w‖2

4h
)(f(x)− f(w))dv(x) (2.42)

Furthermore, we need a measure which indicate how well a mesh

approximate the underlying surface. Let thus M be the medial axis of S.

For each w ∈ S, the local feature size at w (denoted with lfs(w)) is the

distance from w to the medial axis M . The conditioning number ρ(S)
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of S is the infimum of the lfs for any point of S. For each point p ∈ S,

let np be the unitary normal of p and for each face t ∈ K let nt be the

unitary normal of t (namely, the unitary normal of the plane that passes

through t). We say that K is an (ξ, η)-approximation of S if for each face

t ∈ K the maximum distance between two points of t is ξρ and if for each

face t ∈ K and vertex p ∈ t the angle between nt and np is at most η.

Now we are able to proceed with the other obtained results. Intuitively,

as the mesh approximate more closely the surface S, the mesh Laplace

operator on K converges towards the Laplace-Beltrami operator of S.

Let thus Kξ,η be a (ξ, η)-approximation of S. Let h(ξ, η) = ξ
1

2.5+α + η
1

1+α

for a fixed positive α. Then we have that for each f ∈ C2(S)

lim
ξ,η→0

sup
K(ξ,η)

‖Lh(ξ,η)
K(ξ,η)

f −4Sf‖∞ = 0 (2.43)

where the supremum is taken from all the (ξ, η)-approximation of S.

We conclude this paragraph introducing the approximation of integral on

a surface. Let dS(x, y) be the geodesic distance between two point x, y ∈
S. Given a Lipschitz function, namely a function f such that |f(x) −
f(y)| ≤ C|x−y| for each x and y and where C is a constant independent

from both x and y, g : S → R, let L = Lip(g) be the Lipschitz constant

of the function g. We have that |g(x) − g(y)| ≤ LdS(x, y). Let ‖g‖∞ =

supx∈S |g(x)|. We can approximate
∫
S
g dv with the discrete sum

IKg =
∑
t∈K

Area(t)

#t

∑
v∈V (t)

g(v) (2.44)

so that the above inequality holds:∣∣∣∣∫
S

g dv − IKg
∣∣∣∣ ≤ 3(ρLξ + ‖g‖∞(2ξ + η)2)Area(S) (2.45)
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Moreover, let us suppose that g is twice differentiable, with the Hes-

sian norm of g bounded by H. Then, for some constant C which depends

only on S, the following inequality holds:

∣∣∣∣∫
S

g dv − IKg
∣∣∣∣ ≤ (CHξ2 + 3‖g‖∞(2ξ + η)2)Area(S) (2.46)

As a final note, let us introduce a different terminology that is often

used while speaking about the discrete Laplace operator, which is the

Laplacian matrix. For the case of a finite-dimensional graph (having a

finite number of edges and vertices, i.e. a mesh), the discrete Laplace

operator is more commonly called the Laplacian matrix.

2.4 Spectral theory

The spectral theory is a field of mathematics which extends the eigenval-

ues and eigenvectors theory of a single square matrix to a bigger variety

of mathematical spaces. The researchers community has paid special

attention to descriptors obtained through spectral decomposition of the

Laplacian associated to a shape. The Laplacian-based descriptors repre-

sents indeed the state-of-art in terms of performance in several analysis

operations on shapes. They are not only computationally efficient, but

they are also isometry invariant for construction and they can be asso-

ciated to a variety of transformations. Recently, a family of intrinsic

geometric properties taking the name of diffusion geometry have grown

in popularity. The studies on diffusion geometry are based on the the-

oretical work of Berard et al. [4] followed by the researches of Coifman

and Lafon [10]. They suggest the adoption of the eigenvectors and eigen-
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values of the Laplace-Beltrami operator associated to a shape in order to

build the so called diffusion distances, which are invariant metrics. These

distances revealed to be much more robust whit respect to geodesics since

the latter are highly sensitive to topological noise. Recent advances in

the discretization of the Laplace-Beltrami operator, that have been intro-

duced in paragraph 2.3.3 led to a sets of robust and efficient computation

tools.

2.4.1 Diffusion geometry

As aforementioned, diffusion geometry received a lot of attention from

the researchers community in these years. One of its most diffuse uses

has the objective to build pattern recognition applications. The analysis

of non-rigid shapes and surfaces belongs to this set of applications. In

particular, the diffusion geometry that derives from the heat propagation

on the surface allows to define several similarity criteria on the shape

which are intrinsic, that is invariant to inelastic deformation over the

surface. Furthermore, the diffusion geometry has proved to be robust

to topological noise, where other types of geometries, namely geodesic,

have not. The first topic that will be addressed in this paragraph is the

diffusion kernel. Let X be a shape, modelled as a compact Riemannian

manifold. We denote with µ the standard measure of the are on X. The

norm L2 of a function f of X with respect to the measure µ is defined as

‖f‖L2(X) =

∫
X

f(x) dµ(x) (2.47)

Given a metric d : X×X → R+, the pair (X, d) forms a metric space

while the triple (X, d, µ) a metric measure. A function k : X ×X → R
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is called diffusion kernel if it satisfies the following properties

• Non-negativity: k(x, x, ) ≥ 0

• Symmetry: k(x, y) = k(y, x)

• Positive-semidefiniteness: for each bounded f ,∫ ∫
k(x, y)f(x)f(y) dµ(x) dµ(y) ≥ 0 (2.48)

• Square integrability:∫ ∫
k2(x, y) dµ(x) dµ(y) ≤ ∞ (2.49)

• Conservation: ∫
k(x, y) dµ(y) = 1 (2.50)

The diffusion kernel defines a linear operator

Kf =

∫
k(x, y)f(y) dµ(y) (2.51)

which is known to be self-adjoint. A self-adjoint operator is an oper-

ator whose matrix is Hermitian, where an Hermitian matrix is one which

is equal to its own conjugate transpose. Thanks to properties (4), K has

a finite Hilbert norm, hence it is compact. This imply that this opera-

tor admits a discrete eigendecomposition Kψi = αψi with eigenfunctions

{ψi}∞i=0 and eigenvalues {αi}∞i=0. Because of (3) αi ≥ 0, while thanks to

(5) we have that αi ≤ 1. The diffusion kernel admits then the following

spectral decomposition property

k(x, y) =
∞∑
i=0

αiψi(x)ψi(y) (2.52)
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Since ψi forms an orthonormal base of L2(X),

∫ ∫
k2(x, y) dµ(x) dµ(y) =

∑ ∞
lim inf
i=0

α2
i (2.53)

Using these results, we can rework the properties (3-5) in the spectral

form obtaining 0 ≤ αi ≤ 1 and
∞∑
i=0

α2
i < ∞. An important property

of diffusion operators is that for each t ≥ 0, the operator Kt is itself

a diffusion operator with eigenbasis K and correspondent eigenvalues

{αti}∞i=0. There exist several ways to define a diffusion kernel and the

linked diffusion operator. In this paragraph we will take into exam only

operators that describe the heat propagation. The heat diffusion over a

surface is governed by the heat equation

(
4x +

∂

∂t

)
u = 0 (2.54)

where u is the heat distribution on the surface and 4x is the Laplace-

Beltrami operator (see 2.3.2). For compact surfaces, the Laplace-Beltrami

operator has discrete eigendecomposition of the form 4xφi = λiφi. The

diffusion operators associated to heat propagation processes are diago-

nalized by the eigenbasis of the Laplace-Beltrami operator, that is the

K’s having ψi = φi. The correspondent diffusion kernel can be expressed

as

k(x, y) =
∞∑
i=0

K(λi)φi(x)φi(y) (2.55)

where K(λ) is a function such that αi = K(λi). A particular case

of a diffusion operator is represented by H t defined by the family of

transfer functions H t(λ) = e−tλ and the associated heat kernel ht(x, y) =
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∞∑
i=0

e−tλφi(x)φi(y). The heat kernel ht(x, y) is the solution of the heat

equation with heat source on x at the time t = 0. The heat kernel will be

introduced extensively in the paragraph 2.4.2. Since the diffusion kernel

k(x, y) measures the degree of proximity between x and y, it can be used

to define a metric on X.

d2(x, y) = ‖k(x, ·)− k(y, ·)‖2
L2(X) (2.56)

Such measure take the name of diffusion distance [10].

2.4.2 Heat kernel

The heat kernel can be defined in several ways. The classical definition of

the heat kernel define it as the fundamental solution of the heat diffusion

equation, which is

(∂t −4)u = 0 (2.57)

What we are seeking for is a smooth function (t, x, y) 7→ p(t, x, y)

defined on (0,∞) ×M ×M such that, for each y ∈ M , p(t, x, y) is the

solution to the heat equation and for any φ ∈ C∞(M),

u(t, x) =

∫
M

p(t, x, y)φ(y) dy (2.58)

tends to φ(x) when t tends to 0. In other words, the heat kernel

allows to solve the Cauchy initial value problem defined above. In order

to underline the link between the Laplace-Beltrami operator and the

heat kernel with the work done in this study, it is necessary to firstly

introduce the so called eigenvalues problem. Let M be a compact and
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connected Riemannian manifold without boundary. The problem can

be expressed as to find all real numbers λ for which exists a non-trivial

solution φ ∈ L2(M) to the equation

4φ+ λφ = 0 (2.59)

The real numbers λ take the name of eigenvalues, and the solutions φ

are the correspondent eigenfunctions. Furthermore, for each λ, the eigen-

functions form a vector space known as eigenspace. The set of all these

eigenvalues is called the spectrum of the problem. There exist two type

of eigenvalues problem: the direct problem and the inverse problem. In

the former we are interested in the geometric properties of M which allow

us to snatch information about the eigenvalues and eigenvectors of the

Laplacian. In the latter, we assume the knowledge about the spectrum

of the problem and we try to extract information about the geometry of

the manifold. This last approach is the one we are more interested in. To

better comprehend the aforementioned problem we have firstly to adapt

some of the analysis and equations partial differentiation techniques in

order to make them work in the structures of the Riemannian geometry.

Let us start with the introduction of the well-known partial differential

equation that take the name of heat equation. Let M be an homogeneous

medium and let Ω be a domain contained in M . Let u(x, t) be a function

which represents the temperature in the domain and whose parameters

corresponds to a position and a time value. Let us suppose that there is

neither heat nor refrigeration sources. In this case, the only way the heat

can diffuse itself over the surface is through the border ∂Ω. Symbolically,

this concept can be expressed as
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d

dt

∫
Ω

u dV = −
∫
∂Ω

F · v dA (2.60)

where F is the flow density of heat and v is the outward unit normal

vector field on M . The divergence theorem states that, given a smooth

vector field X of M and v the outward unit normal vector field on ∂M ,

we have that ∫
M

div(x) dV =

∫
∂M

< X, v > dA (2.61)

Where <,> is the metric associated with M . Assuming suitable

smoothness and thanks to the divergence theorem, we obtain∫
Ω

(u1 −4u) dV = 0 (2.62)

Considering that Ω is arbitrary, we can conclude that

ut = 4u (2.63)

This equation is also known as the heat equation. Let then M be

a Riemannian manifold and let 4 be the corresponding Laplacian. We

can define a differential operator L as L = ∂
∂t−4 . Furthermore, we can

add Dirichlet boundary condition and an initial temperature distribution

u0(x), which leads to the final problem
Lu = 0 for x ∈M
∂u(x, t) = 0 for x ∈ ∂M
∂u(x, 0) = u0 for x ∈M

(2.64)

Now that we have laid the foundations, we can show the connection

between spectrum, 4 and the geometry M , namely what is meant with
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fundamental heat equation solution or, equivalently, what is the heat

kernel. A function p(x, y, t), continuous on M ×M × (0,∞) and of class

C2 in the spatial variable and C1 on the temporal variable, is the funda-

mental solution to the heat equation (or heat kernel) of the problem 2.64

if

• Lxp = 0 on M ×M × (0,∞);

• p(x, y, t) = 0 if x ∈ ∂M ;

• limt→0+

∫
M
p(x, y, t)u0(y) dV (y) = u0(x) uniformly for each function

u0 which is continuous on M and that vanish in ∂M .

Thus p(·, y, ·) is the solution to the problem that we have seen above

corresponding to an initial unitary temperature distribution positioned

on y. We expect that u(x, t) =
∫
M
p(x, y, t)u0(y) dV (y) will be the solu-

tion to the same problem with initial data u0. To conclude this paragraph,

let us show an example of a heat kernel of a Riemannian manifold. Let

(M,<,>) be a Riemannian manifold where M = Rn while <,> is the

canonical metric. Thus, the heat kernel is given by

p(x, y, t) = (4πt)−n/2)e−
‖x−y‖2

4t (2.65)



Chapter 3

Statistical model definition

Now that all the theoretic pieces are in place, we can introduce the con-

tributions that this study carry on and all the intermediate steps which

allow us to obtain our experimental results. We can summarize these

contributions as:

1. an efficient method to compute the manifold centroid of a dataset

composed of several meshes, starting from the spectral decomposi-

tion of the models;

2. using part of the results obtained in (1), we define an alternative

way to compute the geodesic distance between two matrices, i.e.

the eigenvectors matrices that come from the spectral decomposi-

tion;

3. a method to compute the probabilistic distributions of each mesh

and the relative statistical model.

Since the main goal of this work is to create a model which allows

to compare a mesh which has not been used in the learning phase of

37
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that model, we presents a method which allows to compare the spectral

decomposition of an arbitrary mesh with the model created for a certain

dataset.

3.1 Laplacian and eigendecomposition

In this paragraph we introduce the inputs and the outputs of the first

two steps of our learning phase. For a better comprehension of the fol-

lowing steps, let us first introduce the Laplacian matrix from a different

point of view with respect to the one explained in 2.3.3. The discrete

representations of a surface can be defined as a graph G with n vertices

V and a set of edges E which represents the mesh triangulation. The

Laplacian matrix associated with the graph G is L = (li,j)n×n is defined

as

L = D − A (3.1)

where D is the degree matrix and A is the adjacency matrix of the

graph G. A degree matrix is a diagonal matrix which contains infor-

mation about the degree of each vertex. More formally, given a graph

G = (V,E), let ‖V ‖ = n the degree matrix D for G is a n × n square

matrix defined as

di,j =

{
deg(vi) if i = j

0 otherwise
(3.2)

where deg(vi) is the number of edges incident to the vertex vi. Hence,

the Laplacian matrix can be defined as
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li,j =


deg(vi) if i = j

−1 if i 6= j and vi is adjacent to vj

0 otherwise

(3.3)

The Laplacian matrix has many interesting properties which have

been exploited in this study. For a graph G and its Laplacian matrix L

with eigenvalues λ0 ≤ λ1 ≤ ... ≤ λn−1 the following properties hold:

• L is always positive-semidefinite: ∀i, λi ≥ 0; λ0 = 0).

• The number of times 0 appears as an eigenvalue in the Laplacian

matrix correspond to the number of connected components in the

graph.

• L’s eigenvalues real parts are positive.

• λ0 is always 0 because every Laplacian matrix has an eigenvector

v0 = [1, 1, ..., 1] that, for each row, adds the corresponding node’s

degree (from the diagonal) to a ”-1” for each neighbour so that

Lv0 = 0.

In our study we assume that the meshes have only one connected com-

ponent. Furthermore, for algorithmic reasons, we impose for each mesh

that λ0 = 0 and φ0 = [1, 1, ..., 1], where λ0 and φ0 are respectively the

first eigenvalue and the first eigenvector computed on the mesh. Once the

Laplacian matrix has been computed for a mesh p, we can proceed with

the spectral decomposition (also known as eigendecomposition, see 2.4.1).

Intuitively, given a square matrix A with dimensions n, we are looking

for a set of φs and for a set of λs which, for each i = 1, ..., N satisfy the

linear equation:
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Aφi = λiφi (3.4)

where λi is an eigenvalue (a scalar) while φi is an eigenvector (a vec-

tor). We can thus factorize A as

A = ΦΛΦ−1 (3.5)

where Φ is the matrix whose columns are the eigenvectors of A,

while Lambda is the diagonal matrix which contains all the eigenval-

ues (Λii = λi). The optimization method used in 3.2 requires that all the

eigenvectors are normalized. A vector is normalized when its length is

1. Hence, given φ a non-normalized eigenvector of dimension n, what we

are looking for is

φ̂ =
φ

‖φ‖
=

φ√
n∑
i

φ2
i

(3.6)

Even if we have to compute the full Laplacian matrix in order to

consequently compute its eigendecomposition, we are not interested in all

the eigenvectors and all the eigenvalues. In fact we assume the greatest

200 eigenvalues (and the corresponding eigenvectors) are all we need to

define our statistical model. Formally, let M i
j = (V,E) be the j-th mesh

of the dataset i composed of n meshes, whit V the set of vertices and

E the set of edges (the triangulation of the mesh). The first step of our

method produce the Laplacian matrix Lij as output. The second step

take as input the matrix Lij in order to produce the matrices φij and λij

such that
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Lij = φijλ
i
j(φ

i
j)
−1 (3.7)

The sets of all the matrices produced by the spectral decomposition

form the output of the second step.

Φi = {φij, with j = 1, ..., n} (3.8)

Λi = {λij, with j = 1, ..., n} (3.9)

where φij and λij belong to R|V |×200. In the following paragraphs we

will refer to the spectral decomposition of a mesh j that belongs to a

dataset i with n vertices as the pair (φij, λ
i
j) ∈ Rn×200 × Rn×200.

3.2 Manifold centroid

The goal of the second step of the learning phase is to compute the

manifold centroid with respect to all the spectral decompositions of each

mesh of a dataset i. In our method we approach this task as two separated

optimization problems since we want to find the spectral decomposition of

the manifold centroid (and thus not the manifold itself) starting from the

sets of eigenvectors matrices and eigenvalues vectors of the meshes of the

dataset. In other words we want to compute the spectral decomposition

as defined in 3.1 starting from the spectral decomposition of the meshes

of the dataset.

3.2.1 Centroid eigenvectors matrix

Intuitively, the eigenvectors centroid of a Riemannian manifold can be

expressed as the matrix that minimize the squared geodesic distances
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between all the N eigenvectors matrices of the meshes of a dataset. Let

n be the number of vertices of a mesh of the dataset. The corresponding

Laplacian matrix L is thus a n×n symmetric matrix. Remind the spectral

decomposition of L

L = ΦΛΦT (3.10)

The spectral decomposition of a n×n real symmetric matrix allows to

obtain a corresponding eigenvectors matrix whose eigenvectors are real,

orthogonal to each other and with unitary norm. Hence, the matrix Φ is

composed of orthogonal vectors. Furthermore, in the spectral decomposi-

tion we normalized the eigenvectors. This mean that all the eigenvectors

are orthonormal to each other. A square matrix with real entries whose

columns and rows are orthogonal unit vectors is called a orthogonal ma-

trix. Equivalently, a matrix Q is orthogonal if its transpose is equal to

its inverse:

QT = Q−1 (3.11)

which means

QTQ = QQT = I (3.12)

where I is the identity matrix. As a linear transformation, an orthog-

onal matrix preserves the dot product of vectors, and therefore acts as

an isometry of Euclidean space, such as a rotation or reflection. As a

matter of fact, an orthogonal matrix is a rotation matrix, hence we can

state the following:
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Φ ∈ SO(n) (3.13)

where Φ is the orthogonal matrix which contains the eigenvectors of

the Laplacian matrix L, while SO(n) is the special orthogonal group

which is formed all the orthogonal n-by-n matrices with determinant 1.

We can now formally define the intuition expressed above.

argmin
φ0∈SO(n)

N∑
i

d2(φi, φ0) (3.14)

where φ0 is the eigenvectors centroid that we are looking for, d repre-

sents the geodesic distance between its parameters and φi in the eigenvec-

tors matrix of the i-th mesh of the dataset. Given two rotation matrices

R1 and R2 we can define the geodesic distance as

dg(R1, R2) = ‖log(RT
1R2)‖F (3.15)

where ‖A‖F , or equivalently ‖A‖2 is the Frobenius norm. This is true

because the logarithmic map of a rotation give us the rotation angle.

From a different point of view, we know that the logarithm map follow

the direction of the geodesic. If we compute the norm of the logarithm

of RT
1R2, we obtain the angle between them. Since both φ0 and φi are

rotation matrices, we can rewrite 3.14 as

argmin
φ0∈SO(n)

N∑
i

‖log(φTi φ0)‖2
2 (3.16)

which represents the sum of the squared rotation angles, or equiva-

lently, the rotation quantity of each shape i of the dataset.
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argmin
φ0∈O(n)

N∑
i

∑
λ

Θ2
iλ (3.17)

Using the Taylor expansion of cosΘ, we can compute Θ2 as

cosΘ = 1− Θ2

2
+O(Θ4) (3.18)

Θ2 = 2− 2cosΘ +O(Θ4) (3.19)

We can thus approximate 3.17 as

argmin
φ0∈O(n)

N∑
i

2

(
n− Tr

(
1

2
(φTi φ0 + φT0 φi)

))
+O(θ4

λi
) (3.20)

where Tr is the linear operator trace. In linear algebra, the trace of

an n-by-n square matrix A is defined as the sum of the elements on the

main diagonal of A

Tr(A) =
n∑
i=1

aii (3.21)

Or, equivalently, the trace can be defined as the sum of the dot prod-

ucts, hence the sum of the cosine of Θ. This operator owns several

interesting properties

1. It is a linear map, that is given two square matrices A and B and

a scalar c

Tr(A+B) = Tr(A) + Tr(B) (3.22)

Tr(cA) = c · Tr(A) (3.23)
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2. A matrix and its transpose have the same trace: Tr(A) = Tr(AT )

3. The trace of a product can be rewritten as the sum of entry-wise

products of elements:

Tr(ATB) = Tr(ABT ) = Tr(BTA) = Tr(BAT ) =
∑
i,j

Ai,jBi,j

(3.24)

which means that the trace of a product of matrices behaves simi-

larly to a dot product of vectors.

4. The trace is invariant under cyclic permutations:

Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC) 6= Tr(ABDC)

(3.25)

5. Finally, if A is a square n-by-n matrix with real or complex entries

and if λ1, ..., λn are the eigenvalues of A, then

Tr(A) =
∑
i

λi (3.26)

Let us return to 3.20. Thanks to properties (1), we know that

Tr

(
1

2
(φTi φ0 + φT0 φi)

)
=
Tr(φTi φ0 + φT0 φi)

2
=
Tr(φTi φ0) + Tr(φT0 φi)

2
(3.27)

Furthermore, thanks to (3), we know that

Tr(φTi φ0) = Tr(φT0 φi) (3.28)

We can then rework 3.20 as
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argmin
φ0∈O(n)

2Nn− 2
N∑
i

Tr
(
φTi φ0

)
(3.29)

= argmin
φ0∈O(n)

2Nn− 2Tr

((
N∑
i

φTi

)
φ0

)
(3.30)

It is well known that the minimization of the difference between a

constant quantity (i.e. 2Nn) and a member which include the parameter

used to minimize the whole equation is the maximization of the second

member, we obtain that 3.29 is equivalent to

argmax
φ0∈O(n)

Tr

( N∑
i

φi

)T

φ0

 (3.31)

Let A =
N∑
i

φi. We can compute the singular value decomposition

(SVD) of A obtaining

svd(A) = UΛV T (3.32)

The singular value decomposition is a factorization of a real or com-

plex matrix which is closely related to the eigendecomposition that was

introduced in 3.1. Suppose M is an m × n matrix whose entries come

from the field K, which is either the field of real numbers or the field of

complex numbers. Then there exists a factorization of the form

M = UΣV ∗ (3.33)

where U is an m × m unitary matrix over K, the matrix Σ is an

m× n diagonal matrix with non-negative real numbers on the diagonal,
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and the n × n unitary matrix V ∗ denotes the conjugate transpose of

the n × n unitary matrix V . Such a factorization is called the singular

value decomposition of M . The diagonal entries of Σ are known as the

singular values of M . Note that in case of a real matrix M , the conjugate

transpose of M (namely M∗) is equal to MT . Hence, we obtain

argmax
φ0∈O(n)

Tr

( N∑
i

φi

)T

φ0

 = argmax
φ0∈O(n)

Tr
(
UΛV Tφ0

)
(3.34)

And for properties (4) of the trace operator we have that 3.34 is equal

to

argmax
φ0∈O(n)

Tr
(
ΛV Tφ0U

)
(3.35)

Let P = V Tφ0U , we can rewrite 3.35 as

argmax
φ0∈O(n)

∑
k

Λk,kPk,k (3.36)

which is maximized when P = I, where I is the identity matrix. We

can conclude then that the eigenvectors centroid can be computed as

φ0 = V UT (3.37)

The approach introduced above has outline some problems during the

experimentations. The occurred issues were due to the fact that during

the computation of the eigenvectors matrix of the manifold centroid we

did not take into consideration the variance between them. The result

was that the latest eigenvectors (whose variance was larger than the first)

dominate the computation yielding flattened results (i.e. almost constant
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geodesic distance between the eigenvectors matrix of the centroid with

respect to the matrices computed on the meshes of the dataset). In order

to overcome this issue we introduced a sort of normalization for each

eigenvectors based on the inverse of the variance computed on the whole

dataset. This is an iterative process where, at each iteration, we estimate

both the eigenvectors matrix of the manifold centroid and the variance

matrix D. We assume that initially the variance matrix D is equal to the

identity matrix I. The iterative process consists of the following steps:

1. Singular value decomposition of the sum of all eigenvectors matrices

of each shape of the dataset multiplied for the variance matrix D:

svd

((
N∑
i

φi

)
D

)
(3.38)

2. Estimation of the eigenvectors matrix of the manifold centroid com-

puted as

φ0 = UV T (3.39)

3. Computation of the new D matrix, using the last estimation of the

matrix φ0

D = (dij) dii =
1

VarΘi

(3.40)

VarΘi =
2

n

∑
j

(
1− φTi,jφi,0

)
(3.41)

where i is the i-th eigenvector while j represents the j-th shape of

the dataset.

4. Reiterate from (1)
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3.2.2 Centroid eigenvalues vector

The eigenvalues matrix of the manifold centroid is computed in a more

straightforward way. It is simply the exponentiation of the average of

the logarithm of each eigenvalues. The j-th eigenvalue of the manifold

centroid is then equal to

λj0 = e
1
N

N∑
i

logλji
(3.42)

where N is the number of meshes in the dataset.

3.3 Geodesic distance

In order to define the probabilistic distribution of a dataset, we have first

to compute the geodesic distances between the eigenvectors matrix of the

Laplacian of a mesh and the eigenvectors matrix of the manifold centroid.

For a theoretic introduction to the geodesic of a Riemannian manifold,

refer to 2.2.4. The approach used for the computation of the eigenvectors

of the manifold centroid (see 3.2) comes in handy for the solution of this

task. Indeed, we want to compute

∑
λ

Θ2
i (3.43)

for each mesh i of the dataset. We can thus define the geodesic

distance between the eigenvectors matrix φi and φi as

d2(φi, φ0) = 2n− 2Tr(φTi Dφ0) (3.44)
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where n is the number of eigenvectors while D is the diagonal matrix

which contains the inverse of the variance (see 3.40). The result obtained

by the computation of this distance can then be used to compute the

probabilistic distribution of the shapes.

Unfortunately, the approach introduced in this paragraph comes from

a very strong assumption. We demand indeed that every mesh of the

dataset used in the learning phase has a direct correspondence with all

the others. In other words, every point of a shape that belongs to a

dataset is in correspondence with the point whose index is the same in

all the other meshes. Formally, given a mesh X and Y with i = 1, ..., n

vertices, ∀xi ∈ X and ∀yi ∈ Y , xi and yi are in correspondence. The

shape matching problem, which is discussed in the subsequent paragraph,

remains a challenge. Hence, in order to achieve our goal, we had to use an

alternative approach. Let φ0 be the eigenvectors matrix of the manifold

centroid computed on a dataset. φ0 ∈ Rn1×200. Let D ∈ R200×200 be the

diagonal matrix introduced in 3.40. Finally, let φ∗ be a shape that does

not belong to the dataset used to compute the manifold centroid and

whose dimensions are n2 × 200. We define

W = φ0Dφ
T
∗ (3.45)

as the weights matrix to be used in a maximum bipartite matching.

Thus, the problem that we have to solve becomes an assignment prob-

lem, namely we have to find a maximum weight matching in a weighted

bipartite graph. In other words, assume that we have a certain number

of jobs to do, and we have to choose from an equal number of workers

that are able to do them. Any worker can be assigned to perform any

task, incurring some cost that may vary depending on the assignment. It
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is required to perform all tasks by assigning exactly one worker to each

task in such a way that the total cost of the assignment is minimized. In

order to solve this problem, we choose the Hungarian algorithm ([20]).

In our particular instance, it is convenient to explain a matrix-wise inter-

pretation of the steps it performs. As aforementioned, the main goal of

the Hungarian algorithm is to to find a minimum edge weight matching

given a m × n edge weight matrix. Hence, the input of the algorithm

will be, in our instance, the weight matrix W = φ0Dφ
T
∗ . The output

produced are a pair of matrix (M,C), where M is an m× n matrix with

ones in the place of the matchings and zeros elsewhere, while C is the

cost of the minimum matching. Since our goal is to maximize this cost,

the weights matrix W will be negated. The algorithm then executes the

following steps:

• STEP 1: find the smallest number of each row and subtract that

minimum from its row. This will lead to at least one zero in that

row. Repeating this procedure for all rows, we obtain a matrix with

at least one zero per row. Now we try to assign a matching such

that each row is matched with only one column and the penalty

incurred in each case is zero;

• STEP 2: if we are unable to make an assignment, we do the same

as in STEP 1 but column-wise;

• STEP 3: if it is still not possible to assign then all zeros in the

matrix must be covered by marking as few rows and/or columns

as possible. The goal is to mark all the rows and columns which

contains a zero;
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• STEP 4: from the elements that are left, we have now to find the

lowest value. Then we subtract this from every unmarked element

and add it to every element covered by two lines (that is, an element

whose row and column contains a 0). The actions illustrated in

steps (3-4) are then repeated until an assignment is possible, which

is when the minimum number of lines used to cover all the 0’s is

equal to max(m,n).

We repeat these steps until we find a perfect matching, in which case

it gives a minimum cost assignment.

Practically speaking, we are looking for the best permutation P of φT∗

in order to maximize the trace

argmax
P

Tr(WP ) (3.46)

The costs induced by this permutation can then be used in the compu-

tation of the geodesic distance between the eigenvectors of the Laplacian

of a shape and the ones associated with the manifold centroid computed

in 3.2.

3.4 Embedding and isometries

The main problem found in the aforementioned approach is that it holds

only if the embedding of the Laplacian in a lower dimensional space is

unique. In other words, it holds up to isometries (where an isometry is

a function between two metric spaces which preserves the distances, i.e.

rigid transformations like translations, rotations and reflections of the
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space). Unfortunately, this is not true when speaking about a Rieman-

nin manifold isometric embedding on a lower dimensional space like in

our case. Thus, in order to accomplish our goal, we have to find the rigid

transformation for each mesh of a dataset that align the mesh with the

others (and consequently, the transformation that align each mesh with

the manifold centroid of the dataset). Let us introduce an alternative

form of the problem seen in section 3.2. The spectral decomposition of

the Laplacian of a mesh has been defined as L = ΦΛΦT . Let Xi = φi be

a matrix associated to the mesh i where each columns are an embedding

on a space of dimension 200. Let φ0 be the matrix containing the first

200 eigenvectors of the manifold centroid and let Ri be the rigid trans-

formation which align the mesh i with the other meshes of the dataset.

We can rewrite 3.16 as

argmin
φ0,Ri

N∑
i

‖RiXi − φT0 ‖2
2 (3.47)

where ‖·‖2
2 is the Frobenius norm. The Frobenius norm of A is defined

as ‖A‖2
2 = Tr(ATA), we can then rewrite 3.47 as

argmin
φ0,Ri

N∑
i

‖RiXi‖2
2 +

N∑
i

‖φT0 ‖2
2 − 2Tr

((
N∑
i

RiXi

)
φT0

)
(3.48)

Since ‖RiXi‖2
2 = Tr(XT

i R
T
i RiXi) (where Ri and Xi are rotation ma-

trices) and ‖φ0‖2
2 = Tr(φT0 φ0) (where φ0 is a rotation matrix) we can

conclude, thanks to 3.12, that 3.48 is equal to

argmin
φ0,Ri

2Nn− 2Tr

((
N∑
i

RiXi

)
φT0

)
(3.49)
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which has the form of the problem 3.29. We first initialize Ri and λ0

to the identity matrix I. The steps of the optimization process are:

1. Step 1: φ0 optimization.

φ0 = argmax
φ0

Tr

((
N∑
i

RiXi

)
φT0

)
(3.50)

svd

(
N∑
i

RiXi

)
= ULV T (3.51)

⇒ φ0 = UV T (3.52)

2. Step 2: Ri optimization.

Ri = argmax
Ri

Tr

(
N∑
i

Xiφ
T
0Ri

)
(3.53)

svd

(
N∑
i

Xiφ
T
0

)
= ULV T (3.54)

⇒ Ri = V UT (3.55)

while λ0 is computed as explained in 3.2.2. We can define a second

model in which we can include in the optimization problem the compu-

tation of λ0, the diagonal eigenvalues matrix of the manifold centroid. In

order to do so, we have firstly to change the Xi value. Remember that

the spectral decomposition of the Laplacian of a mesh has been defined

as L = ΦΛΦT . Let Xi = λ
1
2
i φi be a matrix associated of the mesh i where

each columns is an embedding on a space of dimension 200 and such that

XT
i Xi = L. We obtain
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argmin
φ0,λ0,Ri

N∑
i

‖Riλ0Xi − φ0‖2
2 (3.56)

= argmin
φ0,λ0,Ri

N∑
i

‖Riλ0Xi‖2
2 +Nn− 2Tr

(
N∑
i

Riλ0Xiφ0

)
(3.57)

= argmin
φ0,λ0,Ri

Tr

(
N∑
i

λ0XiX
T
i λ

T
0

)
+Nn− 2Tr

(
N∑
i

Riλ0Xiφ0

)
(3.58)

Note that in the final formulation of the problem Tr

(
N∑
i

λ0XiX
T
i λ

T
0

)
does not depend anymore on Ri, hence it can be optimized separately.

We can now use an iterative process which maximize all the arguments

of the problem 3.56. We first initialize Ri and λ0 to the identity matrix

I. The steps of the optimization process becomes:

1. Step 1: φ0 optimization.

argmax
φ0

Tr

((
N∑
i

Riλ0Xi

)
φT0

)
(3.59)

svd

((
N∑
i

Riλ0Xi

))
= ULV T (3.60)

⇒ φ0 = UV T (3.61)

2. Step 2: Ri optimization.
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argmax
Ri

Tr

(
N∑
i

λ0Xiφ
T
0Ri

)
(3.62)

svd
(
λ0Xiφ

T
0

)
= ULV T (3.63)

⇒ Ri = UV T (3.64)

3. Step 3: λ0 optimization.

argmin
λ0

Tr

(
N∑
i

Riλ0XiX
T
i λ

T
0R

T
i

)
− 2

(
N∑
i

Riλ0Xiφ
T
0

)
(3.65)

⇒ λ0 = diag

diag

(
N∑
i

Xiφ
T
0Ri

)
diag

(
N∑
i

XiXT
i

)
 (3.66)

where diag is a function whose input is a vector d of dimension n

and the output is a diagonal matrix D of dimension n×n such that

Di,j =

{
di if i = j

0 otherwise
(3.67)

This process will converge after a low number of iteration through

its steps. Once the parameters of each mesh are learned, we are able to

compute the geodesic distance between each mesh of the dataset and the

manifold centroid. Let M0 be the embedding of the manifold centroid,

such that M0 = φ0λ0φ
T
0 , we can compute the geodesic distance between

Mi and M0 as
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dg(Mi,M0) = ‖Riλ0Xi − φT0 ‖2
2 (3.68)

All the issues explained in 3.3 still holds when it comes to compute the

geodesic distance between the manifold centroid of a dataset and a shape

which is external to it. We have still to find a way to put the embedding

of each spectral decomposition in correspondence. Furthermore, we have

to find the rigid transformation which align the two mesh. Let X∗ the

embedding of the mesh which does not belong to the dataset. Let R the

rigid transformation that align X∗ to the meshes of the dataset we are

considering. Finally, let P the permutation matrix of X∗. We can thus

define the geodesic distance between the manifold centroid and X∗ as

‖Rλ0X
∗P − φT0 ‖2

2 (3.69)

In order to compute P and R we use again an iterative process. The

problem we looking to solve is then

argmin
P,R

‖Riλ0X
∗P − φT0 ‖2

2 (3.70)

which is equivalent to

argmax
P,R

Tr(Riλ0X
∗PφT0 ) = argmax

P,R
Tr(φT0Riλ0X

∗P ) (3.71)

After initializing R = I, the optimization process can be defined as

1. Step 1: compute the permutation matrix P using the already in-

troduced Hungarian algorithm (see 3.3). The weight matrix in this

case is defined as W = φT0Riλ0X
∗
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2. Step 2: R optimization

svd(λ0X
∗PφT0 ) = ULV T (3.72)

⇒ R = V UT (3.73)

which will converge after a low number of iterations (≈ 5).

3.5 Distributions computation

The direct comparison between metrics computed on different meshes is

often problematic because it needs to find the correspondences between

them first. Even if in the last years significant progress have been made in

this field, finding a meaningful correspondence between shapes remains

a challenge. This problem can be generalized as, given two shapes find

a relation (or mapping) between their elements, namely their vertices.

There are many different approaches to the problem, based on the goal

the author aims at. For example, we can search for a full correspondence

between shapes (see figure 3.1), or only in part. These kind of problems

are usually hard to solve because the correspondence search spaces are

usually pretty big, at least when the mesh is a dense discretization of the

underlying surface. The global structure of the shapes must be considered

and even the semantics of their parts play a role in the process to obtain

meaningful solutions.

Fortunately, there is an alternative way that can be use to circumvent

this problem, and this way involves the use of distributions as compari-

son parameters. Representing a metric by its distribution, and measuring
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Figure 3.1: Correspondences example between two different shapes.

the similarity of two shape by comparing the distributions of the respec-

tive metrics do the trick (see [8]). We can then use one of the standard

distribution dissimilarity criteria to reach our goal. We assume that the

geodesic distances between the eigenvectors matrices of meshes that be-

long to the same dataset are distributed as a Γ-distribution. The Gamma

distribution of probability is defined on the real non-negative numbers

[0,∞[. There are two ways to parametrize this distribution. The first is

through the pair of positive numbers (k, θ), the second is through the pair

of positive numbers (α, β). These parameters are tied by the relations

α = k and β = 1
θ
. In our work we used the former. The density function

of a gamma distribution is defined as

f(x) =
1

θkΓ(k)
xk−1e − x

θ
(3.74)

where Γ(k) is the Gamma function. Firstly, we have to estimate the

value of parameter k given the geodesic distances between the meshes

with respect to the manifold centroid of a dataset. Unfortunately, there

is no closed-form solution for k. Hence, we have to approximate it. Let
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s = ln

(
1

N

N∑
i=1

√
xi

)
− 1

N

N∑
i=1

ln(xi) (3.75)

then k is approximately

k ≈
3− s+

√
(s− 3)2 + 24s

12s
(3.76)

where xi is the squared geodesic distance between a mesh i and the

manifold centroid, k is the first parameter of the Gamma distribution

and N is the number of meshes the dataset is made of. Once we have

estimated the k parameter, we want to compute the maximum likelihood

estimator of the θ parameter, which can be found taking the derivative

of the log-likelihood function and setting it to zero. Hence, we compute

θ as

θ =
1

kN

N∑
i=1

√
xi (3.77)

Once we have computed both θ and k we are able to proceed to the

second step, namely the computation of distribution of the eigenvalues

of a shape. We assume that the eigenvalues are distributed as a nor-

mal distribution. A normal (or Gaussian) distribution is a continuous

probability distribution defined as

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.78)

where µ is the mean of the distribution, while σ is the standard de-

viation (and thus σ2 is the variance). As seen before, the first step is to

compute these two parameters. Given the vector λ0 containing the eigen-

values of the spectral decomposition of the manifold centroid, we denote



3.5. DISTRIBUTIONS COMPUTATION 61

with λi0 the i-th eigenvalue. We can define the mean of the distribution

as

µi = log(λi0) (3.79)

Let λij be the i-th eigenvalue of the j-th mesh of the dataset. We can

define the standard deviation of the mesh j as

σj =

√
n∑
i

(log(λij)− log(λi0))2

N − 1
(3.80)

where N is the number of meshes contained in the dataset, while n

is the number of eigenvalues. We are now able to define the probability

density function as

λdij =
1

σjxij
√

2π
e
− 1

2

(
log(xij)−µi

σj

)2

(3.81)

Once we have computed both the densities of the eigenvectors and

eigenvalues of a given mesh, we are able to compute its density as

p(j) =

(∏
i

λdij

)
Γ(k, θ)(gdj) (3.82)

where gdj is the geodesic distance between the mesh j and the mani-

fold centroid of the dataset we are considering.
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Chapter 4

Learning and inference

As mentioned in chapter 1, the two main results of this work are achieved

through several distinct steps, subdivided in 2 different phases. The first

phase is the learning phase. Our main goal is to define in an efficient way

the computation of the probabilistic distributions of each datasets. These

distributions will define our statistical model. The inputs of the learning

phase are the datasets used. See chapter 5 for a brief introduction to the

datasets used in this work.

4.1 Learning phase

The steps that characterize the learning phase are the following:

1. Computation of the Laplacian matrix. The first step aims

to compute the so called Laplacian matrix. As explained in para-

graph 2.3.3, the Laplacian matrix is nothing more than the dis-

crete Laplace operator applied to a finite-dimensional graph. In
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our case, this graph is the mesh itself, since it satisfies the proper-

ties required by a finite-dimensional graph, that is a finite number

of edges (mesh triangulation) and vertices. Therefore, the Lapla-

cian matrix is the Riemannian manifold that we are working with,

while the Riemannian metric associated with it is the diffusion dis-

tance. This computation is done for each mesh of the datasets, and

the set of matrices computed forms the input for the next step of

the learning phase.

2. Spectral decomposition. Once the Laplacian matrices of each

mesh are computed, we are able to apply the canonical matrix

decomposition derived from the spectral theorem which is usually

called spectral decomposition, eigenvalue decomposition or eigen-

decomposition. We can thus rewrite the Laplacian matrix L as

L = ΦΛΦ−1 (4.1)

where Λ is a diagonal matrix of the eigenvalues of L arranged in

the ascending order while Φ is the matrix with the corresponding

orthonormal eigenvectors. This step is necessary in order to achieve

the goal of the next one, since our method computes the manifold

centroid as a composition of the mean of both the eigenvector ma-

trices and eigenvalue matrices. The outputs produced by this step

are the set Φi, which is the set of all eigenvector matrices and the

set Λi which contains all the eigenvalues matrices both computed

on all the meshes which belong to the dataset i.

3. Computation of the manifold centroid. In order to define the

statistical model, the computation of the manifold centroid has a



4.1. LEARNING PHASE 65

central role in our method. In the previous step we computed the

sets Λi and Φi relative to the dataset i. The computed matrices

can then be used to compute the centroid as

M i
C = Φ0Λ0Φ−1

0 (4.2)

Where Φ0 and Λ0 are the non-standard mean of the set Φi and Λi

respectively. The method used in this work to compute the mean

of these sets is explained in deep in paragraph 3.4.

4. Computation of geodesic distances. The input of this step

is both the output of step (2) and step (3). Once the manifold

centroid M i
C is computed, we can use it to compute the geodesic

distance (see 2.2.4) between the Laplacian matrix of each mesh and

the manifold centroid. The output is thus a vector gids

gids = {gidj} (4.3)

where gidj is the geodesic distance between the M i
C and the mesh

Laplacian of the j-th mesh of the i-th dataset. This step of the

learning phase is explained in paragraph 3.3.

5. Distributions computation. With the geodesic distances com-

puted, we are able to compute the distributions of the meshes,

treating eigenvalues and eigenvectors separated (that is, we assume

that they both have their own kind of distribution). More pre-

cisely, we assume that eigenvectors follow a Γ-distribution, while

eigenvalues a Gaussian one. See 3.5 for more details.
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4.2 Use of the model

The outputs produced by the learning phase are then the distributions of

the meshes which identifies a statistical space and the shape descriptor

which have been computed in the second step of the learning phase. Once

the statistical model has been learned, we are able to use it to classify

shapes that are not in the initial dataset. And here starts the second

phase, which involves the use of a set of tools that we have created and

which allowed us to obtained our experimental results (which are reported

in chapter 6). This phase is characterized by the following steps:

1. Laplacian computation and spectral decomposition. As in

the previous phase, in the first step we compute the Laplacian ma-

trix associated with the shape we are considering and then we com-

pute its spectral decomposition. The outputs of this phase are then

an eigenvectors matrix φ∗ and an eigenvalues diagonal matrix λ∗

such that φ∗λ∗(φ∗)T is equal to the Laplacian L∗ of the shape ∗.

2. Geodesic distance computation. In the second step we compute

the geodesic distance between the shape ∗ and the manifold centroid

of the considered dataset as seen in 3.4.

Once we have computed the geodesic distance, we can use them to

build a confusion matrix or to find the probability that this shape belongs

to a certain dataset. The results obtained from the application of our

method to the input datasets are presented in chapter 6.



Chapter 5

Datasets

The learning phase of the project needs several different models repre-

senting objects with the same shape but in different poses. The basic idea

is to collect a certain number of shapes which are just in correspondence

between them in terms of vertices. Starting from this dataset it is then

possible to build the statistical model which will form the final results

of this work. For this purpose two different datasets have been selected,

the SCAPE and the TOSCA datasets.

5.1 SCAPE

The first dataset is a set of 70 models representing the same person in

different poses. These models are the result of the SCAPE method ap-

plication, where SCAPE stands for Shape Completion and Animation of

People. It is a data-driven method used to build a model of the human

shape which varies both in the shape of the subject and in the pose.

The human shape representation of the human form incorporates both
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the articulated deformation (skeleton articulation) and the non-rigid one.

The results obtained by Anguelov et al. [1] are very interesting and it

formed a basis for this work. For this reason it seems only right to briefly

illustrate how this method works. The SCAPE method is composed of

two main parts. In the first one the goal is to learn a pose deformation

model which derives the non-rigid deformed surface as a function of the

articulated skeleton pose. In the second one the goal is to learn a sep-

arated model which describes the human body shape variation. These

two models can thus be combined to produce 3D models with realistic

muscular deformation for different people in different poses when these

people and poses do not belong to the training set. All the information

about the shape come from a set of scans obtained through a full body

scanner. From these information two set of data are produced: a set of

poses and a set of human body forms. Then a mesh is selected as tem-

plate, while all the others will be considered of instance. The template

will be used as a reference for all the other scans. The next step aims to

find all the correspondences between the mesh template and the instance

meshes. This goal is reached through the positioning of markers on the

surfaces. Once these markers are set, they can be associated with each

other. Finally, a skeleton is built for the template mesh. The algorithm

used for this task exploits the fact that vertices that belongs to the same

limb of the skeleton are spatially contiguous and show similar motion

between the scans. The object is thus decomposed in rigid parts. These

parts are then detected in the other scans too, along with the link that

lies between them.

It is now possible to learn the pose deformation model and thus to

model the deformation which aligns the template mesh with all the other
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Figure 5.1: Some pics taken from the TOSCA dataset.

meshes in a triangle-wise way. The pose deformation is composed of a

non-rigid transformation and a rigid one. Those deformations are applied

to the triangle translated to the global origin.

v̂k,j = xk,j − xk,1, j = 2, 3 (5.1)

Firstly, a linear transformation matrix Qik is applied to the triangle.

This matrix corresponds to a non-rigid deformation induced by the pose

and it is specific for each triangle pk and for each pose Yi. The deformed

polygon is then rotated by Ril, the rotation of its rigid part in the ar-

ticulated skeleton. The same rotation is applied to each triangle which

belongs to the same rigid part.

vik,j = Ri
l[k]Q

i
kv̂k,j, j = 2, 3 (5.2)

This method makes a prediction for the edges of pk as RkQkvk,j. Un-

fortunately, this prediction is rarely consistent. Hence, to build a coherent

mesh the author proposed to solve for the y1, ..., ym points location which

minimizes the overall least squares error
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argmin
y1,...,ym

∑
k

∑
j=2,3

‖Ri
l[k]Q

i
kv̂j,k − (yj,k − y1,k)‖2 (5.3)

The goal is to predict the deformations starting from the articulated

pose, which is represented as the set of rotations with respect to the

joints. The rotation of the joints are represented as their twist coordinate.

A twist coordinate is a 3 dimensional vector whose direction represents

the rotation axis while the module represents the angle. The non-rigid

deformation matrix Q is predicted from the fulcrums of the two nearest

joints. Each joint rotation is expressed through three parameters, thus

the union of the two joints produces a total of 6 parameters. We finally

add a constant parameter used as bias obtaining a 7×1 vector ak,lm that

will be associated to each element of the matrix Q, obtaining

qik,lm = aTk,lm ·

[
4ril[k]

1

]
l,m = 1, 2, 3 (5.4)

Accordingly, the next step is to learn these parameters. The task

would be easy if the matrices Q and the rotations Ri were known for

each instance of Yi, solving the system

argmin
ak,lm

∑
i

([
4ri 1

]
ak,lm − qik,lm

)2
(5.5)

The trick is to estimate the matrices adapting them to the trans-

formations seen in data. This is an underconstrained problem so it is

necessary to introduce a smoothing constraint which prefers similar de-

formation on polygons that belong to the same rigid part. Thus it is

possible to resolve for the correct set of linear transformations for each

mesh with the equation
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argmin
{Qi1,...,QiP }

∑
k

∑
j=2,3

‖Ri
kQ

i
kv̂k,j−vik,j‖2 +ws

∑
k1,k2 adj

I(lk1 = lk2) ·‖Qi
k1
−Qi

k2
‖2

(5.6)

The variations of the shape of the body are modelled independently

from the variation of the pose, introducing a new set of linear transfor-

mation matrices Sik, one for each instance i and for each triangle k. It is

assumed that the triangle pk observed in the instance mesh i is obtained

first by applying the pose deformation matrix Q, second by the shape

deformation matrix S and third by the rotation R associated to the joint

vik,j = Ri
l[k]S

i
kQ

i
kv̂(k, j) (5.7)

To define the body shape deformation space, the S matrices are as-

sumed to arise from a lower dimensional subspace. For each mesh a

vector of size 9×N is created and it will contain the parameters of the

matrices S. It is assumed that these vectors are generated from a simple

linear subspace, which can be estimated using PCA (Principal Compo-

nent Analysis)

Si = SU,µ(βi) = Uβi + µ (5.8)

where Uβi+ µ is a reconstruction in vectorial form of the 9×N pa-

rameters of the matrix from the PCA, and Uβi + µ is the representation

of this vector as a set of matrices. Given the matrices S for each i, k is

possible to resolve the system for the PCA parameters U and µ and the

mesh specific coefficients βi. Unfortunately, the matrix is not known and

it has to be estimated before. The same trick used in 5.6
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argmin
Si

∑
k

∑
j=2,3

‖Ri
kS

i
kQ

i
kv̂k,j − vik,j‖2 + ws

∑
k1,k2 adj

‖Sik1 − S
i
k2
‖2 (5.9)

Once the pose deformation model and shape deformation model are

learned, they can be used for a variety of applications, like the shape

completion (i.e. hole filling), partial shape completion (the input is an

incomplete scan and a set of markers on it) or to produce animations from

marker motion capture sequences. For more details on the applications

of this method see the original paper.

5.2 TOSCA

The second dataset selected for this work is the TOSCA dataset (see [6]).

This dataset includes high resolution three-dimensional non-rigid shapes

in a variety of poses for non-rigid shape similarity and correspondence

experiments. The database contains a total of 73 objects, including 11

cats, 9 dogs, 8 horses, 6 centaurs, 12 female figures (Victoria dataset),

and two different male figures, containing 7 (David dataset) and 20 poses

(Michael dataset).

The models included in this datasets are very detailed (dense), with

about 50000 vertices for each model. Objects within the same class have

the same triangulation and an equal number of vertices numbered in a

compatible way. This can be used as a per-vertex ground truth corre-

spondence in correspondence experiments or in a project like the one we

propose.
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Figure 5.2: Some pics taken from the TOSCA dataset.
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Chapter 6

Experimental results

After the definition of our statistical model and after a brief introduction

about how we use it, we are now able to present the obtained experimental

results. We used 2 different datasets (see 5) with a total of 8 different

shapes, which are:

• SCAPE: the scape dataset contains 71 meshes representing the

same man in different poses. It is therefore a full human body

of a male dataset.

• Cat: the cat dataset is part of the aforementioned TOSCA dataset

(which includes different ”class” of shape), like the other which will

follow. This dataset is composed of 11 meshes of a cat in different

poses.

• Centaur: the centaur dataset contains 6 different meshes of the

Greek mythological creature. It has the upper body of a man, and

the lower body of a horse.
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• David: this is the second dataset representing a human body. Part

of the TOSCA dataset, it contains 7 meshes of a man in different

poses.

• Dog: composed of 9 different meshes, this datasets contains, as the

name suggests, a dog in different poses.

• Horse: the horse datasets contains 7 meshes of a horse engaged in

different actions.

• Michael: the Michael dataset is the third collection of meshes which

represent a man in different poses. It is composed of 20 meshes.

• Victoria: the last collection includes 12 meshes of a woman in dif-

ferent poses.

Hence, the datasets used to obtain our experimental results are com-

posed of 144 meshes divided in 8 different classes. Remember that a

shape is just a surface representing a particular object, like a man or a

cat, and it is independent from the pose, the scale and the position of the

subject. In order to test the resilience to the noise of our model and to

study how the results change when in input is far from perfect, we have

forged other datasets starting from the aforementioned ones, in which we

added random noise to each vertex of a mesh. We used 3 different level

of noise, obtaining as results 4 sets of datasets which we will call perfect,

noised1, noised2 and noised3, where the index indicates a growing level

of noise added in the relative dataset. An example of the meshes used for

our tests and the same meshes with synthetic noise added can be seen in

figure 6.1.
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Figure 6.1: Examples of meshes which belongs to different datasets with

different levels of noise. From top to bottom the meshes belong respec-

tively to the datasets SCAPE, Victoria and Horse with growing noise

level (from left to right).
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In order to test our model, we have firstly computed the shape de-

scriptor (i.e. the manifold centroid) of each dataset. The output of this

step is a set of 8 eigenvectors matrices and 8 eigenvalues diagonal matri-

ces. To ensure that the approach we formulate to compute the manifold

centroid was correct, we used a principal coordinates analysis algorithm

(also known as multidimensional scaling) to plot the distances between

each mesh (manifold centroid included). In figure 6.2 we present what

we obtain. The empty red circle represents the manifold centroid, while

the blue crosses correspond to the meshes which belong to the dataset.

We proceed then with the estimation of the distributions parameters

(see 3.5), which allow to compute the probability density of a certain

mesh with respect to a given dataset descriptor. Once the parameters

are computed, we are able to build the so called confusion matrix. A

confusion matrix is a widely used table layout (in particular in artificial

intelligence) that allows visualization of the performance of a classifica-

tion algorithm. Each column of the matrix represents the instances in a

predicted class, while each row represents the instances in an actual class.

In our case, the confusion matrix is built starting from the probability

density of each mesh with respect to each class (i.e. dataset) we used.

A mesh is thus assigned to the class towards which the density is higher.

The results obtained through our method can be seen in table 6.1.

An alternative way to show the separation between the datasets is

through the geodesic distances matrix. After building a matrix whose

rows are the meshes and whose columns are the geodesic distances with

respect to a certain shape (class), we can plot them as an image. A lower
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Figure 6.2: Plots resulting from the application of the multidimensional

scaling to the distances matrices between meshes which belong to the

same dataset.
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Shapes SCAPE Cat Centaur David Dog Horse Michael Victoria

SCAPE 71 0 0 0 0 0 0 0

Cat 0 11 0 0 0 0 0 0

Centaur 0 0 6 0 0 0 0 0

David 0 0 0 7 0 0 0 0

Dog 0 0 0 0 9 0 0 0

Horse 0 0 0 0 0 8 0 0

Michael 0 0 0 0 0 0 20 0

Victoria 0 0 0 0 0 0 0 12

Table 6.1: Resulting confusion matrix

distance will result in a darker color. In figure 6.3 is possible to see the

geodesic distances computed on each datasets with different level of noise.

The darker diagonal means that the geodesic distances between meshes

that belong to the corresponding dataset are lower than the distances

between meshes which are not.

The geodesic distance between a mesh and the shape descriptor of

a certain shape can be used as a metric which shows how far or near

(or equivalently how similar) two shapes are. In figure 6.4 we show the

average distances between the meshes which belong to a certain dataset

with respect to a different dataset.

The last experiment which we performed uses the aforementioned

geodesic distances matrix as the input of the principal component analy-

sis procedure. The PCA uses an orthogonal transformation to convert a

set of observations of possibly correlated variables into a set of values of

linearly uncorrelated variables called principal components. This trans-
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Figure 6.3: Plot of the distances matrix between each mesh of each

dataset with respect to a certain manifold centroid. One cell of the image

represents the geodesic distance between the i -th mesh and the j -shape

(class).
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Figure 6.4: These images show the average geodesic distance of a dataset

with respect to a shape descriptor.
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Figure 6.5: PCA applications to the distances matrix of the perfect,

noised1, noised2 and noised3 datasets. Each different symbols on the

plot correspond to a different dataset.

formation is defined in such a way that the first principal component has

the largest possible variance, and each succeeding component in turn has

the highest variance possible under the constraint that it be orthogonal

to the preceding components. The application of this procedure allows

us to plot the separation between the classes given the distances between

them. In figure 6.5 we show the obtained results.

The SCAPE dataset has proved to be very useful due to the number

of mesh in it. In fact, in order to prove the robustness of our algo-
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Figure 6.6: Plot resulting from the application of the multidimensional

scaling to the distances matrix computed between the meshes, which

belong to the SCAPE dataset whose descriptor is computed using only

part of the whole set.

rithm, we have to try it with a set of meshes which represents the same

shape, but they have not been used in the learning phase. Thanks to its

71 different meshes, we were able to partition the dataset in 2 subsets

with almost the same cardinality. The first has been used during the

learning phase to compute the manifold centroid of the reduced SCAPE

dataset, while the second has just been used to compute the probability

density (and the geodesic distances) between the meshes and the shape

descriptor. Figure 6.6 shows the multidimensional scaling application to

the distances matrix. Furthermore, in figure 6.7 we show the difference

between the geodesic distances intra-dataset computed using the whole

SCAPE dataset and the reduced one.
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Figure 6.7: Differences between the geodesic distances with respect to

the SCAPE manifold centroid computed with the whole dataset and a

subset of it.
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Chapter 7

Conclusions

In this dissertation we proposed a novel technique to compute a shape

descriptor of non-rigid shape, which can be used in shape retrieval prob-

lems. Furthermore, we defined a statistical model that can be used to

find how much the underlying surface of a mesh is similar to another one.

Our method uses an iterative optimization process to compute the shape

descriptor of a given dataset. The descriptor can so be used to compute

the geodesic distance between a shape (a dataset) and a mesh which does

not belong to it. This computation is obtained through another itera-

tive optimization process which involves the use of a bipartite matching

problem solver, in order to minimize the issues arising from the lack of

correspondences between the meshes. The defined descriptor has most of

the desirable properties, like isometry invariance, similarity invariance,

efficiency and compression. As shown in the experiments, the model we

defined allows us to separate correctly different shapes, assigning the as-

sociated mesh to the right class. Furthermore, we shown that the use

of a mesh in the learning phase and the consequent computation of the
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geodesic distance yields the same results as the computation of the same

distance with a mesh whose underlying surface is the same, but it does

not belong to the training set. The application of our method have shown

that similar shapes have lower geodesic distances (and therefore higher

probability). This is an interesting results since it allows a proper use

of our method in tasks, like similar objects retrieval in shapes database

(where our descriptor could be an efficient index), objects identification

for copyright purpose or automatic shape retrieval problem (i.e. classi-

fication problems). The experiments shown that the model is resistant

to noise. Even after adding a high amount of noise, we were able to sep-

arate correctly the meshes which belong to different classes. But since

the Laplace-Beltrami operator is a second order operator and therefore

pretty sensible to noise, we could not add as much noise as we want to

test the resilience of the model. Indeed, adding a higher amount of noise

prevents the computation of the Laplacian matrix of a mesh. Finally,

the results have shown that in order to compute a good shape descriptor

which characterizes in a good way the underlying surface of the meshes

of a dataset we need a good amount of meshes representing a shape in

different poses. The ideal number of meshes which has been identified

through experiments is ≈ 10. In fact, the datasets with a lower number

of meshes, even if they are still perfectly separable from the other classes,

result nearer to other datasets. For instance, it is easy to see that the

PCA applications to the distances matrix tend to separate in a better

way shapes whit a higher number of representatives (like SCAPE, Cat,

Michael and Victoria) while sticking together the datasets with fewer

meshes (David, Centaur, Dog and Horse).
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