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1 Introduction

In the last decades the European directives contribute to the development of a liberalized
market, in order to improve the electric system efficiency and reduce electricity prices.

In this scenario of liberalization, Gestore Mercato Elettrico became (since 1999) the
company in charge of the economic organization and management of the Italian electricity
wholesale market, commonly known as Italian Power Exchange (Ipex).

After five years of decrees and directives, the Italian power system underwent substan-
tial reorganizations and it was divided into six electricity zones each one characterized by
its own price.

The original contribution of the thesis is the evaluation of the zonal interdependences
on the long run, in the new country energy market. Moreover we provide a multivariate
analysis that takes into account determinant factors in electricity prices formation such
as the weather changes and the presence of seasonalities.

The model is applied to equilibrium electricity spot prices of the Italian Wholesale
Market and includes few groups of variables: lagged prices, weather, loads and periodic
components.

As regard to the latter aspect, electricity may be considered as an atypical commodity
due to its non storability. This peculiarity implies that generation and consumption of
electricity have to be constantly balanced in real time. Hence, given these premises, the
spot prices time series will exhibit different type of seasonalities which we will try to
overcome using the Fourier Spectral Analysis as tool to identify them.

As regard to the weather conditions, we consider the air temperatures as a proxy that
is able to capture habits and climate variabilities across different countries or regions.
We will pay special attention to modelling the relationship between the behavior of the
temperatures and the different zonal prices.

Another original contribution is given by the Bayesian approach to inference that
allow us to avoid the problem of over-fitting.

This thesis is organized as follows. Chapter 2 discusses the Italian electricity system
background and the zones in which it is divided. Chapter 3 shows a preliminary analysis
of the time series that are included in the model. Chapter 4 gives an overview of the
Bayesian methodology, proceeding with the description of the three priors that will be
used to run the analysis. The results are given in Chapter 5 and Chapter 6 concludes.
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2 The Italian Electricity Market

The Italian power system is organized like a grid: generation, transmission and distribu-
tion of energy are the core activities that let the energy system works properly, each one
carried out by a different subject.

Ministero dello Sviluppo Economico (MSE) defines the strategic and operational goals
considering the national interests, the Authority of electric power (AEEG) promotes com-
petition and efficiency in the national electricity market, the responsibility of Terna S.p.A.
is to guarantee the safety of the grid system that lets the electricity be transferred all
over Italy.

The italian wholesale electricity market, better known as “Italian Power Exchange”,
is managed by Gestore Mercato Elettrico which aims to boost the competition among
the providers guaranteeing neutrality, transparency, objectivity in the country electricity
market.

The market is divided into the “Spot Electricity Market - MPE”, the “Forward Elec-
tricity Market - MTE” subjected to the physical delivery of electricity and the “Forward
Electricity Account Trading Platform - PCE “ on which the operators register their com-
mercial obligations and assign the related injection and withdrawal of electricity.

Problems that have to be taken into account in the analysis are due to several factors
such as the need to maintain a balanced amount of energy which gets into the network,
because susceptible to losses during transport or distribution. Maintaining the frequency
and voltage of the energy are two other key points in the efficiency maintenance of the
plants.

Electricity is not a typical commodity because it cannot be stored. This unique
characteristic makes complicated the compliance of the previews constrains.

Another factor to be borne in mind is the nature of the Italian market itself, especially
if we compare it with the European ones. Therefore the market for GME is not a purely
financial market aimed only to the determination of prices and quantities, but it is a real
physical market where physical injection and withdrawal schedules are defined.

2.1 The Market Zones

The transmission of electricity within Italian territory takes place in geographic areas
defined as market zones. These areas do not correspond to the Italian regions, but rather
to an aggregate of them.

The regions that belong to the same market area pay the same price for the electricity.
Each zone is characterized by limits in transmission of electricity to or from the neigh-
boring zones. The range of the limit is defined by the balance between generation and
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consumption of energy and it is different among the macro-regions.

Figure 1: Italian Market Zones

The national transmission grid is interconnected with foreign countries through 18
lines: four with France, nine with Switzerland, one with Austria, two with Slovenia, one
submarine cable with Greece and one submarine cable between Sardinia and Corsica.

The shape of these areas, adopted by Terna, is functional to the management of the
electric transit all along the peninsula and it can be summarized as follows:

• 6 physical zones (Northern Italy, Central Northern Italy, Central Southern Italy,
Southern Italy, Sicilia and Sardinia);

• 6 virtual zones (France, Switzerland, Austria, Slovenia, Corsica and Greece);

• a series of interconnecting areas.
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Figure 2: Italian Power System

Every geographical or virtual areas are a set of supply points; these points are the
minimum electricity units to which must be defined the schedules of injection and with-
drawal, whether defined in the execution of bilateral contracts or upon acceptance of
bids/supply offers in the Electricity Market.

For each supply point is identified a "dispatching user". The user is responsible to
Terna for carrying out the injections and withdrawal schedules, and balance them. Such
orders can be sent by Terna to the supply points in real time to ensure both the safety
of the system and the payment of expenses for the imbalance, that means penalties
attributed to the supply points for lack of adherence of the schedules.

2.2 The Electricity Market

The Electricity Market is organized in:

• Spot Electricity Market (MPE),

• Forward Electricity Market with delivery obligation (MTE),

• Platform for physical delivery of financial contracts concluded on IDEX (CDE).
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MPE is divided into two markets:

• Day-Ahead Market (MGP) where electricity is exchanged according to offers/de-
mands and takes place in a single session in the implicit auction on the following
day,

• The Intraday Market (MI) deals with the volume variations of electricity than which
were traded in the MGP (which takes place into two implicit auctions with a different
closing time).

The Ancillary Services Market (MSD) is also included in the Spot Electricity Market and
it is divided into ex ante MSD and Market Balance (MB) (its role is to ensure the proper
functioning of the dispatching service).

Operators participate in the market by submitting bids or supply offers that are make
up of pairs of volume and its unit price (MWh; €/MWh) and express the willingness to
sell (or buy) an amount of energy not higher than stated than the one of the bid/offer,
at a price not lower (or not higher) than the specified one of the bid/offer.

Price and volume must not be negative and bids may not specify any purchasing price
(except for MSD), this situation expresses the operator availability to purchase power at
any price. Offers are referred to the "supply points" hour by hour (for each day and for
each point of supply, may be submitted up to 24 bids and each is independent from the
others).

Day-Ahead Market (MGP) hosts most of the transactions of electricity; this market
is organized according to a model of implicit auction where hourly blocks of electricity
are negotiated for the next day and where are defined, not only prices and quantities
exchanged, but also schedules for injection and withdrawal for the next day.

During the sitting of MGP, operators may submit bids/offer shall indicate the amount
and the maximum (minimum) at which they are willing to buy (sell). Each offer or bid
must be made consistent with the potential injection or withdrawal of the supply point
to which the bid/offer is related and must correspond to the will to inject or withdraw
the electricity offered/asked.

The Supply Offers express the willingness to sell an amount of energy that does not
exceed what specified in the offer at a price not less than that indicated in the offer itself.
If this is accepted, leads to the commitment to inject the asked volume in the grid at a
given time range.

The Demand Bids convey the will to purchase volumes of electricity not greater than
what specified in the bid and at a price not higher than the one stated in the bid.

For such offers/bids operators can refer only to offer points for withdrawal or mixed.
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Offers and bids are accepted after the closing of the trading day on the basis of
economic merit and within the limits of transit between areas.

All accepted offers and bids referred to mixed points or withdrawal points belonging
to the virtual zones, are valued at the equilibrium price of the area to which they belong.
The price is determined for each hour, the intersection of the demand curve and supply
and differs from zone to zone in the presence of saturated transit limits.

Accepted demand bids referred to withdrawal points belonging to the geographical
areas are valued at National Single Price (PUN), equal to the average of the zonal prices
weighted for zonal consumption.

Before the sitting of the MGP, GME makes available, to the operators, information
regarding: the expected energy demand for each hour and each zone and the maximum
limits allowed for the transitions between neighboring zones for each hour and for each
pair of zones.

At the end of the sitting, GME initiates the resolution process: for each hour of the day
following, the algorithm of the market accepts the bids/offers to maximize the transition
between zones.

The approval process takes into account all offers to sell, valid and reasonable received,
and sorts them by price in an ascending aggregate supply curve; the same happens for
the demand bids received that are arranged in decreasing order in an aggregate demand
curve. The intersection of the two curves determines: the total quantity traded, the
equilibrium price, the accepted bids and schedules of injection and withdrawal obtained
as sum of accepted bids/offers refer to the same area and the same supply point.
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If the flows on the grid resulting from the schedules do not violate any transmission
limit, the equilibrium price is unique in all zones (and equal to the clearing price of Figure
3). The accepted bids/offers shall be those with a selling price (P*):

selling price  P⇤
purchasing price � P⇤

If at least one limit is violated, the algorithm separates the market in two market
zones: one export zone that includes all the zones upstream, and one downstream for
what regards the importation.

For each market zone is generated a supply curve (which includes all the offers pre-
sented in the same zone as well as the maximum volumes imported) and a demand curve
(including all the bids presented in the area, as well as the volumes equal to the maximum
quantity exported).

The outcome is an equilibrium price zone (Pz ) in the two different market zones:

Pz

exportingmarket zone

> Pz

importingmarket zone

This market separation process is repeated until the result is compatible with the grid
constrains.
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3 Data

Electricity Prices

The dependent variable of the model is constituted by six vectors, each one refers to a
macro energetic region. Each series consists of 35,060 zonal prices, from the 1/1/2008 to
31/12/2011, recorded by GME s.p.a. during the bargaining sittings.

0 1 2 3
x 104

0

100

200

300

Electricity Prices − North
0 1 2 3

x 104

0

100

200

300

Electricity Prices − Centre North

0 1 2 3
x 104

0

100

200

300

Electricity Prices − Centre South
0 1 2 3

x 104

0

100

200

300

Electricity Prices − South

0 1 2 3
x 104

0

100

200

300

Electricity Prices − Sardegna
0 1 2 3

x 104

0

100

200

300

Electricity Prices − Sicilia

Figure 5: Hourly Electricity Prices - 2008 2011

Running some simple tests and looking at the histogram reported in the figure below, I
can assume that the distributions of the zonal prices do not follow a normal distributions.
This assumption is also testified by the Jacque-Bera test which rejects the null hypothesis
of normality in every zone.
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Figure 6: Cumulative Density Function of Zonal Prices

The shape of the distributions is pretty the same for each area, even if the observations
of the peninsular zones are more centered around the mean than Sardegna and Sicilia
(higher Standard Deviation). This could be a signal of the presence of higher costs for
the “italian islands”.

Electricity has to be considered as a singular commodity because, unlike the others,
it cannot be stored: generation and consumption have to be constantly balanced in real
time. This particular feature has economic consequences on the electricity price itself as
shown in Table (1).
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North North C South C South Sardegna Sicilia

Mean 68.99 69.998 70.88 68.74 81.82 97.65
Median 66.20 66.95 67 65 72 90
Max 209.98 220.50 215 215 300 417

St. Dev. 25.153 28.277 27.735 26.892 39.75 52.65
Kurtosis 5.1876 5.255 4.8976 5.44 5.32 3.28
Skewness 0.96 0.9332 1.0313 1.1705 1.3834 0.697

Table 1: Data Statistics (2008 - 2011) - Electricity Prices

Descriptive analysis highlights what has already appeared from the graph: mean and
median are not close to each other; positive skewness indicates that the tail on the right
side is longer than the left side one and the bulk of the datas lies to the left of the mean.

%ADF Test _ Results (North)

% results=adf(Y(:,1),0,24)

results =

meth: ’adf’ crit: -3.4583

nobs: 35033 -2.8710

nvar: 26 -2.5937

sige: 74.1840 -0.4516

rsqr: 0.8829 -0.1060

rbar: 0.8828 0.5367

dw: 2.0348

nlag: 24

alpha: 0.9595

adf: -12.2621

The Dickey-Fuller test leads to the conclusion of rejection of the null hypothesis: no
presence of unit root on levels (with 24 lags).

Volumes

Offered and demanded volumes are two of the exogenous variables taken into account in
the analysis. From the graphs below emerges that the two variables have almost the same
pattern in each area.

The difference among energetic regions is given by the amount of energy used: North
has a electricity demand that is almost three times higher than the one of other regions.
The geographic location (it is close to the neighboring countries) and the massive presence
of industries in northern Italy could be two possibly reasons for this discrepancy also
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considering that the lowest electricity demands come from highly rural areas such as the
south or the islands.
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Figure 7: Zonal Demanded and Offered Volumes (2008 - 2011)

Another hint, given by the graphs, is about the zonal electricity production. In the first
graph (North) the difference between offered and demanded volumes could be considered
as the zonal actual consume, so the most of electrify is sold to the other regions with fewer
productive structures. This statement is confirmed by the presence of 1613 facilities in
the North of Italy, 277 in the Centre and 172 in the South and in the islands1.

Temperatures

Variations of daytime/nighttime consumption, weather conditions and succession of sea-
sons are all factors that affect the price and the demand of electricity.

Among the explanatory variables, I chose the temperatures, as proxy of all these
factors.

1
Data refer to hydroelectric power stations - www.gazzettadisondrio.it – 20 V 07 – n. 14/2007, anno

IX°
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My analysis includes 18 italian provinces selected as representative of the weather of
each energetic zone. Every single macro region has at least one province whose data is
used to describe the climate of the area:

• North (Bologna, Brescia, Genova, Milano, Rimini, Torino, Trieste, Venezia)2,

• Central North (Firenze, Perugia)3,

• Central South (Roma, Napoli, Pescara)4,

• South (Bari, Reggio Calabria)5,

• Sardegna (Cagliari)6,

• Sicilia (Palermo, Catania)7.

I retrieved all the information I needed through the use of a computer script that allowed
me to get hourly frequency temperatures, otherwise difficult to categorize.

Presence of missing data is a common feature of these historical series. Each weather
station, responsible for data collection, gathers the temperature information in its own
way; this means that, considering a given sample period, some station specific temperature
series could exhibit missing values when other temperature do not.

In order to fill the gaps in the time series of the weather data I followed two different
approaches. On the one hand when there were just few isolated missing datas, I calculated
the average between the previous and next value:

V

missing,t

=
(V

t�1 + V

t+1)

2
,

on the other hand, where the missing data were more than one in a row, I had to
estimate the values by a multiple regression analysis.

Missing data were estimated as:

V0,t = a0 +
nX

i=1

(a
i

V

i,t

) + "

t

(1)

where

• V0,t is the missing data,
2
Shown below the weather station codes as downloaded from the web site www.wunderground.com:

LIBP, LICC, LIMF, LIMJ, LIRA, LIRQ, LIRZ, LIVT.

3
LIEE, LIPL.

4
LIML, LIPR, LIRN.

5
LIBD LIPZ

6
LICJ.

7
LICR, LIPE.
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• a0, ..., an are the regression coefficients,

• V

i,t

is the value if the i

th weather station.

For instance, if we consider a presence of “N/A” observations between 8am and 12am
in the LIVT series; to fill the blanks I used the information contained in neighboring
provincial vectors (LIRA, LIRZ, ...), from the same time range, to run the regression (1).
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3.1 Spectral Analysis

This method allows to understand the regular behavior of a time series and reveals in some
way what we could expect from the market (see C. W. J. Granger(1969), “Investigating
causal relations by econometric models and cross-spectral methods,” Econometrica, vol.
37, no. 3). Spectral analysis lets us discover the seasonalities of a time series, looking at
the content of the frequency distribution (the spectrum).

As the frequency is the inverse of the period of a signal, once obtained the frequency
spectrum, we identify also the periodic components (cycles) of which it is composed, the
signal and the strength of the cyclicities included in the series.

The analysis of time series in the frequency domain allow us to select the most relevant
frequencies and to estimate the strength of the periodic component at a given frequency.



Fourier Analysis8

To analyze discrete time series (for example, a time series of prices) is generally used
the Fourier approach; it allows to identify frequencies explaining a portion of seasonal
variations in electricity prices.

The techniques of the Fourier analysis allow modelling a time series with seasonal
components as a sum of periodic sinusoidal functions A · sin(�t + f) , where A denotes
the amplitude of a sinusoidal wave, � the frequency, and f the phase shift.

Assuming that � is known (determined by the Fourier transform), estimates of the
slope parameters can then allow calculating the respective amplitude and phase shift.

The Fourier transform of a real-valued function p(t) on the domain [0, T ] is defined:

F (i�) = F {p(t)} =

Tˆ
0

p(t)e−i�t

dt

where i is the imaginary unit such that i

2 = −1.
Based on this definition, the FFT numerical procedure computes

F (i�k) ⇡
T�1X

t=0

p

t

e

−i�

k

t

It is important to note that the values of the Fourier transform are complex num-
bers and are therefore not directly comparable, to avoid the problem is frequently used

8
The results have been computed using the FFT procedure implemented in MatLab. See the Appendix

at the end of the thesis for the program’s lines.
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the modulus of the Fourier transform. Figure 8 presents a spectral densities for hourly
electricity prices.
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Figure 8: Fourier Analysis of Electricity Prices

The non storability of electricity is the main cause of seasonality presence in the
dataset. The use of electricity has to be instantaneous, so the higher use of it during the
daytime cannot be supply by an electricity generation during the night-time. This feature
determines the occurrence of a daily seasonality. Other kinds of seasonalities observed in
the frequency are the weekly and the annual ones. Weekly seasonality takes into account
the difference between the weekends and the working days (where the demand is affected
by industrial production). The annual seasonality is related to the climatic conditions.

In the following table are highlighted the peaks calculated by using the Fourier ap-
proach.

To obtain the hourly values of the seasonalities, 2⇡ were divided by each value reported
in the highest part of the table (Lambda). From the results emerges two different kind
of seasonalities: the weekly one (described before) and the daily one9.

9
To get the Frequency:

�
2⇡ - To get the hourly cycles of ciclycities:

1
Frequency
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We could notice that the peaks describe more than the 2 seasonalities, for example
we register also a 3-hours, a 6-hours and a 8-hours cycles. I will not include them in the
model, because they may be considered as glares of the 24-hours seasonalities (also called
harmonics).
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4 The Bayesian Approach

Because of the regional division imposed by the Italian government to manage the whole-
sale market, and given the dataset chosen seeking to explain the relationship between the
exogenous variables and the spot electricity prices, I decided to approach the analysis
considering each electricity zone as “a country on his own”.

One of the most successful models, flexible enough to be applied, was the Vector
Autoregressive Model (VAR) which has proven to be very useful for describing the dynamic
behavior of economic and financial time series. Recourse to the VAR granted me to take
into account lagged interdependencies (including the lagged spot electricity price series
in the regression) and potentially also unit specific dynamics. These features generated a
very large number of coefficients that did not admit to use a classical estimation method.

To solve the issue,it comes in handy the Bayesian approach, with which I could restrict
the coefficient vector to depend on a low dimensional vector of time varying factors.
These factors may capture variations in the coefficients that are common across zones
and variables (have a common effect). The variables considered could be included in the
prior assumptions as unit-specific (they affect just one or few ares) or they may be related
to all the regions.

My analysis will start taking into account all the endogenous variables as if they
were related with all the geographic ares considered. This will be possible using a non
informative prior and a natural conjugate one. Later I will impose more restrictive
assumptions on parameters, considering temperatures and volumes as unit specific, and
inserting these expectations in the prior formulation.

To define the fundamental characteristics of the Bayesian method, we could consider y
as a data vector (or matrix) and ✓ as a parameters vector (or matrix) that seeks to explain
y. Having established y and ✓, by using the Bayes Rule10, the goal of the researcher is
answer the question: “Given the data, what do we know about ✓?”(Gary Koop, Bayesian
Econometrics 2003).

So what is important in the approach, is learning about ✓ given “something known”
as the data (y), or better, is being interested in using the data to understand the “role” of
parameters in the model. This is allowed by the next relationship derived from the Bayes
rule:

p(✓|y) / p(y|✓)p(✓)

where the term p(✓|y) is referred to the posterior density, p(✓) is the prior density
10

Let consider: p(A,B) = p(A|B)p(B) and p(A,B) = p(B|A)p(B) where A and B are two events of a

given probability ;

From the previous two equations we can obtain p(B|A) = p(A|B)p(B)
p(A) which is known as Bayes Theorem

for events.
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and p(y|✓) is the likelihood function11 which is the density of the data conditional on the
parameters of the model.

So Bayes theorem transforms prior or initial probabilities, p(✓), into posterior or sub-
sequent probabilities, p(✓|y) which combines data e non-data informations. Formulate an
economic model means collect probability distributions conditional on different values for
✓, about which a researcher wish to learn; then the beliefs of the researcher about ✓ must
be organized into a (prior) probability distribution. After collecting the data and insert-
ing them into the family of given distributions, using the Bayes’ theorem, it is possible
to calculate new beliefs about ✓.



4.1 The Model

General Specification

Let start considering a generalized specification of the model used for the analysis:
Defined Y as a (T ⇥ M) matrix, X as a matrix which stacks the T observation of

each regressor included in the model, and A as a matrix that contains all the coefficients
including the intercept A = (a0 A1 ... A

p

)0 ; given these premises the model could be
written as:

Y = XA+ " (2)

or, considering ↵ = vec(A) as a (KM ⇥ 1) vector in which are included all the VAR
coefficients (and the intercepts), the same model could be written as:

y = (I
M

⌦X)↵+ " (3)

where " s N(0,⌃⌦ I

M

).
Now, because we are interested in highlight which kind of regressors are included in

X, then we can represent the model as:

y

it

= ↵

i

+
PX

j=1

MX

l=1

�

j,il

y

t�j,l

+ x

0
it

�

i

+ "

it

(4)

where:
we can notice the presence of the lagged term y

t�j,l

, descriptive of the lagged y in-
cluded;

x

it

is the vector of the unit-specific regressor:
11

See Section 5, Appendix A
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x

it

=

2

66664

x1t

x2t

. . .

x

kt

3

77775

and "
it

may be considered as sum of different effects:

"

it

=  

i

+ �

t

+ u

it

where its components could be defined as: a unit specific effect  
i

, the time effect �
t

and the disturbance term u

it

.
To simplify the formula (1) let drop the index j from �

j,il

by considering just 1 lag,
so we obtain:

y

it

= ↵

i

+
MX

l=1

�

jl

y

t�1,l + x

0
it

�

i

+ "

it

(5)

Assuming that:
Y

t

= (y
it

, . . . , y

Mt

)p

↵ = (↵1, . . . ,↵M

)p

� = (�
il

) con i, l = 1, . . . ,M

The model could be reduced to:

Y

t

= ↵+ �Y
t�1 +X

t

� + "

t

(6)



The Model (Variables Specification)

Considering the 6 geographical zones, for each area I set up the following model:

y

it

m⇥1
= A

i

m⇥m

y

it�1
m⇥1

+ C

i

m⇥q

z

it

q⇥1
+ "

it

m⇥1
(7)

with t = 1, ..., T and i = 1, ..., N where N = 6 and T = 35060

The model could be reduced to a more compact formula considering all the coefficients
included in the model as region specific:

Y

t

= ↵+ �1Yt�1 +DZ

t

+ "

t

(8)

Y

t

contains the spot electricity price,
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Y

t�1 its t-th row is y

it�1 = [y0
it�1, ..., y

0
it�1] with k = mp, descriptive of the lagged

electricity prices included in the model (in the analysis I included just one lag
for the prices);

Z

t

is a (T × q) matrix of explanatory variables; that means it includes all the
variables previously described in section 2: hourly temperatures the of the
18 italian provinces, demanded volumes of the six ares, offered volumes, six
weekly dummies and 23 daily ones.

We also assume that the distribution for " is given by " s N(0,⌃⌦ I

M

).

Considering X

t

= (I
n

⌦ x

t�1), x

t�1 = (Y 0
t�1, ..., Y

0
t�p

, z

0
t

)0 and � = vec(�1, D) the
model could be written as:

Y

t

= X

t

� + "

t

In this way the unknown parameters of the model become � and ⌃. The errors in each
equation are homoskedastic and not autocorrelated. Using a probability density function
(also known as pdf ), the likelihood function for b and S can be written as:

L(Y |�,⌃) / |⌃|�T/2
exp

(
�1

2

X

t

(Y
t

�X

t

�)0 ⌃�1 (Y
t

�X

t

�)

)
(9)

Therefore, for a given prior p(�,⌃), the posterior is going to be:

p (�,⌃|Y ) / p (�,⌃)L (Y |�,⌃) (10)



4.2 About Priors

General consideration about priors

A fundamental choice to implement the Bayesian estimation is the selection of a prior
distribution for the parameters of the model. The Bayesian literature take into account
specific proposal for different economic problems which means different ways to determine
the parameters � and ⌃ of a prior. Use a “genuine” approach to the estimation would
require to determinate a prior distribution also for the parameters of the prior p(�,⌃)

and then integrating them out of the posterior distribution; this is called Full Bayesian
Approach. However, sometimes it may result difficult to implement this integration so
it remains to find out some alternatives. One of them is substitute directly into the
formulas for the mean and the variance of the posterior distributions, the estimation of
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hyper-parameters (Matteo Ciccarelli and Alessandro Rebucci (2003), Bayesian VARs:
A survey of the recent literature with an application to the European Monetary System);
estimation that could be OLS. This kind of solution to the problem is also called Bayesian
Empirical Estimation.

In the development of the model for the Italian electricity prices I chose the Non
Informative Prior and the Natural Conjugate one; anyway I want to give an overview of
other priors that could suit with the model.



Minnesota Prior12

The Minnesota prior, Minnesota (MN) prior, first introduced by Litterman (1980), on
the VAR coefficients is centered on the assumption that each variable follows a random
walk process.

For Litterman the problem is estimating the (k ⇥ 1) vector �
g

that contains the
parameters of the g

th equation of Y
t

= X

t

�+ "
t

where the error term is known and equal
to �2

g,g

.
More precisely, this prior states that:

p(�
g

) s N(�̄
g

, ⌦̄
g

) (11)

where�̄
g

and ⌦̄
g

represents the prior mean and the variance-covariance matrix of �
g

.
The residual variance-covariance matrix, ⌃, is assumed fixed and diagonal, �2

g,g

I

T

.
Vectorizing the time observation of the g-th equation we will obtain:

Y

g

= X�

g

+ "

g

, g ⌘ 1, ..., n (12)

where Y

g

and "
g

are (T ⇥ 1) vectors. So, given (12) and assumed the independence of
the error terms: the likelihood function described at (9) becomes:

L(Y |�,⌃) / |�2
g,g

|�T/2
exp

(
� 1

2�2
g,g

X

t

(Y
g

�X�

g

)0 (Y
g

�X�

g

)

)
(13)

Therefore, for the given prior and likelihood, the posterior could be obtain:

p (�g|Y ) / |�2
g,g

|�T/2|⌦̄
g

|�T/2

exp

(
�1

2

"
�
�

g

� �̄

g

�0
⌦̄�1

g

�
�

g

� �̄

g

�
+

1

�

2
g,g

X

t

(Y
g

�X�

g

)0 (Y
g

�X�

g

)

#)

12
proposed by R.Litterman (1986), University of Minnesota
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our posterior relation, considering that |�2
g,g

|�T/2 and |⌦̄
g

|�T/2 are constants and
simplifying the products inside the parenthesis by Y

0
g

Y

g

and �̄

g

⌦̃�1
�̄

g

because constant
too13, the proportion will be:

p (�g|Y ) / exp

⇢
�1

2

h�
�

g

� �̄

g

�0
⌦̃�1

g

�
�

g

� �̄

g

�i�
(14)

with:

�g = ⌦̃
g

�
⌦̄�1

g

�̄

g

+ �

�2
g,g

X

0
Y

g

�

⌦̃
g

=
�
⌦̄�1

g

+ �

�2
g,g

X

0
X

��1

There are few consideration that is proper to remark: first of all the prior and posterior
independence (without it is not possible to estimate them separately); ⌃ is assumed fixed
and diagonal, with the diagonal elements obtained from an AR(p); �̄

g

and ⌦̄
g

are unknown
and specified in terms of few known hyper-parameters. Assuming a infinitive dispersion
of the prior distribution around its mean (that could be obtain by the Gibbs Sampler)
⌦̄

g

! 0 , the posterior mean of �
g

will become equal to (X 0
X)�1

X

0
Y

g

, which is the OLS
estimator of �̄

g

.
Litterman assuming that the most of the time series are well represented by random

walk processes, decided to assign numerical values to hyper-parameters of the model.
He considered ⇧ as a degenerate random variable on the assigned values with a pre-
determinated structure for the diagonal elements of the matrix ⌦̄

g

. Therefore, the
variance of �̄

g

is defined by:

8
>>><

>>>:

⇡2/l
2

(⇡3/l2)�g,g/�j,j

⇡4 �g,g

for the g

th

lag of endogenous variable

for the g

th

lag of endogenous variable (j 6= g)

for deterministic/exogenous variable

Given l = 1, ..., p the number of lags of a variable, we could consider ⇡2 as the controller
of the tightness its own lags, ⇡3 controls the tightness of the own lags relative to lags
of the other variable in the equation and ⇡4controls the uncertainty on deterministic or
exogenous variables while �

g,g

and �
j,j

measure the scale of fluctuation. Finally the mean
vector is specified as �̄

g

= (0, ..., 0,⇡1, 0, ..., 0) where ⇡1is the prior mean of coefficient on
first lag of endogenous variable in equation g.

13
Matteo Ciccarelli and Alessandro Rebucci (2003), Bayesian VARs: A survey of the recent literature

with an application to the European Monetary System, Research Department, International Monetary

Fund (IMF) Working Paper
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Non Informative Priors

Till now, we have not specified any prior information for the empirical model analysis,
we just give an overview of the Minnesota Prior which is one of the most important
prior assumptions of the Bayesian literature. By relaxing the previous hypothesis about
the posterior independence between equations and the fixed residual variance-covariance
matrix, we can introduce the next two priors, the ones we used for modelling the Italian
electricity spot prices. Without a prior p(�,⌃) is hard to obtain precise information for
a model that involves many coefficients.

The conventional non informative prior is chosen to provide objectivity; it will espe-
cially become an useful tool in the comparison with the other priors:

p(�,⌃) = p(�)p(⌃) / |⌃|�(n+1)/2 (15)

As said before, applying Bayes’ rule to the prior pdf in (11) and the likelihood function
in (9) yields the joint posterior probability density function for b and S:

p (�,⌃|Y ) / p (�|⌃, Y ) p (⌃|Y ) (16)

The conditional posterior of b given S and the data is distributed as a normal:

p (�|⌃, Y ) s N

⇣
�̂

ols

,⌃⌦ (X 0
X)�1

⌘
(17)

with posterior mean equal to the generalized least squares estimator.
The conditional posterior of ⌃ given the data is distributed as an Invers Wishart

distribution14 with parameter matrix (Y � XB̂

ols

)0(Y � XB̂

ols

) , the sum of squared
error of the OLS estimation, and degrees of freedom T � k:

p (⌃|Y ) s iW

T�k

h
(Y �XB̂

ols

)0(Y �XB̂

ols

)
i

(18)

with X of dimensions (T ⇥k) and Y of dimensions (T ⇥n) denoting the matrix version
of X

t

and Y

t

, B = [B0
1, ..., B

0
p

, D

0] of dimensions (k⇥n) and iW (Q, q) denoting an inverted
Wishart distribution with scale matrix Q and q degrees of freedom.

In order to obtain draws of b and S from their own marginal posterior probability
density function, one possible way is to use an algorithm for sampling from probability
distributions using the Monte Carlo approach based on the construction of a Markov
Chain.

14
See Appendix A
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Markov Chain Monte Carlo (MCMC) is widely applicable to Bayesian problems and
better known as Gibbs sampler. In this procedure draws are made iteratively from the
conditional posterior pdf. Given a particular starting value for S extracted from the
Inverted Wishart distribution, that may be called as ⌃(0), the i -th draw from the Gibbs
sampler (b(0),S(0)) is obtained using the following two steps:

(a) draw b(i) from p(b|S(i−1), Y ),
(b) draw S(i) from p(S|b(i), Y ).
As already said, the two conditional posterior pdf’s are normal and inverted Wishart,

respectively.
After a sufficiently high number of draws, the Markov Chain created by the draws will

converge to a determined beta and sigma. After this convergence, the next draws can be
viewed as draws from the marginal posterior pdf’s p(b|Y) and p(S|y). These draws can
be used to obtain the results. Draws that take the prior to the point of convergence are
discarded.

Assessing whether convergence has taken place is similar to assessing whether a time
series is stationary (William E Griffiths, Bayesian Inference in the Seemingly Unrelated
Regressions Model - April 18, 2001). Then we proceeded calculating the posterior mean
and the posterior standard deviation of the “beta draws” and the “sigma draws” resulted
of the Gibbs loop.

Integrating ⌃ out of the joint posterior distribution, the marginal posterior distribution
of B (the matrix from the parameter vector of �), p(B|Y ) become:

p(B|Y ) /
���(Y � B̂

ols

)0(Y � B̂

ols

) + (B � B̂

ols

)0X 0
X(B � B̂

ols

)
���
�T/2

which is a generalized t-Student distribution with scales(Y � B̂

ols

)0(Y � B̂

ols

) and
X’X, mean B̂

ols

and degrees of freedom T � k.


Natural Conjugate Prior

The second class of prior we used to interpret and make computation is the Natural
Conjugate Prior. We proceed with a conjugate family of prior distributions because it is
a convenient way of solving the main drawbacks of the Minnesota prior.

Conjugancy is the property by which the posterior distributions follows the same
parametric form of the prior distribution; it is defined considering: = as a class of sampling
distributions p(y|✓), @ as a class of prior distributions for ✓, then the class @ is a conjugate
for = if p(y|✓) 2 @ for all the p(·|✓) 2 = and p(·) 2 @.
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Natural conjugate priors arise by taking @ to be the set of densities having the same
functional form as the likelihood (German et al. 1995).

Priors are meant to reflect any researchers’ informations, before seeing the data that
wish to be included. When we combine a conjugate prior distribution with the likelihood,
it yields a posterior that falls in the same class of distributions for b and S.

One of its advantage is that the natural conjugate has the same functional form of
the likelihood function, this means that the output information can be interpreted in
the same way as likelihood function information or, broadly speaking, the prior can be
interpreted as coming from a hypothetical sample of data set from the same process that
generated the data.

Let consider �̄, the vectorization of a matrix M ⇥ k (66 ⇥ 6, in the analysis), as the
prior mean of beta; ⌃ as a single draw resulted from the sigma posterior and ⌦̄ as the
prior variance of beta.

To relax the assumption of a fixed and diagonal variance-covariance matrix of residuals,
the natural conjugate prior for normal data is the Normal-Wishart15:

p(�|⌃) s N(�̄,⌃⌦ ⌦̄) (19)

p(⌃) s iW (⌃̄,↵) (20)

with ⌃̄ as prior scale of sigma and ↵ its degree of freedom (7 in the computation).
Briefly, �̄ is specified as dependent upon only one hyper-parameter that controls the mean
of the first lag of the endogenous variable, ⌦̄ is specified as a diagonal matrix, and the
diagonal elements of ⌃̄ are estimated from univariate AR(p) models (p = 1 in the model);
↵, prior degrees of freedom, has to be chosen to ensure the existence of the prior variances
of parameters. Given the prior assumptions, the posterior distributions is obtain as:

p (�|⌃, Y ) s N(�̃,⌃⌦ ⌦̃) (21)

p(⌃|Y ) s iW (⌃̃, T + ↵) (22)

where:
⌦̃ =

�
⌦̄�1 +X

0
X

��1

B̃ = ⌦̃
⇣
⌦̄�1

B̄ +X

0
X

ˆ
B

ols

⌘

⌃̃ given the data and T + ↵ degrees of freedom (35066) is equal to:
15

Unconditional prior distribution of � will be normal with prior mean E(�) = �̄ and variance V (�) =
(a�n� 1)�1⌃̄⌦ ⌦̄ where ↵ denotes the degree of freedom of the inverse-Wishart and satisfied ↵ > n+1
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⌃̃ = ˆ
B

ols

0
X

0
X

ˆ
B

ols

+ B̄

0⌦̄�1
B̄ + ⌃̄+ (Y �X

ˆ
B

ols

)0(Y �XB̂

ols

) + B̃

0 �⌦̄�1
X

0
X

�
B̃

as in the previous prior situation (Non Informative Prior), integrating ⌃ out of the joint
posterior, the marginal posterior distribution of B is a multivariate t-Student distribution,
whose integration can be performed numerically (Kadiya and Karlsson,1997).

Working with conjugate priors means assume that �̄, ⌦̄ and ⌃̄ are known otherwise
should be adopted a Minnesota-type specification for these matrices.



“Strict” Prior

In the model evaluation we used a Non Informative and a Normal Wishart Conjugate
priors settings. We consider the effect of all the variables included in the model as not
unit-specific. So, as we could see in the next section, also the temperature of a southern
province could be significative in defining the electricity spot prices of the northern region.

To improve the estimate results we could use the prior beliefs that not all the explana-
tory variables are essentials for price of a given region. We proceed imposing more strict
restrictions on the prior distribution of the parameters � and ⌃.

The constrains consist in imposing zeros for the parameter I do not assume related with
all the Italian regions. The new imposed conditions can be summarized as follows: the
lagged spot prices will continue to be related with each geographical area, the temperatures
will be divided according to zone from where they belong (i.e.: The 8 temperature of the
north will be related, in prior assumptions, just with the north), the volumes (demanded
and offered) will follow the same path of the temperature so they will be considered as
region specific and finally, the dummies (both weekly or daily) will continue to be referred
to all the regions.
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5 Empirical Results


In this section we want to give an overview of the results for the three different prior

choices (described in section 4) for our BVAR Model.
In Appendix B, I reported the completed version of graph and tables of the posterior

beta mean arising from the 500 draws created by the Gibbs sampler. In the next para-
graph, after describing the output of the Non Informative prior (the weakly restrictive),
we will proceed using its results to made a comparison with the other two priors. First,
the Normal Conjugate and than the Strict Prior.

The significance of the coefficients is graphically represented in the tables by the
colored cells and obtained using the credibility intervals given by the quantiles 0,05 and
0,95. If zero belongs to the interval described by the quantiles, it is high credible that the
posterior mean (beta mean) is equal to zero (white cell), if zero does not belong to the
credibility interval than it is highly credible that the posterior mean is not equal to zero
(cells light gray or gray).



Non Informative Prior

Observing the reported results in Table (9), we can draw several conclusions.
As we could have expected the Lagged Prices (with p = 1) play a relevant role in

capturing the variations of hourly spot prices, especially the ones related with their own
country, in fact all these coefficients are positive, high significative and their values are
included between 0.64 and 0.85.

Sicilia lagged spot prices is the only variable that does not affect none of the others,
followed by Sardegna Lagged Prices where, even if its coefficients are significant their
impact on the spot prices of North Centre and South to which they refer, is negligible.

Something interesting appears in the relation between the coefficients of the lagged
prices of South and South Centre with the North. It shows that, even if they are significa-
tive and captures part of the variations of spot prices, their effect is counterbalanced16.

16
See also Table 1, where are reported some statistics about the distribution of South Prices and South

Centre prices.
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N NC SC S Sa Si

Bologna 0.135426 0.140840 0.140431 0.136542 0.102341 0.251934

Brescia -0.004505 0.040576 -0.000696 0.002509 0.122437 -0.048769

Genova 0.057909 0.062450 0.050846 0.064274 -0.013470 -0.075861

Milano 0.146650 0.184483 0.174758 0.172834 0.058240 0.199955

Rimini 0.020528 0.034278 0.031859 0.003263 0.016034 -0.120713

Torino -0.078177 -0.053990 -0.066346 -0.087594 0.076559 0.025430

Trieste -0.061890 -0.087163 -0.081372 -0.062508 -0.115006 -0.159496

Venezia -0.025992 -0.043725 -0.058470 -0.072602 -0.000522 -0.023310

Firenze 0.068910 0.044952 0.063828 0.056073 0.072906 0.098447

Perugia 0.017751 -0.016958 0.023071 0.015189 0.183209 0.107897

Roma -0.135716 -0.140327 -0.158270 -0.163440 -0.096174 -0.233462

Napoli 0.180555 0.195615 0.188458 0.181355 0.153701 0.257061

Pescara 0.053319 0.054762 0.052254 0.041134 0.027940 0.254655

Bari -0.147389 -0.178772 -0.113518 -0.118499 -0.181744 0.025355

Reg_Cal -0.012079 0.000196 0.032317 0.068868 0.027916 0.195999

Cagliari 0.041097 0.072879 0.021279 0.046643 -0.049963 -0.242790

Palermo -0.200879 -0.265178 -0.226696 -0.216144 -0.150067 -0.239205

Catania -0.074174 -0.062755 -0.069663 -0.059405 -0.133372 -0.206837

Table 4: Non Informative Prior - Posterior Mean relations of Temperature and Zones

From the observation of the Temperatures’ coefficients (Table 4), using the Non In-
formative prior, the most of the coefficients result significative and, in few cases, the
are relevant in capturing the variation of SPs17. For instance, a temperature increase in
Palermo or Catania seems to generate a decrease in the spot prices of peninsular regions.
The presence of negative coefficients is a common feature of the provinces belonging to
the “middle” or southern Italy (with the exception of Napoli that shows positive and sig-
nificative coefficients related to all the regions 0.15  �

Temp

Naples

 0.25). The opposite
situation is highlight by the northern temperature whose influence on prices leads to a
proportional increase of them at the rising of the temperatures.

Volumes represent the demand and the offer of electricity for each region; what emerges
is that an increase in electricity demand by Sicilia (or by the North in relation to SC18 and
Sa19) is linked to a statistically significant decrease in the price of other regions (except for

17
Spot Prices

18
SC: �D_V ol

North

= �0.000224; Sa: �D_V ol
North

= �0.000746;
19

SC: South Centre; Sa: Sardegna
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Sardegna)20. The same happens concerning the offered loads side for the South Centre,
where the reduction in its offered volumes generates a proportional increase in the prices
of other regions (except for Sardegna)21.

As for the lagged prices, the offered volumes of Sicilia turn out to be not significant for
all the zones and an analogous situation is shown by the OV22 coefficients of Sardegna.

We included in the model weekly and hourly dummies in order to capture the intra
day and weekly seasonalities. All the hourly dummies are significative positive (except
D2, D3, D4, D22 which are non significative for some ares), just the opposite of the weekly
dummies that are all significantly negative.

What emerges is that the electricity prices tend to increase from the early morning
to afternoon then they decrease till midnight describing and capturing variations in the
daily use of electricity. On the other hand weekly dummies highlight the cyclical pattern
in spot prices due to the variations in business or residential use. Besides that, as reflected
in the dummies, the spot prices results lower during the weekend than in the working
days.

20�0.0034  �D_V ol
SoutuCentre

 �0.001
21�0.004  �O_V ol

SoutuCentre

 �0.0036
22

offered volumes
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Natural Conjugate Prior

N NC SC S Sa Si

L_N 0.786656 0.014667 0.051262 0.055907 0.047668 0.044037

L_NC -0.006321 0.839506 -0.023132 -0.022474 -0.052735 -0.044613

L_SC -0.095805 -0.169758 0.646372 -0.093279 -0.078755 -0.063825

L_S 0.094198 0.103478 0.103843 0.853020 0.037464 0.084883

L_Sa 0.000260 -0.005689 -0.000948 -0.003161 0.819240 0.002508

L_Si 0.000187 -0.001310 -0.000158 -0.000491 0.003133 0.790251

(a) Non Informative Prior - Beta Lagged Prices

N NC SC S Sa Si

L_N 0.786457 0.014255 0.051226 0.055937 0.047855 0.043265

L_NC -0.006254 0.839351 -0.023313 -0.022764 -0.052787 -0.045050

L_SC -0.095904 -0.169700 0.646626 -0.093398 -0.078665 -0.063672

L_S 0.094209 0.103295 0.103406 0.852932 0.037298 0.084891

L_Sa 0.000292 -0.005449 -0.000832 -0.003035 0.819363 0.002737

L_Si 0.000014 -0.001493 -0.000321 -0.000650 0.002961 0.790094

(b) Normal Conjugate Prior - Posterior mean - Lagged Prices

Figure 9: Comparison between the Posterior Mean of the Non Informative P. and Natural
Conjugate P.

Running the regression with the parameter distribution for � and ⌃ as laid down in section
4.2 (Normal Conjugate Prior), we obtained a slight change of the coefficients scenario
does not seem to result more parsimonious than the previous version.

For what concerns the lagged prices, Sardegna LP ’s betas is the only one that does
not affect the others because Sicilia LP beta23 becomes significantly negative in relation
to the north centre prices (even if the value of the coefficient is much lower than those
of the other peninsular regions). The remaining betas did not significantly change or
increase compared to the non informative ones.

23
lagged prices
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N NC SC S Sa Si

Bologna 0.134565 0.139770 0.139395 0.133389 0.097706 0.253810

Brescia -0.004543 0.040651 -0.000265 0.001908 0.120719 -0.050885

Genova 0.060114 0.064739 0.054247 0.067426 -0.015220 -0.072844

Milano 0.146665 0.183148 0.174498 0.173584 0.054492 0.201987

Rimini 0.018518 0.032542 0.028128 -0.001774 0.013558 0.120029

Torino -0.078658 -0.054833 -0.066538 -0.087323 0.076195 0.023038

Trieste -0.061781 -0.085659 -0.079966 -0.059699 -0.112311 -0.160961

Venezia -0.027533 -0.045730 -0.061043 -0.074802 -0.003099 -0.028408

Firenze 0.067868 0.043715 0.063746 0.055227 0.074522 0.097375

Perugia 0.015936 -0.019236 0.021555 0.013363 0.173557 0.106821

Roma -0.135274 -0.139149 -0.157613 -0.163284 -0.086992 -0.231674

Napoli 0.183815 0.199276 0.191504 0.183704 0.153533 0.257747

Pescara 0.054306 0.056250 0.053406 0.043103 0.029899 0.257534

Bari -0.150190 -0.181478 -0.116138 -0.119483 -0.183732 0.023499

Reg_Cal -0.012392 -0.001399 0.030789 0.068425 0.034771 0.194378

Cagliari 0.044648 0.077544 0.024473 0.048905 -0.044691 -0.238384

Palermo -0.201041 -0.266519 -0.227059 -0.214620 -0.150482 -0.239674

Catania -0.073862 -0.061865 -0.068912 -0.059473 -0.131225 -0.205883

Table 6: Normal Conjugate Prior - Posterior Mean - Relation of Temperatures and Zones

About temperatures, the coefficient’s values remain close to the ones of previous ver-
sion. Perugia’s beta temperature becomes non significative for all the regions included
the one from where it belongs. Napoli remains the exception among the coefficients of the
provinces located in the south showing significantly positive values with all the regions.
In the north side the same happens in what concerns Trieste’s temperatures where, but
differently from before, the province coefficient loses significance with the south energetic
region. Therefore, hypothetically (with the exception for the provinces listed above) I can
assume that an increase of the temperature of southern regions generates diffuse decrease
in electricity prices (in same cases, of whole Italy), counterbalanced (but not proportion-
ally) by the increasing of northern region temperatures that produces a diffuse increasing
of EPs.

The few variations in loads betas significance are recorded by Sardegna’s demanded
and offered volumes coefficients (which becomes irrelevant to Sardegna’s and Sicilia’s
prices) and by Centre North’s offered volumes beta that is not significative for South
anymore. What said in the previous paragraph about the dummies also applies to the
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natural conjugate results.


Strict Prior

The output carry out estimating the model by imposing more strict conditions, are de-
scriptive of a substantial changing of betas significance.

This changing does not concern the significance of the lagged zonal betas because they
continue to capture the price variations like they did in the non informative ones.

Their value is slightly increased for the coefficients significantly positive and decreased
for negative.

N NC SC S Sa Si

L_N 0.786656 0.014667 0.051262 0.055907 0.047668 0.044037

L_NC -0.006321 0.839506 -0.023132 -0.022474 -0.052735 -0.044613

L_SC -0.095805 -0.169758 0.646372 -0.093279 -0.078755 -0.063825

L_S 0.094198 0.103478 0.103843 0.853020 0.037464 0.084883

L_Sa 0.000260 -0.005689 -0.000948 -0.003161 0.819240 0.002508

L_Si 0.000187 -0.001310 -0.000158 -0.000491 0.003133 0.790251

(a) Non Informative Prior - Posterior Mean - Lagged Prices

N NC SC S Sa Si

L_N 0.787091 0.014891 0.051753 0.056454 0.046689 0.041666

L_NC -0.004274 0.842377 -0.020575 -0.020446 -0.052085 -0.043618

L_SC -0.098698 -0.173493 0.643025 -0.096623 -0.083055 -0.065238

L_S 0.095470 0.104992 0.105047 0.854384 0.039285 0.084703

L_Sa -0.000348 -0.006438 -0.001764 -0.003858 0.822251 0.001893

L_Si 0.000631 -0.000817 0.000496 0.000085 0.003517 0.793073

(b) Strict Prior - Posterior Mean - Lagged Prices

Figure 10: Comparison between the posterior mean of the Strict Prior and the Natural
Conjugate Prior

The constrains generate a completely different scenario, betas of temperatures like
the one of Trieste, Venezia and Genova become not significative for the southern regions
and also for the northern ones. The same situation is outlined in Catania temperatures
coefficients for all the areas.
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N NC SC S Sa Si

Bologna 0.046747 0.027287 0.025919 0.030337 -0.008276 0.064904

Brescia -0.031557 0.004582 -0.023948 -0.013957 0.023522 -0.021867

Genova 0.020415 0.022175 0.010779 0.025077 -0.004911 -0.025361

Milano 0.046509 0.056598 0.041605 0.049971 -0.008787 0.032087

Rimini .002933 0.009259 0.009571 -0.012451 0.000836 -0.014754

Torino 0-0.040961 -0.012074 -0.016274 -0.035848 0.036161 0.007920

Trieste -0.013407 -0.021180 -0.018747 -0.010363 0.001795 -0.014724

Venezia 0.008456 -0.000569 -0.005422 -0.018154 0.009074 0.029723

Firenze 0.038965 0.008620 .022527 0.016007 0.017812 -0.000148

Perugia -0.006266 -0.039687 -0.004845 -0.011907 0.051161 0.007048

Roma -0.025879 -0.013148 -0.021127 -0.030750 0.014513 -0.036560

Napoli 0.048473 0.041391 0.033257 0.040705 0.009649 0.054836

Pescara 0.004562 0.002515 -0.002161 -0.009717 -0.008890 0.036911

Bari -0.046625 -0.054289 -0.001790 -0.020125 -0.028128 0.030568

Reg_Cal -0.027829 0.021550 -0.004247 0.024502 0.011588 0.037539

Cagliari 0.008497 -0.032087 -0.012449 0.016791 -0.018373 -0.051653

Palermo -0.040807 –0.067330 -0.032687 -0.038665 0.004499 -0.030591

Catania -0.018476 -0.001979 -0.004550 -0.000184 -0.004790 -0.022622

Table 8: Strict Prior - Posterior Mean - Relation of Temperature and Zones

Coefficients related with Sardegna become not significative with the exception of Pe-
rugia. Napoli betas continue to be significative and positive in relation to all the regions
despite the restrictions imposed (Sardegna excluded). However its betas values drastically
fall to w 0, 04. This decreasing in coefficient values is diffuse to all the results reported in
table (8).

Another interesting feature of the results could be observed in the central part of the
table where betas temp share the same significance and almost the same values related
to both the central regions lagged prices.

The North and North Centre betas of the demanded volumes appear related just with
the region poles apart. Regarding the offered volumes side the situation appears similar to
the one of the first paragraph except for the coefficients of North Centre and of Sardegna
that become significative for the South and for Sicilia respectively.

All the hourly dummies remain significative positive even with this prior setting except
for the D2, D3, D4, D22 which are non significative in some ares. What said for the
daily dummies could be applied also to the weekly one because their betas remain high
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significantly negative.

(a) Non Informative Prior

(b) Natural Conjugate Prior (c) Strict Prior

Figure 11: Correlation Matrix

In Figure (11) are represented the correlation matrix calculated on the sigma mean
estimated by squeezing 24 the sigma draws carried out from the Gibbs sampler. The cold
colors are index of low correlation among electricity zones. It’s the case of Sicilia and
Sardegna whose rho25 with the other regions is close to zero and it is showed by the blue
gradation.

The relation among region is well explained in all the given figures and the repetitive
pattern seems to describe with great accuracy the Italian grid system where Sicilia and
Sardegna are linked with the mainland just by a submarine cable when the other regions
share a great number of offer point.

Except for the diagonal, the most correlated zones are the central ones with a 0.85 
⇢  0.89 followed by the correlation of North Centre and South Centre with the North
and South with the North itself.

24
term related with Matlab code used to obtain the Sigma posterior mean

25
correlation coefficient
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6 Conclusions and Possible Developments

In this thesis, a Bayesian model has been employed to determinate the interdependency
among Italian electricity zones.

The autoregressive part, described by the lagged prices, provides a first hint on the
situation of the Italian electricity market. North zone results the only zone that is not
affected by the lagged prices of the other regions considering that the effects of South and
South Centre lagged prices are counterbalanced. Sardegna and Sicilia coefficients do not
result significative in relation with the other zones of the mainland.

As regard to the demand volumes an increase in Sicilian one generates a diffuse de-
crease of the electricity prices, whereas we register a countertrend for all the other regions,
except for the Northern ones whose demand does not affect the price of other zones. On
the offered volumes side Sicilia and South ones are not relevant on the other regions
prices, the same happens for the offer of the North Centre in relation to the price of the
Southern areas.

From the hourly dummies appear that the electricity prices tend to increase from early
morning to afternoon then they decrease till midnight describing and capturing variations
in the daily use of electricity. Furthermore weekly dummies describe the cycles in spot
prices due to the variations in business or residential use that generates higher prices
during the working days than in the weekends.

We estimate the Bayesian model under three different prior assumptions. With refer-
ence to the zonal interdependency, it is rather well explained by the posterior mean and
variance of all the prior, even if the data are affected by high volatility.

However it is indisputable the presence of particular behavior in some variables (it is
the case of Napoli, Milano and Palermo among the weather coefficients). With regards to
the Strict Prior, it generates a drastic change in the significance of many coefficients but,
it does not change the weather scenario completely because a common feature to all the
prior used is defined by the presence of positive coefficients for the Northern provinces
(above Rome) and of negative coefficients for the Southern ones (below Rome).

This model is suitable to be extended by adding a financial variable or by including
a contiguity matrix of zonal proximities. A forecast analysis could be used to test the
predictive power of each prior used.
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7 Appendix A

Likelihood Function

A likelihood function L(a) is the probability or probability density for the occurrence of a
sample configurationx1, ..., x

n

given that the probability density p(x1; a) with parameter
a is known,

L(a) = p(x1|a) ... p(xn

|a)

(Harris and Stocker 1998, p. 824).


Multivariate Normal Distribution

x s N

n

(µ,⌃)

p(x) = (2⇡)�n/2 |⌃|�1/2
exp
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Invers Wishart Distribution

The Wishart distribution is the multivariate generalization of the gamma distribution.
If W s W (Q, q), where W is of dimensions(k⇥ k), then its density is proportional to:

|W |(q�k�1)/2 ⇥ exp(�1

2
tr(Q�1

W ))

On the other hand, if W

�1 s W (Q, q), then W has the inverse-Wishart distribu-
tion. The inverse-Wishart is the conjugate prior distribution for the multivariate normal
covariance matrix.

iW (W ; n, S−1), where n represents the degrees of freedom and S is a (k⇥k) symmetric,
positive definite scale matrix, is given by:

A

n

s W

v

(S�1)
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9 Appendix B (Graphs and Tables)

Non Informative Prior
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Figure 12: Non Informative Prior - North & Centre North
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Figure 13: Non Informative Prior - Centre South & South
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Figure 14: Non Informative Prior - Sardegna & Sicilia
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Normal Conjugate Prior
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Figure 15: Normal Conjugate Prior - North & Centre North
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Figure 16: Normal Conjugate Prior - Centre South & South
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Figure 17: Normal Conjugate Prior - Sardegna & Sicilia
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Strict Prior
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Figure 18: Strict Prior - North & Centre North
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Figure 19: Strict Prior - Centre South & South
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Figure 20: Strict Prior - Sardegna & Sicilia
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Table 9 : Non Informative Prior - Posterior Mean

North N_Centre S_Centre South Sardegna Sicilia

Constant -15.534437 -20.490459 -20.704559 -16.101427 -20.459472 -23.759584

Lag_North 0.786656 0.014667 0.051262 0.055907 0.047668 0.044037

Lag_N_Centre -0.006321 0.839506 -0.023132 -0.022474 -0.052735 -0.044613

Lag_S_Centre -0.095805 -0.169758 0.646372 -0.093279 -0.078755 -0.063825

Lag_South 0.094198 0.103478 0.103843 0.853020 0.037464 0.084883

Lag_Sardegna 0.000260 -0.005689 -0.000948 -0.003161 0.819240 0.002508

Lag_Sicilia 0.000187 -0.001310 -0.000158 -0.000491 0.003133 0.790251

T_Bologna 0.135426 0.140840 0.140431 0.136542 0.102341 0.251934

T_Brescia -0.004505 0.040576 -0.000696 0.002509 0.122437 -0.048769

T_Genova 0.057909 0.062450 0.050846 0.064274 -0.013470 -0.075861

T_Milano 0.146650 0.184483 0.174758 0.172834 0.058240 0.199955

T_Rimini 0.020528 0.034278 0.031859 0.003263 0.016034 -0.120713

T_Torino -0.078177 -0.053990 -0.066346 -0.087594 0.076559 0.025430

T_Trieste -0.061890 -0.087163 -0.081372 -0.062508 -0.115006 -0.159496

T_Venezia -0.025992 -0.043725 -0.058470 -0.072602 -0.000522 -0.023310

T_Firenze 0.068910 0.044952 0.063828 0.056073 0.072906 0.098447

T_Perugia 0.017751 -0.016958 0.023071 0.015189 0.183209 0.107897

T_Roma -0.135716 -0.140327 -0.158270 -0.163440 -0.096174 -0.233462

T_Napoli 0.180555 0.195615 0.188458 0.181355 0.153701 0.257061

T_Pescara 0.053319 0.054762 0.052254 0.041134 0.027940 0.254655

T_Bari -0.147389 -0.178772 -0.113518 -0.118499 -0.181744 0.025355

T_Reg_Cal -0.012079 0.000196 0.032317 0.068868 0.027916 0.195999

T_Cagliari 0.041097 0.072879 0.021279 0.046643 -0.049963 -0.242790

T_Palermo -0.200879 -0.265178 -0.226696 -0.216144 -0.150067 -0.239205

T_Catania -0.074174 -0.062755 -0.069663 -0.059405 -0.133372 -0.206837

D_Vol_N 0.000254 -0.000012 -0.000224 -0.000061 -0.000187 -0.000746

D_Vol_CN -0.001772 -0.000042 0.000853 0.000003 0.001260 0.001985

D_Vol_CS 0.000770 0.001225 0.001318 0.001008 0.002066 0.002340

D_Vol_S 0.002349 0.003076 0.003557 0.003875 0.003663 0.005599

D_Vol_Sa 0.005504 0.006002 0.004663 0.004623 0.007772 -0.001890

D_Vol_Si -0.001202 -0.000933 -0.001360 -0.001111 -0.003443 0.003238

O_Vol_N 0.000312 0.000243 0.000222 0.000011 0.000291 0.000302

50



O_Vol_CN 0.000913 0.001190 0.001116 0.000178 0.000481 0.000233

O_Vol_CS 0.000056 -0.000249 -0.000373 -0.000268 -0.000667 0.000326

O_Vol_S 0.000491 0.000083 -0.000269 -0.000244 -0.001373 -0.000257

O_Vol_Sa 0.004139 0.003714 0.004464 0.003637 0.000793 -0.000727

O_Vol_Si 0.000134 -0.000069 0.000558 0.000370 0.000934 -0.003294

D_Week_Mo -2.244664 -2.687596 -2.310346 -1.602761 -2.054250 -0.853054

D_Week_Tu -2.482299 -2.979909 -2.626312 -1.845970 -2.615231 -2.493627

D_Week_W -2.455901 -2.928412 -2.506655 -1.672568 -2.399328 -2.534267

D_Week_Th -2.529730 -2.854631 -2.509506 -1.793956 -1.902139 -1.934018

D_Week_Fr -2.698784 -3.112289 -2.847198 -1.978812 -2.388195 -2.011856

D_Week_Sa -0.968287 -1.458063 -1.171702 -0.843676 -0.719891 -0.915068

D_Day_1 1.933812 2.460585 2.799711 2.462389 0.013809 -2.295756

D_Day_2 -1.080583 0.044862 0.386342 -0.245660 -0.065779 6.141904

D_Day_3 0.156747 1.467494 1.832563 1.195913 1.767227 9.254907

D_Day_4 0.188216 1.630573 2.028657 1.407384 2.804025 9.623996

D_Day_5 2.511903 3.890431 4.372139 3.821916 5.327814 12.348763

D_Day_6 7.437846 8.714579 9.190162 8.692449 9.672382 15.190618

D_Day_7 13.551175 14.419992 14.928437 14.561001 15.954190 27.509287

D_Day_8 13.855662 14.884947 15.700916 15.404333 19.998193 32.694587

D_Day_9 12.205615 13.221643 13.775437 13.084034 18.069257 43.118612

D_Day_10 15.058232 16.091803 17.790704 15.773926 19.219506 33.021432

D_Day_11 10.506884 10.531224 11.692766 10.099760 9.409097 20.119237

D_Day_12 7.082978 7.226842 8.012182 7.810835 6.281761 15.980449

D_Day_13 -7.367935 -6.956448 -5.985169 -1.578129 -3.442356 11.881142

D_Day_14 2.220516 1.428580 2.512669 3.050950 0.110298 7.978727

D_Day_15 8.554934 8.842519 9.347627 7.767700 6.887107 13.995911

D_Day_16 7.191238 7.536482 8.120302 8.084814 6.072938 17.107167

D_Day_17 7.232380 7.755304 8.424257 9.479483 8.524366 22.719714

D_Day_18 6.592019 7.835764 8.421905 10.492702 10.727574 25.745459

D_Day_19 4.715694 5.646598 6.275060 7.833852 9.477111 20.836913

D_Day_20 2.738208 4.041999 4.798415 6.219766 7.463238 22.588283

D_Day_21 4.551994 3.308378 4.466414 5.528022 7.895389 21.581858

D_Day_22 0.298546 -1.241889 -0.533949 0.130414 -0.838247 8.203239

D_Day_23 -1.397072 -2.441005 -1.973953 -1.479542 -6.150044 -20.399352
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Table: Normal Conjugate Prior - Posterior Mean

North N_Centre S_Centre South Sardegna Sicilia

Constant -15.534660 -20.479262 -20.719949 -16.176847 -20.580222 -23.728536

Lag_North 0.786457 0.014255 0.051226 0.055937 0.047855 0.043265

Lag_N_Centre -0.006254 0.839351 -0.023313 -0.022764 -0.052787 -0.045050

Lag_S_Centre -0.095904 -0.169700 0.646626 -0.093398 -0.078665 -0.063672

Lag_South 0.094209 0.103295 0.103406 0.852932 0.037298 0.084891

Lag_Sardegna 0.000292 -0.005449 -0.000832 -0.003035 0.819363 0.002737

Lag_Sicilia 0.000014 -0.001493 -0.000321 -0.000650 0.002961 0.790094

T_Bologna 0.134565 0.139770 0.139395 0.133389 0.097706 0.253810

T_Brescia -0.004543 0.040651 -0.000265 0.001908 0.120719 -0.050885

T_Genova 0.060114 0.064739 0.054247 0.067426 -0.015220 -0.072844

T_Milano 0.146665 0.183148 0.174498 0.173584 0.054492 0.201987

T_Rimini 0.018518 0.032542 0.028128 -0.001774 0.013558 0.120029

T_Torino -0.078658 -0.054833 -0.066538 -0.087323 0.076195 0.023038

T_Trieste -0.061781 -0.085659 -0.079966 -0.059699 -0.112311 -0.160961

T_Venezia -0.027533 -0.045730 -0.061043 -0.074802 -0.003099 -0.028408

T_Firenze 0.067868 0.043715 0.063746 0.055227 0.074522 0.097375

T_Perugia 0.015936 -0.019236 0.021555 0.013363 0.173557 0.106821

T_Roma -0.135274 -0.139149 -0.157613 -0.163284 -0.086992 -0.231674

T_Napoli 0.183815 0.199276 0.191504 0.183704 0.153533 0.257747

T_Pescara 0.054306 0.056250 0.053406 0.043103 0.029899 0.257534

T_Bari -0.150190 -0.181478 -0.116138 -0.119483 -0.183732 0.023499

T_Reg_Cal -0.012392 -0.001399 0.030789 0.068425 0.034771 0.194378

T_Cagliari 0.044648 0.077544 0.024473 0.048905 -0.044691 -0.238384

T_Palermo -0.201041 -0.266519 -0.227059 -0.214620 -0.150482 -0.239674

T_Catania -0.073862 -0.061865 -0.068912 -0.059473 -0.131225 -0.205883

D_Vol_N 0.000250 -0.000015 -0.000230 -0.000067 -0.000181 -0.000744

D_Vol_CN -0.001769 -0.000021 0.000885 0.000020 0.001246 0.002031

D_Vol_CS 0.000774 0.001225 0.001326 0.001015 0.002094 0.002320

D_Vol_S 0.002361 0.003079 0.003565 0.003880 0.003685 0.005589

D_Vol_Sa 0.005518 0.005995 0.004635 0.004610 0.007787 -0.001921

D_Vol_Si -0.001209 -0.000923 -0.001363 -0.001103 -0.003491 0.003225
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O_Vol_N 0.000314 0.000243 0.000222 0.000013 0.000280 0.000299

O_Vol_CN 0.000920 0.001204 0.001131 0.000200 0.000493 0.000247

O_Vol_CS 0.000057 -0.000252 -0.000374 -0.000266 -0.000676 0.000339

O_Vol_S 0.000492 0.000084 -0.000251 0.000228 -0.001325 -0.000248

O_Vol_Sa 0.004125 0.003719 0.004452 0.003649 0.000834 -0.000731

O_Vol_Si 0.000132 -0.000073 0.000564 0.000365 0.000911 -0.003295

D_Week_Mo -2.258616 -2.691871 -2.318599 -1.603046 -2.059764 -0.885096

D_Week_Tu -2.482908 -2.965409 -2.621487 -1.847193 -2.576901 -2.508925

D_Week_W -2.474819 -2.936951 -2.520856 -1.682892 -2.414996 -2.545114

D_Week_Th -2.538439 -2.867021 -2.520301 -1.799484 -1.914207 -1.958091

D_Week_Fr -2.715887 -3.127159 -2.863973 -1.988403 -2.391130 -2.044268

D_Week_Sa -0.969387 -1.435537 -1.164566 -0.829390 -0.711486 -0.903342

D_Day_1 1.918264 2.445353 2.813748 2.487766 0.004193 -2.334395

D_Day_2 -1.092053 0.018843 0.372856 -0.243795 -0.082854 6.153013

D_Day_3 0.128633 1.429588 1.814178 1.189567 1.749160 9.244014

D_Day_4 0.161728 1.580808 2.028431 1.419692 2.761648 9.583472

D_Day_5 2.498112 3.878251 4.385705 3.846951 5.313023 12.280476

D_Day_6 7.377806 8.623043 9.136338 8.662924 9.655979 15.157958

D_Day_7 13.535539 14.381300 14.918522 14.562960 15.933006 27.486141

D_Day_8 13.854648 14.856006 15.698702 15.412631 19.953152 32.654310

D_Day_9 12.187422 13.212522 13.773592 13.091025 18.100493 43.132801

D_Day_10 15.040893 16.064470 17.778951 15.777153 19.192242 33.031021

D_Day_11 10.499919 10.519834 11.679442 10.116301 9.421152 20.159494

D_Day_12 7.067872 7.207120 7.989724 7.814595 6.294299 16.033148

D_Day_13 -7.391347 -6.987010 -6.016756 -1.597117 -3.509639 11.892399

D_Day_14 2.203002 1.402397 2.501232 3.058774 0.103378 7.958071

D_Day_15 8.537128 8.828943 9.327512 7.769035 6.915709 13.945749

D_Day_16 7.185918 7.511468 8.084138 8.063579 6.076986 17.082312

D_Day_17 7.230310 7.741721 8.422862 9.485690 8.581573 22.680374

D_Day_18 6.602372 7.832694 8.416359 10.499861 10.750397 25.751564

D_Day_19 4.702655 5.604620 6.243604 7.826095 9.421867 20.812843

D_Day_20 2.697133 3.982480 4.747488 6.178695 7.447241 22.578819

D_Day_21 4.509468 3.247402 4.435240 5.516889 7.876121 21.596443

D_Day_22 0.265532 -1.292579 -0.570863 0.104439 -0.874989 8.219547

D_Day_23 -1.413276 -2.473641 -1.988256 -1.472208 -6.112777 -20.429050
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Table: Strict Prior - Posterior Mean

North N_Centre S_Centre South Sardegna Sicilia

Constant -14.696249 -19.493391 -19.753623 -15.322370 -19.262415 -22.570768

Lag_North 0.787091 0.014891 0.051753 0.056454 0.046689 0.041666

Lag_N_Centre -0.004274 0.842377 -0.020575 -0.020446 -0.052085 -0.043618

Lag_S_Centre -0.098698 -0.173493 0.643025 -0.096623 -0.083055 -0.065238

Lag_South 0.095470 0.104992 0.105047 0.854384 0.039285 0.084703

Lag_Sardegna -0.000348 -0.006438 -0.001764 -0.003858 0.822251 0.001893

Lag_Sicilia 0.000631 -0.000817 0.000496 0.000085 0.003517 0.793073

T_Bologna 0.046747 0.027287 0.025919 0.030337 -0.008276 0.064904

T_Brescia -0.031557 0.004582 -0.023948 -0.013957 0.023522 -0.021867

T_Genova 0.020415 0.022175 0.010779 0.025077 -0.004911 -0.025361

T_Milano 0.046509 0.056598 0.041605 0.049971 -0.008787 0.032087

T_Rimini .002933 0.009259 0.009571 -0.012451 0.000836 -0.014754

T_Torino 0-0.040961 -0.012074 -0.016274 -0.035848 0.036161 0.007920

T_Trieste -0.013407 -0.021180 -0.018747 -0.010363 0.001795 -0.014724

T_Venezia 0.008456 -0.000569 -0.005422 -0.018154 0.009074 0.029723

T_Firenze 0.038965 0.008620 .022527 0.016007 0.017812 -0.000148

T_Perugia -0.006266 -0.039687 -0.004845 -0.011907 0.051161 0.007048

T_Roma -0.025879 -0.013148 -0.021127 -0.030750 0.014513 -0.036560

T_Napoli 0.048473 0.041391 0.033257 0.040705 0.009649 0.054836

T_Pescara 0.004562 0.002515 -0.002161 -0.009717 -0.008890 0.036911

T_Bari -0.046625 -0.054289 -0.001790 -0.020125 -0.028128 0.030568

T_Reg_Cal -0.027829 0.021550 -0.004247 0.024502 0.011588 0.037539

T_Cagliari 0.008497 -0.032087 -0.012449 0.016791 -0.018373 -0.051653

T_Palermo -0.040807 –0.067330 -0.032687 -0.038665 0.004499 -0.030591

T_Catania -0.018476 -0.001979 -0.004550 -0.000184 -0.004790 -0.022622

D_Vol_N 0.000297 0.000039 -0.000175 -0.000017 -0.000145 -0.000667

D_Vol_CN -0.001846 -0.000119 0.000791 -0.000055 0.001299 0.002023

D_Vol_CS 0.000706 0.001143 0.001252 0.000943 0.001963 0.002221

D_Vol_S 0.002253 0.002948 0.003447 0.003763 0.003503 0.005381

D_Vol_Sa 0.005729 0.006309 0.004963 0.004895 0.007519 -0.001607

D_Vol_Si -0.001394 -0.001153 -0.001645 -0.001334 -0.003554 0.002637
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O_Vol_N 0.000312 0.000242 0.000219 0.000010 0.000291 0.000296

O_Vol_CN 0.000842 0.001111 0.001033 0.000111 0.000395 0.000121

O_Vol_CS 0.000067 -0.000241 -0.000359 -0.000251 -0.000657 0.000355

O_Vol_S 0.000471 0.000059 -0.000270 -0.000236 -0.001306 -0.000036

O_Vol_Sa 0.004091 0.003657 0.004420 0.003610 0.000820 -0.000712

O_Vol_Si 0.000179 -0.000011 0.000617 0.000415 0.000956 -0.003285

D_Week_Mo -2.240328 -2.677161 -2.316211 -1.609845 -2.087860 -0.928902

D_Week_Tu -2.514624 -3.008088 -2.665939 -1.895454 -2.643919 -2.656033

D_Week_W -2.533206 -3.009151 -2.596584 -1.762737 -2.518707 -2.690138

D_Week_Th -2.596230 -2.932967 -2.598567 -1.879536 -2.036852 -2.081277

D_Week_Fr -2.721803 -3.134683 -2.881733 -2.019898 -2.503444 -2.123074

D_Week_Sa -0.932559 -1.399142 -1.120653 -0.801655 -0.645380 -0.792944

D_Day_1 1.378773 1.818249 2.148080 1.881072 -0.800998 -3.629367

D_Day_2 -1.673827 -0.684958 -0.341735 -0.904808 -0.748713 4.751926

D_Day_3 -0.479056 0.719089 1.077791 0.531791 0.899724 7.771489

D_Day_4 -0.472563 0.836637 1.256260 0.734788 1.854790 8.076038

D_Day_5 1.838114 3.090113 3.563758 3.105350 4.311255 10.777978

D_Day_6 6.684148 7.809377 8.293290 7.899173 8.567051 13.587287

D_Day_7 12.738532 13.420024 13.938022 13.668530 14.772507 25.784760

D_Day_8 12.914829 13.727101 14.548055 14.352701 18.679730 30.869122

D_Day_9 11.315576 12.151252 12.695062 12.087856 16.884540 41.411279

D_Day_10 14.307811 15.198672 16.868692 14.915353 18.344225 31.560033

D_Day_11 9.868194 9.757783 10.880878 9.354678 8.732535 18.747596

D_Day_12 6.481867 6.515451 7.244824 7.108150 5.739178 14.697431

D_Day_13 -7.958903 -7.668104 -6.733383 -2.269759 -3.982998 10.466171

D_Day_14 1.519811 0.577411 1.605701 2.209857 -0.492927 6.288789

D_Day_15 7.779874 7.918077 8.374493 6.873365 6.173769 12.119118

D_Day_16 6.457561 6.660769 7.177328 7.207243 5.389765 15.281129

D_Day_17 6.521100 6.906713 7.538662 8.661468 7.879223 20.913638

D_Day_18 6.032657 7.143875 7.698838 9.819817 10.186373 24.242126

D_Day_19 4.251000 5.083883 5.690999 7.304461 9.038478 19.563543

D_Day_20 2.376257 3.593999 4.327107 5.779709 7.151609 21.477831

D_Day_21 4.217051 2.899868 4.051366 5.143362 7.510437 20.591205

D_Day_22 -0.059016 -1.676446 -0.982053 -0.292752 -1.289084 7.159917

D_Day_23 -1.823050 -2.935479 -2.482895 -1.921223 -6.666077 -21.464631
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Matlab Code used for Fourier Analysis and Missing Data

% Temperature Missing Values _ North

y=Temperature18(:,1:end);

yy=y;

k=8;

j=1;

for i=j:k

alpha=0.05;

n=size(y,1);

X1=[ones(n,1) y(:,((j:k)~=i))];

[betahat, Ibeta, res, Ires, stat]=regress(y(:,i),X1,alpha);

yhat=X1*betahat;

isn=isnan(y(:,j:k));

av=and(isn(:,i),not(any(isn(:,((j:k)~=i))’)’));

yy(av,i)=yhat(av,1);

end

%Fourier Analysis - Electricity Prices

y=Prezzi(:,:);

T=size(y,1);

I=size(y,2);

lff=zeros(T,I);

for i=1:I

ff=abs(fft(y(:,1))).^2/(2*pi*T);

lff(:,i)=log(ff);

end

%Plot Fourier Analysis - Italian Zones

figure

for i=1:6

subplot(3,2,i)

plot(y(:,1));

plot(2*pi*(1:T)’/T,lff(:,i));

xlim([0,2*pi]);

ylim([-10,15]);

end
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