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Abstract

Many studies and reports have shown that the number of natural disasters such as hur-

ricanes, floods, tsunamis, droughts has increased this past years and caused a significant

number of property damages and victims. The Hurricane Andrew experience has shown

that the normal reinsurance system was too fragile to absorb the huge amount of losses

of a natural disaster. The study of catastrophe risk is of major importance, if we want

to prevent and mitigate the effects of a natural disaster both for the insurers and the

insureds. The main purpose of this work is to find a proper way to evaluate catastrophic

risk and to price CAT bonds. To this aim we will review the instruments used to hedge

catastrophe risk such as CAT bonds. We will next review the state of art of pricing

CAT bonds and focused on the probability distortion approach. Finally, we will estimate

the risk adjusted parameter and the degree of freedom of the Student-t distribution by

calibrating the the 2-factor Wang transform model.

Keywords: Catastrophe risk, CAT bonds pricing, Wang transform, premium, risk-

adjusted parameter.
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Chapter 1

introduction

This past decades, the insurance sector has been characterized by a boom of his activi-

ties, with the development of new insurance products. The wealth created by the overall

growth of economies, the constant increase of the world population expose insurers to

an increasingly important risk of insolvency in case of occurrence of a disaster. The ex-

pansion of human activity in our days has adverse effects on the environment resulting

in global warming. With climate change, people and goods are increasingly exposed to

the risk of a natural disaster. Due to the development of the insurance industry in de-

veloped countries, people and governments can easily hedge probable losses and damages

from catastrophic event of a certain intensity by purchasing an insurance contracts and

by that transferring their catastrophe risk to the insurers. To deal with catastrophic

risk, insurers must quantify the risk they carry in order to be able to better manage it.

The approach in the insurance world is to always give priority to the risk management

because the slightest negligence may have disastrous and irreversible effects. A natural

disaster can be defined as an event due to uncontrollable and destructive natural phe-

nomena. Property Claim Services defines a catastrophe as an event that causes $ 25

millions or more in insured property losses and affects a significance numbers of property,

casualty policyholders and insurers. Based on the amount , the recent flood in Paris in

June 2016 which causes losses for about 1 billion euro can be considered as a natural

catastrophe. The management of catastrophe risk implies taking into account its dimen-

sional character. Normal insurance seems to successfully work for high frequency, low

severity, relatively stationary independent event with good data, limited loss volatilities
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and identical probability distribution Cummins et al. (2006). For the case of catastrophic

event, we are completely in an opposite situation. Catastrophe risks are extreme risk;

that means they are of low loss frequency and high loss severity with unlimited loss. In

this case, the traditional solutions of hedging and risk transfer by purchasing reinsurance

contracts have been proved to be ineffective. Such practices could be less cost-effective

to the reinsurance company, but can pose a severe financial stress to the reinsurance

company due to the unpredictable nature of large catastrophic loss.

The main purpose of insurance company is to find a better way of hedging and trans-

ferring this types of extreme risk. Seeking for new funding and avoid being insolvent,

insurance companies launch new products call Insurance-Linked-Securities (ILS). They

are traded securities on the financial markets through securitization. The losses caused

by catastrophic events could also lead to a significant amount of payment for the capital

market investors. One of the most important ILS are catastrophe risk bonds commonly

called CAT bonds. CAT bonds were developed to ease the transfer of catastrophic in-

surance risk from insurers and corporation to capital market investors. They protect

corporation or insurance companies from financial losses caused by natural disasters, by

offering an alternative or complement of capital to the traditional reinsurance. As the

occurrence of catastrophe is largely unpredictable, valuing CAT Bonds is very difficult.

The main aim of this work is to present an evaluation framework for the catastrophe risk

and determine a proper model for the premium computation on the CAT bonds market.

In order to realize the objectives of this work, we will do a state of the art on CAT bonds,

and describe the process of issuance of CAT bonds. The second part will be devoted to

the modelling of the catastrophe risk and pricing the CAT bonds.
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Chapter 2

Catastrophe derivatives

In the last fifty years, the world’s wealth increased significantly as well as its population1.

To date, the world is facing a very important problem of climate change, and considering

that cities with strong economic activity are generally density populated areas in case

of occurrence of a natural disaster, human and material losses can be very important.

Therefore insurance companies are exposed to the risk of insolvency because of the as-

tronomical nature of losses resulting from a natural disaster. In order to deal with this

risk, insurers must quantify the risk they carry to better manage it. Some catastrophe

derivatives have been developed to help insurers to hedge from catastrophe risk. Catas-

trophe derivatives are capital market instruments that allow investors, which are not part

of the insurance or reinsurance market, to invest in natural catastrophe risks. In order

to study the catastrophe derivatives, we need to well define and understand the concept

of catastrophe risk.

2.1 Catastrophe risk

A catastrophe risk is the risk associated with the losses in case of some natural disaster.

In most cases, a natural disaster usually causes important property damages, economic

damage or loss of life. The most common natural disasters which usually occur with

great damage are: hurricanes, earthquakes, tsunamis, wildfires, droughts, avalanches,

1According to the World Bank the world population has passed from 2.52 billions in 1950 to 7.24
billions in 2015.
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extreme temperature, tornadoes and floods. A study of the National Oceanic and At-

mospheric Administration (NOAA) shows that this past decade, more people moved to

coastal area like the Atlantic Coast and Gulf of Mexico, where hurricane threats are the

greatest (Ou Yang 2010). A 2014 United Nations report on world urbanization gives

the top thirty most populated cities in the world that year and Tokyo is at the top of

the list. Japan is considered as a country where earthquake threats are very high. The

increase of the population in this area, where there is significant risk of natural disaster

has a substantial effect on the amount of claims and property damages in case of natural

disaster. Since these highly populated areas are generally affected by natural disaster,

people purchase insurance contracts to hedge the catastrophe risk. The increase of in-

sured people will therefore increase the insurers catastrophe risk. Therefore, to model

the number of claims we need to take into the correlation amongst the claims and the

severity of the events. Some studies usually assume that claims are independent which is

not completely right since the claims are the result of an catastrophic event which affects

an entire region. We can also talk about a spacial correlation. The severity stand for the

amount of claims. It is a key variable because losses from a natural disaster or man-made

catastrophe are usually very large and even unlimited. If we consider cases of explosion

of an oil rig, the damages on the ecosystem and the coastal population are usually ex-

tremely important and irreversible as regards to the effects on ecosystem. The Chernobyl

disaster which is a man-made catastrophe causes huge losses of farmland, destruction of

the ecosystem and important loss of life. To date, the expenses to cover the damage of

the Chernobyl catastrophe are still taking place. Catastrophe risk will continue to grow

as people will continue to migrate towards high risk area and as long as the effects on

human activities on climate change will not reduce. The 2015 report of Swiss Re on nat-

ural Catastrophes shows that this past year, the number of natural disaster has increased

and so the insurers amount of losses (see Figure 2.1).
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Figure 2.1: Number of catastrophe events world wide between 1970 - 2014

Swiss Re think the high occurrence of natural disaster can be contributed to the

fact that cities are becoming larger, more populated, which causes a greater effect on

climate changes. As climate changes, natural catastrophes are a significant issue for both

developed and developing countries. Swiss Re also shows that, despite of the fact that

insurers face very huge amount of losses after a natural disaster, the uninsured losses are

by far more important than the insured ones. For example, the Japan earthquake tsunami

of 2011 considered as the most costly natural disaster of this past thirty years with an

overall losses estimated at US$ 210 billions2 and the insured losses representing only US$

40 billions. Hurricane Katrina overall losses was US$ 125 billions with an insured part

of US$ 60.5 billions. Figure 2.3 gives a graphic representation of the world wide insured

and uninsured catastrophe losses between 1970 and 2014.

Natural catastrophes are extreme events, that means events with low frequency and

very high severity in terms of economic consequences. Swiss Re last report on natural

catastrophe shows that this past decade the severity and frequency of natural disasters

are increasing. Insurers are therefore constantly exposed to catastrophe risk. To date

many tools have been developed to better understand the nature and consequences of

natural hazard damage. In developed countries many instruments have been created

2Source: Munich Re, NatCAtService,2016.
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Figure 2.2: Insured world catastrophe losses between 1970 - 2014 in USD billion at 2014
price

to facilitate reconstruction after natural disaster, but it is not the case for developing

country. This instruments are used by insurers for hedging and transferring catastrophe

risk. As example of hedging and risk transfer instruments we can cite reinsurance and

Insurance Linked Securities. The development of insurance sector in a country can be

considered as an indicator of development.

Reinsurance is an insurance contract purchased by an insurance company called the

cedent from another insurance company (the reinsurer) with the means of hedging and

transferring a part, or hold the risk that the cedent cannot easily bear. Reinsurance con-

tracts are less cost-effective for reinsurance company, but for risk like catastrophe risk,

the reinsurer can face severe financial stress due to the unpredictable nature of natural

disaster losses. The incapacity of the normal reinsurance market to hedge catastrophic

risk was proved in the past, with the large amount of loss registered by the insurance in-

dustry after the Hurricane Andrew in 1992 in Florida (USA). Eleven American insurance

companies went bankrupt. The reinsurance system was not able to handle the losses.

Many insurance companies decided to abandon the hedging of catastrophe risk by rein-

surance. The increasing need of a new source of hedging from catastrophe risks allowed
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to develop Insurance-Linked Securities. Insurance-Linked-Securities (ILS) are securities

linked to an insurance risk issued on the capital market. There are financial instruments

created by the process of securitization3. ILS are more sustainable to deal with catastro-

phe risk. The remainder of this section will be mainly devoted to the most popular ILS,

the catastrophe bonds (CAT bonds) and others ILS and CAT options.

Figure 2.3: Insured and uninsured world catastrophe losses between 1970 - 2014 in USD
billion at 2015 price

2.2 CAT bond principles

Catastrophe bonds are the most popular and well understood Insurance-linked securi-

ties for managing CAT risk Garg (2008). Their purpose is to crowd-source reinsurance

coverage, in order to reduce reinsurers, insurers, and self-insurers reserve requirements

and reduce their cost of coverage. CAT bonds are risk-linked securities used by insur-

ers, reinsurers, governments, and corporations (sponsor) to transfer a specific set of risk

(usually catastrophe risk) to the financial market investors. The risk is then borne by

the investors. The new holders (investors) of the CAT bonds are linked to a particular

3Securitization is the process where illiquid or untradable financial instruments are converted to a
form that allows for a greater liquidity.
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catastrophe event or natural disaster (hurricane, flood, etc). CAT bonds protect the

sponsor(s) from the financial losses caused by a natural disaster. CAT bonds are par-

ticular bonds because their coupons and payments depend not only on the occurrence a

catastrophe event but also on the gravity or severity of the related risk.

The first CAT bonds were issued just after the failure of the reinsurance market to cope

with the losses of the hurricane Andrew in 1992. Hannover Re initiated the catastrophe

bond market4 in 1994, with a first issuance of about US$ 85 million, it was a successful

experience. The first CAT bond issued by a non-financial firm was in 1999 to cover the

earthquake losses in Tokyo region for Oriental Land company (Division 2002).

Figure 2.4 presents the structure of a CAT bond. The transaction involves a sponsor

(government agencies, corporations, insurers, reinsurers) which seeks to transfer the risk,

a Special Purpose Vehicle (SPV), the collateral and the investors. The sponsor transfers

its risk to the capital market by setting a SPV. The latter will conduct two actions simul-

taneously: it will issue CAT bonds to the investors, and will be a source of reinsurance

for the sponsor. The proceeds from the bonds issued are invested in high quality short

term securities (such as US Treasury money market fund) and deposited in a collateral

account. The earning from the high quality securities are swapped at the London Inter-

bank Offered Rate (LIBOR) with a high rate swap counter-party. Since the LIBOR is

a floating rate, in order to be covered again the interest rate risk, the trustee enter in

a swap contract with a swap counter party. The trustee will paid a fixed return to the

the swap counterparty and in return he will receive form him a the LIBOR plus a swap

spread. This system enables the trustee to be always able to pay the SPV investment

income. The swap is very important, because it is used to cover the sponsors and the

investors for interest rate risk and default risk (Ma & Ma 2013). The sponsor enters into

a reinsurance contract (alternative reinsurance) with the SPV and pays him a premium

in order to be covered up to a given limit amount specified in the contract. Before en-

tering in the alternative insurance contract, the SPV has to prove to the sponsor that

he has a capital equal or greater than the limit amount of the coverage. Therefore the

proceeds form the CAT bonds issuance plus the amount of the premium to be paid for

the alternative reinsurance, all compound at the default-free interest rate has to equal

4Hannover Re Overview on ILS, NatCAt Exposure of 23 October 2013.
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to the limit amount of the coverage. When the sponsor is assured by it, the alternative

reinsurance contract is signed.

From the sponsor perspectives, CAT bonds provides full collateralized losses as com-

pared to reinsurance; they eliminate the concerns about credit risk. The investors pay

a principal to obtain the CAT Bond and receive as return a regular periodic payments,

generally quarterly or semi-annually. The interest or the coupons paid to the investors

are from the premium5 and the proceeds form the investment bonds received by the SPV

from the collateral.

If the trigger event (covered event) does not occur during the life of the CAT bond, the

investors will receive the principal plus the final coupon or a generous interest (a com-

pensation for the catastrophe risk exposure). The coupons are generally paid quarterly,

but they can also be semi-annual or annual depending on the contract. CAT bonds are

remunerated at LIBOR plus a yield (spread or risk premium). The spread is a remuner-

ation for the unpredictable property of natural disasters. So the total coupon rate(%)

is equal to the LIBOR(%) plus de spread(%). The spread is the price of the risk. Lane

(2000) shows that the spread over the LIBOR of the CAT bonds coupon is equal in rate

to the premium of the alternative insurance in rate. The LIBOR here is a floating rate.

However if the covered event occurs with the contract specified triggers during the risk

exposure period, the SPV pays the sponsor (ceding company) according to the terms of

the reinsurance contract. Depending on the contract terms, the investors can receive a

part of the principal and interest or nothing. CAT bonds can be issued to cover one peril

or multiple perils. Investors generally prefer single peril CAT bond because they want

to be able to construct their own portfolio of risk, while sponsors prefer multiple perils

CAT bonds because they enable them to reduce transaction costs.

Every CAT bond issued is linked to a specific payout-trigger. The definition of the

payout-trigger event has a key role in implementing CAT bonds. Guy Carpenter (2004)

present the variety of trigger mechanism used to determine when the losses of a natural

disaster should be covered by the CAT bond. We have indemnity trigger, index triggers

and hybrid triggers.

5 Amount pay by the sponsor to the SPV.
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Figure 2.4: Structure of CAT bonds system

For indemnity trigger, the payouts are based on the sponsors actual losses. This type of

trigger gives the sponsors the lowest possible level of basic risk6, but it is also subject to

a high level of moral hazard7 problem. This is a reason why insurers and reinsurers often

favour indemnity trigger (Cummins 2008). However this trigger requires the sponsor to

disclose to the investor information on the risk exposure of their underwriting portfolio,

and it may be very difficult for the sponsor. The indemnity trigger generally requires more

time than the non-indemnity trigger to reach the final settlement. Investors prefer non-

indemnity triggers or index trigger, because of their low moral hazard, high transparency,

and better liquidity (McGhee et al. 2005). This type of trigger is very close to the

traditional reinsurance protection. The index triggers exposes the sponsor to a high

basis risk. They are composed of industry loss index, parametric index, and the modeled-

loss trigger. In the case of industry loss trigger, the ceding company recovers a proportion

of total industry losses in excess of a predetermined point to the extent of the remainder

of the principal. For the parametric index trigger the bond payouts are triggered by a

specified occurrence of a catastrophic event with a defined physical parameter and also

6Basis risk is the risk that, in the event of a covered loss, the payout determined by the bond calculation
will differ from the actual loss incurred by the sponsor.

7It is a situation where the sponsor will no longer try to limit the potential losses since the risk is
transferred to the investors.
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takes into account the sponsors exposure to events in other areas. The specificity of this

trigger is that the sponsor does not have to disclose confidential informations. In the

case of the modelled-loss trigger, the trigger index is determined after the occurrence of

the catastrophe. The physical parameters of the catastrophe are used to estimate the

expected losses to the sponsor portfolio. The bond is triggered, if the modelled losses

are above a specified threshold. Finally, the hybrid trigger is a particular trigger which

is composed of more than one trigger for a single transaction.

The CAT bonds market is considered as an incomplete market, because the primary

risk of CAT bonds is the occurrence of a catastrophe that triggers the loss principle.

Since there are no securities other than CAT bonds whose payouts are contingent on

the occurrence of a natural disaster, CAT bonds cannot be priced in terms of portfolio

of the assets that are already traded and priced in the market (Cox & Pedersen 2000).

CAT bonds and default bonds present some similarities. They are all high yield bonds.

Defaultable bonds yield higher returns in part, because of their potential defaultability,

while CAT bonds are offered high yield because of the stochastic nature of catastrophe

process. CAT bonds are one of the most used catastrophe risk transfer derivatives.

They present the advantage to be less correlated to stocks returns. The occurrnce of a

natural disaster is not correlated with event in the board of the economy such as inflation,

recession, interest rate movements, and stock market. From the CAPM8 point of view,

CAT bonds are zero-beta asset, a characteristic which makes then to be an excellent

instrument for portfolio diversification. Froot (2001) thinks CAT events have a clear and

direct effect on non-financial asset such as housing; so their correlation with financial asset

can be misleading. The bankrupt of Lehman Brothers during the 2008 financial crisis,

causes the default of the CAT bonds for which it was the trustee. During this period

Lehman Brothers failed to honor its side of interest rate swaps. It was an exceptional

case but it highlights the possible exposition of CAT bonds to systemic risk. Since this

incidence with Lehman brothers, SPVs have taken measures to deposit the investor’s

principal in the safest security available. The market has changed the swap collateral

and put it trust in other collateral solutions such as Treasury money market funds who

is known as the most popular collateral solution, and triparty agreement.

8Capital Asset Pricing Model.
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2.3 Others Insurance-linked Securities and Catas-

trophe options

In addition to CAT bonds, there are other insurance linked derivatives and instruments

used to transfer catastrophe risk. In the following, we will briefly review some of this

instruments.

2.3.1 Insurance-linked instruments

There are other insurance-linked derivatives and instruments used to transfer the catas-

trophe risk. In the following, we will review some of these instruments.

Industry Loss Warranties

Industry loss warranties (ILWs) are index-based reinsurance contracts. They cover the

issuers from the occurrence of a catastrophe risk that may generate an industry loss

of a pre-agreed size. ILW are duals triggers reinsurance contracts that have a retention

trigger based on the incurred losses of the insurer buying the contract and also a warranty

trigger based on the industry-wide loss index (Cummins 2008). Both triggers have to be

hit in order for the insurer or the buyer of the contract to receive the pay off. They

have a similar principle to CAT bonds industry index trigger. The industry loss trigger

induces a reduction of the moral hazard problem but an increase of the basis risk. ILW

are considered to be more flexible and easy to develop compared to the others forms of

alternatives risk capital. Gatzert et al. (2007) gives a very good presentation of ILWs

and the way they are used to hedge catastrophe risks. There are different types of ILWs9:

Life CAT Industry Warranty contracts which are traded while the event is occurring,

often while the occurrence of the event is certain; Dead CAT Industry Loss Warranties

traded for an event which has already happened, but where the final loss are not yet

known. Back-up covers are traded after the event has occurred to provide protection

against follow-on events which certain catastrophe can cause.

9Source: www.artemis.com
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Sidecars

Sidecars are kind of reinsurance company such as hedge funds. They are created and

funded by investors to provide capacity to single sponsor for hedging its catastrophic

losses. Sidecars help insurer finance any type of risk in their books, including property

risks. Sidecars play the role of the SPV in the case of CAT bonds. Bouriaux & MacMinn

(2009) and Cummins (2008) give a detailed description of the functioning of Sidecars.

2.3.2 Catastrophe options

There are four main insurance-linked options uses for transferring catastrophe risk.

Event Loss Swaps

Event Loss Swaps (ELS) are CAT-linked derivatives launched by Deutsche Bank to help

clients (insurers, reinsurers, corporations) to hedge against economic impact of US wind

and earthquakes. ELS have a similar mechanism with credit default swaps. The buyer

of the ELS contract has to pay a premium to the seller of the ELS, the latter will pay

a notional value to the swap contract if the industry wide insurance faces losses due to

a single catastrophe event that exceed a specified trigger level defined by a third party.

Cummins (2008) describes a closed similar product to the ELS: the catastrophe risk swap.

The catastrophe risk swap has the same principle with the Events Loss Swap.

NYMEX Risk Index Futures and Options

NYMEX10 contracts are standardized futures and options contracts introduced for US

hurricane risks. The indexes of industry losses are estimated by Aon Re from the Property

Claims Services (PCS) data. NYMEX offers the futures contracts in the open-outcry and

the options contracts on the GLOBEX electronic venue. The futures and options prices

are based on market estimates of cumulative industry losses for catastrophes that occur

during a calendar year. The contract settles in cash at the end of March of the following

calendar year.

10New York Mercantile Exchange.
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CME Hurricane Futures and Options

The CME11 Hurricane futures and options are designed in differently from those of

NYMEX. CME products are one peril instruments, they settle against Carvill12 Hur-

ricane index, which is based on the parametric features of a hurricane. As soon as an

official hurricane makes landfall, the CME futures and options expire. The contract set-

tle in cash against the value of Carvill index, which is immediately released after the

hurricane landfall.

IFEX Event-Linked Futures

IFEX Event Linked Futures are triggered by insured losses as calculated by Property

Claims Services (PCS). IFEX is a subsidiary of Climate Exchange PLC. The futures

contracts are designed to mimic industry loss warranties with a payout linked to first

event of the year , second even of the year and so on.The futures contracts settle against

an industry wind loss estimated by PCS.

11Chicago Mercantile Exchange.
12 Carvill Hurricane index is an index which describes the potential for damage from an Atlantic

hurricane. Itis used as the basis for trading hurricane futures and options on the Chicago Mercantile
Exchange (CME).
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Chapter 3

Pricing Approaches

The pricing of catastrophe insurance-linked securities has a key role in the prevention

and mitigation of catastrophe risk. Many academics and professionals have studied the

properties of Insurance-linked securities and CAT bonds in particular; in order to develop

proper methods to price their related risk. This chapter will be devoted to the state of

the art of CAT bonds pricing. The pricing approach of CAT bonds depends on the

context of the analysis. The literature does not gives a clear guidance for the valuation

of CAT bonds. According to Cox & Pedersen (2000), the fact that the pricing of CAT

bonds requires an incomplete market setting creates special difficulties in the pricing

methodology. In the literature, we find the actuarial and the financial pricing approach.

Within the actuarial approach a pricing method recently introduced is the one based on

probability distortion operators to price CAT bonds. In the remainder of this chapter, we

will first present the state of the art for the pricing methods with probability distortion

function and next the actuarial and financial methods.

3.1 Pricing with Distortion Operators

Distortion operators have been used in insurance and finance to price risk. These methods

apply distortion risk measures to price the risk of an insurance or a financial product.

Wang (1995) present a framework for premium pricing principle in insurance, where

the risk loading is imposed by a proportional decrease in hazard rates. Wang (1995)

uses the proportional hazard (PH) transform to propose a risk-adjusted premium for

20



pricing risk. With the PH transform the author shows that, for the same underlying

risk, the risk-adjusted premium is larger for the party which is more risk adverse. The

additive property of the PH transform makes the distortion operator to be very appealing

to insurance risk. Wang (1996) discusses a class of premium principle using the PH

transform. In this study the author presents the properties of the PH transform and its

possible application depending on the distribution of the losses. He shows that the PH

transform is comonotonic-additive and preserves the stochastic dominance, and reaches

to the conclusion that it is a good method for pricing insurance risk.

In a period where financial risk and insurance risk were becoming more integrated, it

is highly desirable to have a unified pricing theory (Wang 2000). The PH transform fails

to replicate the Black-Scholes formula for pricing option, since the result of its application

on a log-normal distributed series is no longer log-normal. Gerber et al. (1994) presents

an application of the Esscher transform in a financial framework. The Esscher transform

is distortion operator that takes a probability density function f(x) and transform it into

a new probability function f(x, h) with a parameter h.

Eh[f(x)] = f(x, h) =
ehxf(x)∫ +∞

−∞ ehxf(x)dx
(3.1)

Gerber et al. (1994) show that the Esscher tranform is an efficient technique for valuing

derivative securities if the logarithm of the prices of the primitive securities are governed

by certain stochastic processes with stationary and independent increments. This family

of processes includes the Wiener process, the Poisson process, the gamma process, and

the inverse Gaussian process. An Esscher transform of such a stock-price process induces

an equivalent probability measure on the process. The Esscher parameter or parameter

vector is determined so that the discounted price of each primitive security is a mar-

tingale under the new probability measure. The Esscher transform can reproduce the

Black-Scholes option pricing formula. The effect of the Esscher transform on a normal

distribution is shifting the mean.

Eh[N(µ, σ2)] = N(µ+ hσ2, σ2)
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Proof

Let us assume a variable X ∼ N(µ, σ2). If we apply the Esscher transform on the

probability density function of the variable X we will have:

f(x, h) =
ehx 1√

2πσ2
e−

(x−µ)2

2σ2∫ +∞
−∞ ehx 1√

2πσ2
e−

(x−µ)2
2σ2 dx

let us set the denominator of f(x, h) equal to M(h)

M(h) =

∫ +∞

−∞
ehx

1√
2πσ2

e−
(x−µ)2

2σ2 dx

M(h) =
1√

2πσ2

∫ +∞

−∞
ehxe−

(x−µ)2

2σ2 dx

M(h) =
1√

2πσ2

∫ +∞

−∞
e−(

(x−µ−σ2h)2−(µ+σ2h)2)

2σ2
)dx

M(h) = eµ
2h2+σ2h2

2

∫ +∞

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx

we obtain:

f(x, h) =
1√

2πσ2
e−

(x−µ)2

2σ2 ehx−µ
2h2−σ

2h2

2

f(x, h) =
1√

2πσ2
e−

(x−(µ+hσ2))2

2σ2

The function f(x, h) is a normal density distribution of parameter µ∗ = µ + hσ2 and

σ∗ = σ.

Venter (1998) proposed to use the log-Esscher transform as an alternative to the

PH-transform for lognormal risk. Nevertheless the Esscher transform presents some lim-

itations which are related to the his derived risk measure called the Esscher principle.

The Esscher principle does not respect the positive homogeneity property for h > 0.

The premium cannot be computed under the Esscher principle when the claim follows a

log-normal distribution, because the moment generating function of the log-normal does

not exist. It is a serious drawback for the Esscher transform, since in the actual market
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both the financial and the insurance products often follows a log-normal distribution.

Wang (2000) presents the limitations of the previous distortion operators. He confirms

the fact that since the PH transform fails to replicate the Black-Scholes formula for a

log-normal risk, it cannot be applied simultaneously to assets and liabilities. Wang (2000)

also presents a new class of distortion operator for pricing both insurance and financial

risk called the Wang transform. He applies this new distortion operator to stock price

distribution and recovers the risk neutral valuation for option and in particular the Black-

Scholes formula. The Wang transform is presented as a sustainable approach combining

both the actuarial pricing and financial pricing theory. Hamada & Sherris (2003) present

a framework of pricing contingent claims using probability distortion operators. The

authors used the Wang transform and extended it to a case where the underlying security

risk has a time varying parameter. Wang (2000) presents a universal framework for pricing

financial and insurance risk. He introduces a transfer and correlation measure that extend

the CAPM to pricing of all kinds of assets and liabilities. He extends the CAPM to risk

with non normal distribution and obtains a new parameter called the market price of

risk. The parameter can be compared to the Sharpe ratio in case of normally distributed

returns; it can be implied from, or implied to, a distribution in order to obtain a risk-

adjusted price. Wang (2002a) applies the Wang transform to the pricing of call options

on trading stocks and to pricing derivatives.

The Wang transform can be presented as follow. Let gλ(·) be the Wang distortion

operator defined as:

gλ(v) = Φ(Φ−1(v) + λ); (3.2)

where Φ is a standard normal cumulative distribution function. Let us introduce the

objective loss exceedance curve S(x) = 1 − F (x) , where F (x) = Pr(X < x) is the

cumulative distribution function of a given loss variable X. There is no restriction as

regarded to the type of distribution of F (x). Wang (2000) presents the following universal

pricing model based on the Wang transform:

S∗(x) = Φ(Φ−1(S(x)) + λ). (3.3)
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If X is an asset, the Wang transform will be:

F ∗(x) = Φ(Φ−1(F (x)) + λ); (3.4)

or in terms of density function:

f ∗(x) = φ(φ−1(F (x)) + λ))
1

φ(φ−1(F (x)))
f(x).

The mean value under S∗(x) denoted by E∗[X], will define a risk-adjusted fair value

of X and λ represents the market price of risk. It is worth noting that:

• if F (x) has a normal(µ, σ2), F ∗(x) is also a normal distribution with µ∗ = µ + λσ

and σ∗ = σ;

• if F (x) has a log-normal(µ, σ2), such as ln(X) ∼ N(µ, σ2);F ∗(x) is also a log-normal

of µ∗ = µ+ λσ and σ∗ = σ.

For illustration, let us assume a given variable X ∼ N(µ, σ2); we have:

SX(t) = P (X ≥ t)

= 1− P
(X − µ

σ
≤ t− µ

σ

)
= 1− Φ

(t− µ
σ

)
.

The Wang distorted decumulative distribution is :

gλ(SX(t)) = Φ[Φ−1(SX(t)) + λ]

= Φ[Φ−1(1− Φ(
t− µ
σ

)) + λ]

= Φ[Φ−1(Φ(
−t+ µ

σ
)) + λ]

= Φ[−t− µ− σλ
σ

]

= 1− Φ[
t− (µ+ σλ)

σ
]

= SY (t),

with Y ∼ N(µ+ σλ, σ2).
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Figure 3.1: One factor Wang transform of a Uniform [1,50] distribution (displayed in
terms of probability density)

Figure ??, shows that the one-factor Wang transform inflates probability density for

adverses outcomes while deflating probability density for favorable outcomes, as a result

it incoporates a form of risk loading or risk adjustment (Wang 2004). Following the above

result, the Wang transform applied on the return ri of an asset i will give:

E∗(ri) = E(ri) + λσi. (3.5)

Since the real moment of a the distribution of a given population are not generally

observed, they are usually estimated using the sample observations. The probability as-

sessment regarding the future outcome, highlights the importance of the Student-t distri-

bution. In order to take in account the skewed property of the distribution distribution,

Wang (2002a) suggests to replace the normal distribution by a t-Student distribution

with k degree of freedom. This transformation leads to the following two-factors Wang

transform model:

S∗(x) = Q(Φ−1(S(x)) + λ), (3.6)

where Q has a Student-t distribution with k degree of freedom. Wang (2002a) reported

that the two-factor model provides an excellent fit to the CAT-bond and corporate bond

yield spread. Without the Student-t adjustment, the one-factor Wang transform (3.2)
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would not be able to explain the yield spreads in the CAT bonds and corporate bonds

data. Using the historical default frequency of some corporate bond, Wang (2004) shows

that the two-factor model provides a risk premium adjustment not only for the second

moment but also for higher moment for parameter uncertainty 1.

Figure 3.2: Two factors Wang transform of a Uniform [1,50] distribution (displayed in
terms of probability density)

As shown in Figure 3.2, the 2-factor Wang transform takes in account the extreme

tail of the probability distribution. In another words, this new transform inflates the

probability density at both extreme tails, in order to take into account the so-called

greed and fear investors’ behavior. It is very consistent with volatility ”smile”2 in option

prices. Wang (2004) uses this same method to compare CAT bonds and corporate bonds

yield. He found that they both offer the same risk return trade-off in term of Sharpe

ratio. Nevertheless, the difference in the degree of freedom of the Student-t distribution

shows that the CAT bonds are more attractive to investors. Wang (2004) shows that the

2-factors Wang transform fits to the pricing of CAT bonds and corporate bonds. Wang

transform seems to be a better way to actually price the implied yield spread over LIBOR

of a CAT bond. However, the Wang transform has not been widely used in the literature

for CAT bond pricing.

1In reality, the probability distributions are always estimated based on limited available data, so
parameter uncertainty is always present. This is very recurrent in cat bond modelling.

2Volatility smiles are implied volatility patterns that arise in pricing financial options. In particular
for a given expiration, options whose strike price differs substantially from the underlying asset’s price
command higher prices than what is suggested by standard option pricing models. These options are
said to be either deep in-the-money or out-of-the-money.
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Kijima (2006) extend the Esscher transform and Wang transform to a multivariate

settings for pricing general financial and insurance risks. The author highlights the coinci-

dence between the Esscher transform and Wang transform when the underlying risks are

normally distributed. Kijima & Muromachi (2006) proposes a new probability distortion

for the tail distribution to price financial and insurance risks. The new transformation

derives from the Bühlman (1980) equilibrium pricing model. The authors present one of

the drawbacks of the one factor Wang transform as the fact that his normality assump-

tion never match with the fat tail distribution observed in financial markets. They then

propose a new two-parameter transforms base on the idea of Kijima (2006) and obtain:

F ∗∗(x) = Pk;δ[Q
−1
k (F (x))], (3.7)

Figure 3.3: Extension of the Wang transform by Kijima of a Uniform [1,50] distribution
(displayed in terms of probability density)

With Pk;δ representing a non central t-distribution with k degrees of freedom and

a non-centrality parameter δ = −λ. The t-distribution is used to capture the fat-tail

distribution in the finance literature. Based on the obsevervation of Figure 3.3, we can

notice that it is similar to Figure ??, the mixture of the non- central t-distribution

of parameter θ = −λ with the Student-t distribution distorts the probability density

distribution exactly as the 1-factor transform. The real contribution of Kijima (2006)

is the extension of this transform and the Wang transform to a multivariate setting by

using t-copula in order to preserve the linearity for the pricing functional, since the risk

premium parameter λ is no longer linear. Kijima & Muromachi (2006) describe the
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essence of the new two parameter transform (Wang transform extension) proposes by

Kijima (2006) and show some special example related to the Student-t distributions.

A further extension of pricing contingent claims with probability distortion operator is

the approach used by Godin et al. (2012). Godin et al. (2012) introduce a new distortion

operator based on the Normal Inverse Gaussian distribution. In fact the Normal Inverse

Gaussian (NIG), is a generalization of the normal distribution that allows for heavier

skewed tails. The resulting operator asymmetrically distorts the underlying distribution.

Godin et al. (2012) also show that it is possible to recuperate Non-Gaussian Black-Scholes

formulas using their distortion operators.

gα,β,η,θ(F (x)) = ΦNIG(ΦNIG−1(F (x)) + θ) (3.8)

With α, β, η representing the parameters of the Normal Inverse Gaussian cumulative dis-

tribution ΦNIG, θ the risk adjustment parameter, and g the distortion operator.

Osu & Achi (2013) present the distortion proposed by Godin et al. (2012) and use dis-

tortion operators under a simple transformation to price contingent claim with a Cauchy

distribution.

3.2 General pricing methods

Apart of the pricing methods involving probability distortion operators, there are other

methods used for pricing CAT bond. These methods are based on financial, actuarial and

econometric principles. Among these methods, there are approaches which apply extreme

value theory to CAT bond pricing and use multiple of average expected loss to compute

the required spread over the LIBOR which is the CAT bond yield. The outcomes of this

approach are not always consistent with the observed CAT bond price. Other approaches

determine the CAT bond price based on the expected frequency and the severity of the

losses. the parameter is estimated based on the observed CAT bond price3.

Lane (2000) presented the framework of pricing CAT bonds with the financial ap-

proach: the 3-parameter model. He shows that since the gross price of CAT bonds issued

3http://insuranceplanet.blogspot.it.
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at par is expressed as the coupon accruing to investors, the CAT bond price will be

composed of a part-financing risk equal to the LIBOR and a part insurance risk equal

to the spread over the LIBOR. The spread is the sum of the expected losses (EL) which

represent the investors compensation for his expected losses and the risk load which is

also the unexpected loss. The unexpected loss is usually approximated by the standard

deviation of the loss distribution only if the distribution is symmetric. Since CAT bond

loss distribution is asymmetric, the author decomposes the unexpected loss component

of the spread as the expected excess return (EER). The expected excess return (EER) or

risk premium is the amount which an investor requires to commit the risk capital. The

EER is a Cobb-Douglas function type of the conditional expected losses (CEL)4 which

capture the asymmetrical nature of the losses and the probability of first loss (PFL)5. In

fact the CEL represent the severity of the losses, it is the amount of loss in term of capital

in case of a first loss. It captures the riskiness of the bond, and it is more concentrated

on the right tail of the loss curve. Lane (2000) developed the following model:

EER = γ(PFL)α(CEL)β, (3.9)

EL = PFL× CEL. (3.10)

By running some econometric regressions and p-value tests on the results of equation (3.10),

the author obtains the best fit for parameters γ= 0.55, α=0.495 and β=0.574. The spread

S is then written as follow:

S = EL+ EER (3.11)

S = EL+ γ(PFL)α(CEL)β (3.12)

S = PFL.CEL+ γ(PFL)α(CEL)β (3.13)

The price of the CAT bonds will be LIBOR plus the spread (S). Lane (2000) applies

this method on a series of CAT bond issues in order to compute their yield. Lane (2003)

also gives a more detailed explanation of this model introduce by Lane (2000). This

4CEL also represents the severity of losses
5PFL is defined by rating agencies
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model is the first model which has been developed to understand the behaviour of CAT

bond market; it is the unique model which tries to link the obtained results on CAT bond

market and those obtained in the reinsurance market(Gatumel & Guégan 2009).

Cox & Pedersen (2000) presented the actuarial methodology for the valuation of

catastrophe risk and developed a framework of pricing CAT bonds in incomplete market

settings. In 2003 Burnecki & Kukla applied the result of Baryshnikov & al (2001) to

calculate no-arbitrage prices of a zero-coupon and coupon CAT bonds, and derived the

formula under the compound doubly stochastic Poisson framework model. Vaugirard

(2003) uses the jump-diffusion model of Merton (1976) to develop the first valuation

model of insurance-linked securities that deal with catastrophic events and interest rate

randomness. Burnecki (2005) evaluated CAT bonds using a compound non homogeneous

Poisson model with left truncated loss distribution. Härdle & Cabrera (2010) examine

the calibration of real parametric CAT bonds for earthquakes sponsored by the Mexican

government, using the results of Burnecki (2005). Jarrow (2010) develops a simple closed

form solution for valuing CAT bonds, while the formula is consistent with any arbitrage-

free model for the evolution of the LIBOR term structure of interest rates. Nowak &

Romaniuk (2013) prove a general pricing formula which can be applied to CAT bonds

with different payouts functions under the assumption of different models of risk-free

spot interest rate.They price CAT bonds with interest rate dynamics describe by CIR6

and Hull White model and use the Monte-Carlo simulation to analyse the numerical

properties of the pricing formula obtained. Most prior studies did not take into account

diverse factors that affect bond prices. Ma & Ma (2013) consider a variety of factors

that affect bond prices such as loss severity distribution, claim arrival intensity, threshold

level and interest rate uncertainty. Consequently, they derive a pricing formula for CAT

bonds in a stochastic interest rate environment and show that the loss process follows a

compound non homogeneous Poisson process.

In contrast to the above approaches used to price CAT bonds, there are not so much

studies, which use the econometric method to price CAT bonds. Lane & Mahul (2008)

examine 250 catastrophe bonds issued between 1997 and 2008 in order to determine

the variables influence the value of the CAT bond’s price. By applying a simple linear

6Cox-Ingersoll-Ross.
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regression model, their analysis reveals that CAT bond prices are function of the under-

lying peril, the expected loss, and the reinsurance cycle. Ahrens et al. (2009) develop an

econometric pricing model for CAT bonds with the aim to examine the impact of the

year 2005 hurricanes season particularly hurricane Katrina on CAT bond’s price. Their

theoretical framework is based on the Lane Financial (LFC) model presented by Lane

(2000). The results of the treed Bayesian estimation confirm that the severity component

of the spread has an increased impact indicating a shift in investor perception during

the pricing process. The results also show a significant increase of the impact of condi-

tional expected loss through its interaction with the attachment probability. Ahrens et al.

(2009) show that the influence of the conditional expected loss is increasing by investment

grade rating because investors who demand highly rated bonds may be more concerned

by possible losses than junk bond. Papachristou (2011) uses a dataset of 192 CAT bonds

launched between 2003 and 2008, he applies a generalized additive model to examine the

factors that affect the CAT bond risk premium. Gatumel & Guégan (2009) present the

methodology approach of Wang (2004), Lane (2000) and Fermat Capital Management

2005, use to price Insurance-Linked-Securities. Using the three approaches, Gatumel &

Guégan (2009) conduct a dynamical study of few CAT bond on the secondary markets

from 2004 to 2009 in order to understand the elements driving the spread. The authors

highlight both a structural component, the risk aversion of investors and the conjonctural

component driving the spread. Their results show that some risk like US hurricanes, Eu-

ropeans windstorm or California earthquakes impact the market significantly. Gürtler

et al. (2014), by the means of panel data methodology, assess the effect of a natural

catastrophe or financial crises on CAT bond premium. They find evidence that both the

financial crisis and the hurricane Katrina significantly affected the CAT bond premiums.

Their results also show a positive relationship between corporate bond spread and CAT

bond premium which is not very consistent with the ”Zero-beta” property of CAT bonds.

Braun (2015), from a compile dataset of all CAT bonds issued between June 1997 and

December 2012, develop a new econometric pricing model for CAT bonds in the primary

market that is applicable across territories, perils and trigger type. Braun (2015) runs

a series of OLS regressions with heteroscedasticity and autocorrelation consistent two

standard errors aiming to identify the main drivers of CAT bond spreads. As Lane &
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Mahul (2008) and Ahrens et al. (2009), he found that expected loss is the most important

driver of the spread. Other factors like the covered territory, the sponsor, the reinsurance

cycle and the spread on comparably rated corporate bonds also significantly impact CAT

bond spread.
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Chapter 4

The Wang transform application

When pricing CAT bonds, the main issue is to compute the premium paid by the sponsor

to the SPV to be covered from the catastrophe risk. This premium corresponds to the

alternative reinsurance price. It also represents the spread over the LIBOR which the

SPV has to pay to the investors in case of no catastrophe event Lane (2000). This section

is devoted to the development of the pricing based on distortion premium calculation

principle and his possible applications to CAT bonds primary market data.

4.1 Premium calculation model

The model presented for the determination of the risk premium is the one developed by

(Wang 2004). According to Galeotti et al. (2013), the Wang transform is one of the most

successful techniques used for cat bonds pricing. Let assume the losses of a catastrophe

event are defined by a non-negative random variable X. For the alternative reinsurance,

the sponsor pays a premium Π to the SPV to cover his losses up to a limit h. The limit is

important for the reinsurer because losses from a catastrophe event are usually unlimited

and unlimited losses cannot be covered. The loss X is between zero and a maximum

amount of losses Xmax (X ∈ (0, Xmax]) with Xmax <∞.

In insurance, insured risk are usually divided in many layers or levels of risk. For a given

contract we will have a range of layers (bi, bi+hi], with i = 1, . . . , n and ∪ni=1(bi, bi+hi] =

(0, Xmax]. According to Froot (2001), reinsurance purchase should prioritize the highest

layers which are associated with the most severe event. Following this idea, the layer for
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catastrophe risk will be (bn, bn +hn]. So Wang (2004) define the loss of a CAT bond with

an attachment1 point b and a limit h as follow:

X[b,b+h] =


0 if X < b

X − b if b ≤ X < b+h

h if X ≥ b+h

(4.1)

If the loss is less than the attachment point, there occurs no loss for the layer. For a

loss X comprises between the attachment point and the exhaustion point2, the layer

loss will be X − b ,and h for the case where the loss exceed the exhaustion point. The

insurer expected loss for the layer (b, b + h] will be the area below the loss exceedance

curve. Since the losses are considered like a liabilities assets, the loss exceedance curve

will the define by a survival function or a decumulative distribution function SX(x) =

1− FX(x) where FX(x) is the loss cumulative distribution function. Using the historical

losses data, it is possible to determine the distribution of S(x) or F (x). Studies like

Ma & Ma (2013) and Nowak & Romaniuk (2013) use the historical catastrophe losses to

determine the loss distribution function. They tested many distribution like the lognormal

distribution, the Burr, Weibull, Pareto and the Generalized Extreme Value distribution

(GEV). Straßburger (2007) presents the some of the main geophysical commercial model3

used by reinsurance companies to determine the decumulative distribution function and

the exposure of their assets. For a given amount of loss y, we will have :

SX [b, b+ h](y) =

SX(b+ y) = Pr(X < b+ y) if b < y < b+h

0 if y ≥h

(4.2)

The premium Π will be equal to the expected loss plus a safety loading or risk load,

because the CAT bond market is an incomplete market (Cox & Pedersen 2000). Thus

the expected loss will correspond to the risk neutral valuation and the risk loading will

1The attachment point is the amount of loss above which the layer register a loss.
2The exhaustion point represents the maximum amount of loss of the layer. In other word it is the

maximum amount of loss that the insurer can cover
3The main geophysical model are divide in two categories: the property one which include the Risk

Management Solutions(RMS), the Applied Insurance Research Worldwide (AIR) and the EQUECAT
and the HAZUS which is and open-source model.
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take into account the incompleteness of the market. So the expected value of the loss

associated to the layer (b, b+ h) will be define as follows :

E[X] =

∫ +∞

0

SX(x)dx, (4.3)

E[X[b,b+h]] =

∫ b+h

b

SX(x)dx. (4.4)

Wang (2004) shows that if the limit h is very small, the expected value loss of the layer

will be equal to:

E[X[b,b+h]] ≈ hS(b).

The expected loss rate will be also equal to:

EL =
E[X[b,b+h]]

h
. (4.5)

Wang (2004) shows how to use the the Wang transform to compute the premium Π. Wang

(2000) presented the new form of distortion operator g(·). g(·) function is increasing

concave and defined on [0, 1] such that g(0) = 0 and g(1) = 1 with g′(w) ≤ 0 4 for the

survival function to keep its characteristics and g′′(w) ≥ 0 to guarantee a non negative

risk load. In fact, Wang (2004) shows that the Wang transform applied on the loss

exceedance curve produces a risk ajusted loss exceedance curve S∗X(x),

S∗X(x) = g(SX(x))

S∗X(x) = Φ(Φ−1(SX(x)) + λ)

In order to take in account the skewness of the catastrophe losses distributions and the

parameters,Wang (2004) replace the normal distribution by the Student-t distribution Q

of k degree of freedom.This new transform is the 2-factor Wang transform.

S∗X(x) = Q(Φ−1(SX(x)) + λ).

4 For 0 < w < 1.
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According to Wang (2000) the parameter λ ( 0 < λ < 1) corresponds to the market price

of risk or Sharpe ratio if the losses X are normally distributed. In that case of an alter-

native distribution of X, the parameter is an extension of the Sharpe ratio (Wang 2004).

Wang (2004) also justifies the usage of the Student-t adjustment as a way to capture the

two opposing forces which often distort investors rational behaviour namely the ”greed

and fear”. The fear of large unexpected losses is one of the investors main concern, but

investors also desire unexpected large gains. So the magnitude of the distortion operator

normally increased at the both extreme tails of probability distribution. The mean value

under S∗(x), denoted by E∗[X] will represent the a risk adjusted fair value5of X .

E∗[X(b,b+h)] =

∫ b+h

b

g(SX(x))dx =

∫ b+h

b

S∗X(x)dx. (4.6)

E∗[X] contains already the risk loading (Wang 2004). . Since E∗[X(b,b+h)] is the transform

expected value of the absolute layer loss X(b,b+h), following the same idea of equation (4.5),

the transform expected loss (rate) will be:

EL∗ =
E∗[X(b,b+h)]

h
. (4.7)

Based on equation (4.5) we can derive according to Wang (2004), the expression of the

risk adjusted premium under the Wang transform:

Π(X) = EL∗ =
1

h

∫ b+h

b

g(SX(x))dx. (4.8)

Due to the absence of information on the distribution of SX(x) the survival function,

we will need to introduce some variables in other to be able to compute the premium.

We have the probability of first loss (PFL) equal to: PFL = S(b) = P (X > b), the

probability of exhaustion6 (PE) defined by PE = S(b+ h) = P (X ≤ b+ h). Finally the

conditional expected loss or the expected loss given default:

CEL =
E∗[X(b,b+h)|X > b]

h
=

EL

PFL

5?, page 21.
6The probability of exhaustion also called the probability of last loss represents the probability that

the losses exceed the exhaustion point.
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, Wang (2004) uses the piecewise linear interpolation to construct the loss decumulative

distribution S(x) and derive under the Wang transform S∗(x). The determination of the

premium Π given the informations available requires the utilization of the trapezium rule:

Π(X) =
1

h

∫ b+h

b

g(SX(x))dx,

Π(X) ≈ 1

h

1

2
h[g(b) + g(b+ h)],

Π(X) ≈ 1

2
[g(b) + g(b+ h)].

The expected loss under the Wang transform (EL∗) already incorporates the spread. In

other to have the premium of the alternative reinsurance contract, we have to extract the

expected loss (EL) computed under S(x) Wang (2004) . So the final ”premium” will be

equal to:

Πw(X) ≈ 1

2
[g(PFL) + g(PE)]− PFL · CEL. (4.9)

According to Wang (2004), the 1-factor transform does not fit well for the pricing of

CAT bonds. So in order to determine the parameters k and λ under the 2-factor Wang

transform, we will estimate the following non linear model:

Πw(X) =
1

2
[Qk(Φ

−1(PFL) + λ) +Qk(Φ
−1(PE) + λ)]− PFL · CEL+ ε. (4.10)

with Πw(X) the premium of the CAT bond X computed under the 2-factor Wang trans-

form where PFL, PE, and CEL represent respectively the probability of first loss, the

probability of exhaustion of the CAT bond X given by the primary market and ε an

error term. Since we do not have the transform premium Πw(X), in other to calibrate

the parameter λ, we will use the premium (spread over the LIBOR) given by the market

each. The computation procedure of the parameters k and λ and the results will be

presented in the next sections.
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4.2 Calibration and Results

The determination of the parameters k and λ of the 2-factor Wang transform will be

done by using calibration methods. The remainder of this sector will be devoted to the

presentation of our dataset, the calibration procedure and the comparison of the results

obtain with the 2 factor Wang transform and Lane (2000) model.

4.2.1 Data and Methodology

Data

The absence of a publicly available database of CAT Bonds transactions represents an

obstacle to the research on CAT bonds market. This absence can be justified by the

fact that the CAT bonds market is a very recent market. Diverse data sources like

Lane financial LLC, Artemis Deals directory are used in the literature to overcome this

obstacle. For our empirical analysis, we used hand collected primary market data from

Lane Financial LLC quarterly report on CAT bonds transactions that we cross-checked

informations available on Artemis Deals Directory website. The dataset is composed of 69

CAT bonds issued from April 1, 2014 to March 30, 2016. For each CAT bond transaction

we have the following informations: the probability of first loss (PFL), the probability of

exhaustion (PE), the expected loss (EL) and the market spread over the LIBOR (Πm).

We also have some CAT bonds specific informations such as the issuer, the maturity, the

trigger mechanism, and the rating. As presented in our model the only data needed for

pricing CAT bonds under the Wang transform are the PFL, PE and the CEL. We will

divide our data in two different sample: an in-sample composed of CAT bonds issued

between April 1st, 2014 to March 31, 2015 and an out-of-sample. The in-sample period

data is composed of 35 CAT bonds and the out-of-sample period data of 34 CAT bonds.

Calibration methodology

Calibration in finance can be defined as optimization method that consist in finding

the set of model parameters that minimizes the difference between the model prediction

and the available market data. In other words, calibrating a CAT bond pricing model
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under the 2-factor Wang transform means looking for the risk adjusted parameter such

that the model premiums are consistent with the market premiums. The calibration

will lead to an optimization problem where we will need to define the error metric that

will measure the difference between the market premium (Πm) and the 2-factor Wang

transform model premium. In most cases, the objective function or the error metric

defines the optimization problems as a minimisation task. The best fit parameter will be

the one minimising the error metric. Many error metrics can be used :

• the sum of absolute relative deviation;

ARDev =
N∑
i=1

|Πwi − Πmi|
Πmi

,

ADev =
N∑
i=1

|Πwi − Πmi| ,

• the sum of the square deviation

SDev =
N∑
i=1

(Πwi − Πmi)
2.

It is also possible to minimize the sum of the square root errors. All this error metrics

produce approximately the same result. In this work, we will use the mean square error

as the error metric to be minimized.

Calibrating CAT bond pricing model under the 2 factor Wang transform to the mar-

ket premium lead to an optimization problem that cannot be solved with the standard

methods such of the gradient methods. The calibration of the 2-factor Wang transform

model requires to find the value of one parameter under a mixture of a Student-t and an

inverse normal cumulative distribution function. So the objective function here is non

linear.Even thought the standard optimization approach seems to be convenient for this

type of the minimum search, finding the value of the risk adjusted parameter which makes

the model consistent with the market premium implies solving a non-convex optimisation

problem. In this case it is not possible to use a normal zero-finding optimization method.

The standard approach used for non-linear model like the non-linear least square will give
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wrong results if applied form the calibration of the 2-factor Wang transform. This type

of optimisation problem is common in option pricing, Gilli & Schumann (2011) show that

the calibration of the Heston’s stochastic volatility model and the Bates option model

faces the same problem. The authors emphasize that the optimization problem is due to

the non convexity of the objective function of those models. In the fact because the ob-

jective function presents many local minima, the direct search method could be trapped

in a local minimum instead of the global minimum.

Since this type of models cannot be calibrated by the standard optimization methods,

some alternative algorithms have been developed. Some of the algorithms developed

to overcome this problem called the heuristic methods are: the downhill simplex, the

Levenberg-Marquardt algorithm and the differential evolution. These three models are

part of the model used by FINCAD analytics for the calibration of financial models.

Storn & Price (1997) briefly present the Levenberg-Marquardt algorithm and the downhill

simplex method and their drawbacks. The Levenberg-Marquardt algorithm is a technique

used to solve non-linear optimization problem. It uses a combination of the gradient

descent and the Gauss method to search the parameter that minimizes the objective

function. The Downhill simplex also called the Nelder Mead method is a method that

uses the concept of simplex to find the maximum or the minimum of an objective function.

The downhill algorithm and the Levenberg-Marquardt algorithm both begin their search

of the parameter by fixing and initial value of the parameter . In fact, they find the

best value by trying to shift the current parameter towards the smaller value of the

error metric. The parameter shift is downhill. The algorithm ends when the downhill

shift cannot be achieved for the current parameter. A drawback of these methods is the

dependence of the results on the initial value set for the parameter. For example the

Levenberg-Marquardt algorithm will never find the global minimum if the initial value is

no set near to it. So it is the determination of the global minimum with this approach is

uncertain. For the downhill algorithm even thought it was possible to obtain the global

minimum for any initial value, there is no guarantee that the search does not end at the

local minimum. Therefore, the efficiency of the two approaches depends on the initial

guess. The initialisation of a proper guess will lead to a successful calibration whereas a

bad guess will give spurious results.
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The differential evolution algorithm developed by Storn & Price (1997) is a solu-

tion of the initialization problem of guess initialization. The calibration result does not

depend on the initial guess. Storn & Price (1997) present some requirements that a

practical minimisation technique has to fulfill. The method has to be able to handle

non-differentiable and non-linear cost function; it has to have fewer controls variable to

steer the minimisation. The control variables have to also robust and easy to choose. the

technique most have a good convergence properties, that means consistent convergence

to the global minimum in consecutive independent trials. The differential evolution (DE)

algorithm fulfils all these requirements. The DE was designed to be a stochastic direct

search method. Direct search methods also have the advantage of being easily applied

to experimental minimization where the cost value is derived from a physical experiment

rather than a computer simulation (Storn & Price 1997). The DE is a parallel direct

search method, instead of a single initial guess value, the DE algorithm evolves many

trials value in parallel. Thus the DE scans the entire parameter space and when run

enough, it virtually guarantees to find the global minimum. The only potential drawback

of the differential evolution is runtime of the algorithm (Storn & Price 1997). The fact

that the DE samples the entire parameter space makes that more iterations are required

than for the Levenberg-Marquardt or the downhill simplex algorithm.

Figure 4.1: A typical evolutionary scheme of the Differential Evolution algorithm
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Figure 4.1 presents a typical evolutionary scheme of the differential evolution algo-

rithm. The first step consists to initialize the parameter, then the mutation enables

the expansion of the parameter search space. The recombination reuses the previously

successful parameter; here there is a mixture successful solution from the previous gener-

ation with the current generated solution. At the selection stage, a minimum parameter

is choice, if this parameter does not minimize the objective function, the model will not

converge. In that case, the process restarts at the mutation step until the selected local

minimum also corresponds to the global minimum. A greedy scheme is the key for fast

convergence of differential evolution.

For the calibration of the risk adjusted parameter λ and the degree of freedom k , we

will use the differential evolution algorithm. The best fit parameters k and λ determined

for the 2-factor Wang transform will be the optimal parameter of the DE algorithm.

We will use the optimal parameter to compute the premium under the 2-factor Wang

transform, plot it and compare the distribution of the actual price given by the market. In

other to determine the risk adjusted parameter λ and the parameter k, we use the mean

square errors as our objective function (error metric). The minimization of the objective

function is performed with the differential evolution algorithm. Based on the results of

Wang (2004) and Galeotti et al. (2013) which obtain respectively a k parameter equal

to 5 and 7 for CAT bonds, we set parameter search space such as k ∈ [1, 9] with k ∈ N.

The risk ajusted parameter λ is comprise in the in [0, 1] so we initialize the parameter as

continuous uniform random variable. The number of iterations is 1000.
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1. Set the space of length K of the parameter k, the benchmark error metric mse =

103, the number of iterations (IT), the vector collecting the λ’s, set the length of

the data equation to N

2. for j = 1 to K do

3. for i= 1 to IT do

4. λ(i,j) = rand(1) .set the space:

5. λ1 = λ(i,j)

6. SumSerr(j) = 0 initialize the sum of square error

7. for n = 1 to N do

8. Πw(n) = 1
2
[Qk(j)((Φ

−1(PFL(n))+λ1)+[Qk(j)(Φ
−1(PE(n))+λ1)]−CEL(n)×PFL(n)

9. Serr = (Πw(n) − Πm(n))
2

10. SumSerr(j) = SumSerr(j) + Serr

11. end for

12. Cmse(i, j) = SumSerr(j)].
1
N

compute the error metric (sum mean

square error);

13. if Cmse(i, j) < mse(j) do selected the minimum mean square error;

14. mse(j) = Cmse(i,j)

15. λoptimal(j) = λ(i,j) vector of every optimal λ for a given k.

16. end if

17. end for

18. end for

43



4.2.2 Results and Implications

We apply the distortion approach to the primary market data of 35 CAT bonds issued

between April 2014 and March 2015, which represents our in-sample period. The best

fit parameters that minimize the mean square error are: λ = 0.475 for the risk adjusted

parameter and k = 9 for the Student-t degrees of freedom parameter. We also compute

the premium based on Lane (2000) pricing approach for the in-sample. Figure (4.2) shows

the fitting results of the 2-factor Wang transform premium and the Lane premium for

35 CAT bonds of our in-sample data. We can see that the Wang transform premium is

consistent with the market price while the difference between the Lane model premium

and the market is very large. The mean absolute relative deviation for the 2-factor

Wang transform model is equal to 0.1 whilst it is equal to 0.57 for the Lane model. The

comparison of this error metric for the two model confirms the difference between the

premium of two model as compare to the market premium.

Figure 4.2: Fit of the 2-factor Wang Transform to market yields spreads and Lane model
yields spreads for 35 CAT bonds transactions data between April 1, 2014 to March
31,2015.
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We use the fitted parameters on the out-of-sample data and we can see that the 2-

factor Wang transform can reasonably explain the premium given by the market (see

Figure (4.3)). The 2-factor Wang transform model premium is very consistent with the

market premium when using the calibrated parameter of the in-sample data to price the

out- of-sample CAT bonds, We have an error metric of 0.2.

Figure 4.3: Using the in-sample fitted parameters (λ = 0.475 and k = 9 ) to test the
market yields spreads for 34 CAT bonds transactions data from April 1, 2015 to March
31, 2016.

After computing the parameters of the 2-factor Wang transform model for the in-

sample, we use the differential algorithm to compute the parameters of the model for the

out-of-sample data composed of 34 CAT bonds transactions form April 1, 2015 to March

31, 2016. We want to observe if there is a significant change between the parameters of

the in-sample and those of the out-of sample data, since the two samples contain slightly

the same number of CAT bonds transactions. The result of the differential evolution

gives the best fitted parameters with k = 9 for the t-student degree of freedom and

the risk-adjustment parameter λ = 0.49. We can observe that the parameter k does

not change but there is a change of 0.015 for the risk-adjusted parameter. Figure (4.4)

shows that the yields spread from our model compute for the out-of -sample data is very

consistent with the market yields spreads. The yields spreads computed with Lane (2000)

is not very consistent with the market yields spreads as compare to the 2-factor Wang
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transform model results. We compute the average absolute relative deviation for the two

models and we obtain repectively 0.141 and 0.82 for the 2-factor Wang transform model

and Lane (2000) model.

Figure 4.4: Fit 2-factor Wang transform to market yields spreads and Lane model yields
spreads for 34 CAT bonds transactions data between April 1, 2015 and March 31, 2016
(Fitted parameter k = 9 and λ = 0.49).

Table 4.1: Comparison of the models based on the mean absolute relative error

In-sample Out-of-sample

Model
2-factor Wang
Transform

Lane(2000)
2-factor Wang
transform

Lane (2000)

MAE 0.1 0.57 0.14 0.82

The results obtained with the 2-factor Wang transform model for the in-sample and

out-of- sample, and the Lane (2000) model confirm the conclusion of Galeotti et al. (2013)

who considered the 2-factor Wang transform as the most accurate and the best model

for CAT bonds pricing. The 2-factor Wang transform approximate very well the market

spread of CAT bonds. The 2-factor Wang transform is a good tools, that market players

can used to predict CAT bond price, since investors are usually provide with the PFL,

PE and CEL for each transactions.
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Chapter 5

Conclusion

This past 20 years, the world has registered an important and significant increase of the

number of natural disasters, coupled with the effect of climate change and the increase

of the population in regions with high threats of natural catastrophe. This situation

increases the insolvency risk for insurance company due to the huge amount of losses

related to the occurrence of a catastrophe event. The aim of this thesis was to present

the catastrophe risk and his valuation framework. In order to do it, we first present

the catastrophe risk, his properties and the instruments used by insurance companies to

hedge this type of risk. Then we present the state of the art of the pricing methods of

a catastrophe risk hedging instrument: CAT bond. Finally we focused on the 2-factor

Wang transform pricing model which we compared the accuracy with the Lane (2000)

model.

Catastrophe risk is a risk characterized by a low frequency and a high severity. This

characteristic are the properties of a natural disaster. The Hurricane Andrew experi-

ence has shown that the normal reinsurance was not able to manage this type of risk.

Insurance-linked securities like CAT bonds were launched to help insurance companies

and sponsors to hedge the catastrophe risk and fulfill the condition of the equity capital

requirement. It appears that CAT bonds have some similarity with credit default bonds;

they are both high yield bonds. CAT bonds earn high yield because of the unpredictable

characteristics of catastrophe events, while credit default bonds earn high yield because

of their defaultable property. CAT bonds present the advantage to be fully collateralized;

a property which covers CAT bond from interest rate risk and credit risk. The lack of
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transparency in the CAT bond market and the incompleteness make difficult to determine

an accurate pricing model for CAT bond. We realise a state of the art of CAT bonds

premium calculation and we notice that was a challenging issues.

We focused on the 2-factor Wang transform model which is one of the actuarial pricing

approaches using probability distortion operators. We used data of the primary market

for CAT bonds issued for April 1, 2014 to March 31, 2016. We divided our dataset in

two sets: an in-sample composed of data from April 1, 2014 to March 31,2015, and an

out-of-sample composed of data for April 1, 2015 to March 31,2016. We first determine

the model parameter using the in-sample data. Secondly, we apply the calibrated model

on the out-of -sample data. In order to evaluate the accuracy of our model, we also

determine the parameter for the out-of-sample data. We compared the obtained results

of the 2-factor Wang transform model both for the in-sample and the out-of-sample with

the Lane (2000) model on the basis of the mean absolute relative error. The 2-factor

Wang transform appears to be the most accurate model. We can conclude that 2-factor

Wang transform is the most accurate model for CAT bond pricing. The 2-factor Wang

transform model present the advantage that it takes into account the so-called greed and

fear” behaviour of the investor, and that it need only the information on the PFL, PE

and CEL to price a CAT bond.

Since there is no publicly available dataset of CAT bonds transactions, a good forward

looking research will be to built a large dataset on issued CAT bonds transactions and

determine the various characteristics of a CAT bonds that influence the investor percep-

tion of the CAT bond market. It will be also interested to analyse the accuracy of the

2-factor Wang transform and other probability distortion operator like the one presented

by Godin et al. (2012) in a case of ambiguity aversion in the same framework presented

by Robert & Therond (2014) and explore its possible extensions in credit risk valuation

framework.
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Härdle, Wolfgang Karl, & Cabrera, Brenda López. 2010. Calibrating CAT bonds for
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.1 Appendix A

Table 1: Descriptives Statistics

Amount
(millions $)

Market
Premium(%)

PFL PE
CAT Bond
Maturity
(month)

CEL

Mean 210.84 5.5932 0.76648 0.017799 42.87 0.03345
Standard
deviation

188.45 3.1840 0.14183 0.016928 9.8457 0.03397

Sample Size 69 CAT bonds transaction issued between April 1, 2014 and March 31, 2016

54



Table 2: Results of the 2-factor Wang transform model and Lane model on the on the
in-sample data

SECURITIES PFL PE CEL Market yield Wang yield Lane yield
Kizuna Re II 15-1 A 0,00210 0,0018 0,907 2,030% 1,767% 2,648%

Queen Street X 0,03670 0.0203 0.741 5.830% 6.561% 11.738%
Manatee Re 15-1 A 0.01590 0.0079 0.723 5.070% 4.185% 7.027%

Merna Re 15-1 0.00560 0.0032 0.732 2.030% 2.595% 3.941%
East Lane VI 15-1 A 0.01450 0.0123 0.924 3.800% 4.455% 7.804%

Galileo Re 15-1A 0.16680 0.0424 0.516 13.690% 13.342% 24.110%
Nakama Re 14-21 0.00590 0.0052 0.915 2.160% 2.908% 4.659%
Nakama Re 14-22 0.00910 0.0077 0.923 2.920% 3.538% 5.970%

Residential Re 14-II 4 0.02510 0.0117 0.713 4.870% 5.184% 9.099%
Tradewynd Re 14-1 1B 0.03680 0.0156 0.655 6.840% 6.307% 10.824%
Tradewynd Re 14-1 3A 0.01560 0.01 0.801 5.070% 4.363% 7.425%
Tradewynd Re 14-1 3B 0.03680 0.0156 0.655 7.100% 6.307% 10.824%

Tramline Re 14-1A 0.07470 0.0442 0.764 9.890% 9.525% 18.755%
Ursa Re 14-1 A 0.01270 0.0112 0.929 3.550% 4.225% 7.253%
Ursa Re 14-1 B 0.02810 0.0232 0.907 5.070% 6.174% 11.423%

Kilimanjaro Re 14-1C 0.02260 0.0093 0.646 3.800% 4.889% 8.017%
Golden State Re 14-1 0.00490 0.0011 0.51 2.230% 2.092% 2.936%
Alamo Re Ltd 14 -1 0.04110 0.0231 0.752 6.440% 6.947% 12.710%

Armor Re 14-1A 0.00670 0.0045 0.776 4.060% 2.933% 4.511%
Aozora Re 14- 1B 0.00570 0.0049 0.912 2.030% 2.838% 4.561%
Nakama Re 14-11 0.00660 0.0059 0.955 2.280% 3.059% 5.093%
Nakama Re 14-12 0.00680 0.0061 0.956 2.530% 3.106% 5.182%

Residential Re 14-1 10 0.13530 0.0935 0.836 15.210% 12.857% 29.749%
Residential Re 14-1 13 0.01000 0.0044 0.63 3.550% 3.313% 4.947%

Sanders Re 14-1B 0.00880 0.0071 0.898 3.040% 3.447% 5.757%
Sanders Re 14-1C 0.01090 0.0088 0.89 3.300% 3.839% 6.463%
Sanders Re 14-1D 0.01460 0.0118 0.877 3.950% 4.459% 7.575%
Sanders Re 14-2A 0.01170 0.0065 0.752 3.950% 3.676% 6.045%

Lion 1 Re 0.02320 0.0046 0.466 2.280% 4.562% 6.588%
Kilimanjaro Re 14-1B 0.02420 0.0109 0.682 4.560% 5.111% 8.648%
Kilimanjaro Re 14-1A 0.02550 0.0133 0.718 4.820% 5.403% 9.227%
Everglades Re 14-1A 0.03340 0.0202 0.802 7.600% 6.255% 11.686%
Citrus Re Ltd 14-21 0.01300 0.0101 0.9 3.800% 4.119% 7.203%
Citrus Re Ltd 14-1A 0.01910 0.013 0.78 4.310% 4.971% 8.212%

Atlas IX 15-1A 0.04560 0.031 0.825 7.100% 7.568% 14.443%
yied = premium
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Table 3: Results of the 2-factor Wang transform model and Lane model on the on the
out-of-sample data

SECURITIES PFL PE CEL Market yield Wang2 Lane yield Wang2
Akibare Re 16-1A 0.0136 0.0102 0.8750 2.53% 4.32% 7.26% 4.193%
Aozora Re 16- 1A 0.0107 0.0073 0.8410 2.23% 3.75% 6.17% 3.647%
Espada Re 16-1 0.0833 0.0034 0.2320 5.83% 9.28% 8.88% 9.068%

Manatee Re 16-1A 0.0192 0.0060 0.5100 5.32% 4.57% 6.26% 4.450%
Manatee Re 16-1C 0.1428 0.0759 0.7230 16.48% 13.35% 27.75% 12.949%
Caelus Re 16-1A 0.0178 0.0140 0.8710 5.58% 5.03% 8.47% 4.885%

Citrus Re 16-1 D50 0.0419 0.0220 0.7180 7.60% 7.19% 12.47% 6.982%
Citrus Re 16-1 E50 0.0811 0.0419 0.7090 10.65% 10.10% 18.77% 9.792%

Atlas IX Capiti 16-1A 0.0360 0.0245 0.8330 7.60% 6.90% 12.55% 6.692%
Galileo Re 16-1A 0.1274 0.0590 0.6800 13.69% 12.42% 24.56% 12.044%
Galileo Re 16-1B 0.0590 0.0355 0.7750 9.13% 8.72% 16.28% 8.450%
Galileo Re 16-1C 0.0355 0.0231 0.8030 7.10% 6.84% 12.14% 6.632%

Kilimanjaro Re 15-1D 0.0625 0.0365 0.7540 9.38% 8.99% 16.57% 8.720%
Kilimanjaro Re 15-1E 0.0358 0.0210 0.7540 6.84% 6.77% 11.70% 6.572%

Nakama Re 15-1 1 0.0131 0.0101 0.8850 2.91% 4.26% 7.16% 4.143%
Nakama Re 15-1 2 0.0094 0.0075 0.9150 3.30% 3.63% 6.05% 3.531%
Queen Street XI 0.0362 0.0200 0.7400 6.24 % 6.71% 11.63% 6.516%

Resindential 15-II 3 0.0475 0.0227 0.6860 7.35% 7.57% 13.06% 7.346%
PennUnion Re 15-1A 0.0258 0.0155 0.7440 4.56% 5.80% 9.51% 5.633%

Ursa Re 15-1 B 0.0289 0.0239 0.9070 5.07% 6.46% 11.62% 6.266%
Bosphorus 1A 0.0199 0.0109 0.7390 3.30% 4.94% 8.12% 4.796%
Acorn Re1A 0.0096 0.0052 0.7710 3.45% 3.39% 5.49% 3.292%
Azzuro Re 1 0.0040 0.0022 0.7750 2.18% 2.23% 3.40% 2.169%
Alamo Re 1A 0.0274 0.0214 0.8980 5.98% 6.17% 11.17% 5.981%
Alamo Re 1B 0.0161 0.0130 0.8820 4.66% 4.81% 8.05% 4.673%

Everglades Re II 15-1A 0.0146 0.0119 0.8970 5.22% 4.57% 7.69% 4.443%
Long Point Re III 15-1A 0.0128 0.0095 0.8670 3.80% 4.18% 6.97% 4.065%

Resindential 15-I 10 0.0833 0.0463 0.7440 11.15% 10.26% 19.76% 9.946%
Resindential 15-I 11 0.0463 0.0089 0.4670 6.08% 6.75% 9.92% 6.561%

Citrus Re Ltd. 15-1A 0.0131 0.0114 0.9310 4.82% 4.39% 7.39% 4.267%
Citrus Re Ltd. 15-1B 0.0401 0.0144 0.6080 6.08% 6.64% 10.85% 6.452%
Citrus Re Ltd. 15-1C 0.0623 0.0401 0.8110 9.13% 9.00% 17.40% 8.719%
Cranberry Re 15-1A 0.0308 0.0070 0.4470 3.85% 5.66% 7.56% 5.511%

Pelican III Re 0.0444 0.0235 0.7270 6.08% 7.39% 13.03% 7.174%
Wang Premium with λ = 0.49 Wang2 = Wang Premium with λ = 0.475
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