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Introduction 

 

The aim of this thesis is to assess Model Risk deriving from the application of two selected 

risk measures (Value at Risk and Expected Shortfall) to a realistic financial problem, so that 

I can compare their results in order to see which of the two is better in terms of Model Risk. 

More specifically, I want to see which of the two is a more reliable risk measure that better 

behaves in a realistic context.  

The increasing complexity of financial instruments has caused the need for banks and 

financial institutions to employ very sophisticated models to deal with them. The 

implementation and use of these models must be done consciously, otherwise Model Risk 

(MR) may arise. The significant involvement of models in the Great Financial Crisis of 

2007/2008 have highlighted the necessity of introducing a stringent regulatory framework to 

tackle this problem. Both US and EU regulators have issued guidelines in order to deal with 

MR, proposing the so called Model Risk Management framework. However, all these 

attempts are more focused in providing a qualitative approach to MR, and no compulsory 

and clearly defined procedure has been drafted to assess MR in a more quantitative way.  

In Chapter 1, after having presented the general framework to deal with MR both in the US 

and EU, I will analyse the problem of MR for financial risk measures, considering the Value 

at Risk (VaR) and the Expected Shortfall (ES), and I will discuss some methods proposed in 

the literature to measure it.  

Then, I decided to set up an experiment with the aim of assessing MR deriving from a realistic 

application of the two risk measures. More precisely, I will present an application of VaR and 

ES to the portfolio selection problem in three different scenarios, in order to assess their 

performances in different market conditions.  

The portfolio selection problem, presented in Chapter 2, is a constrained optimization 

problem that aims to minimize an objective function (which is the selected risk measure) 

given a desired rate or return chosen by the investor. However, because I want a more realistic 

problem, I will introduce complex constraints, called mixed-integers constraints, that makes 

the portfolio selection a NP-hard problem, for which no exact method is able to find a 

solution.  

Thus, in Chapter 3 I will introduce two approximated techniques that fall into metaheuristics 

algorithms’ family. More in detail, I will apply for the resolution of the portfolio selection 
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problem the well known Particle Swarm Optimization (PSO) and the recently developed 

Grey Wolf Optimization (GWO), with the further aim of comparing their results in terms of 

Model Risk. In fact, because they are approximated methods, another component of MR 

deriving from their application will rise. 

Then, in Chapter 4 I will present the experiment. I will apply the two metaheuristics 

algorithms to eleven securities taken from the S&P 500 index in order to define the optimal 

portfolios in three different scenarios: two consider crisis periods, respectively the financial 

crisis of 2007-2008 and the recent Covid-19 crisis, while the third considers a growing phase 

of the US economy in 2013-2014. Furthermore, I will contemplate two cases for each 

metaheuristics: one with each of the two risk measures as objective function to be minimized. 

Thus, I will have four models to analyse and four portfolios as outputs in each scenario: I will 

have a version of PSO with VaR as objective function, a PSO with ES, a GWO with VaR 

and a GWO with ES. The aim of this first analysis is to select the best algorithm in terms of 

Model Risk, and the three criteria used are: 

❖ the best fitness value obtained, that states level of convergence of the algorithm 

towards the real optimum solution; 

❖ the violations of the constraints; 

❖ the computational effort and time required by the algorithm to fully execute the code. 

 

Having selected the best algorithm, I will perform a further backtesting analysis, using only 

the portfolios found by this algorithm in the three scenarios, with the aim of assessing Model 

Risk for the two risk measures used. I will follow the approach of Boucher et al. (2014) that 

individuates the three criteria that a good risk forecast should possess: 

❖ Expected frequency of violations;  

❖ Suitable magnitude of violations; 

❖ Absence of violations clustering. 

 

In conclusion, I am able to provide a quantitative method to assess Model Risk linked both 

with the choice of the algorithm used to solve the portfolio selection problem and with the 

choice of the risk measure. 

 



3 

 

Chapter 1 

 

 Model Risk and Model Risk Management 

 

Due to the increasing complexity of financial instruments, such as CDOs and 

ABSs 1, banks and financial institutions have to rely more consistently on 

mathematical and statistical models to evaluate, manage and control those 

instruments in order to help them make correct decisions. As a direct 

consequence, Model Risk arises, producing potential threats that must be 

addressed by the users of the model and by the Regulator. In this chapter, 

after having presented a brief summary of the main events that have shaped 

the environment around Model Risk, I will introduce the concept of model 

and Model Risk. Then, I will focus on the new normative environment that 

has been recently introduced, focusing on the European and US perspectives. 

As we will see later, both these two approaches provide a good qualitative 

framework to deal with Model Risk, known as Model Risk Management, but 

struggle when trying to identify quantitative methods to assess this risk. In the 

final paragraph, focusing on Model Risk deriving from financial risk 

measures (such as Value at Risk and Expected Shortfall), I will present some 

methods proposed in the literature to analyse and quantify Model Risk linked 

to these two risk measures. 

 

 

1.1 Introduction to Model Risk and Model Risk Management 

As previously pointed out, the importance of statistical and mathematical models in the 

financial field has risen steeply in recent years. Almost every core activity of banks and 

financial institutions is based on the use of those models. Among the most important and 

debated ones there are models for measuring the risk of an investment, such as the Value at 

 
1 CDOs stands for Collateralized Debt Obligations, while ABSs stands for Asset Backed 

Securities. An ABS is a debt financial instrument backed by an underlying asset. A CDO 

is a peculiar type of bond composed of many ABSs. 
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Risk (VaR) and the Expected Shortfall (ES)2. From their application derive several crucial 

decisions: for example banks have to adequate their capital reserves with respect to their 

portfolio’s riskiness, which is measured, among others, in accordance with VaR or ES. Thus, 

a good implementation and a deep understanding of those models is vital.  

In this environment, the rapid development and growing use of the last years of complex 

algorithms, Artificial Intelligence (AI3) and Machine Learnings (ML4) techniques allow to 

automate an increasing number of complex processes, sometimes delegating to software, 

based on those techniques, the task of applying and managing important models, and thus of 

taking important decisions. Even if these advances may seem very promising, they of course 

must come with some risks. 

Given that the use of models provides a lot of advantages in producing an easier 

representation of real world relationships and improving decision making process, it is 

acknowledged that relying blindly to them must come with a cost. In principle, all model 

outputs should be taken with an “healthy” degree of skepticism (Brown et al., 2015). In fact, 

the vast employment of models inevitably triggers the rising of some risks, known as Model 

Risks (MR). Those risks can be due to model errors, for example wrong specifications, 

implementations or coding of the model, or errors in the use of the model, for example when 

applying a model designed for a specific task in a different field that is beyond what it is 

supposed to do. Thus, like any other type of risk, MR should be evaluated, managed and 

regulated. The development of a strong framework to deal with Model Risk, the so called 

Model Risk Management, that both looks at qualitative and quantitative aspects, is one of the 

hot topics of the last decade and much more effort is required to achieve this goal by the US 

and EU regulators.  

In the following subparagraph I will (briefly) present a summary of the crucial events that 

have contributed to the initial draft of the regulatory framework to deal with Model Risk.  

 

 
2 VaR and ES will be presented in more detail in paragraphs 1.4 of chapter 1 and 2.4 of 

chapter 2.  
3 According to Britannica, AI is “the ability of a digital computer or computer-

controlled robot to perform tasks commonly associated with intelligent beings.” AI is a 

subset of Computer Science. Reference: https://www.britannica.com/technology/artificial-

intelligence. 
4 According to Britannica, ML is the “discipline concerned with the implementation of 

computer software that can learn autonomously.” ML is a subset of AI. Reference: 

https://www.britannica.com/technology/machine-learning. 
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1.1.1 Basel Agreements and the History of Model Risk 

Now it is important to provide a short presentation of the core events that occurred in the 

recent years that have contributed to the development of the concept of Model Risk and to 

the normative framework for Model Risk Management. Figure 1 shows the timeline of these 

crucial events.  

 

 

Figure 1: Timeline of the core events relative to Model Risk and Model Risk Management 

from 1988 to 2019.  

 

The first event happens in 1988, when the Basel Committee on Banking Supervision 

(BCBS5) gathers for the first Basel Agreement. Basel I imposes new capital standards for all 

financial institutions: in particular, it provides a definition of capital as the composition of two 

elements, basic equity (Tier I) and supplementary capital (Tier 2). Tier 1 capital is composed 

of  shareholders’ equity and retained earnings and it is the primary and most liquid source of 

every bank. On the other hand, Tier 2 capital is composed of revaluation reserves, hybrid 

capital instruments and subordinated term debt. By nature, Tier 2 capital is less liquid than 

Tier 1 and it is a less reliable source for the bank. Moreover, Basel I provides the minimum 

 
5  It is an international authority instituted in 1974 by the heads of the Central Banks of ten 

of the most industrialized countries in the world. It has legal residence in Basel, in 

Switzerland. Its main aim is to harmonize prudential regulation and supervision of the 

Banking sector world wide.  
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capital requirement that every bank must maintain at any moment in order to absorb potential 

losses over time, which is given by the ratio of total capital over total risk weighted assets. 

Thus, in order to calculate this ratio every asset is multiplied by a weight in accordance to its 

riskiness. Those weights are respectively divided into four categories: 0% or safe, 20% or 

low risk, 50% or medium risk and 100% or high risk. Nonetheless, even if Basel I represents 

the first effort to regulate the banking sector, the only type of risk taken into account is Credit 

Risk, which is the risk that the counterparty of a contract would fail to comply with its 

obligations.  

It is in 1996, with the Market Risk Amendment by the BCBS, that a new category of risk is 

introduced: Market Risk. This new typology includes all the risks deriving from unexpected 

and substantial changes in the market’s valuation of a company’s assets and liabilities due to 

changes in interest rates, exchange rates or other market movements. This constitutes a little 

step forward from Basel I and all its limitations. However, it was not sufficient because many 

other types of risk that were not considered (regulated).  

The first definition of Model Risk is drafted in 2000 by the Office of Comptroller of the 

Currency (OCC6). Nonetheless, Model Risk is not included in any of the BCBS agreements, 

and not enough attention is devoted to it.  

In 2004, Basel II agreement is introduced in substitution of the previous too ‘simplistic’ 

agreement. Basel II framework is divided into three pillars:  

❖ Minimum capital requirements, based now on three types of risks; 

❖ Supervisory review for risk review and capital assessment; 

❖ Market discipline for public disclosure and transparency. 

 

Besides Credit risk and Market risk, here a new risk is considered: Operational risk. This new 

category considers all the potential losses due to inadequate internal processes or external 

events like legal actions. In addition, Basel II also introduced the possibility for banks to 

develop their own internal models to assess the amount of capital to be kept, called the 

Internal Rate Based approach (IRB). With this new possibility, a potentially huge component 

of Model Risk, still not regulated, is introduced. However, as 2007/2008 events might 

highlight, Basel II is not found out to be fully effective in its aim.  

 
6 It is a Federal agency of the US government, instituted with the National Currency Act in 

1863. Its aim is to regulate and monitor US banks, also outside US borders.  
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In fact, in response to the Great Financial Crisis7, Basel III (2010) is drafted as an 

implementation of Basel II. According to Walter (2011), the main reasons for introducing 

Basel III are the magnitude and the frequency of banking crises in the last years and the hope 

that the benefits of implementing such a complex regulation would possibly outweigh the 

costs. Basel III increases the quality standard and the quantity of capital to be kept by banks: 

it distinguishes between two types of capital. Level 1 capital, which is the most important for 

ensuring continuity to the core activities of the bank, is composed of Core Equity Tier 1 (CET 

1) and Additional Tier 1 (AT 1) capital. CET 1 is calculated as the ratio between total capital 

over risk weighted assets and it is composed of common shares and retained earnings. 

Basically, it represents the most liquid part of a bank’s capital, and it ensures that the bank is 

able to withstand any possible financial distress. AT 1 instead is composed of all those 

instruments that are not common equity but that can be included into Level 1 category, like:  

Contingent Convertibles (or CoCos8) or hybrid securities that can be converted into equity. 

Level 2 capital is instead composed of Tier 2 capital, which constitutes the more illiquid part 

of capital, comprising reserves and hybrid instruments. 

Basel III also introduces stress testing, liquidity risk supervision and capital buffers to tackle 

both procyclicality and countercyclicality9. Thus, in this context the concept of Model Risk 

became to have more relevance, but an explicit guidance was still lacking. 

The first comprehensive guidance on Model Risk Management was drafted in 2011 by OCC 

and Federal Reserve (Fed) with the Supervisory Review (SR 11-7) on Supervisory Guidance 

on Model Risk Management.  

Looking at the European environment, the introduction of the Capital Requirement 

Regulation (CRR 575/201310) and the Capital Requirement Directive IV (CRD IV 

36/201311) in 2013 proposed new technical criteria concerning the assessment and treatment 

of risks for banks.  

 
7 The Crisis blew up in 2007 with the collapsing of the subprime mortgage bubble, however 

I will give more details later on in this chapter.  
8 CoCos are high yield debt instruments that can be converted into equity or stocks. 
9 With procyclicality I mean the mechanism through which the financial system contributes 

to amplifying cyclical fluctuations in the market, enhancing expansive phases but at the 

same time worsening recession phases. Vice versa, with countercyclicality I mean all the 

activities that do not follow the ongoing trend of the economy, but instead reverse it. 
10 Regulation (EU) No 575/2013 of the European Parliament and of the Council of 26 June 

2013 on prudential requirements for credit institutions and investment firms. 
11 Directive (EU) No 36/2013 of the European Parliament and of the Council of 26 June 

2013 on access to the activity of credit institutions and the prudential supervision of credit 

institutions and investment firms. 
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In the same year, the European Central Bank (ECB) published a Regulatory Technical 

Standard (RTS) concerning Prudent Valuation techniques and adjustments, more specifically 

tackling the problem of Model Risk quantification.  

In 2014 the ECB in the context of the Supervisory Review and Evaluation Process (SREP12) 

integrated Model Risk as part of  the Pillar II of the European Banking Union.  

In 2016 the ECB, in the context of the Targeted Review of Internal Models (TRIM13), while 

adapting to the European framework the BCBS 2015-d328 guideline regarding Corporate 

Governance Principles for banks, proposed a three lines of defence structure to deal with 

Model Risk. The first line focuses on model development, aiming to strengthen this crucial 

step. The second line focuses on risks and model validation, while the third line deals with 

the internal control function, or the Audit function. However, this three lines structure will be 

discussed more in detail later on in this chapter. 

 In 2017 a complete guidance for the TRIM process was published by the ECB, giving an 

official interpretation to the existing legal framework (CRR, CRD IV and ECB guidelines). 

The aim of the TRIM process is the harmonization at European level of practices and 

methods to ensure the correct usage of internal models by banks and financial institutions.  

Finally, in 2019 CRR II/CRD V were introduced, to substitute the CRR and CRD IV 

package, as a step forward through the implementation of Basel IV (Nielsen and Schulte-

Matter, 2019). While CRR II is supposed to become fully operational from June 28 2021, 

CRD V has already come into effect on December 28 2020. For a full review on this topic 

see Nielsen and Schulte-Matter (2019).  

In conclusion, we have seen an escalation of new regulatory frameworks and laws in recent 

years concerning Model Risk. However, the first regulatory effort to regulate Model Risk 

and to provide the management tools to deal with it comes from the USA, seeing the OCC-

Fed collaboration in the frontline. Only later on the Euro-zone implements its own regulations 

(CRR/ CRD IV), and the EBA develops SREP and TRIM procedures to directly tackle this 

problem. However there is still further work to do in order to provide a more reliable Model 

Risk Management framework to deal both qualitatively and quantitatively with Model Risk, 

and the path is still long.  

 
12 The SREP procedure aims to assess and measure the risks that emerge from every bank 

in the Union, and it consists of an yearly basis monitoring procedure in order to provide to 

the bank the actions needed to be taken.   
13 According to the ECB, the TRIM “is a large-scale project conducted by the ECB in close 

cooperation with the NCAs” and “its aim is to reduce inconsistencies and unwarranted 

variability when banks use internal models to calculate their risk-weighted assets.” 
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1.1.2 Model Risk  

The OCC 2011-1214, in accordance with the Fed provide a definition of model:  

 

Definition. Model. The term model refers to a “quantitative method, system or approach that 

applies statistical, economic, financial or mathematical theories, techniques and assumptions 

to process data into quantitative estimates.” 

 

A model is a simplification of real world relationships. This simplification is both necessary, 

because no model can capture entirely the complexity of this web of relationships, and 

intentional, because many times what matters is just to focus on the most relevant aspects of 

those relationships.  

Furthermore, following the OCC Guidance, we can identify three crucial components of a 

model:  

❖ Information input component; 

❖ Processing component; 

❖ Reporting component. 

 

The first component refers to all the assumptions and the data needed from the model to be 

applied. The processing component is the one that transforms raw data (inputs) into estimates 

(outputs). Finally, the reporting component is crucial for transforming the outputs into 

relevant information that could help decision making. All those three components are crucial, 

and the model’s users must assess their quality constantly by looking at the seven properties 

that I am going to introduce soon.  

It follows from the definition of model that relying on such a simplification of real world 

relationships comes with a cost. We can identify two types of costs: direct and indirect. Direct 

costs deal with all the resources used to develop and implement the model. On the other hand, 

indirect costs are related to all the possible negative consequences that the use of an incorrect 

model may cause. In order to mitigate the effect of indirect costs, it is important to assess 

model quality. Following the idea of Gabaix and Laibson (2008) it is possible to identify 

seven key properties that a good economic model should possess:  

 

 
14 OCC, Office of the Comptroller of the Currency: Supervisory Guidance on Model Risk 

Management, 2011. 
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❖ Parsimony; 

❖ Tractability; 

❖ Conceptual insightfulness; 

❖ Generalizability; 

❖ Falsifiability; 

❖ Empirical consistency; 

❖ Predictive precision. 

 

Parsimonious models rely on few key assumptions and provide the user some degree of 

freedom when using them for their purposes. They are preferable “because they prevent the 

researcher from consciously or subconsciously manipulation of the model so that it over-fits 

the available facts” (Gabaix and Laibson, 2008). Tractability refers to the ease according to 

which a model can be analysed, implemented and used. Conceptual insightfulness is linked 

with the ability of the model to shape and describe the fundamental aspects of economic 

systems or behaviours that it is trying to mould. Generalizability is another crucial aspect that 

a good model should possess, meaning that it could be applied to a wide range of situations. 

Falsifiability is synonymous with prediction. “A model is falsifiable if and only if the model 

makes nontrivial predictions that can in principle be empirically falsified. If a model makes 

no falsifiable predictions, then the model can not be empirically evaluated” (Gabaix and 

Laibson, 2008). Empirical consistency is linked with the level of reliance of the model upon 

the data on which it is structured. If the data are not biased, then the model is likely to provide 

consistent predictions. Finally, predictive precision is linked with the accuracy of the forecasts 

made by the model.  

Not managing adequately these components may potentially cause some threats. Thus, it is 

in this framework that a new concept arises: the concept of Model Risk (henceforth MR). 

MR was formally defined in 2011 by OCC-Fed 2011-12  as follow: 

 

Definition. Model Risk. Model Risk is defined as “all possible adverse consequences that can 

result from correspondingly inadequate or incorrectly implemented models as well as from 

their outputs and reports.”  

 

As models become more sophisticated, for example through the implementation of Artificial 

Intelligence, and interconnected with each other, MR rises. We can identify two main reasons 

for which MR may occur:  
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❖ Fundamental errors in the model; 

❖ Incorrect or inappropriate use of the model. 

 

Fundamental errors may occur at any point in the design phase of the model or in the 

implementation phase, and may produce erroneous or inaccurate outputs that can finally lead 

to wrong decision making. This error type may be caused by incomplete data, flawed theory 

or assumptions, coding errors or decreasing predictive power due to environmental changes. 

Either if we are dealing with an accurate and robust model, i.e. with no fundamental errors, 

the risk of incorrect or inappropriate use is still looming. It is crucial for managers and all 

decision makers to understand the limitations of a model in order to ensure that the scope for 

which it is designed for and the field of application are both respected. Thus, in the last years, 

dealing with MR has become of crucial importance for all financial institutions. In particular, 

banks must now explicitly deal with MR as they do for all other types of risks: they should 

identify the impact and the sources causing MR to arise, they have to maintain a 

comprehensive documentation of every model, and finally they should challenge each model 

periodically and perform ongoing monitoring and benchmarking. However, it is important 

to remember that MR cannot be completely eliminated: yes, it can be diminished but a part 

of this risk can be seen as systematic. As a consequence, the need for tools capable of 

managing this risk arises. This requires a strong effort from the regulator to develop new 

guidelines and regulations and a tremendous endeavour for all financial institutions and firms 

to cope with them: it is crucial to develop a solid governance framework around each step of 

Model Lifecycle15. 

Other two elements that characterize a model should be taken into account when determining 

the intensity of the procedures used to evaluate MR:  

❖ Materiality; 

❖ Uncertainty.  

 

Figure 2 gives a representation of these two concepts, showing a matrix that intersects 

materiality and uncertainty forming a grid upon which models are positioned. Models in the 

top right corner are the ones that should be managed with greater attention since they score 

 
15 Model Lifecycle links together all the main aspects of Model Risk Management. More 

precisely: proposal, development, testing, validation, approval, usage, performance 

monitoring and reporting. However, Model Lifecycle and Model Risk Management will be 

discussed with more detail later on in this chapter.   
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the highest value of both components. Materiality can be defined as the impact of the model 

into a bank’s activities. It is linked both to the relevance of the model in the bank’s framework 

and to its complexity. To assess materiality one should take into account the financial impact 

of the model, the context of use and the volume of resources managed through that model. A 

simple deterministic model with few inputs and assumptions (so with less likelihood of 

errors), used for a non core activity of the bank, like model C in Figure 2, would have a lower 

materiality impact than a complex stochastic model used for a core activity with several 

inputs and assumptions, like model A. The higher the materiality associated with a model, 

the higher will be its importance, and thus a more prudent development, calibration, use and 

monitoring should be put in place.  

 

 

Figure 2: Graphical representation of model’s materiality and uncertainty. Source: 

Bellof and Wehn (2018). 

 

Uncertainty can be defined as the randomness of the phenomenon that the model is trying to 

capture: the higher is the level of predictability, the higher would be the caution needed to 

manage it. For example a stochastic model would have a higher impact in the uncertainty 

component, like model E or A in Figure 2.  

Both qualitative and quantitative methods can be used to assess materiality and uncertainty. 

For example, with respect to qualitative methods to measure materiality banks can determine 
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through a score range the importance of the decisions made through the results of that model. 

Another qualitative approach to measure uncertainty instead, can be to assess the sensitivity 

of the results due changes in parameters or assumptions. 

Now that I have presented the key elements of MR, it is important to provide some concrete 

examples of the impact that inadequate regulation and misapplication of models can cause. 

Models misuse and deficiencies, in fact, have largely contributed to the Great Financial 

Crisis. 

 

1.1.3 Contribution to the Great Financial Crisis 

The Great Financial Crisis began in 2007 with the collapse of the subprime mortgage bubble. 

Among the main causes of the Crisis we can recognise mathematical modelling: more 

specifically, the misuse of the Gaussian copula model is the one that mostly came under 

criticism (Watts, 2016). The Gaussian copula is a multivariate cumulative distribution 

function, and it is a method to model multivariate distributions considering the dependencies 

among variables. In fact, according to Sklar’s theorem16 any joint probability distribution 

function can be written in terms of univariate marginal distributions and of a copula, that 

captures all the information about the dependencies between variables. 

This model is used in finance to evaluate the risk of Collateralized Debt Obligations 

(CDOs17). Usually CDOs are divided into different tranches with different risk-return 

characteristics. They can have a senior, mezzanine and equity tranches. The senior tranche 

has the highest credit rating among them because the losses that may arise from the default 

of the underlying are borne in the first place by the equity, then by the mezzanine and only as 

a last resort by the senior tranche. One thing that makes CDOs so appealing is that if the risky 

assets composing the pool are rated BBB it is possible through this technique to create a 

senior, super safe, tranche rated AAA. Furthermore, it is common for CDOs to contain 

several Asset Backed Securities (ABS18).  

 
16 This theorem is at the basis of the construction of multivariate stochastic models through 

a copula approach. 
17 According to Borsa Italiana a CDO is a complex synthetic investment product that is 

backed by a pool of loans and other assets and sold by institutional investors. Reference: 

https://www.borsaitaliana.it/borsa/glossario/collateralized-debt-obligation.html.  
18 According to Borsa Italiana an ABS is a type of financial investment that is collateralized 

by an underlying pool of income-generating assets. Reference: 

https://www.borsaitaliana.it/notizie/sotto-la-

lente/assetbackedsecurities.htm#:~:text=Le%20Asset%20backed%20securities%20(o,tass

i%20di%20interesse%20fissi%20o. 
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According to Donnelly and Embrechts (2010), it is widely accepted that the root of the crisis 

was CDOs of ABSs, which mainly consisted of American subprime mortgages. Here, the 

main issue is the transfer of mortgage default risk, through CDOs, from lenders directly into 

the financial market (banks, hedge funds and insurance companies). This process is called 

securitization19, and allows banks to move from an “originate to hold” model, where they 

holds all the mortgages made (among with the risk) to an “originate to distribute” model, in 

which they sells these mortgages to other entities. More precisely, banks can pool together 

these mortgages and transfer them to a special-purpose vehicle (SPV), which is sponsored 

by the bank but it is at the same time independent from it. If the bank defaults the SPV is not 

involved. Thus, banks had a great an incentive in issuing CDOs, as they were able to remove 

risky underlying and return instead cash.  

The proposal to use the Gaussian copula to model CDOs comes by Li (1999), and it suddenly 

receives great approval and success in the financial field due to its simplicity, becoming in a 

few years the standard industry. Credit Rating Agency (CRA) such as S&P, Moody’s and 

Fitch adopt the Gaussian copula too. However, this model also includes some drawbacks that 

may have been ignored or considered not to be relevant by the people in the industry. 

According to Duffie (2008), the modelling of default correlation is currently the weakest part 

in the risk measurement and pricing of CDOs. This was particularly emphasized when trying 

to model tail events. Furthermore, the Gaussian copula provides inadequate modelling of 

default clustering, inconsistent implied correlations between tranches of CDOs, and no early 

warning signals. In the end, it does not capture the main features of what it is attempting to 

model. 

To give an idea of the numbers of CDOs issued in that period, as Watts (2016) pointed out, 

at the beginning of the new millennium the total issuance of CDOs was less than $70 billion, 

as it can be seen in Figure 3. This was due to the fact that such a complex financial instrument 

requires an adequate model that can easily price them and measure its embedded risk. It is 

after the adoption of the Gaussian copula that the CDOs market skyrocketed in a few years. 

Just before the collapse of the bubble, in late 2006, the CDOs market soared to more than 

$500 billion per year. This rapid growth in the use of CDOs caused a chaotic environment in 

which no one more was able to understand every step behind in the chain of connections 

 
19 According to Investopedia, “Securitization is the procedure where an issuer designs a 

marketable financial instrument by merging or pooling various financial assets”, such as 

contractual debt, residential/commercial mortgage, auto loans and so on, “into one group. 

The issuer then sells this group of repackaged assets to investors”, in the form of bonds or 

CDOs. Reference: https://www.investopedia.com/terms/s/securitization.asp. 
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between the original loan and the final holder. If on the one hand sellers of CDOs and CRAs 

were abusing the Gaussian copula model without understanding the embedded risks, on the 

other hand buyers were trusting that model without adequate criticism and without 

performing any personal analysis.  

When in the late 2000s subprime mortgages started to default, reaching a default rate above 

14% in the US, a lot of CDOs tranches rated AAA by CRAs started to default, triggering a 

chain of events that intensified the default correlation of CDOs products, and eventually 

resulted in the greatest financial crisis since the Great Depression. The Gaussian copula was 

not able to capture these extreme tail events and a lot of financial products were mispriced. 

This is a clear example of the potential (extreme in this case) consequences that may arise 

from an inadequate control of MR. As we have seen, the Gaussian copula was used outside 

its field of application with the aggravating circumstance for the users of not posing sufficient 

attention to its limitations and assumptions. This Crisis is what pushed the regulator to 

develop guidelines for the treatment of MR: this is what is called Model Risk Management 

(MRM).  

 

 

 

Figure 3: Size of the CDO market in USD Millions among the years, differentiating 

between CDOs issuance and outstanding CDOs. Source: 

http://www.turingfinance.com/recipe-for-the-financial-crisis/. 
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1.2 Model Risk Management in the US Framework 

In this paragraph I will focus on the regulation behind MRM in the US. The BCBS d328 

guideline, regarding Corporate Governance Principles for banks gives the definition of risk 

management: 

 

Definition. Risk Management. “It is the process established to ensure that all material risks 

and associated risk concentrations are identified, measured, limited, controlled, mitigated and 

reported on a timely and comprehensive basis.” 

 

The main reference, as shown in subparagraph 1.1.1, for MRM in the US was published on 

the 4th of April 2011, by OCC-Fed bulletin 2011-12 with the Supervisory Review (SR 11-7): 

on Supervisory Guidance on Model Risk Management. The Comprehensive Capital 

Analysis and Review (CCAR), introduced by the Fed to regulate large banks and financial 

institutions and to perform stress tests, is another important regulatory framework in the US 

and it is part of  the Fed oversight process over MRM. According to this guidance, MR should 

be treated like any other type of risk with adequate respect and consideration by senior 

management (that for example have lacked in the Great Financial Crisis).  

According to OCC-Fed bulletin 2011-12: “banks should objectively assess model risk using 

a sound model validation process, including evaluation of conceptual soundness, ongoing 

monitoring, and outcomes analysis.” The key element here is the so called “effective 

challenge” principle, which consists of a critical analysis in order to assess the assumptions 

and the limitations of the model. An effective challenge consists of three elements:  

❖ Incentives; 

❖ Competence; 

❖ Influence.  

 

The first element refers to the incentives provided to the team that has the task of conducting 

the inspection of the model, in order to give them the right motivation to perform a meticulous 

analysis. Competence is linked to the expertise and skills of the team. Whereas, influence 

depends on the authority of the members of the team inside the organization and on the 

support provided by senior management.  

The higher the level of separation between the development phase and the one responsible 

for testing the model (to better avoid conflicts of interest), the higher would be the incentive 
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to effectively challenge the model in order to assess its robustness and riskiness. Competence 

and Influence are also crucial for model developers, supervisors and users: they must be well 

informed and experienced in order to understand all the implications and assumptions that 

the model involves.  

With the SR 11-7,  OCC-Fed, requires that all financial institutions must cope with the 

following requirements, in particular they must:  

❖ Create a strong model governance framework; 

❖ Set up a comprehensive model inventory; 

❖ Improve model validation process; 

❖ Enhance ongoing model performance monitoring; 

❖ Build a robust documentation of each model used;  

❖ Operate an embedded control framework. 

 

The approach provided by OCC-Fed to deal MRM is divided into three core areas: 

❖ Model development, implementation and use; 

❖ Model validation procedures; 

❖ Model governance, policies and control. 

 

Analysing the first area, model development and implementation phase is concerned with 

the design, the theoretical foundation and the logic behind the model. It is important that these 

elements are supported by sufficient literature and research. Model check is also important as 

it allows testing the model and providing some feedback to the developers regarding 

parameters estimation, assumptions and so on, before the model is fully approved and ready 

to be used. This second area is characterized by the validation procedure which is defined by 

OCC-Fed as: 

 

Definition. Model Validation. It is the “practice of assessing the assumptions, underlying 

theoretical basis, and data used by models, as well as the processing, output, and reporting is 

one of the key ways to manage, mitigate, and control model risk.” 

 

Thus, having a sound model validation system in the organization helps to manage MR. It is 

a useful tool to identify potential model limitations and to report them quickly to managers 

so that measures to cope with these problems can be taken. It is crucial for the validation 

process to be independent from the development phase, so that the model could be effectively 
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challenged and tested in a critical way, without having pressures from developers or people 

that could have a stake in it. It is vital that the validation staff have the adequate knowledge, 

skills and expertise, but also powers and authority to complete their task appropriately. 

Furthermore, the validation process should be carried out on an ongoing basis to ensure that 

changes in the economic environment do not impact on the robustness and reliability of the 

model. For example, OCC-Fed states: “Computer code implementing the model should be 

subject to rigorous quality and change control procedures to ensure that the code is correct, 

that it cannot be altered except by approved parties, and that all changes are logged and can 

be audited.” Ongoing monitoring function can be helped by a benchmark analysis that 

compares model’s inputs and outputs with an alternative model: differences and 

misalignments should trigger an inquiry. Another technique that can be used to analyse a 

model’s predictive power is backtesting: it consists in checking whether the output of the 

model is in line with the model forecasts. Usually one divides the sample time series of data 

used by the model into two subsamples, one effectively used for the development of the 

model, while the other used as a virtual future to test its predictive power. More precisely, 

this is exactly what I will do in chapter 4 when I will present the experiment for testing Model 

Risk for risk measures. 

The third area is characterized by governance structure, policies and control. The board of 

directors and the senior management have a crucial role here. The latter is usually responsible 

for enforcing and maintaining an effective MRM framework; while the former is the ultimate 

responsible and delegates powers to senior management. Thus, it is the board of directors that 

should carry out policies to implement a sound MRM in the organization identifying clearly 

roles and responsibilities of each internal function. Finally, regarding the control aspect, an 

important role is the one of internal audit functions, that shall evaluate the effectiveness of the 

MRM framework implemented by the organization. It is crucial that the audit has its own 

powers and skills to perform its tasks. In addition, having a complete model inventory and 

documentation is essential as they both provide a database of information regarding all the 

models in function or retired, that for example can help the development or the validation 

phase. 

All the aspects of the MRM framework are linked together in the so called Model Life Cycle, 

which is shown in Figure 4. Starting with the raw data, we have the development phase, in 

which the model is designed according to its purpose. Then, we move to the implementation 

phase, which requires adequate infrastructure to run tests and check model strengths, 

limitations and assumptions. Moving on we have the validation step, that as I said before 
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should have its independence from the developers in order to avoid conflicts of interests. If 

the model overtakes all these steps then it is approved and the firm can begin to use it, 

otherwise if some problems are detected, the model should pass through a re-development 

phase. Then, performance monitoring is conducted on an ongoing basis. And finally, this is 

linked to risk appetite, which is a metric chosen by the board of directors, in accordance to 

the risk capacity of the firm. Hence, it is important to implement good control functions for 

each stage of the model lifecycle.  

 

 

Figure 4: Representation of the core elements of Model Lifecycle.  

 

Focusing on the most recent advances on MRM and on its future in the US, in 2019 the 

Algorithmic Accountability Act were introduced, requesting all the companies that use AI in 

order to implement “automated decision system impact assessments and data projection 

impact assessment” to pay particular attention to problems that may arise form “accuracy, 

fairness, bias, discrimination, privacy, and security.” Thus, the Innovation Pilot Program was 
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proposed by the OCC in order to help promote FinTech innovation into firms, posing a strong 

effort to manage the risks that may arise. Furthermore, the new challenge for banks is now 

on implementing automated MRM processes, in particular focusing on the validation and 

ongoing monitoring phase.  

In conclusion, MRM is now seen by many companies and institutions as a new way to gain 

competitive advantage. So, where MRM is effectively implemented now the focus is on 

producing efficiencies to become more competitive.  

 

1.3 Model Risk Management in the EU Framework 

Looking at the European regulatory framework regarding MR and MRM, the main reference 

is CRD IV/CRR, according to which, in Article 3.1.1120 MR is defined as: 

 

Definition. Model Risk. “The potential loss an institution may incur, as a consequence of 

decisions that could be principally based on the output of (internal) models, due to errors in 

the development, implementation or use of such models.” 

 

As we can see this definition of MR is slightly different from the one provided by OCC-Fed 

in the US. In fact, in the EU framework MR is treated as a relevant subcategory of operational 

risk. CRR Article 4.1.5221 provides the definition of operational risk: 

 

Definition. Operational Risk. “operational risk means the risk of loss resulting from 

inadequate or failed internal processes, people and systems, or from external events, and 

includes legal risk.” 

 

Thus, the concept of operational risk is linked with the risks that arise from the normal activity 

of the company. In addition, operational risks are part of the Internal Capital Adequacy 

Assessment Process (ICAAP), which was firstly established by Basel II agreement as part of 

Pillar I. While Pillar I sets the minimum capital requirement standards, Pillar II is focused on 

 
20 Directive (EU) No 36/2013 of the European Parliament and of the Council of 26 June 

2013 on access to the activity of credit institutions and the prudential supervision of credit 

institutions and investment firms, amending Directive (EU) 87/2008 and repealing 

Directives (EU) 48/2006 and 49/2006.  
21 Regulation (EU) No 575/2013 of the European Parliament and of the Council of 26 June 

2013 on prudential requirements for credit institutions and investment firms and amending 

Regulation (EU) No 648/2012 (1), 2013. 
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the supervisory review process and Pillar III is concerned on transparency and market 

discipline by increasing the disclosure of capital requirements and methods for risk 

assessment. 

With the ICAAP, financial institutions can autonomously evaluate their capital adequacy 

requirements so that they can allocate capital and reserves basing their choices on a rigorous 

risk measurement process. Furthermore, it is also important to notice that if the US deals with 

MRM via regulation, in the EU this is done via supervision. The European Banking 

Authority (EBA), with the guideline 2014/1322, has introduced the Supervisory Review and 

Evaluation Process (SREP) which consists in an annual evaluation of the data regarding the 

financial condition of the bank and a risk management assessment. ICAAP flows into the 

SREP evaluation. SREP enables a coherent analysis of a bank’s risk profile and allows it to 

take the right surveillance measures. Summarizing, the treatment of MRM in the EU is done 

in accordance with SREP. 

Moreover, as shown in subparagraph 1.1.1, the ECB has introduced in 2017 the Guide for 

the TRIM procedure23. This is the main cornerstone in the EU regulatory framework as it is 

specifically focused on internal models assessment, which was a particularly hot topic due to 

the possibility for banks to develop their own models through the IRB approach provided by 

Basel II. With this Guide the ECB is trying to harmonize the regulation and the practices 

regarding MRM in the Euro Area, instilling a common Risk Culture24. Thus, according to 

this Guide, “TRIM will encompass two aspects: 

❖ Compliance with regulatory requirements related to internal models”, specifically to 

“CRD IV/CRR, RTS, EBA guidelines and the approved ECB Banking Supervision 

manuals and guidelines…” 

❖ “The reduction of unwarranted variability in Risk Weighted Assets (RWA) as it 

relates to internal model outcomes…” 

 

However, there is no compulsory guideline on how to explicitly treat MR; TRIM only drafts 

the boundaries of a sound MRM framework but does not impose a specific solution. Thus, I 

 
22 EBA/GL/2014/13, Guidelines on Common Procedures and Methodologies for the 

Supervisory Review and Evaluation Process (SREP), 2014. 

23 European Central Bank, Guide for the Targeted Review of Internal Models, February 2017. 
24  BCBS d328 Guidelines on Corporate Governance Principles for Banks defines Risk Culture as: “a 

bank’s norms, attitudes and behaviours related to risk awareness, risk taking and risk management and 

controls that shape decisions on risks. Risk culture influences the decisions of management and 

employees during the day-to-day activities and has an impact on the risks they assume.” 
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want to present below some possible answers to this problem. Following the ideas proposed 

by Bellof and When (2018), we can evaluate MR in three different ways that compare the 

Risk Absorbing Capacity (RAC25) available with the capital reserves devoted to ICAAP 

purposes. The main issue is whether the bank should consider the uncertainty derived from 

the model usage as impacting the risk side, therefore the risks individuated for ICAAP 

purposes, or whether it should consider it as a capital reducing component, affecting the RAC 

of the bank. 

The first approach individuates MR as a separate risk type, that is introduced into ICAAP 

risks classes. As a consequence the risk capital devoted to ICAAP purposes is increased by 

the amount devoted to MR. In this fashion, it is crucial to compare the required capital 

reserves for ICAAP with the available RAC, of course hoping that the available RAC is 

greater than the required reserves, otherwise severe measures should be taken by the bank to 

increase the capital reserves. This is shown in Figure 5. Considering MR as a separate risk 

category has the advantage of being clearly identifiable. However, the main downside of this 

approach is that creating a general MR “box”, that aggregates MR arising from many 

different risk categories (that may have different units of measure), can be complex and 

dangerous because it may produce biases that would affect Model Risk estimation causing a 

wrong capital allocation. 

 

 

Figure 5: Representation of Model Risk as a separate risk category. Source: Bellof and 

When (2018).  

 
25 BCBS d328 Guidelines on Corporate Governance Principles for Banks defines Risk Capacity as: 

“the maximum amount of risk a bank is able to assume given its capital base, risk management and 

control measures, as well as its regulatory constraints.” 
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To overcome this drawdown we have to move to the second approach, shown in Figure 6, 

that instead considers MR as a part of the existing typologies of risk. In particular, MR is no 

longer an heterogeneous, standing alone risk category that includes MR arising from many 

different sources, but instead it is divided into the three main risk classes: market risk, credit 

risk and operational risk. This produces the same effect as the previously mentioned 

approach: it increases capital reserves for ICAAP purposes, overcoming the main drawback 

of the first approach. However the main challenge of this method is to define an effective 

procedure to allocate the additional capital due to MR to each specific risk class. In fact, citing 

Bellof and When, “a simple pro-rata allocation is not necessarily adequate.”   

 

 

Figure 6: Representation of Model Risk as a part of the existing risk categories. Source: 

Bellof and When (2018).  

 

Nonetheless, the last approach, shown in Figure 7, individuates MR as a separate capital 

buffer that is lowering directly the RAC available for the bank instead of increasing the capital 

reserves for ICAAP, as the two approaches before suggested. Because the RAC is lowered 

also the risk appetite of the bank has to be reduced. According to the authors, the main 

advantage of this approach is that it “facilitates the targeted management of the original risks 

associated with business activities.” 
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Figure 7: Representation of Model Risk as a separate capital buffer. Source: Bellof and 

When (2018).  

 

Another typical approach, adopted in many other fields to deal with risk management in 

general, is the three lines of defence approach. This strategy was proposed for the first time 

by the BCBS d328 guideline. Looking at the European framework for example, this 

approach is used in preventing banks or financial institutions from breaching the Union law. 

The role of each line is to ensure the compliance with regulations, directives and guidelines 

at different levels of the organization. However, a three lines of defence approach can be also 

applied to deal with MR. The three lines consist of: 

❖ Business units; 

❖ Control function & Internal validation function; 

❖ Internal audit function. 

 

The first line has to ensure that the model complies with business requirements. It also has to 

ensure that the documentation regarding the model exists and that it is sufficiently detailed. 

The second line has to deal with the control and validation procedures, it has to perform tests 

and monitor effectively each step of the model lifecycle. Finally, the internal audit function 

has to measure the overall performance of the MRM framework put in place, providing 

adequate feedback to developers and users. This approach allows to effectively divide the 

roles and responsibilities regarding MRM. Looking at an example, if an error arises in the 

raw dataset used to build the model, or the wrong data is extracted from the database, the 

responsibility to address this problem is of the first line of defence, that should have put in 
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place adequate quality checks of the data at business units level. If a model is applied outside 

the scope it was designed for, the responsibility to address this problem is in the first and 

foremost of the audit function, that should perform the assessment of the effectiveness of 

model use. This approach should work in tandem with the Model Lifecycle, covering the 

risks that arise at each step of the life of the model. 

Every approach, both in the US and EU framework, I have presented since here is more 

qualitative than quantitative and it is focused on establishing a sound MRM framework. 

However, the main drawdown of many qualitative approaches is that it is sometimes harder 

to provide a proper, unequivocal measure to assess its contribution to MR. A quantitative 

approach is preferable. In the next paragraph I will present two quantitative approaches to 

deal with MR deriving from the use of risk measures.  

 

1.4 A Quantitative Approach to Model Risk 

As I have pointed out before, neither the US nor the EU regulator have established an explicit 

method for the quantification of model risk. Yes, guidelines help to institute a sound MRM 

framework but no reference is made for quantitative methods to measure MR.  

 

 

Figure 8: DJIA index daily returns plotted against daily historical 1% VaR and 2.5% ES 

estimates, from 28/12/1903 to 23/05/2017. Source: Lazar and Zhang (2019). 

 

Since the aim of my work is to provide a method to try to quantify the amount of MR deriving 

both from the application of the correct risk measure and from the choice of the most 

appropriate and efficient algorithm26 in the portfolio selection problem27, in this paragraph I 

 
26 The two algorithms considered, the Particle Swarm Optimization and the Grey Wolf 

Optimization, will be presented in chapter 3. 
27 The portfolio selection problem is a constrained optimization problem that consists in 

choosing the best allocation for investor’s money (the one that maximizes her expected 

utility) among a possible set of securities and by minimizing the risk deriving from this 

allocation. The theory of portfolio selection problem will be presented in detail in chapter 

2. 
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will focus on risk measures. More specifically, I will consider the Value at Risk (VaR28) and 

the Expected Shortfall (ES29), and I will present a review of the most advanced techniques 

used in the literature to assess the MR associated with these two measures. Figure 8, taken 

from Lazar and Zhang (2019), shows the historical 1% VaR (dark blue line) and 2.5% ES 

(yellow dotted line) of the DJIA index in the period ranging from 28/12/1903 to 23/05/2017. 

As it can be seen, the blue dots falling below the two lines represent extreme losses that 

exceeded the predicted VaR and ES. For example, a big clustering of blue dots can be noted 

at the end of the 1920s, coinciding with the Wall Street crash and the beginning of the Great 

Depression. Another big clustering can be detected in the late 2000s, corresponding to the 

Great Financial Crisis.  

Referring to Boucher et al. (2014), in this context we can define MR as “the uncertainty 

created by not knowing perfectly the data generating process (DGP).”  

The two main approaches provided by the literature to deal with MR of risk measures are:  

❖ The Bayesian model averaging; 

❖ The worst-case approach. 

 

The first approach, applied in the financial field by Brock et al. (2003), roughly consists of 

taking the average of the output of all the possible models that can be applied to solve a 

particular problem. Following the idea of Hoeting et al. (1999), the main issue is that when a 

manager selects a model to use, she may commit the mistake to assume that “the selected 

model had generated the data.” If she does so, she “ignores the uncertainty in model 

selection” and this could lead to “overconfident inference and decisions that are more risky 

than one thinks they are.” This issue can be solved by averaging the outcome of all the 

possible models that can be plausibly applied to the problem, providing a more stable 

estimate. However, two main drawbacks can be identified in using this technique: the first 

one is that the averaging approach requires to determine a priori a probability to be attached 

to each model. Secondly, it requires a huge computational effort as Markov Chain Monte 

Carlo (MCMC30) algorithms should be used.  

 
28 The VaR (that should not be mistaken as the acronym of the variance) is the maximum 

potential loss that derives from the holding of a financial asset, given a common holding 

period (usually 1 or 10 days) and a stated confidence level (usually 95% or 99%). An 

advantage in using VaR is that it expresses the risk in monetary terms. 
29 The ES is the average potential loss in which an investor can incur, given a common 

holding period and a stated confidence interval.  
30 MCMC methods are a particular category of algorithms for the sampling of probability 

distributions based on the construction of a Markov chain. Using these types of algorithms, 



Chapter 1 

27 

 

The second approach, proposed by Kerkhof et al. (2010), is more in line with the current 

practices in dealing with risk management. The idea of Kerkhof et al. is to include MR into 

risk measure (VaR and ES) calculation by adding an adjustment (called bias function) to the 

theoretical risk measure for each component of MR, through the computation of the worst 

case of these components. In particular, they divided MR into three elements: 

❖ Estimation risk; 

❖ Misspecification risk; 

❖ Identification risk. 

 

Estimation risk is linked with wrong or inaccurate estimates of the parameters of the model. 

Misspecification risk arises from the wrong model specification, while identification risk is 

concerned with the selection of the correct model for the task, because even very similar 

models with only few changes in the structure or in the assumptions can lead to very different 

results. The sum of these three components constitute the total MR. Then, they perform a 

backtest analysis to assess the accuracy of the correction, requiring that the corrected risk 

measure should pass three statistical hypothesis tests to assess if three required conditions that 

a good risk forecast should possess are not violated. According to Boucher et al. (2014) a 

good risk forecast should meet the following requirements:  

❖ Expected frequency of violations; 

❖ Absence of violation clustering; 

❖ Suitable magnitude of violations. 

 

Given the fact that when applying a risk measure such as the VaR or the ES we have to 

choose a confidence level 𝛼31, the expected frequency of violations ensures that the number 

of wrong forecasts made though those risk measures are in line with the confidence level 

required.  The absence of violation clustering ensures that wrong forecasts are not subsequent 

to each other, otherwise this would highlight that the model is not performing well, since 

there is a sort of dependence in the errors. Finally, the magnitude of violations ensures that 

when the forecast is wrong it is still in line with distributional assumptions of the model. Thus, 

when it is wrong the magnitude of the error should not exceed the expected one, according 

 
it could be difficult to determine a priori how many steps are required for the process to 

converge, with an acceptable error, to the solution of the problem.  
31 The confidence level is the range of values between which it is estimated, with a given 

probability, that the true value of a random variable will lie. 
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to the model. Following this approach, hypothesis tests designed to deal with these three 

conditions are performed. 

In the following subparagraph I will go more in detail presenting the approach of Boucher et 

al. (2014) for VaR and of Lazar and Zhang (2019) for ES. 

 

1.4.1 Measuring Model Risk of Risk Measures 

Having in mind that the final output of a VaR or  ES model is a risk forecast, the approach 

proposed by Boucher et al. (2014) and of Lazar and Zhang (2019), respectively for VaR and 

ES consists in dynamically adjusting the risk forecast of these two models through a 

correction of the estimated value of the risk measure. This correction is done by looking at 

historical errors of the model, and by “using them to dynamically adjust the future forecasts” 

(Boucher et al., 2014). 

The literature regarding MR for risk measures, as Boucher et al. and Lazar and Zhang do,  

focuses mainly on two of the three aspects of MR presented above: estimation risk and 

misspecification risk. See for example Escaciano and Olmo (2009, 2010 and 2011) in which 

they study backtesting procedures considering the effect of estimation risk. Alexander and 

Sarabia (2012) proposed another technique to quantify MR associated to VaR based on a 

correction on a maximum relative entropy based criterion. 

I will now present the theoretical foundation of Boucher et al. and Lazar and Zhang 

approaches. 

We can define the VaR, given a distribution function F and a confidence level 𝛼, as:  

 𝑉𝑎𝑅𝑡(𝛼) = − 𝑖𝑛𝑓{𝑞: 𝐹(𝑞) ≥ 𝛼} (1.1)  

where 𝑞 is the quantile of F. In the same way we can define ES as: 

 

𝐸𝑆𝑡(𝛼) =
1

𝛼
∫𝑉𝑎𝑅𝑡

𝛼

0

(𝑢) ⅆ𝑢 

(1.2)  

As we can see by this formula, ES depends on VaR, and thus if the VaR is biased this error 

will also affect the ES forecast. Now, assuming that the Data Generating Process (DGP) is 

known and also the value of the true parameters are known (𝜃0), we can define the theoretical 

VaR (ThVaR) and the theoretical ES (ThES) as follows:  

 𝑇ℎ𝑉𝑎𝑅(𝜃0, 𝛼) = −𝑞𝛼
𝐹 = −𝐹𝛼

−1 (1.3)  

and 
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                        𝑇ℎ𝐸𝑆(𝛼) =
1

𝛼
∫ 𝑇ℎ𝑉𝑎𝑅(𝜃0, 𝑢) ⅆ𝑢
𝛼

0
. (1.4)  

However if we assume that the DGP is known but the values of the true parameters are 

unknown, we have a discrepancy between the theoretical VaR and the estimated VaR caused 

by the estimation error. Thus, a bias function is introduced. The same happens for the ES. 

The relationship that links ThVaR with the estimated one is:  

 𝑇ℎ𝑉𝑎𝑅(𝜃0, 𝛼) = 𝑉𝑎𝑅(𝜃0, 𝛼) + 𝑏𝑖𝑎𝑠(𝜃0, 𝜃0, 𝛼) (1.5)  

where 𝜃0 is the estimate of 𝜃0, that are the real parameters. 𝑏𝑖𝑎𝑠(𝜃0, 𝜃0, 𝛼) is the bias 

function, which is function of the real parameters, the estimated parameters and the 

confidence level 𝛼. It is a measure of the correction needed for the estimated VaR to be equal 

to the theoretical one.  

From (1.5) which we can derive the expected bias of the estimated VaR as: 

 𝐸 (𝑏𝑖𝑎𝑠(𝜃0, 𝜃0, 𝛼)) = 𝑇ℎ𝑉𝑎𝑅(𝜃0, 𝛼) − 𝐸 (𝑉𝑎𝑅(𝜃0, 𝛼)) (1.6)  

In the same fashion we can rewrite the relationship between ThES and the estimated one as:  

 1

𝛼
∫𝐸 (𝑏𝑖𝑎𝑠(𝜃0, 𝜃0, 𝑢)) ⅆ𝑢

𝑎

0

= 𝑇ℎ𝐸𝑆(𝜃0, 𝛼) − 𝐸 (𝐸𝑆(𝜃0, 𝛼)) 

(1.7)  

Nevertheless, for a more realistic scenario, the true DGP should be unknown as well. This 

complicates the scenario, making it impossible to directly measure MR. As a consequence, 

now it is impossible to perfectly correct the estimated risk measure for the biases. The idea 

of Boucher et al. (2014) and of Lazar and Zhang (2019) is to adjust the forecasts of the two 

models looking at model historical performances, so that a correction for future forecasts can 

be achieved through historical errors. Thus, they suggest implementing an imperfect 

corrected model that should be close enough to the theoretical one, and that is certified to 

have passed some statistical checks regarding the three properties that a good risk forecast 

should possess mentioned above. 

Considering Boucher et al. (2014) approach we have that the imperfect model adjusted VaR 

(IMAVaR) is:  

 𝐼𝑀𝐴𝑉𝑎𝑅(𝜃1, 𝛼) = 𝐸𝑉𝑎𝑅(𝜃1, 𝛼) + 𝑎ⅆ𝑗(𝜃0, 𝜃1, 𝜃1, 𝛼) (1.8)  

in which 𝐸𝑉𝑎𝑅(𝜃1, 𝛼) is the estimated VaR and 𝑎ⅆ𝑗(𝜃0, 𝜃1, 𝜃1, 𝛼) is the minimum 

correction needed, so that:  

 𝐼𝑀𝐴𝑉𝑎𝑅(𝜃1, 𝛼) = 𝑠𝑢𝑝{𝑉𝑎𝑅(𝛼)∗} (1.9)  
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where 𝑉𝑎𝑅(𝛼)∗ represents a set of corrected VaR. In this way the 𝐼𝑀𝐴𝑉𝑎𝑅(𝜃1, 𝛼) is the 

upper limit VaR that can be accepted by the portfolio manager. Thus, it is the less 

conservative VaR that is ensured to have passed the tests for the three properties that a good 

risk forecast should possess. Citing Boucher et al. (2014) “the IMAVaR(𝜃1, 𝛼) corresponds 

to a model risk robust VaR that serves to calculate the correction we apply to the Estimated 

VaR.” Thus, even if not optimally corrected (there still exist a discrepancy between the 

THVaR and the imperfectly corrected one) the IMAVaR allows to get a good estimate of the 

correct one, in the sense that it is ensured to possess all the three properties of a good risk 

forecast.  

Furthermore, to enhance the quality of IMAVaR a backtesting procedure is implemented and 

it is required that IMAVaR must pass three statistical tests that are presented in the next 

section. 

On the other hand, following the approach of Lazar and Zhang (2019) for the ES we have 

that the imperfectly corrected estimate that have passed backtesting (ESi,j
B ) is:  

 𝐸𝑆𝑖,𝑗
𝐵 (𝜃1, 𝛼) = 𝐸𝑆𝑖(𝜃1, 𝛼) + 𝐶𝑖,𝑗

∗  (1.10)  

where the minimum correction 𝐶𝑖,𝑗
∗  is given by:  

𝐶𝑖,𝑗
∗ = 𝑚𝑖𝑛{𝐶𝑖,𝑗|𝐸𝑆𝑗,𝑡(𝜃1, 𝛼) + 𝐶𝑖,𝑗 passes the 𝑖th backtest, 𝑡 = 1,… , 𝑇, 𝐶𝑖,𝑗 ≥ 0}, 

in which the correction 𝐶𝑖,𝑗 = (𝜃0, 𝜃1, 𝜃1, 𝛼) is the minimum to be made in order to have 

the ES passing each of the three backtests.  

 

1.4.2 Backtesting VaR and ES 

Recalling that a good risk forecast should meet the three following requirements, expected 

frequency of violations, absence of violation clustering in the tails and suitable magnitude of 

violations, now I am going to present the backtesting procedure used by Boucher et al. (2014) 

and Lazar and Zhang (2019). 

A number of tests can be carried out to verify these three conditions. Referring to the VaR 

framework, we can define a test to measure the frequency of violations by using the 

unconditional coverage test, proposed by Kupiec (1995), which is a likelihood ratio (LR) test. 

This test is based on the comparison between the observed and expected amount of 

violations. With respect to equation (1.8) we can define the hit variable 𝐼𝑡
𝐸𝑉𝑎𝑅(𝛼), which is 

obtained by the ex post observations of 𝐸𝑉𝑎𝑅(𝜃1, 𝛼), as:  
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𝐼𝑡
𝐸𝑉𝑎𝑅(𝛼) = {

0     𝑖𝑓 𝑟𝑡 < −𝐸𝑉𝑎𝑅(𝜃′𝑎)
𝑡−1

 1                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1.11)  

where 𝑟𝑡 is the return at time t. If 𝐼𝑡
𝐸𝑉𝑎𝑅(𝛼) is assumed to be iid, then the total number of 

violations of VaR, 𝐻𝑖𝑡𝑡
𝐸𝑉𝑎𝑅, follows a Binomial distribution (𝐵(𝑇, 𝛼)) and is defined as:  

 

𝐻𝑖𝑡𝑡
𝐸𝑉𝑎𝑅(𝛼) =∑𝐼𝑡

𝐸𝑉𝑎𝑅(𝛼)

𝑇

𝑡=1

~𝐵(𝑇, 𝛼) 
(1.12)  

and the LR test statistic (𝐿𝑅𝑓𝑟𝑒𝑞) under the null hypothesis has the following asymptotic 

distribution:  

𝐿𝑅𝑓𝑟𝑒𝑞𝐼𝑡
𝐸𝑉𝑎𝑅

= 2{𝑙𝑜𝑔[�̂�𝑇1(1 − �̂�𝑇−𝑇1)] − 𝑙𝑜𝑔[𝛼𝑇1(1 − 𝛼𝑇−𝑇1)]}

→ 𝜒2(1) 

(1.13)  

Looking at the test for the absence of violation clustering, as shown in Christoffersen (1998), 

we can apply the following LR test:  

𝐿𝑅𝑖𝑛ⅆ𝐼𝑡
𝐸𝑉𝑎𝑅

= 2 [𝑙𝑜𝑔𝐿𝐼𝑡
𝐸𝑉𝑎𝑅

(𝜋01, 𝜋11) − 𝑙𝑜𝑔𝐿
𝐼𝑡
𝐸𝑉𝑎𝑅

(𝜋, 𝜋)] → 𝜒2(1) (1.14)  

Finally, for testing the magnitude of violations the approach proposed by Berkowitz (2001) 

can be followed. We have to apply the following LR test:  

𝐿𝑅𝑚𝑎𝑔𝑦𝑡+1 = 2[𝐿𝑚
𝑦𝑡+1(𝜇, 𝜎) − 𝐿𝑚

𝑦𝑡+1(0,1)] → 𝜒2(2) (1.15)  

To sum it up, a strong VaR estimate, that is ensured to pass the three properties of a good risk 

forecast, should pass each of the three tests:  

{

    𝐿𝑅𝑓𝑟𝑒𝑞𝐼𝑡
𝐸𝑉𝑎𝑅

→ 𝜒2(1) 

𝐿𝑅𝑖𝑛ⅆ𝐼𝑡
𝐸𝑉𝑎𝑅

→ 𝜒2(1)

𝐿𝑅𝑚𝑎𝑔𝑦𝑡+1 → 𝜒2(2)

 

(1.16)  

Thus, the final objective, with respect to equation (1.8), is to find the minimal adjustment (𝑞∗) 

for 𝐼𝑀𝐴𝑉𝑎𝑅 to make it passess all these tests. Considering the sequence of forecasts 

{𝑉𝑎𝑅(𝜃, 𝛼): 𝑡 = [1, … , 𝑇]} it is possible to built a set of values 𝑞 ∈ ℝ such that the 

sequence {𝑉𝑎𝑅(𝜃, 𝛼) + 𝑞 ∶ 𝑡 = [1, … , 𝑇]} passes all the three backtests. Denoting the set 

of feasible adjustments 𝐴𝑇(𝛼), the optimal adjustment is:  

𝑞𝑇
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛⏟

𝑞∈𝐴𝑇(𝛼)

{𝑞} (1.17)  

However, since the estimation of the ES depends crucially on the estimation of the VaR, 

backtesting the ES is more difficult than for the VaR. In fact, if the VaR estimation is biased 
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this will also affect the correction made to ES. Following the work of Du and Escanciano 

(2016), we can define the test statistic for the expected number of violation test (unconditional 

coverage test) as a simple t statistic:  

𝑈𝐸𝑆 =
√𝑛(1 𝑛⁄ ∑ �̂�𝑡(𝛼)

𝑛

𝑡−1
− 𝛼 2⁄ )

√𝛼(1 3⁄ − 𝑥 4⁄ )

~𝑁(0,1) 
(1.18)  

where �̂�𝑡(𝛼) are the estimated cumulative violations that can be written as:  

�̂�𝑡(𝛼) =
1

𝛼
(𝛼 − �̂�𝑡)|(�̂�𝑡 ≤ 𝛼) 

(1.19)  

where �̂�𝑡 is the estimated probability level corresponding to the estimated distribution 

function (�̂�𝑡) of the daily returns (𝑟𝑡) that can be written as: 

�̂�𝑡 = �̂�(𝑟𝑡, 𝛺𝑡−1, 𝜃1) (1.20)  

in which 𝛺𝑡−1 is the set of the available information at time 𝑡 − 1 and 𝜃1 are the estimated 

parameters.  

Du and Escanciano (2016) again, propose another test to assess jointly the expected 

frequency of violations and the absence of violation clustering, with a conditional coverage 

test. They have to test both hypotheses jointly since as said before backtesting ES is more 

complicated than for VaR. The general test statistic is:  

𝐶𝐸𝑆 =
𝑛3

(𝑛 − 1)2

(∑ (�̂�𝑡(𝛼) −
𝛼
2⁄ )(�̂�𝑡−1(𝛼) −

𝑎
2⁄ )

𝑛

𝑡=2
)
2

(∑ (�̂�𝑡(𝛼) −
𝛼
2⁄ )(�̂�𝑡(𝛼) −

𝛼
2⁄ )

𝑚

𝑡=1
)
2 ~𝜒2(1) 

(1.21)  

Finally, Acerbi and Szekely (2014) propose a 𝑍2 test to test jointly the expected frequency of 

violations as: 

𝑍2 =∑
𝑟𝑡𝐼𝑡

𝑇𝛼𝐸𝑆𝛼,𝑡

𝑇

𝑡=1

+ 1 

(1.22)  

Where 𝐼𝑡 is a dummy that equals to 0 if the VaR forecast is not violated and 1 otherwise. One 

particular thing of this 𝑍2 test is that it is a non-parametric test. Thus, in order to be 

implemented it only needs the magnitude of VaR violations (𝑟𝑡𝐼𝑡) and the predicted Expected 

Shortfall (𝐸𝑆𝛼,𝑡). In general, if the 𝑍2 is greater than the test statistic the model is rejected. 

Acerbi and Szekely found that the critical value of the test statistic, for 𝛼 = 0,05, is −0.7.  
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Chapter 2 

 

The Portfolio Selection Problem 

 

The aim of this chapter is to provide the basic concepts for the empirical work 

that I am going to present in the final chapter. Here I will introduce the 

portfolio selection problem, presenting the Modern Portfolio Theory (MPT), 

proposed in 1952 by the Nobel Prize winner Harry Markowitz, and 

discussing its characteristics, highlighting the main unrealistic assumptions 

upon which this model is based. Thus, in order to overcome these limitations 

and to deal with a more realistic model, I will introduce mixed-integers 

constraints that provide an indirect effect on transaction costs, giving a more 

realistic valence to the problem, but that make the optimization problem 

harder to be solved. Finally, I will introduce two advanced risk measures, the 

Value at Risk (VaR) and the Expected Shortfall (ES), that enables to 

overcome another limitation of the Markowitz model, that uses the variance 

instead. While the variance is considered a classical risk measure, the VaR 

can be considered a pre-modern one and the ES a modern one, since it 

complies with all the coherence axioms proposed by Artzenr et al. (1999). 

 

 

2.1 Modern Portfolio Theory 

Considering the microeconomic theory, investing is the final step of the Consumer theory. 

An  individual that at time 𝑡 consumes only a part of its capital, maximizing her expected 

utility function, has the opportunity to shift the remaining part for future time instants, say 𝑡1, 

and so she has to invest in one or more risky assets. By choosing to invest she creates a 

portfolio, that from an operative point of view can be represented as a vector of dimensions 

𝑁 × 1:  

𝒙′ = (𝑥1, 𝑥2, … , 𝑥𝑁) 

in which 𝑁 indicates the number of securities and 𝑥1, 𝑥2, … , 𝑥𝑁 represents the percentage of 

capital allocated to each security. The first model developed to determine in a rational way 
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the composition of a portfolio is the Markowitz model (in “Portfolio Selection”, 1952), for 

which Harry Markowitz in 1990 won the Nobel Prize for Economic Sciences. This model, 

known as the Mean-Variance model, is the base of the Modern Portfolio Theory. 

 

2.1.1 Assumptions of the Markowitz Model 

Before going in more detail with this model, it is important to present the main assumptions 

on which it is based: 

❖ Frictionless markets, according to which there are no transaction costs, no taxation 

effects and all the assets are perfectly divisible.   

❖ No institutional restrictions regarding the short selling. 

❖ Each investment opportunity is measured over the same holding period. 

❖ Perfect information, investors know perfectly the probability distribution of the 

assets’ returns.  

❖ Investors are price takers, in the sense that they cannot affect the probability 

distribution of returns. 

❖ Investors are rational and risk averse, their aim is to maximize their rate of returns 

and if they have to choose between two titles with the same expected return, they 

always choose the one with the lowest risk.  

❖ The criteria used to make decisions is the mean-variance one.  

 

2.1.2 Portfolio Selection Process  

It is possible to identify three different steps in the portfolio selection process:  

1. Identification of an appropriate way to measure the uncertainty of an investment 

decision, which means to identify an appropriate measure of risk and expected 

returns. 

2. Establish a criterion that enables to distinguish between efficient and inefficient 

investment choices, in order to identify the best portfolios.  

3. Selection of a portfolio by the investor in accordance with her risk aversion. This is 

done by maximizing the investor’s expected utility function.  

 

With respect to the first step, according to Markowitz we can identify two tools: the mean 

and the variance of the rate of return of an investment. Reasonably the higher the mean (the 
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expected rate of return) the better will be for the investor; and vice versa the lower the variance 

the better.  

Let 𝑋 be a discrete random variable, where 𝑥𝑖 with 𝑖 = 1,… ,𝑁 is the 𝑖-th realization of 𝑋 

and 𝑝𝑖 with 𝑖 = 1,… ,𝑁 is the probability of occurrence of 𝑥𝑖. Thus, the expected value of 

this variable is:  

 

𝐸(𝑥) =∑𝑥𝑖𝑝𝑖

𝑁

1=1

 

(2.1)  

and the variance is:  

 

𝑉𝑎𝑟(𝑥) =∑[𝑥𝑖 − 𝐸(𝑥)]
2𝑝𝑖

𝑁

𝑖=1

 

(2.2)  

Whereas, if 𝑋 is a continuous random variable with probability density function 𝑓(⋅), then 

the expected value can be written as:  

 

𝐸(𝑥) = ∫ 𝑡𝑓(𝑡) ⅆ𝑡

+∞

−∞

 

(2.3)  

and the variance is:  

 

𝑉𝑎𝑟(𝑥) = ∫ (𝑡 − 𝐸(𝑥))
2
𝑓(𝑡) ⅆ𝑡

+∞

−∞

 

(2.4)  

Since a portfolio can be defined as a weighted average of individual securities, we can write 

the expected return of a portfolio as:  

 

𝐸(𝑅𝑝) =∑𝑥𝑖𝑟𝑖 = 𝑟𝑝 =

𝑁

𝑖=1

𝒙′𝒓 

(2.5)  

where 𝑟𝑖 is the expected rate of return of the 𝑖-th asset and 𝒙′𝒓 is the vectorial notation. 

Moreover the variance of 𝑅𝑝 can be written as:  

 

𝑉𝑎𝑟(𝑅𝑝) =∑𝑥𝑖
2𝜎𝑖

2

𝑁

𝑖=1

+ 2∑ ∑ 𝑥𝑖𝑥𝑗𝜎𝑖,𝑗

𝑁

𝑗=1+1

𝑁

𝑖=1

= 𝜎𝑝
2 = 𝒙′𝑽𝒙 

(2.6)  

where 𝜎𝑖,𝑗 = 𝜌𝑖,𝑗𝜎𝑖𝜎𝑗 is the covariance between the 𝑖-th and the 𝑗-th asset and 𝒙′𝑽𝒙 is the 

vectorial notation.  

Now, with  respect to the second step, the efficiency criterion proposed by Markowitz is 

mean-variance-based. If we consider two random variables 𝑋 and 𝑌, we can state that 𝑋 

dominates 𝑌, and so it is preferred to 𝑌, if the following conditions are respected:  
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❖ 𝐸(𝑅𝑋) ≥ 𝐸(𝑅𝑌); 

❖ 𝑉𝑎𝑟(𝑅𝑋) ≤ 𝑉𝑎𝑟(𝑅𝑌); 

❖ At least one of these two inequalities is satisfied in the strong form.  

 

This criterion enables the investor to compare in the mean-variance sense, part of investment 

choices. However, it is possible that between two options none dominates the other. In this 

case, where the mean-variance criterion is not able to distinguish, and each of them lie in the 

so called efficient frontier. Thus, the efficient frontier consists of all the efficient portfolios 

that given an expected rate of return minimize the variance, or that given a certain level of 

variance maximize the expected return. As a consequence, any rational investor will choose 

a portfolio that lies in the efficient frontier given his preferences.  

Merton (1969) proposed the following optimization problem for the construction of the 

efficient frontier for 𝑁 assets:  

 𝑚𝑖𝑛𝑥1,…,𝑥𝑁    𝒙
′𝑽𝒙 

𝑠. 𝑡.   {
𝒙′𝒓 = 𝜋
𝒙′ⅇ = 1

 

(2.7)  

where:  

❖ 𝜋 is the investor’s desired rate of return; 

❖ 𝑽 is the 𝑁 × 𝑁 variance-covariance matrix; 

❖ ⅇ is a vector of ones of order 𝑁.  

 

As it can be seen, these optimization problem has two constraints: 𝒙′𝒓 = 𝜋 is the profitability 

constraint, according to which the investor chooses the desired rate of return; while 𝒙′ⅇ = 1 

is the budget constraint, that states that all the initial capital has to be invested among the 

possible assets.  

In order to find the solution of this optimization problem two conditions have to be met: the 

𝑽 matrix of variances and covariances must be singular32 and positive definite33; and the 

expected return of at least two assets must be different, i.e. 𝑟𝑖 ≠ 𝑟𝑗 for some 𝑖, 𝑗 = 1,… ,𝑁. 

If these conditions are met a unique solution exists, and to find it we have to use the 

Lagrangian function:  

 𝐿 = 𝒙′𝑽𝒙 − 𝜆1(𝒙
′𝒓 − 𝜋) − 𝜆2(𝒙

′ⅇ − 1) (2.8)  

 
32 For a matrix to be singular it must be a square matrix whose determinant is equal to zero. 

Thus, a singular matrix is non invertible.  
33 The matrix 𝑽 is positive definite if for any non null vector 𝑀, 𝒙′𝑽𝒙 > 0. 
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where 𝜆1 and 𝜆2 are the Lagrange multipliers. Then, by imposing the first order partial 

derivatives equal to 0 and by solving the following equation system we find the solution of 

the optimization problem, 𝑥∗:  

 

{
  
 

  
 
𝜕𝐿

𝜕𝑥
= 2𝒙′𝑽 − 𝜆1𝒓

′ − 𝜆2ⅇ
′ = 0

𝜕𝐿

𝜕𝜆1
= −𝒙′𝒓 + 𝜋 = 0

∂L

∂λ2
= −𝐱′ⅇ + 1 = 0

 

 

(2.9)  

 𝑥∗ =
(𝛾𝑽−𝟏𝒓 − 𝛽𝑽−𝟏ⅇ)𝜋 + (𝛼𝑽−𝟏ⅇ − 𝛽𝑽−𝟏𝒓)

𝑎𝛾 − 𝛽2
 

(2.10)  

where 𝛼, 𝛽 and 𝛾 are respectively: 𝛼 = 𝒓′𝑽−1𝒓, 𝛽 = 𝒓′𝑽−1ⅇ = ⅇ′𝑽−1𝒓 and 𝛾 =
ⅇ′𝑽−1ⅇ. 

To sum it up, the mean, the variance and the standard deviation of the efficient portfolio are 

respectively:  

 𝐸(𝑅𝑝∗) = 𝑟𝑝∗ = 𝒙∗′𝒓 = 𝜋 

 

(2.11)  

 𝑉𝑎𝑟(𝑅𝑝∗) = 𝜎𝑝∗
2 = 𝒙∗′𝑽𝒙∗ =

𝛾𝜋2 − 2𝛽𝜋 + 𝛼

𝛼𝛾 − 𝛽2
 

 

(2.12)  

 
𝑆𝑡ⅆ𝐷𝑒𝑣(𝑅𝑝∗) = 𝜎𝑝∗ = (

𝛾𝜋2 − 2𝛽𝜋 + 𝛼

𝛼𝛾 − 𝛽2
)

1
2⁄

 

(2.13)  

As it can be seen easily by equation (2.12), the variance function describes a parabola in the 

mean-variance plane, whereas equation (2.13) describes a hyperbole in the mean-standard 

deviation plane. Figure 9 gives a representation of the frontier both in the mean-variance  and 

in the mean-standard deviation plane in the case of 𝑁 = 15 and no riskless asset. Every red 

dot represents a specific asset. It can be noticed that the efficient part of the frontiers is the one 

that lies above the vertex of the parabola and the hyperbole. Every point in this part of the 

frontiers constitute an efficient portfolio that can be chosen by the investor. Another 

interesting property is that by forming a portfolio of these fifteen assets it is possible to achieve 

a combination of those with lower risk that the risk of the less risky asset: this is shown 

graphically by the portion of the frontier that goes from the vertex until the first dot on the left 

(that represents the security with lower variance/standard deviation). This is the so called risk-

reduction principle. 
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Figure 9: Graphical representation of the frontier in the mean-variance and mean-

standard deviation plane for 𝑁 = 15 and no riskless asset.  

 

Furthermore, Figure 10 represents again the frontier both in the mean-variance and in the 

mean-standard deviation plane in the case of 𝑁 = 15, but this time with the possibility of 

investing also in a riskless asset. By allowing to invest in a risk-free security, the frontier is 

now tangent to the 𝑦 axis, because now it is possible to choose an allocation with no risk (thus 

with a certain return). 

 

 

Figure 10: Graphical representation of the frontier in the mean-variance and mean-

standard deviation plane for 𝑁 = 15 plus one riskless asset. 
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2.1.3 Expected Utility Theory  

With respect to the third point of the portfolio selection process, once the efficient frontier has 

been identified, now it is crucial to determine a criterion for the investor to pick her optimal 

portfolio among all the possible efficient ones considering her risk aversion. This is done in 

accordance with the Von Neumann and Morgenstern (1947) Expected Utility Theory. In this 

way the investor aims to choose the efficient portfolio which maximizes her expected utility 

function. A general utility function is consistent with the mean-variance dominance criterion 

if and only if one of the following two mutually exclusive conditions is respected:  

❖ The expected utility function is quadratic. 

❖ The joint probability distribution of returns is elliptical34. 

 

Thus, a generally adopted utility function is the quadratic utility one, 𝑈, with the following 

form: 

 𝑈(𝑅𝑝) = 𝑅𝑝 −
𝛼

2
𝑅𝑝
2   (2.14)  

where 𝑅𝑝 ≤
1

𝛼
 is the random variable indicating the returns of the portfolio and 𝑎 > 0 

represents the risk aversion coefficient of the investor. The first addendum of (2.14) is linked 

with the profitability, while the second contains the subjective valuation of risk of the investor 

(through the 𝑎 parameter). Looking at the first derivative of this function it is possible to 

notice that it is positive; while looking at the second derivative it is always negative by 

construction. Therefore, the properties of this utility function are that it is strictly increasing, 

since the aim of the investor is to maximize its profits, and concave, stating that to an increase 

of the capital would correspond a minor increase in the utility function the more is the capital 

owned by the investor. 

Furthermore, calculating the expected value of (2.14) we have:  

 𝐸[𝑈(𝑅𝑃)] = 𝜇𝑃 −
𝛼

2
(𝜇𝑃

2 + 𝜎𝑃
2) (2.15)  

where 𝜇𝑃 and 𝜎𝑝
2 are respectively the mean and the variance of the portfolio returns.  

Furthermore, the generic indifference curve35 of the quadratic utility function can be derived 

from equation (2.15):  

 
34 As for example the Normal and the Student-t distribution. 
35 An indifference curve is a curve connecting all the points with the same expected utility 

for the investor. So if two investment opportunities lie in the same curve they might present 

different risk-return characteristics, but they have the same expected utility.  
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 𝑘 = 𝜇𝑝 −
𝛼

2
(𝜇𝑃

2 + 𝜎𝑃
2) (2.16)  

where 𝑘 is a fixed value of expected utility. By reformulating (2.16), it is possible to see that 

it is nothing more that the equation of a circumference with centre in (0,
1

𝛼
) and with radius 

√
1−2𝛼𝑘

𝛼2
:  

 
𝜎𝑃
2 + 𝜇𝑃

2 −
2

𝛼
𝜇𝑝 +

2

𝛼
 𝑘 = 0 

(2.17)  

Expression (2.17) is a convex function in the mean-variance plane increasing with respect to 

𝑘. Hence, on the same indifference curve lie infinite investment choices characterized by the 

same expected utility. In conclusion, since we have demonstrated that the mean-variance 

criterion is consistent with the expected utility theory, it can be useful to collocate the efficient 

frontier in the same plane with the indifference curve. As shown in Figure 11, the optimal 

portfolio 𝑿∗is the tangency point between the efficient frontier and the highest indifference 

curve.  

 

 

Figure 11: Optimal portfolio 𝑿∗, represented as the tangency point between the efficient 

frontier and the highest indifference curve. 

 

2.2 Improvements of the Markowitz Model  

To improve the classic portfolio selection model, it is necessary to implement in the selection 

models some realistic aspects, generally in the form of constraints. It is important to 

remember from equation (2.7) that the two constraints in the Markowitz model are related to 
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the budget and the desired return. Improvements can be made by adding to these two the so 

called mixed-integers constraints. In linear programming36 it is possible to identify three 

macro classes of problems: 

❖ Linear continuous programming (LP); 

❖ Integer linear programming (ILP); 

❖ Mixed-integer linear programming (MILP). 

 

To LP class belong all those optimization problems in which the variables are continuous, 

and that can take all the values inside their domain of existence. On the contrary, to ILP class 

belong all those problems in which all the variables are restricted to be integers, and that can 

take only integers values inside their domain of existence. Finally, to MILP class belong those 

problems in which only some of the variables are required to be integer, and thus contain 

both continuous and integer variables. Mixed-integers constraints belong to this third class. 

As we will see in section 2.3.1, one integer constraint and two continuous constraints will be 

added to the portfolio selection problem.  

The three main families of mixed-integers constraints are: 

❖ Constraints to the minimum lots that must be negotiated in each transaction. For 

example it can be allowed to negotiate only integer numbers of lots of a specific 

security. A lot is generally composed by a specific number of shares, for example 

100 or 200, but it can be greater depending on the asset. 

❖ Constraints to the maximum positive integer number of different assets that can be 

negotiated. For example, a portfolio must be composed of at most 10 securities. 

❖ Constraints to the minimum positive integer number of different lots that must be 

negotiated for a specific security. For example, when negotiating a security, the 

minimum number of lots to be bought or sold is 2.  

 

By introducing these constraints, it is possible to give a greater operative valence to the 

portfolio selection problem: a portfolio manager who is facing the problem of choosing 

among hundreds of securities the ones in which to invest, might decide to limit the minimum 

and the maximum number of securities to be selected as well as the minimum and maximum 

percentage of capital to invest in each of them. In this way, mixed-integers constraints have 

 
36 Linear programming is a special case of mathematical programming that is focused on 

studying algorithms for the solution of linear optimization problems that are subject to 

linear equality and/or inequality constraints.  
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an indirect impact on controlling transaction costs, because considering too many securities 

would be expensive both in terms of time and money. For an example see Jobst et al. (2001), 

Andramonov and Corazza (2003) or Corazza and Favaretto (2007).  

However, one implication of the introduction of these types of constraints is that the efficient 

frontier may lose some of its important properties: it could be that the frontier is no longer a 

continuous function, causing problems when choosing the optimal portfolio. Nonetheless, 

the main implication is that the optimization problem becomes more complex to be solved 

in terms of computational and time requirements. In fact, checking the eligibility of mixed-

integers constraints in a mathematical programming problem is an NP-complete37 problem. 

Furthermore, solving such a mathematical programming problem is an NP-hard38 problem.  

As a consequence, the search for the optimum solution via exact methods, that guarantees 

that the best admissible solution is found, might not be possible and the employment of 

approximated techniques, that provide a good approximation of the best solution, might be 

needed. As pointed out by Richards and How (2005), for solving MILP problems there exists 

two main procedures:  

❖ Branch and bound; 

❖ Heuristics and metaheuristics. 

 

Branch and bound method consists in decomposing the original problem into more sub-

problems that are easier to be solved. In this way, a decision-tree structure is built in which to 

each node corresponds a sub-problem which is related though a branch to the problem from 

which it derives. The main advantage of this technique is that it is an exact method that allows 

one to find the global optimal solution among the admissible ones. However, it may not 

always be applicable. The other category includes heuristics and metaheuristics procedures. 

In general, they are approximated techniques that allows to find acceptable solutions that 

converge towards the global optimum, albeit they do not guarantee to reach it. As stated in 

Richards and How (2005), “heuristics methods are typically based on some random search 

procedure. This is attractive for non-convex problems, as the randomness reduces the 

susceptibility of the methods to getting stuck in local minima.” More details about heuristics 

and metaheuristics will be given in chapter 3, where I will present the two algorithms applied 

to the portfolio selection problem, used for experiment with real data presented in chapter 4.  

 
37 NP-complete are problems that requires a huge effort and amount of time to be solved. 
38 NP-hard are problems at least as complex as NP-complete, but they can be even more.  
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2.3.1 Cardinality Constraints  

An example of mixed-integer constraints are the cardinality constraints. They can be 

introduced to tackle indirectly the problem of transaction cost management by limiting the 

minimum and the maximum number of assets in which the portfolio can invest. More 

formally we have: 

 

𝐾𝑛 ≤∑𝑧𝑖

𝑁

𝑖=1

≤ 𝐾𝑚   𝑤𝑖𝑡ℎ 1 ≤ 𝐾𝑛 ≤ 𝐾𝑚 ≤ 𝑁 

(2.18)  

Where 𝐾𝑛 is the minimum number of assets in the portfolio; 𝐾𝑚 is the maximum number; 

𝑁 is the total number of titles in which we can invest; and 𝑧𝑖 ∈ [0,1] is a binary variable that 

assumes value of 1 if the i-th asset is included in the portfolio and 0 otherwise.  

Furthermore other constraints, called bound constraints, that limits the percentage amount of 

wealth invested in each asset can be added: 

 𝑧𝑖𝑛𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖𝑚𝑖   𝑤𝑖𝑡ℎ 0 ≤ 𝑛𝑖 ≤ 𝑚𝑖 ≤ 1 (2.19)  

Where 𝑛𝑖 is the minimum fraction of capital invested in the i-th asset and 𝑚𝑖 is the maximum 

one. In order to guarantee that the two constraints presented above are compatible with each 

other, the following two inequalities for 𝑛𝑖 and 𝑚𝑖 must be satisfied:  

 
𝑛𝑖 ≤

1

𝐾𝑛
 

(2.20)  

 𝑚𝑖  ≤
1

𝐾𝑚
 

(2.21)  

To sum it up, now the optimization problem for the portfolio selection can be written as:  

 𝑚𝑖𝑛𝑥,𝑧 𝜌(𝑅)

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 

�̂� ≥ 𝜋

∑ 𝑥𝑖

𝑁

𝑖=1

= 1

𝐾𝑛 ≤∑𝑧𝑖

𝑁

𝑖=1

≤ 𝐾𝑚

𝑧𝑖𝑛𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖𝑚𝑖  ∀𝑖

𝑧𝑖(𝑧𝑖 − 1) = 0      ∀𝑖

 

(2.22)  

where 𝜌(𝑅) is a generic risk measure and 𝑧𝑖(𝑧𝑖 − 1) = 0 is the reformulation of the 

integrality constraint 𝑧𝑖 ∈ [0,1].  
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2.3 Modern Risk Measures  

As proposed by various authors like Szegö (2002), Ortobelli et al. (2005), Rachev et al. 

(2008) a risk measure can be seen as a function 𝜌: 𝑋 → ℝ which assigns to the random 

variable 𝑋 a non negative real number. 

Thus, another improvement to the Markowitz model is to substitute the variance, which is a 

classical risk measure, with a more efficient one. As said before, the variance is not sensitive 

to tail events and it is not able to distinguish between positive variations and negative ones as 

pointed out by Rachev et al. (2008). In fact, when considering the risk associated with a 

portfolio it is more important to have a clearer understanding of  the probability of downside 

movements (losses).   

 

2.4.1 The Value at Risk 

The Value at Risk (VaR), introduced for the first time by the J.P. Morgan in 199439 and 

successively adopted by the Basel Committee to calculate capital reserves, can be a valuable 

alternative to overcome these problems. The VaR, considered as a pre-modern risk measure, 

can be defined as: 

 

Definition. Value at Risk. Given defined time horizon (called holding period) and a 

confidence level 𝛼 ∈ [0,1], the VaR is the maximum potential loss that the portfolio can 

suffer in the 𝛼% of cases during the holding period.  

Usually the confidence level for 𝛼 are 95% and 99%. Figure 12 shows the concept of Var 

looking at the probability density function and at the probability distribution function of 

portfolio returns. As it can be seen the VaR is identified as the quantile of a probability 

distribution that satisfies the following property: 𝑃(𝐿 > 𝑉𝑎𝑅𝛼) = 1 − 𝛼. Where 𝐿 is the 

profit-loss distribution. Another formulation, sometimes preferred, of the VaR is:  

 𝑉𝑎𝑅𝛼(𝑋) = − 𝑖𝑛𝑓
𝑥
{𝑥|𝑃(𝑋 ≤ 𝑥) ≥ 𝛼} (2.23)  

The main advantage of the VaR is that it expresses the risk in monetary terms. Furthermore, 

it is able to capture tail events better than the variance. Nonetheless, it has some limits when 

the distribution of returns is not Gaussian. As shown by Embrechts (2000), Hu and Kercheval 

(2007) and Natarajan et al. (2008) when normality assumption is made, the portfolio fund by 

 
39 RiskMetricsTM - Technical Document, J.P. Morgan/Reuters, Fourth Edition (1996). 
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minimizing the VaR coincides with the one fund following Markowitz assumptions (thus by 

using the variance). However it has been shown that normality assumptions may distort VaR 

estimates, leading to an underestimation of the real risk. In addition, the VaR does not allow 

to estimate losses greater than the VaR itself. Furthermore, regarding risk measure properties 

(presented in more detail in the next section) the VaR does satisfy the translation invariance, 

monotonicity and positive homogeneity properties. However VaR lacks sub-additivity, in 

fact we can have that: 

 𝑉𝑎𝑅𝛼(𝑋 + 𝑌) > 𝑉𝑎𝑅𝛼(𝑋) + 𝑉𝑎𝑅𝛼(𝑌) (2.1)  

Thus, the risk deriving from a portfolio of two assets 𝑋 and 𝑌 can in some cases be greater 

than the sum of the risk associated with each asset. This is not in line with the diversification 

assumption.  

 

 

Figure 12: Graphical representation of the Value at Risk looking at the density function 

and at the cumulative distribution function of portfolio returns. 

 

2.4.2 Coherent Risk Measures  

Artzner et al. (1999) proposed the four properties that a coherent risk measure should possess. 

All the (coherent) risk metrics that respect these properties are known as modern risk 

measures. More in detail they are:  
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❖ Translation invariance: considering the random return 𝑋 and a risk free asset and 

combining the two in a portfolio, its risk will decrease proportionally to the amount 

𝛼 invested in the safe asset. 

 𝜌(𝑋 + 𝛼) = 𝜌(𝑋) − 𝛼 (2.2)  

❖ Sub-additivity : it is at the basis of portfolio diversification, meaning that the risk 

associated to the combination of two risky assets 𝑋 and 𝑌 is lower than the sum of 

the risks associated with each of them.  

 𝜌(𝑋 + 𝑌) ≤ 𝜌(𝑋) + 𝜌(𝑌) (2.3)  

❖ Positive homogeneity : if the investment in 𝑋 is augmented of  a component 𝜆 > 0, 

then the risk associated with that investment will increase accordingly.  

 𝜌(𝜆𝑋) = 𝜆𝜌(𝑋) (2.4)  

❖ Monotonicity : given two risky assets 𝑋 and 𝑌, if 𝑋 ≤ 𝑌 then the risk associated to 

𝑋 will be lower than the risk associated to 𝑌. 

 𝑋 ≤ 𝑌 → 𝜌(𝑋) ≤ 𝜌(𝑌) (2.5)  

 

2.4.3 The Expected Shortfall 

The Expected Shortfall (ES), also known as Conditional Value at Risk (CVaR40), is 

considered a modern risk measure, as it satisfies all the 4 coherence axioms proposed by 

Artzner et al (1999). In financial terms it can be interpreted as the expected value of the losses 

conditioned to the fact that these losses exceed the VaR.  

 

Definition. Expected Shortfall. Given the random variable 𝑋 with probability density 

function 𝐹(𝑋) so that 𝑃(𝑋 ≤ 𝑥), and by introducing the inverse of 𝐹(𝑋) as 𝐹−1(𝛼) =

𝑖𝑛𝑓
𝑥
{𝑥|𝐹(𝑥) ≥ 𝛼}, that coincides with (2.18), then the ES can be expressed as:  

 

𝐸𝑆𝛼(𝑋) = −
1

𝛼
∫𝐹−1(𝑝) ⅆ𝑝

𝛼

0

 

(2.6)  

As it can be seen it is the average value under the left tail of the profit-loss distribution.   

Whereas, Acerbi and Tasche (2002) provided a more formal definition of ES even if it does 

 
40 By Rockafellar and Uryasev (2002). 
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not change substantially form (2.24). Given the profit-loss distribution 𝑋 and specified the 

holding period, the ES with significance level 𝛼 ∈ [0,1] is defined as:  

 
𝐸𝑆𝛼(𝑋) = −

1

𝛼
{𝐸[𝑋𝟏{𝑋≤𝑥𝛼}] − 𝑥

𝛼(𝑃[𝑋 ≥ 𝑥𝑎] − 𝛼)} 
(2.7)  

where 𝑥𝛼 is the 𝑉𝑎𝑅𝛼. 

Figure 13 provides a representation of the ES, and as it can be seen this risk measure is able 

to take into account all the losses exceeding the VaR, capturing in a better way the risk of tail 

events. For example Liang e Park (2007) provided evidence of the superiority of the ES with 

respect to the VaR as a measure of downside risk. Furthermore the ES is a universal risk 

measure, as it can be applied to every financial instrument.  

 

 

Figure 13: Graphical representation of the Expected Shortfall and comparison with the 

Value at Risk.  
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Chapter 3 

 

Metaheuristics: a comparison between PSO and GWO 

 

 In this chapter I will present the two metaheuristics that will be applied in 

chapter 4 in order to solve the portfolio selection problem. As we have seen 

in the previous chapter, if we consider a more realistic problem it may not be 

possible to find a solution with exact techniques, thus metaheuristics 

algorithms are required. Here, after a brief introduction on metaheuristics’ 

world in which I discuss the core concepts of exploration and exploitation 

and Swarm Intelligence, I will present two of these techniques in detail. More 

precisely, I will examine the Particle Swarm Optimization, which is one of 

the most applied and trusted techniques, and I will compare it with the 

recently developed Grey Wolf Optimization, which is one of the fastest 

growing algorithm of these years with a lot of applications in many fields. 

The aim of this comparison is to critically assess analogies and differences 

of these two models in order to provide a starting point for the measurement 

of Model Risk in chapter 4. 

 

 

3.1 From Heuristics to Metaheuristics  

Both Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) are part of 

approximated algorithms41 family, and more in detail they belong to metaheuristics 

algorithms. These techniques allow to solve Combinatorial Optimization (CO) problems, 

such as the portfolio selection problem even in the case of introduction of mixed-integers 

constraints, that as we have seen in the previous chapter makes the procedure to find a 

solution an NP-hard problem.  

 
41 With respect to computer science, approximation algorithms are efficient techniques that 

allow us to find approximate solutions to complex optimization problems (especially NP-

hard problems). These techniques do not guarantee the optimal solution, but they provide 

a good approximation to that in a reasonable amount of time.  
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A Combinatorial Optimization problem can be defined as 𝑃 = (𝑆, 𝑓) which is composed 

of:  

❖ A set of variables 𝑋 = (𝑥1, … , 𝑥𝑛); 

❖ Variables’ domain 𝐷1, … , 𝐷𝑛; 

❖ An objective function 𝑓 to be minimized, where 𝑓: 𝐷1 ×…× 𝐷𝑛 → ℝ+; 

❖ A number of constraints on the set of variables 𝑋; 

❖ A set of all possible combinations given by:  

 𝑆 = {𝑠 = [(𝑥1, 𝑣1),⋯ (𝑥𝑛, 𝑣𝑛)]|𝑣𝑖 ∈ 𝐷𝑖 ,

𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠} 

(3.1)  

where 𝑆 is the solution space (or the search space) and every element in it is a 

candidate solution.  

In case of minimization, in order to solve this CO problem we have to find the optimal 

solution 𝑠∗ ∈ 𝑆 that minimizes the objective function so that:  

 𝑓(𝑠∗) ≤ 𝑓(𝑠)∀𝑠 ∈ 𝑆 (3.2)  

where 𝑠∗ is the global optimum solution of (𝑆, 𝑓). 

Two methods can be identified to solve CO problems: exact algorithms or approximated 

algorithms (or heuristics). As pointed out in paragraph 2.2, exact methods are generally not 

suitable for the solution of NP-hard problems, since they provide a solution in an 

unreasonable amount of time42.  

By contrast, heuristic algorithms are able to approximately solve NP-hard problems 

providing a good approximated solution in a reasonable amount of time. Thus, even if they 

do not guarantee  the optimal solution, they are characterized by flexibility, with a range of 

 
42 It is important to give the definition of temporal complexity: in computer science, the 

temporal complexity of an algorithm is a measure of the time required by the algorithm to 

be fully executed. In order to define a unit measure for the time requirement, the notation 

𝑂(𝑓(𝑛)) can be introduced, where 𝑂 is the order of magnitude. Thus, if we consider an initial 

number of input 𝑛, the complexity of an algorithm is  𝑂(𝑓(𝑛)) if the number of operations to 

fully execute it is a multiple of 𝑓(𝑛). In particular, an algorithm in polynomial time is an 

algorithm that has a time to be fully executed with an upper bound limit of the dimension 

of the input of the algorithm, so 𝑇(𝑛) = 𝑂(𝑛𝑘), where 𝑘 is constant. 𝑇(𝑛) is defined as the 

maximum amount of time required for any input of dimension 𝑛.  

All the problems for which it is required an algorithm that needs a polynomial number of operations 

to solve them, belong to the P (Polynomial) problems class. Instead, for NP (Non deterministic 

Polynomial) problem class there are no algorithms of Polynomial class that are able to solve them. 

Finally, NP-hard problems are another class that has a complexity at least equal to the one of NP 

problems.  
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possible applications that is wider than exact methods. The etymology of the word “heuristic” 

comes from ancient Greek:   

 

Definition. Heuristic. It comes from the Greek verb heuriskein that means “to find” or “to 

discover”. In particular, heuristic algorithms are methods used to find a solution to complex 

optimization problems in a reasonable amount of time through a trial and error technique, 

that however do not guarantee that the best solution is reached.  

 

It is possible to identify three main categories of heuristic algorithms:  

 

❖ Constructive algorithms. They aim to build an admissible solution by aggregating, 

iteration after iteration,  some adjustments to a starting solution. They generally 

follow a three step approach: 

1. Initialization: a starting input, which is nothing more than an initial partial 

solution, is generated. 

2. Selection of a new input: on the basis of a prefixed selection criterion a new 

input is aggregated to the partial initial solution found in step 1. 

3. Stop criterion: if the resulting solution is admissible the algorithm is stopped, 

otherwise step 2 is done again.  

The solutions found with this typology of algorithms are strictly related to the initial 

input and to the mechanism used to update partial solutions. These algorithms are 

relatively fast, however usually the solutions found with them are less “optimal” than 

other types of algorithm. 

 

❖ Improvement or local search algorithms. Their mechanism is based on the 

enhancement of an admissible solution via an iterative procedure. As a consequence, 

they are usually more precise than constructive algorithms. Their functioning is 

based on 4 steps:  

1. Initialization: a possible initial solution is generated in order to trigger the 

search process.  

2. Identification of a criterion that enables to search around the current solution 

in order to find better ones. Following this criterion, the algorithm searches 



Metaheuristics: a comparison between PSO and GWO 

52 
 

in the neighbourhood43 of the current solution, looking for a better one to be 

selected.  

3. Selection of a new solution: the best solution in the neighbourhood is 

selected. 

4. Stop criterion: If the new solution is better than the initial one step two is 

done again, otherwise the algorithm stops.  

The solutions found with this typology of algorithms are strictly related to the initial 

input and to the criterion used to identify the neighbourhood. 

 

❖ Metaheuristics. They are enhanced versions of heuristics since they are focused on 

finding the optimum by searching and exploiting the solution space efficiently and 

effectively in the most promising areas. As pointed out, constructive algorithms are 

focused on finding a suitable solution while improvement algorithms start with a 

suitable solution and then they try to improve it.  Metaheuristics, on the other hand, 

try to enhance the quality of solutions identifiable with constructive and local search 

techniques in order to avoid local optimums. The Particle Swarm Optimization and 

the Grey Wolf Optimization belong to this category.  

 

3.1.1 Metaheuristics  

The term “metaheuristic” was first used by Glover (1986). The word metaheuristic is 

composed of the prefix meta, which means “beyond”, and heuristic which as highlighted 

earlier means “to find” by trial and error. In the last 30 years the usage of these techniques 

has skyrocketed, causing some problems when trying to identify a unique definition of 

metaheuristic. In this thesis I will consider the definition provided by Sörensen and Glover 

(2013): 

 

Definition. Metaheuristic. “A metaheuristic is a high-level problem-independent algorithmic 

framework that provides a set of guidelines or strategies to develop heuristic optimization 

 
43 The neighbourhood of an individual (or solution) x is the space around it in which the 

algorithm is searching when trying to find better solutions to the current one. Every 

neighbourhood has a peculiar structure that influences the functioning of the algorithm as 

it states how information is exchanged between agents. Neighbourhood structures will be 

presented later in this chapter. 
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algorithms. The term is also used to refer to a problem-specific implementation of a heuristic 

optimization algorithm according to the guidelines expressed in such a framework.” 

 

Thus, if on one hand heuristics are algorithms that return in a reasonable amount of time a 

solution which is a good approximation of the optimal one, metaheuristics perform a deeper 

search in the most promising areas of the search space. These techniques allow us to solve 

any optimization problem more effectively than heuristic algorithms. The main advantages 

of metaheuristic approaches are their simplicity and flexibility that allow them to be adapted 

to any sort of optimization problem. Moreover, they are derivative-free methods, since they 

do not require the calculation of any derivative.  

The two main concepts upon which metaheuristics are based are:  

❖ Exploration, which refers to the searching phase around solution space for the most 

promising areas. 

❖ Exploitation, which refers to the exploitation of the common experience about the 

search already done until that moment. 

 

While exploration is linked to an individual behaviour, the single agent looks around for 

unexplored areas that seem promising to it, exploitation phase is linked to a social behaviour, 

in which multiple agents use and exchange their past experience. These two concepts are in 

trade off among them, if for example more emphasis is given to exploration, then the 

exploitation phase will suffer. Thus, it is crucial to find the right balance between exploration 

and exploitation: if on one hand it is important to identify quickly the most promising areas 

of the search space, on the other it is crucial to not waste time on areas already explored or 

non promising. However, it is right because of this interaction between individual and social 

behaviour that it is possible to enhance the quality of solutions. This is linked with the concept 

of Swarm Intelligence (SI) that I will present in the next section. However, briefly, with SI 

we mean a complex form of intelligence possessed by certain typology of the population of 

individuals. If these individuals are considered separately they are just capable of a very basic 

form of intelligence, but if considered jointly they are able to solve complex tasks that require 

a sophisticated level of intelligence through the exchange of information and cooperation.  

Now I provide a brief presentation on the main characteristics according to which 

metaheuristics can be classified:  

❖ Nature inspired vs non-nature inspired. This distinction is linked with the origin of 

the algorithm. Some metaheuristics are inspired by animals’ behaviour observed in 
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nature: the Particle Swarm Optimization (PSO) is inspired by bird flocks and fish 

shoals; while the Grey Wolf Optimization (GWO) is inspired by the social hierarchy 

and hunting behaviour of wolves. Instead, other metaheuristics have nothing to do 

with “nature”, like the Fireworks Algorithms or the Tabu Search. However, it is 

possible to find in the literature hybrid algorithms that combine nature with non-

nature ones, and that cannot be classified according to these criterions.  

❖ Population based vs single point search. Here the difference is between the number 

of solutions that are treated simultaneously. Population based metaheuristics, when 

trying to find the optimum, generate and manage a set of solutions, called population. 

The population is generated randomly and then it is improved iteratively: if better 

solutions are found they substitute the previous ones. This process is carried out until 

a stop criterion is reached and hopefully the resulting set of solutions is close enough 

to the optimal one. On the other hand, single point search metaheuristics take into 

consideration just one solution and they describe its trajectory in the solution space. 

At each step the current solution is replaced with a new one which is hopefully a 

better one. Both PSO and GWO are population based metaheuristics. Examples of 

single point search algorithms are Simulated Annealing and Tabu Search. 

❖ Static objective function vs dynamic objective function. In some algorithms the 

objective function remains the same in every searching step. Instead, in other 

metaheuristics the objective function changes while the searching is performed: this 

helps to prevent the algorithm from being stuck in local optimum areas of the 

searching space. 

❖ One neighbourhood structure vs multiple neighbourhood structures. Some 

metaheuristics use just one structure for describing the topological conformation of 

the neighbourhood, assuming it to be static. Others instead modify dynamically the 

structure of the neighbourhood with the objective to diversify the search in the 

solution space.  

❖  Memory-usage vs memory-less methods. Memory-usage algorithms keep track of 

past information (i.e. of past experience) and use it in the searching phase for 

updating the quality of the current solution. On the other hand, memory-less 

algorithms acts just like a Markow process44 where the information used to 

 
44 A stochastic Markow process is a random process where the probability that determines 

the transition from the actual stage to the next one is only determined by the actual stage 
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determine the next step depends exclusively on the current information and not on 

the past one. However, among memory-usage algorithms it is possible to distinguish 

between those with long memory and those with short memory. While the first uses 

synthetic parameters relative to the past searching experience to move accordingly 

taking into consideration long time memory, the latter uses just recent information.  

 

3.1.2 Swarm Intelligence 

SI is a branch of Evolutionary Computation45, that constitutes the family of algorithms for 

global optimization that simulates natural and biological phenomena. Beni et al. (1988), in 

the field of cellular robotic systems, use the term Swarm Intelligence for the first time. With 

SI they mean the collective behaviour that a group of individuals (swarm) put in place when  

they interact with each other following some rules.   

While the single agent of the swarm may have only a basic form of intelligence, the entire 

swarm can reach a complex and high level form of intelligence. Thus, even if single agents 

are not sophisticated, by sharing information and personal experiences, directly or indirectly, 

with the swarm, they are able to learn and display complex forms of behaviour that enables 

them to solve hard tasks. It is possible to find a lot of examples of this mechanics in nature: 

think about insect behaviour, like ants or bees when seeking food, but also of other animals 

like the fish, birds or wolves. It is well known that wolves display a high level of cooperation 

when hunting the prey, they respect a set rules and mechanics for the encircling and capturing 

phase of the hunt. These behaviours are precisely what the GWO metaheuristics pretend to 

mimic. On the other hand the PSO is inspired by the behaviour of flock of birds and of shoals 

of fishes. Those groups of animals are able to optimally pursue objectives crucial for their 

existence, like food search or escape from predators even if the single agent may not be 

sophisticated.  

The two main characteristics of SI are the decentralization and self-organization of the group. 

With decentralization we mean that in the group there is not any individual that has the task 

of supervising the functioning of the entire process. Instead, with self-organization we mean 

 
and not by the past one. Thus it is a process with no memory: there is no impact of past 

information.  
45 Evolutionary Computation is one of the subsets of Computational Intelligence, which 

can be described as the ability of a computer to learn specific tasks from some data. Other 

branches of Computational Intelligence are Artificial Neural Networks, Fuzzy logic, 

Simulated Annealing, Chaos Computation, Tabu Search and Evolutionary Computation. 
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that the group aims to improve its capabilities by enhancing the organization of its 

components.  

According to Biratti and Dorigo (2007) SI algorithms shows the following three properties:  

❖ Simultaneous actions: defines the capacity of the swarm’s components to manage a 

number of tasks in different locations (i.e. in different areas of the solution space) and 

at the same moment. Thus, it is possible to create auto-organized groups that 

simultaneously deal with different aspects of a certain problem. For example some 

agents of the swarm may implement individual behaviours (exploration phase) and 

others social behaviours (exploitation phase). 

❖ Scalability: when there is an increment of the quantity of variables (of single agents 

of the swarm) the algorithm preserves its properties without having to recalibrate the 

interactions between particles. In SI algorithms interactions involve only neighbour 

agents, thus the number of interactions to be managed tend to increase less than 

proportionally with respect to the number of agents. Thanks to this principle it is 

possible to increment the performance of the algorithm simply by increasing the 

dimension of the swarm without the need of reprogramming it.  

❖ Error tolerance: derives from the decentralization and self-organization properties 

of an SI system. Because the swarm is composed of a number of individuals with 

equal characteristics, where none of them has the role of controlling the swarm’s 

behaviour, it is possible to remedy for their eventual errors by substituting these 

agents, without causing computational problems. 

 

Furthermore, Kumar et al. (2008) proposed five properties that have to be respected for a 

swarm to be considered intelligent in the case of optimization problems:  

❖ Adaptability Principle: when the behaviour of the swarm may cause computational 

problems, in terms of not balancing well between exploration and exploitation, it is 

better to change it. 

❖ Diverse Response Principle: every agent when performing its task should not take 

ways that are excessively narrow.  

❖ Proximity Principle: the population has to carry out simple time and space 

computations. 

❖ Quality Principle: every agent should be reactive to different factors that influence 

the search space.  
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❖ Stability Principle: the swarm’s behaviour has to remain stable and should not react 

to changes in the environment. 

 

3.2 Particle Swarm Optimization 

As pointed out before, PSO is a bio-inspired and population-based metaheuristic introduced 

for the first time by Kennedy and Eberhart (1995). PSO is a Swarm Intelligence-based 

algorithm able to solve unconstrained optimization problems and inspired by the behaviour 

of flock of birds and shoal of fishes. The original idea of Kennedy and Eberhart was to exploit 

the social interactions between the elements of the swarm rather (SI) than the abilities of a 

single individual. The current PSO is composed of a swarm of particles that iteratively moves 

into the searching space with the aim of finding the optimal solution that, depending on the 

problem, minimizes or maximizes an objective function, called fitness function. Every 

particle of the swarm uses and exchanges information relative to its best position (called 

pbest) and to the best position of all the other members of the population (called gbest). That 

information directly impacts the direction and velocity of the next movement of the particle. 

Furthermore, each particle has a memory in which it is able to store that information. In this 

way the particles are able to calibrate their own behaviour improving their individual search 

and also the one of the entire swarm. 

Look for example at the behaviour of a bird that has to follow certain rules in order to remain 

in the flock but at the same time can decide to move away from the swarm when it discovers 

some food. In this way it decides between a social behaviour and an individualistic one, but 

both of them are aimed to improve the wealth of the flock. Those are exactly the already 

mentioned concepts of exploration and exploitation.  

In the problem that I will present and analyse in the 4th chapter, each particle corresponds to 

a peculiar portfolio of stocks that is a candidate solution to the problem. Furthermore, since 

PSO is able to solve only unconstrained problems, I need to reformulate the portfolio 

selection problem in unconstrained form46. Thus, the fitness function, according to which the 

quality of the solutions is measured, is a function of both the penalty function and the risk 

 
46 The reformulation of the portfolio selection problem in unconstrained form will be 

presented in Chapter 4 following the Exact Penalty method. However, it briefly consists in 

rewriting all the constraints in terms of their violation, and in summing these violations 

together in the penalty function (that will be added, as another component, to the fitness 

function).  
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measure chosen: I will apply both the VaR and ES to each of the two metaheuristics, PSO 

and GWO.  

Going more in detail, each particle is characterized by three vectors of dimensions d, where 

d are the dimensions of the searching space. Considering a population of M particles in a 

multidimensional space, at the k-th iteration, the three vectors of the i-th particle, where 𝑗 ∈

{1,… ,𝑀}, are:  

❖ 𝑋𝑖
𝑘 ∈ ℝ𝑑, is the position of the i-th particle at the k-th iteration represented in a d-

dimensional space:  

 𝑋𝑖
𝑘 = (𝑥𝑖,1

𝑘 , 𝑥𝑖,2
𝑘 , … , 𝑥𝑖,𝑑

𝑘 ) (3.3)  

Thus, this vector will contain the percentage of wealth to be invested in each asset of 

the portfolio.  

❖ 𝑉𝑖
𝑘 ∈ ℝ𝑑, is the velocity of the i-th particle at the k-th iteration represented in a d-

dimensional space: 

 𝑉𝑖
𝑘 = (𝑣𝑖,1

𝑘 , 𝑣𝑖,2
𝑘 , … , 𝑣𝑖,𝑑

𝑘 ) (3.4)  

❖ 𝑃𝑖 ∈ ℝ
𝑑, is the best position (pbest) visited by the particle since the k-th iteration:  

 𝑃𝑖 = (𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝑑) (3.5)  

Furthermore, each particle knows the global best (gbest) position visited by the swarm since 

the k-th iteration, which is 𝐺 ∈ ℝ𝑑:  

 𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑑) (3.6)  

Initially, the M particles are generated randomly in the solution space in order to provide a 

good exploration in the initial steps of the algorithm. At each iteration every particle evaluates 

the quality of its current position (the quality of the possible solution) by mean of the fitness 

function, 𝑓(𝑋𝑖
𝑘). Since in my framework the fitness function evaluates the risk of  the 

portfolio, the aim of each particle is to reduce this function by finding the best position (thus 

the optimal portfolio). The PSO updates at each iteration the best positions found by each 

particle, called personal best, 𝑓(𝑃𝑖). Then, the algorithm takes also into consideration the 

best position found by the entire swarm, called global best, 𝑓(𝐺). Each particle of the swarm 

determines its successive move considering its current position but also the overall best 

position of the swarm. This information allows the algorithm to converge quickly to the 

optimal solution of the optimization problem.  
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3.2.1 The original structure of PSO 

Below it is reported the original structure of PSO algorithm: 

 

1) Initialization of the population of particles, attaching to each of them random position 

and velocity in the d-dimensional searching space. 

2) Starting of the loop: 

a) Determination of the fitness function 𝑓(𝑋𝑖
𝑘) relative to the current position 𝑋𝑖

𝑘 of 

each particle;  

b) If the value of the fitness function of the current position is better than the personal 

best, 𝑓(𝑋𝑖
𝑘) ≤ 𝑓(𝑃𝑖), then the personal best is updated with the current position 

𝑃𝑖 = 𝑋𝑖
𝑘.  

c) Identify the best particle in the neighbourhood, indicated by G, which is the one with 

the smallest value of the fitness function, 𝑓(𝐺).  

d) Update the position 𝑋𝑖
𝑘+1 and the velocity 𝑉𝑖

𝑘+1 of each particle using the following 

equations:  

 
{
𝑉𝑖
𝑘+1 = 𝑉𝑖

𝑘 + 𝑈(0,𝛷1) ⊗ (𝑃𝑖 − 𝑋𝑖
𝑘) + 𝑈(0,𝛷2) ⊗ (𝐺 − 𝑋𝑖

𝑘)

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1

 
(3.7)  

where: 

- (𝑃𝑖 − 𝑋𝑖
𝑘) is the difference between the best personal position and the 

current position of the i-th particle. It represents the cognitive component, 

and it is a sort of memory of the particle that allows it to move towards the 

best region explored (the one with lower fitness value); 

- (𝐺 − 𝑋𝑖
𝑘) is the difference between the best global position of the swarm 

and the current position of the i-th particle. It represents the social 

component and it makes the particle move towards the best position 

explored by the swarm; 

- 𝑈(0,𝛷𝑖), with 𝑖 ∈ {1,2}, is a vector of random numbers Uniformly 

distributed in the interval [0, 𝛷𝑖]. Multiplying the cognitive and social 

component for a random number allows to avoid to be stuck into local 

optimums; 

- 𝛷1 and 𝛷2 are two acceleration coefficients. 𝛷1 expresses the effect 

produced by the pbest position and it is also called cognitive acceleration 
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coefficient. 𝛷2 expresses the effect produced by the gbest position and it is 

also called social acceleration coefficient. This two coefficients control how 

each particle moves in the search space; 

- ⊗ is the tensor product47. 

e) If the prefixed stop criteria is met, like the fitness function has reached a sufficiently 

good value or the maximum number of iterations is reached, then the algorithm 

passes to step 3, otherwise it returns to step 2. 

3) End of the loop. 

 

PSO algorithm can be represented by the following flowchart:  

 

 
47 It is a bilinear operator, a function that combines two vectorial spaces into the same field 

to produce an element of a third vectorial space, which is linear in every argument.  
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Figure 14: Flowchart of the structure of the Particle Swarm Optimization. 

 

Focusing on the parameters of the PSO, the two acceleration coefficients, 𝛷1 and 𝛷2, have 

a huge impact on the dynamic of each particle since they determine the attraction force to the 

pbest and gbest. A wrong setting of these parameters could cause the instability of the whole 

algorithm, determining an uncontrolled increment of the velocities of the particles. In the first 

study of the PSO they were both set equal to 2, but this did not guarantee the stability of the 

process as the velocity of the particles might diverge. Thus, an idea was to impose a range of 

maximum velocity for each particle, so that 𝑉𝑖
𝑘 ∈ [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥]. However, because the 

setting of these parameters influences directly the balance between exploration and 

exploitation, and there are no specific rule of thumb for the determination of 𝑉𝑚𝑎𝑥, it may 

become a complex task to set them correctly.  

Another parameter that has to be considered and balanced is the number of particles 

composing the swarm. An excessively large amount of particles would cause a useless 

computational effort, on the other hand a too small number would undermine the 

effectiveness of the algorithm in finding the best solution. According to Blackwell et al. 

(2007) a number between 20 and 50 particles would be the best choice.  

To overcome these issues some adjustments of the original version of the PSO were proposed 

in the literature. 
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3.2.2 PSO with Inertia Weight  

A first improvement to PSO algorithm, called the Inertia Weight, is the one of Shi and 

Eberhart (1998). They modify the equation that defines the velocity of each particle 

introducing a new parameter ω as:  

 
{
𝑉𝑖
𝑘+1 = ω𝑉𝑖

𝑘 + 𝑈(0,𝛷1) ⊗ (𝑃𝑖 − 𝑋𝑖
𝑘) + 𝑈(0,𝛷2) ⊗ (𝐺 − 𝑋𝑖

𝑘)

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1

 
(3.8)  

where ω is the inertia weight.  

The role of ω is to balance between exploration and exploitation, providing more stability to 

the model and preventing the explosion of the velocity without having to set 𝑉𝑚𝑎𝑥. A great 

value of ω would increase the influence of the current velocity 𝑉𝑖
𝑘 on the future one, 𝑉𝑖

𝑘+1. 

On the contrary, a small value decreases the influence of the current velocity on the next one, 

giving more weight to the personal best position and global best position.   

A criterion that allows to rationally implement the Inertia Weight approach is to assign to ω 

linearly decreasing value as the number of iterations increases. In fact, in the initial phases of 

the loop it is better to focus on exploration (by giving a bigger weight to ω) in order to search 

all around the solution space. Then, as the number of iterations increase, it is better to reduce 

the value of ω, giving more importance to the exploitation phase, searching around the most 

promising areas. A possible way to implement such a strategy is the one used by Corazza et 

al. (2013) in which they set ω as: 

 𝜔𝑘 = 𝜔𝑚𝑎𝑥 −
𝜔𝑚𝑖𝑛 − 𝜔𝑚𝑎𝑥

𝐾
𝑘 (3.9)  

where :  

- 𝜔𝑚𝑎𝑥 is the fixed maximum value; 

-  𝜔𝑚𝑖𝑛 is the fixed minimum value; 

- 𝐾 is the maximum number of iterations; 

- 𝑘 is the current number of iterations. 

 

The general rule is to assign to 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 respectively values of 0.9 and 0.4. 

Furthermore, in order to ensure the convergence towards the optimum the following 

relationship between 𝛷1 and 𝛷2 must be respected: 

 𝛷1 + 𝛷2
2

− 1 < ω 
(3.10)  
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Looking at the literature, Blackwell et al. (2007) investigate the use ω and they find that the 

performance of the PSO significantly improves with this technique. They also propose to 

include a random component to ω.  

 

3.2.3 PSO with Constriction Coefficient Factor (CFA) 

Another approach, very used in practice, is the one of Clerc and Kennedy (2002). They 

propose to introduce a coefficient 𝜒 that multiplies the entire velocity equation with the aim 

of preventing the instability of the model guaranteeing the convergence of the particles to the 

optimum, again without having to set the troublesome parameter 𝑉𝑚𝑎𝑥. Thus, the equation 

for updating the velocity is:  

{
𝑉𝑖
𝑘+1 =  𝜒(𝑉𝑖

𝑘 + 𝑈(0,𝛷1) ⊗ (𝑃𝑖 − 𝑋𝑖
𝑘) + 𝑈(0,𝛷2) ⊗ (𝐺 − 𝑋𝑖

𝑘))

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1

 
(3.11)  

where:  

- 𝜒 =
2

𝛷−2+√𝛷2−4𝛷
; 

- 𝛷 = 𝛷1 + 𝛷2  𝑤𝑖𝑡ℎ  𝛷 > 4. 

 

Contrary to ω in the Inertia Weight approach, that affects only the current velocity, 𝜒 affects 

all the components of the right part of the equation. Clerc and Kennedy poses 𝛷 = 4.1 with 

𝛷1 = 𝛷2 = 2.05. Thus, by substituting into equation (3.11) we found that 𝜒 = 0.7298. 

As a consequence the current velocity is multiplied by 0.7298, while the two component 

linked to exploration and exploitation are multiplied by a random number in the interval 

[0, 1.496118] since 0.7298 × 2.05 ≅ 1.496118.  

It has to be noticed that the Inertia Weight and the CFA variants of the PSO coincides if ω is 

posed equal to 𝜒 and 𝛷𝑖 = 𝜒𝛷𝑖. In this way ω = 0.7298 and the two acceleration 

coefficients become 𝛷1 = 𝛷2 = 1.496118. 

 

3.2.4 Fully Informed Particle Swarm (FIPS) 

Finally, the last variant presented is the one proposed by Kennedy and Mendes (2002 and 

2003) in which they modify the way in which information is exchanged between particles. 

According to Blackwell et al. (2007) in the original version of the PSO the only two 

information exchanged, that modify the velocity equation of each particle, are the current best 
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position (pbest) and the global best position (gbest) of the entire swarm. It is clear that part of 

the available information remains unused during the entire process: for example all the past 

visited positions of each particle are deleted since only the best visited remains in the particle’s 

memory. Thus, Kennedy and Mendes propose a version of the algorithm in which every 

particle takes into account all the available information in its neighbourhood. This is done by 

modifying the way particles interact with each other, thus by modifying their neighbourhood. 

They propose to change the velocity equation as:  

 

{
 
 

 
 
𝑉𝑖
𝑘+1 = 𝜒(𝑉𝑖

𝑘 +
1

Ki
∑U(0,𝛷)

𝐾i

n=1

⊗ (Pnbrni Xi
k))

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1

 

(3.12)  

where:  

- 𝜒 is the constriction coefficient; 

- 𝛷 is the acceleration coefficient; 

- 𝐾i is the number of neighbour of the i-th particle; 

- nbrn
i  represents the n-th neighbour of the i-th particle; 

- Pnbrni , for each n, represents the best position reached by each particle in the 

neighbourhood of the i-th particle. 

 

As it can be noticed, the velocity of the i-th particle is updated through the use of a weighted 

average of the best positions of the neighbour particles. In this way, the information used in 

the FIPS version of the PSO is more complete because it is provided by each of the 

neighbouring particles and not only by the gbest. Kennedy and Mendes show that by 

adopting the FIPS it is possible to reach better solutions than the normal PSO with less 

iterations. However, it can be seen that this version coincides with the original PSO if we 

impose 𝐾i = 2. 

 

3.2.5 Topologies of the Population  

Now that we have introduced the concept of neighbourhood of a particle it is worth to present 

the main characteristics of some of them. As pointed out in the previous paragraph, the choice 

of the structure of the neighbourhood is crucial because it determines how the particles 

exchange information and thus the efficiency of the algorithm. It is possible to distinguish 

between two main classes of topologies:  
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❖ Static topologies: their structure does not change as iterations increase. The three 

main examples of this structure are:  

▪ Local best topology, also called lbest. Proposed by Kennedy and Eberhart 

in (1995) it is characterised by a ring structure (Figure 15) where each 

particle is connected with the two adjacent ones, and thus exchange 

information only with them. Even if with this topology the searching process 

is slower, it results to be less vulnerable than other topologies to the attraction 

towards local optimums.  

 

                      Figure 15: Representation of local best topology. 

 

▪ Global best topology, also called glbest. In this topology each particle is 

connected with every other particle of the population (Figure 16). It is a so 

called fully-connected structure in which the entire population is used as a 

neighbourhood of a particle. Differently from the previous topology, here 

there are no sub populations (the one formed between a particle and its two 

neighbours).  

 

                       Figure 16: Representation of Global best topology. 
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The glbest topology allows a faster convergence towards the optimum if 

compared with the lbest, however there is a higher risk of convergence 

towards local optimums. If on one hand, a higher level of connection 

between particles allows more information to be exchanged, on the other 

one it slows the performance of the algorithm as the number of particles 

increases. 

 

▪ Von Neuman topology. It can be considered a half way between the lbest 

and the glbest. In this case each particle is linked with the two adjacent ones 

but also with the ones under and above it. Kennedy and Mendes (2002) have 

investigated and proved the superiority of this topology on the other two 

previously presented.  

 

                          Figure 17: Representation of Von Neuman topology. 

 

❖ Dynamic topologies: their structure does change when the number of iterations 

increases. 

▪ Suganthan (1999) proposes to start the search with the lbest topology and 

then slowly increment, as the number of iterations increase, the number 

interaction between particles to finally reach the glbest topology. The main 

idea is to exploit the lbest in the first stages of the search since it performs 

better in the exploration phase, and only successively move to the glbest that 

performs better in late stages due to a faster convergence towards the 

optimum.  

▪ Peram et al. (2003) propose to use a weighted Euclidean distance to identify 

the particle with which each component of the swarm should interact with. 
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The aim is to avoid the premature convergence of the traditional PSO 

algorithm. This correction allows each particle to move in the direction of 

the ones with the best fitness functions. Going in detail, each particle has to 

select its neighbour on the basis of a Fitness Distance Ratio (FDR): 

 
𝐹𝐷𝑅 =

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑗) − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑖)

|𝑋;−𝑃𝑖|
 

(3.13)  

where 𝑃𝑖 is the i-th neighbour of the j-th particle. Equation (3.13) ensures to 

reduce the probability that a particle will interact with one that is too far away 

from it. 

▪ Jason and Middenford (2004) propose a hierarchy-based topology, in which 

the next move of every particle is influenced from its best past position and 

from the position of the particle right above it in the hierarchy of the best 

positions visited by the swarm. More in detail, they suggest to list (rank) in 

descending order (from the best position, thus the one with lowest fitness 

value, to the worse, with highest fitness value) all the positions visited by the 

particle in that specific iteration.  

▪ Clerc et al. (2009) introduces “Tribes” topology, where the characteristics of 

the topology and the dimension of the population change with the number 

of iteration depending on the results obtained. In particular, the initial 

population is divided into sub-populations (tribes) composed of a variable 

number of particles. These sub-groups are able to establish intra-tribe 

communication (each particle stores its best location and is aware of the best 

location found in its sub-population) as well as an inter-tribe communication 

(each tribe knows the position of the best particle of all the other tribes). 

Furthermore Clerc et al. distinguish between good tribes and bad tribes 

depending on the outcomes of the last iteration: if none of the particles of a 

tribe was able to improve its result the tribe is considered bad; otherwise, if 

at least one particle was able to improve its position then the tribe is 

considered good. Thus, considering that “the most time consuming part of a 

PSO algorithm is the evaluation of the objective function” it is crucial to 

“carry out as few evaluations … as possible” (Clerc et al, 2009). For doing 

this, the number of particles has to be reduced. Following this idea, they 

decided to select and move the particles with worst results in the best sub-
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populations to other worse sub-populations, in this way the chance of 

improving the more promising tribes is increased. By moving these particles 

the topology structure is changed as well. 

 

3.3 Grey Wolf Optimization  

The Grey Wolf Optimization (GWO) is a recently developed population-based and bio-

inspired metaheuristic that due to its performance and versatility to solve a vast number of 

optimization problems has gained a lot of attention in the literature. As pointed out by Faris 

et al. (2018) the fields of application thus far range between engineering, machine learning, 

medical and bioinformatics, environmental applications, networking and image processing. 

Figure 18 gives a pie-chart representation. 

 

 

Figure 18: Pie-chart of the main areas of application of the Grey Wolf Optimization. 

Source: Faris et al. (2018). 

 

Created by Mirjalili et al. (2014) the GWO is inspired by the social behaviour and the hunting 

technique of grey wolves. With respect to the first aspect, grey wolves are considered apex 

predators in nature, since they are on the top of the food chain, and they exhibit a strict 

hierarchical system inside the pack, as shown in Figure 19. On the top of this social order 

there are the alphas: they are the leaders and they take important decisions for the herd. The 

role of an alpha is crucial for managing the pack, and even if it may not be the strongest wolf 

in it, it is the one with the better qualities to rule it. The beta wolf is the second in the hierarchy 

and it is the most probable candidate to become alpha. Beta is subordinated to alpha but helps 
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him in taking decisions and it dominates the other wolves of the pack. Delta wolves are the 

third in the line and they are submitted to alpha and beta but they dominate omega. They are 

usually hunters, scouts, sentinels or elder wolves that used to be alpha or beta. On the bottom 

of the pyramid there are omega wolves. They are considered scapegoats and have the lowest 

rights inside the pack.  

 

Figure 19: Hierarchical structure of grey wolves in nature. Source: Köybasi and Yazici 

(2020). 

 

With respect to the second aspect that influence the GWO, Muro et al. (2011) consider three 

main steps in the hunting behaviour of grey wolves:  

❖ Tracking and chasing the prey; 

❖ Pursuing the prey and encirclement; 

❖ Attack towards the prey. 

 

Like in PSO, where each particle represents a candidate solution, in GWO each wolf (i.e. 

each searching agent) represents a possible solution of the optimization problem. At the 

beginning, the initial positions of grey wolves are randomly initialized in the solution space. 

In order to mimic the social hierarchy of grey wolves, GWO ranks these positions 

(considering the fitness value of each) in descending order, from the best position to the worst. 

Thus, the best three solutions in this list are respectively alpha, beta and delta wolves. The 

remaining solutions are considered omega wolves. For example, considering 50 searching 

agents, the best three are respectively alpha, beta and delta, while the remaining 47 are omega 

wolves. At each iteration the solutions are updated and ranked again in the list, so if the 

algorithm finds better solutions, alpha, beta and delta wolves can be changed with other 

searching agents that have obtained better fitness values.  
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On the other hand, to mimic the hunting behaviour of grey wolves, GWO adopts only a few 

very simple mathematical equations. GWO reasonably assumes that alpha, beta and delta 

wolves have a good idea of the location of the prey48. In fact, as said before, these three 

wolves represent the best three solutions so far, that are presumably the closest to the prey. 

Thus, the main idea of GWO is to oblige all the other searching agents to follow these three 

wolves during the hunt. However, because in an abstract search space we have no idea about 

the real location of the prey, according to Mirjalili et al., it is safe to assume that its location 

will reasonably be the average position between alpha, beta and delta, as shown in Figure 20. 

So, the prey is located in the average point between these three wolves and according to the 

hierarchical mechanism explained before, as iterations increase and better solutions are 

found, the three best wolves will change, and as a consequence also the new estimated 

location of the prey will change. Thus, the prey is “moving” in the solution space as the 

iterations increase, and through this mechanism all the wolves will converge towards it. For 

this reason, each omega wolf updates its estimate about the position of prey with respect to 

the position of the best three wolves following these equations, that represents the 

encirclement phase of the hunt:  

 𝐷𝛼⃗⃗⃗⃗  ⃗ = |𝐶1⃗⃗⃗⃗ ⋅ 𝑋 𝛼(𝑡) − 𝑋 (𝑡)| 

𝐷𝛽⃗⃗ ⃗⃗  = |𝐶2⃗⃗⃗⃗ ⋅ 𝑋 𝛽(𝑡) − 𝑋 (𝑡)| 

𝐷𝛿⃗⃗ ⃗⃗  = |𝐶3⃗⃗⃗⃗ ⋅ 𝑋 𝛿(𝑡) − 𝑋 (𝑡)| 

 

(3.14)  

 𝑋 1 = 𝑋 𝛼(𝑡) − 𝐴1⃗⃗⃗⃗ ⋅ 𝐷𝛼⃗⃗⃗⃗  ⃗ 

𝑋 2 = 𝑋 𝛽(𝑡) − 𝐴2⃗⃗ ⃗⃗ ⋅ 𝐷𝛽⃗⃗ ⃗⃗   

𝑋 3 = 𝑋 𝛿(𝑡) − 𝐴3⃗⃗ ⃗⃗ ⋅ 𝐷𝛿⃗⃗ ⃗⃗   

(3.15)  

where: 

- 𝑡 is the current iteration; 

-  𝑋 𝛼, 𝑋 𝛽 and 𝑋 𝛿 are the position vectors of the best three wolves; 

-  𝑋  is the position vector of a generic wolf; 

 
48 The prey is the optimum solution of the optimization problem. During the iterations, as 

shown in Figure 20, the location of the prey coincides with the average position between 

the best three wolves. As better locations are found, the best three wolves are updated and 

as a consequence also the estimated position of the prey. After each iteration, through the 

hunting mechanism, the wolves will converge towards it. 
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- 𝐷𝛼⃗⃗⃗⃗  ⃗, 𝐷𝛽⃗⃗ ⃗⃗   and  𝐷𝛿⃗⃗ ⃗⃗   are vectors that measure the distance respectively between alpha, 

beta and delta and all the other wolves; 

- 𝐴  and 𝐶  are two coefficient vectors equal to:   

 𝐴 = 2𝑎 ⋅ 𝑟 1 − 𝑎  (3.16)  

 𝐶 = 2 ⋅ 𝑟 2 (3.17)  

 𝑎 = 2 − 𝑡 ∗ (
2

𝑡max
) 

(3.18)  

where 𝑎  is a vector whose elements are linearly decreased from 2 to 0 as the number 

of iterations increases; 𝑟 1 and 𝑟 2 are two random vectors uniformly distributed in the 

interval [0, 1].  

 

Thus, according to equations (3.14), the first step of each omega wolf is to calculate the 

distance �⃗⃗�  between him and the positions of each of the best three wolves. Notice that 𝑋 𝛼, 

𝑋 𝛽 and 𝑋 𝛿 are multiplied by a vector (𝐶 ) whose elements are random numbers, stochastically 

changed at each iteration. Then, with equations (3.15) each omega wolf calculates its next 

move (its next position) with respect to each of the three best wolves, alpha, beta and delta, 

as if it decides to follow one of them at the time. For example, 𝑋 1 is its next position if he 

decides to follow alpha, and so on. Also in this case there is a vector (𝐴 ) that multiplies each 

distance, whose elements are random numbers that stochastically change at each iteration. In 

this way it is possible to better search around these promising areas of the solution space.  

However, as previously pointed out, omega wolves estimate the position of the prey (and 

thus calculate their next move) with respect to the position of the best three wolves, and not 

just with respect to the position of one of them. Therefore, finally, each omega calculates its 

next move (𝑡 + 1) according to this equation:  

 
𝑋 (𝑡 + 1) =

𝑋 1 + 𝑋 2 + 𝑋 3
3

 
(3.19)  

where 𝑋 (𝑡 + 1) is a vector describing the next position assumed by the omega wolf; 𝑋 1, 𝑋 2 

and 𝑋 3 are its new positions if it had decided to follow respectively alpha, beta and delta one 

at the time. Thus, according to equation (3.19) each omega wolf updates its position with 

respect to the one of these three by making a simple average of their positions, combining 

three vectorial components. In this way, at each iteration the wolves converge towards what 

is a reasonably accurate estimate of the prey’s location. “In other words alpha, beta, and delta 
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estimate the position of the prey, and other wolves update their positions randomly around 

the prey” (Mirjalili et al., 2014).  

The effect of equations (3.14), (3.15) and (3.19) on the hunting behaviour of an omega wolf 

is represented graphically in Figure 20.  

 

 

Figure 20: Graphical representation of the encirclement phase of the hunt. Source: 

Mirjalili et al. (2014).  

 

Focusing now on the parameters of GWO, 𝐴  and 𝐶  are the most important ones as they allow 

to balance between searching for the prey (exploration) and attacking the prey (exploitation), 

which represent the other two characteristics of grey wolves hunting technique. The value of 

the elements of 𝑎  is linearly decreased form 2 to 0, and as a consequence also the value of 

the elements of 𝐴  (from equation (3.16)), which is ranging in the interval [−2, 2], is also 

decreasing. Indicating with 𝐴 a generic element of 𝐴 , when 𝐴 > 1 or 𝐴 < −1 the wolf 

diverges from the prey, giving more emphasis to exploration. Instead, for values of 𝐴 

belonging to [−1, 1] the wolf converges towards the prey, prioritizing exploitation. As it can 

be seen in Figure 21, because the value of 𝐴  is decreasing as the number of iterations increase, 

the exploration phase is prioritized in the first part of iterations, while in the second part the 

algorithm is focused on exploitation. This behaviour guarantees a good balance of GWO 

algorithm.  
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Figure 21: Graphical representation of the effect of changes in parameter A. Source: 

Faris et al. (2018). 

 

The other important vector of parameters, that favours exploration phase, is 𝐶 . It can be seen 

from equation (3.17) that it is multiplied by a random vector 𝑟 2 ∈ [0, 1]. Thus, 𝐶  is a 

stochastic vector that contains numbers ranging between [0, 2]. Indicating with 𝐶 a generic 

value of 𝐶 , then for values of 𝐶 > 1 the effect of the position of the best three wolves in 

equation (3.14) is emphasized, while for values of 𝐶 < 1 this effect is deemphasized. The 

main function of 𝐶  is to provide a more random behaviour to the GWO algorithm, favouring 

exploration and the avoidance of local optimums. From a realistic point of view, this vector 

of parameters may represent the effect of an “obstacle” that the wolves have to face when 

searching the prey and that slows their hunt.  

 

3.3.1 The Structure of GWO Algorithm  

The structure of GWO algorithm is as follow: 

1) Random initialization of the grey wolves population, 𝑋𝑖(𝑖 = 1,2, … , 𝑛), in the 

searching space. 

2) Initialize vectors of parameters 𝑎 , 𝐴  and 𝐶  

3) Calculate of the fitness value of each searching agent and assign the three best values to 

alpha, beta and delta wolves, respectively 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿. 

4) Starting of the main loop: 

a) For each searching agent (omega wolves) update its current position by equation 

(3.14) 

b) Update parameters 𝑎 , 𝐴  and 𝐶 . 

c) Calculate the fitness value of each searching agent and update 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 with 

the new three best values, if any. 
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d) If a prefixed stop criterion is met go to step 5, otherwise skip to next iteration and 

return to step 4. 

5) End of the main loop. 

6) Return 𝑋𝛼, which is the position of the alpha wolf that represents the best solution found. 

 

GWO algorithm can be represented by the following flowchart:  

 

Figure 22: Flowchart of the structure of GWO algorithm. 
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3.3.2 Main Advances in the Literature 

Faris et al. (2017) provide an excellent summary of the most recent advances and 

improvements of the original version of the GWO. Focusing on the updating mechanisms of 

the algorithm, that aims to provide a better balance between exploration and exploitation, we 

can identify several works: 

❖ Mittal et al. (2016) propose a modified version of GWO in which the exploration 

phase is enhanced by imposing that the vector of parameters 𝑎  follows an 

exponential decay function instead of equation (3.19): 

 
𝑎 = 2(1 −

𝑡2

𝑡max2
) 

(3.20)  

They find better performances with respect to exploration with this new parameter. 

❖ Long et al. (2016) propose another non linear equation to update 𝑎 : 

 
𝑎 = (1 −

𝑡

𝑡max
) ⋅ (1 − 𝜇

𝑡

𝑡max
)
−1

 
(3.21)  

where 𝜇 is a non linear modulation index ranging from (0, 3). They find a better 

balance between exploration and exploitation.  

❖ Dudani and Chudasama (2016) instead propose a new way to update the vector of 

positions of wolves in contrast with equation (3.14).  

 
𝑋 (𝑡 + 1) = (

1

𝑡
)
|(𝑏𝑒𝑠𝑡𝑓(𝑡)−𝑓𝑖(𝑡))(𝑏𝑒𝑠𝑡𝑓(𝑡)−𝑤𝑜𝑟𝑠𝑡𝑓(𝑡))|

 
(3.22)  

where 𝑓(𝑡) is the value of the fitness function. The main advantage of this approach 

is that it uses a fewer number of parameters and that it is not required to define the 

initial ones. 

❖ Malik et al. (2015) also focus on updating equation (3.14) and they propose to use a 

weighted average instead of a simple average of the position of the three best wolves: 

 
𝑋 (𝑡 + 1) =

𝜔1𝑋 1 + 𝜔2𝑋 2 + 𝜔3𝑋 3
(𝜔1 + 𝜔2 + 𝜔3)

 
(3.23)  

where 𝜔1 = 𝐴1 ⋅ 𝐶1, 𝜔2 = 𝐴2 ⋅ 𝐶2 and 𝜔3 = 𝐴3 ⋅ 𝐶3. This version shows better 

performances when applied to multimodal functions.  

 

Focusing now on population structure and hierarchy of GWO, Yang et al. (2016) propose a 

different hierarchy system. They divide the initial population of grey wolves in two sub-
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populations. The first one is the “cooperative hunting group” and the second one is the 

“random scout group”. The aim of the first group is to perform a deeper exploitation process, 

while the aim of the second group is to carry out a wider exploration.  

The last aspect to be considered is the hybridization of the GWO algorithm. Singh and Singh 

(2017) propose a coevolutionary mixed hybrid algorithm between PSO and GWO called 

HPSOGWO. HPSOGWO is coevolutionary because they structure this algorithm in such a 

way that PSO and GWO work in parallel, and not one after the other. While, “it is mixed 

because there are two distinct variants that are involved in generating final solutions of the 

problem” (Singh and Singh, 2017). The positions of alpha, beta and delta are updated by the 

following equations:  

 �⃗⃗� 𝛼 = |𝐶1⃗⃗⃗⃗ ⋅ 𝑋𝛼⃗⃗ ⃗⃗  − 𝜔 ⋅ 𝑋 |  

 �⃗⃗� 𝛽 = |𝐶2⃗⃗⃗⃗ ⋅ 𝑋𝛽⃗⃗ ⃗⃗ − 𝜔 ⋅ 𝑋 | (3.24)  

 �⃗⃗� 𝛿 = |𝐶3⃗⃗⃗⃗ ⋅ 𝑋𝛿⃗⃗ ⃗⃗ − 𝜔 ⋅ 𝑋 |  

Then they combine the PSO with GWO by updating the velocity equation of PSO in the 

following fashion:  

{

𝑉𝑖
𝑘+1 = 𝜔((𝑉𝑖

𝑘 + 𝑟 1𝐶1⃗⃗⃗⃗ ⋅ (𝑋1⃗⃗⃗⃗ − 𝑋𝑖
𝑘) + 𝑟 2𝐶2⃗⃗⃗⃗ ⋅ (𝑋2⃗⃗⃗⃗ − 𝑋𝑖

𝑘) + 𝑟 2𝐶2⃗⃗⃗⃗ 

⋅ (𝑋2⃗⃗⃗⃗ − 𝑋𝑖
𝑘))

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1

 

 

(3.25)  

As it can be seen, 𝜔 is a constriction coefficient. Instead of the two classical random 

component of PSO, 𝑈(0,𝛷𝑖) and 𝑈(0,𝛷𝑖), they multiply each term by 𝑟 𝑖𝐶𝑖⃗⃗  ⃗. They found 

out that this hybrid algorithm is more reliable and provides better solutions than normal 

GWO. 

 

3.4 A Comparison Between the Two Metaheuristics 

Finally, a quick comparison between PSO and GWO is presented in this paragraph.  

Like PSO, GWO is also a SI based algorithm and it is considered one of the fastest growing 

metaheuristics of recent years. A lot of improvements have been proposed as shown in the 

previous section, but many others can be done. 

GWO has a simpler structure than PSO, and the underlying mathematical equations are also 

very easy to be implemented.  
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Contrary to PSO, that utilizes a vector of positions and a vector of velocities for the searching 

agents, GWO needs only one matrix of positions in which the current locations of searching 

agents are ranked from the best to the worst (the best three represents alpha, beta and delta 

wolves). In this way GWO requires less memory than PSO.  

Furthermore, in GWO the only solutions saved are the first three, while PSO registers the 

best position of each particle (pbest) and the global best position obtained by the swarm 

(gbest). This however can be criticised, as a substantial part of available information in GWO 

is not used. An idea to overcome this limitation could be to work on population topology or 

on its hierarchical structure, as proposed by Yang et al. (2016). 

Moreover, GWO, differently from PSO, has only two vectors of parameters to be adjusted: 

𝑎  and 𝐶 . As shown previously they help to balance between exploration and exploitation and 

they are easier to be set than the ones of the PSO.  

Finally, in many circumstances, GWO when applied to solve different unimodal and 

multimodal functions, as for example in Mirjalili et a. (2014) or in Köybasi and Yazici 

(2020), has been found to be more effective than standard PSO, with a faster convergence 

towards the optimum and a better balance between exploration and exploitation. 

However, both these algorithms are able to solve only unconstrained optimization problems, 

thus a reformulation of the portfolio selection problem in an unconstrained form is needed.  
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Chapter 4 

 

Application of PSO and GWO to the Portfolio 

Selection Problem 

 

In this final chapter I will present the experiment. More precisely, I will apply 

the two metaheuristics, presented in Chapter 3, to the portfolio selection 

problem considering the two risk measures presented in Chapter 2, in order 

to assess Model Risk, presented in Chapter 1, deriving from the two 

algorithms and from the two risk measures. In the first paragraph I will 

discuss the reformulation of the portfolio selection problem in order to be 

solved through the two metaheuristics, since as pointed out earlier they are 

able to solve only unconstrained problems. In the second paragraph I will 

present the settings of the portfolio optimization problem and of the two 

metaheuristics. Then, in the third paragraph I will present the experiment, 

consisting of the application of the two metaheuristics to 11 securities traded 

in the S&P 500 considering three different scenarios. PSO and GWO are 

both applied in two different versions, one using the VaR as an objective 

function to be minimized and the other using the ES. Thus, in total I have four 

models and four efficient portfolios as output. Finally, in the fourth 

paragraph I will apply to the efficient portfolios of the best selected algorithm 

found in the previous step the backtesting framework for risk measures 

discussed in Chapter 1, in order to assess Model Risk for financial risk 

measures. 

 

4.1 Reformulation of the Portfolio Selection Problem 

As mentioned in the previous chapter, neither the PSO nor the GWO was born to solve 

constrained optimization problems. Since the portfolio selection problem in equation (2.22) 

is by its own nature a constrained problem, we have to reformulate it in an unconstrained 

form in order to apply the two metaheuristics. In the literature there are many techniques for 
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doing this49, here I choose the exact penalty method. Briefly, it consists in the introduction of 

a penalty function, that is built by adding to the objective function (which in my case is the 

risk measure that the algorithm tries to minimize) another term that contains the sum of the 

violations of all the constraints and that add a penalization to each violation. In this way, by 

minimizing the objective function, the algorithm minimizes jointly the risk measure and the 

violations of all the constraints. For doing this we have to rewrite each constraint in terms of 

its violation. Nonetheless, the main issue here is the coincidence between the solution of the 

constrained and the unconstrained problem, in other words how well the unconstrained 

version approximates the constrained one. As we will see, the coincidence is ensured by a 

wise choice of the penalization term. 

 

4.1.1 The Exact Penalty Method  

More in detail, the exact penalty methods, introduced by Luenberger (1984), consists in 

rewriting a general constrained optimization problem of the form: 

 𝑚𝑖𝑛   𝑓(𝑥) 

𝑠. 𝑡.   {
ℎ(𝑥) = 0
𝑔(𝑥) ≤ 0

 

(4.1)  

where: 

- 𝑓(𝑥) is a continuous function in ℝ𝑛; 

- ℎ(𝑥) is a vector containing the 𝑚 equality constraints; 

- 𝑔(𝑥) is a vector containing the 𝑝 inequality constraints; 

 

in a unconstrained optimization problem of the form: 

 
min 𝑓(𝑥) +

1

𝜀
𝑃(𝑥) 

(4.2)  

where: 

- 𝜀 is a positive number called penalty coefficient.  

- 𝑃(𝑥) is the penalty function with the following characteristics:  

- 𝑃(𝑥) is continuous in ℝ𝑛; 

 
49 According to Koziel and Michalewicz (1999) it is possible to identify four different 

approaches: methods based on preserving feasibility of solutions, methods that distinguish 

between feasible and infeasible solutions, methods based on penalty functions, hybrid 

methods.  
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- 𝑃(𝑥) ≥ 0  ∀𝑥 ∈ ℝ𝑛; 

- 𝑃(𝑥) = 0 if and only if 𝑥 ∈ 𝑆50; 

 

The role of  
1

𝜀
 is to amplify the numeric value of each violation. This coefficient must be 

chosen carefully, since it ensures the correspondence between the solution of the constrained 

and unconstrained problem.  

The Exact Penalty Theorem states that if the constrained problem is reformulated in an 

unconstrained version with the following penalty function: 

 

𝑃(𝑥) =∑|ℎ𝑖(𝑥)|

𝑚

𝑖=1

+∑max {0, 𝑔𝑗(𝑥)}

𝑝

𝑗=1

 

(4.3)  

and if a generic point 𝑥∗ satisfies the second order conditions51 in order to be a local minimum 

of the constrained optimization problem, than that point will also be a local minimum of the 

unconstrained optimization problem if the following property is satisfied:  

 1

𝜀
> max{|𝜔𝑖|,  𝜇𝑗},    with 𝑖 = 1…𝑚 and 𝑗 = 1…𝑝 

(4.4)  

where 𝜔𝑖 and 𝜇𝑗 are two vectors composed by the Lagrange multipliers respectively of the 

𝑚 constraints in ℎ𝑖(𝑥) and of the 𝑝 constraints in 𝑔𝑗(𝑥). This theorem guarantees the 

coincidence between the solutions of the two versions of the optimization problem. However 

it does not provide any hints for the setting of 𝜀 parameter.  

Looking back to the portfolio selection problem, following this approach, the constraints of 

equation (2.22) can be rewritten in terms of violations as: 

 

∑𝑥𝑖

𝑁

𝑖=1

= 1 → |∑𝑥𝑖

𝑁

𝑖=1

− 1| 
(4.5)  

 �̂�𝑝 ≥ 𝜋 → max{0, 𝜋 − �̂�𝑝} (4.6)  

 
𝑘𝑙 ≤∑𝑧𝑖

𝑁

𝑖=1

→ max {0, 𝑘𝑙 −∑𝑧𝑖

𝑁

𝑖=1

} 
(4.7)  

 
50 𝑆 is a vectorial subspace of ℝ𝑛.  
51 For a constrained optimization problem the second order conditions state that if the 

hessian matrix (that contains the second derivatives of the objective function) is positive 

(or negative) definite, then the stationary point identified is a local minimum (or a 

maximum) of the function.  



Application of PSO and GWO to the Portfolio Selection Problem 

82 
 

 
∑𝑧𝑖

𝑁

𝑖=1

≤ 𝑘𝑢 → max {0,∑𝑧𝑖

𝑁

𝑖=1

− 𝑘𝑢} 
(4.8)  

 
𝑧𝑖𝑙𝑖 ≤ 𝑥𝑖 →∑max {0, 𝑧𝑖𝑙𝑖 − 𝑥𝑖}

𝑁

𝑖=1

 

(4.9)  

 
𝑥𝑖 ≤ 𝑧𝑖𝑢𝑖 →∑max {0, 𝑥𝑖 − 𝑧𝑖𝑢𝑖}

𝑁

𝑖=1

 

(4.10)  

 
𝑧𝑖(𝑧𝑖 − 1) = 0 →∑|𝑧𝑖(𝑧𝑖 − 1)|

𝑁

𝑖=1

 

(4.11)  

It is possible to notice that the constraints written in inequality form in equation (2.22) have 

been split into two components as in equation (4.7) and (4.8) or equation (4.9) and (4.10). In 

this way, the constrained portfolio selection problem can be rewritten in unconstrained form 

in the following manner: 

 min
𝑋,𝑍,𝜀

 𝑃(𝑋, 𝑍, 𝜀) (4.12)  

where: 

𝑃(𝑋, 𝑍, 𝜀) = 𝜌𝛼,𝑝(𝑅𝑝)

+
1

𝜀
[|∑𝑥𝑖

𝑁

𝑖=1

− 1| + max{0, 𝜋 − �̂�𝑝} + max {0, 𝑘𝑙 −∑𝑧𝑖

𝑁

𝑖=1

}

+ max {0,∑𝑧𝑖

𝑁

𝑖=1

− 𝑘𝑢} +∑max {0, 𝑧𝑖𝑙𝑖 − 𝑥𝑖}

𝑁

𝑖=1

+∑max {0, 𝑥𝑖 − 𝑧𝑖𝑢𝑖}

𝑁

𝑖=1

+∑|𝑧𝑖(𝑧𝑖 − 1)|

𝑁

𝑖=1

]. 

 

As we can see 𝑃(𝑋, 𝑍, 𝜀) contains both the risk measure (𝜌𝛼,𝑝) and the sum of the  violations 

of each constraint. If none of the constraints is violated, the algebraic sum of the terms in 

square brackets is 0 and thus no penalization is added to the risk measure. On the other hand, 

if one of the constraints is violated, the sum of the terms in brackets is positive, and it is 

amplified by the penalization quantity 
1

𝜀
. Thus, a positive quantity would be added to the risk 

measure. This would increase the value of the objective function (fitness function) that we 

actually want to minimize. Thus, if a constraint is violated the quality of that solution is 

decreased, and usually it is discarded by the algorithms during the search process. 
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The main issue of this approach remains the correct setting of  
1

𝜀
 in order to ensure the 

coincidence between the solution of the constrained and of the unconstrained problem, since 

as pointed out before the Exact Penalty Theorem gives no hints about it. For this reason, when 

I propose the parameters’ settings of the two metaheuristics in the next paragraph, I run a 

specific test for the setting of epsilon. 

 

4.2 Settings of the Problem 

In this paragraph I am going to present the optimization problem that I am going to solve. As 

pointed out in the previous chapters I will apply the two metaheuristics presented in chapter 

3, the  PSO and the GWO, to the portfolio selection problem, discussed in chapter 2. I will 

consider the two risk measures presented in chapter 1 and 2 as objective functions to be 

minimized: the Value at Risk and the Expected Shortfall. In this way, in total I consider two 

versions of the PSO, one with VaR and the other with ES, and analogously two versions of 

the GWO, one with VaR and the other with ES. Thus, the output of the four models will be 

four efficient portfolios. By following this method, I will be able to compare the performance 

of the four portfolios in relation to Model Risk deriving both from the choice of the algorithm 

and from the choice of the risk measure.  

For the experiment, I choose to focus on the US market, taking eleven large-cap securities 

from the S&P 500, listed in Table 1, where each of them represents a specific market sector.  

For each security I have downloaded the time series of the adjusted closing prices from 

Bloomberg, and I have divided each of them into three different sub-periods, each of which 

corresponds to a peculiar market scenario that will be presented shortly. Furthermore, each 

sub-period is divided into two subsamples: in-sample period of the duration of one year, and 

out-of-sample period of the duration of six months. In this way it is possible to test the 

algorithms by building a portfolio on one year of data and then to test the portfolio’s 

performance on a virtual future of six months of data. For comparability reasons, the length 

of the three scenarios has been set equal, however, as we will see shortly, two of them 

consider crisis periods. Therefore, looking at a portfolio manager standpoint, during crisis 

periods the time interval for the estimation of the model and for the testing phase can be 

reduced at her discretion, for example considering six months in-sample and three out-of-

sample, or taking three months in-sample and one month out-of-sample. In this way, due to 

the high volatility of markets during crisis periods, it is possible to rebalance the portfolio 
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more often in order to match current market conditions, reducing its riskiness and increasing 

its performances.  

Then, for each security I calculate the logarithmic net returns52 as follows:  

 
𝑅𝑖,𝑡 = ln (

𝑃𝑖,𝑡
𝑃𝑖,𝑡−1

) 
(4.13)  

where:  

- 𝑅𝑖,𝑡 is the log return for the i-th security at time 𝑡; 

- 𝑃𝑖,𝑡 is the price of the i-th security at time 𝑡; 

- 𝑃𝑖,𝑡−1 is the price of the i-th security at time 𝑡 − 1. 

 

 

Table 1: The eleven securities divided for the market sector taken from the S&P 500.  

 

More in detail, the three sub-periods are:  

❖ From 02/07/2007 to 30/06/2008 in sample period (252 observations), from 

01/07/2008 to 31/12/2008 out of sample period (128 observations); for a total of 380 

observations.   

❖ From 01/07/2013 to 30/06/2014 in sample period (252 observations), from 

01/07/2014 to 31/12/2014 out of sample period (128 observations); for a total of 380 

observations.  

 
52 I use the logarithmic net returns instead of the percentage net returns because they 

provide a better representation of the underlying dynamic of financial prices. 

SECTOR SECURITY MARKET TICKER

Communication services Google GOOG

Consumer discretionary Amazon AMZN

Consumer staples Walmart WMT

Energy ExxonMobil XOM

Financials JP Morgan JPM

Health care Johnson & Johnson JNJ

Industrials 3M MMM

Information technology Apple AAPL

Materials DuPont DD

Real estate Americal Tower AMT

Utilities Duke Energy DUK

S&P 500
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❖ From 02/01/2019 to 31/12/2019 in sample period (252 observations), from 

02/01/2020 to 30/06/2020 out of sample period (125 observations); for a total of 377 

observations.  

 

 

Figure 23: Historical daily closing prices in USD dollars of the eleven securities in the 

first sub-period.  

 

 

Figure 24: Historical daily closing prices in USD dollars of the eleven securities in the 

second sub-period. 
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Figure 25: Historical daily closing prices in USD dollars of the eleven securities in the 

third sub-period. 

 

The first sub-period takes into consideration the Great Financial Crisis that hardly hit the US 

economy, including in the out-of-sample period the Lehman Brothers bankruptcy53 and the 

stock market crash of September 29 of 2008 where the Dow Jones index fell by 7% and  the 

S&P 500 fell by 8.8% in just one day. Figure 23 represents the historical prices of the eleven 

securities in the first sub-period; the black vertical line divides between the in-sample period 

and the out-of-sample period. Thus, especially in the out-of-sample period, I expect bad 

performances on every portfolio, probably with negative returns and very high levels on both 

VaR and ES, highlighting the current instability of the market. 

The second sub-period represented in Figure 24, on the other hand, takes into consideration 

a growing phase of the US economy, that starts to recover after the crisis: in 2014 the GDP54 

of the country rose by almost 2.5% with respect to the previous year. The monthly job growth 

has been the strongest since 1999. The unemployment rate at the end of the fourth quarter of 

2014 was around 5.8%, which is far lower than the 10% reached during the Great Financial 

Crisis. What I expect here is a relatively stable period with good performances on every 

portfolio and low values of risk measures.  

 
53 On September 15 of 2008, Lehman Brothers filed for bankruptcy, remaining the largest 

case in US history.  
54 The Gross Domestic Product is the most important indicator of the performance of the 

economy of a country.  
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Finally, the third sub-period, represented in Figure 25, takes into consideration the financial 

crisis due to Covid-19 outbreak, especially in the out-of-sample period. Between the end of 

February and the beginning of March 2020, the US stock market crashed again with the Dow 

Jones and the S&P 500 indexes making the sharpest fall after the 2008 crisis. The 

unemployment rate spiked to almost 15% in April 2020 with respect to the 3.6% registered 

at the end of 2019. Similarly to the first sub-period, I expect very negative performances of 

the portfolios in the out-of-sample period with high values of the risk measure. The only title 

that after the initial plunge of March 2020 seems to recover quickly and also to grow in the 

following months is Amazon. Thus, I expect that portfolios investing in this security may 

have mitigated the losses due the crisis.  

The choice of these three sub-periods is designed to stress the risk measures’ forecasts in 

order to assess the Model Risk deriving from their application to two crisis scenarios and a 

growth one.  

Now it is important to define the preliminary information needed by the two algorithms used, 

focusing on the constraints and on the parameters that have to be set. The codes of both 

algorithms, presented in appendix A, have been run on MATLAB R2020b on Windows 10 

with Intel Core i5-1035G4 processor and 8GB of RAM.  

 

4.2.1 Constraints Setting 

In this subparagraph I illustrate the setting of the parameters for the constraints presented from 

equation (4.6) to (4.10) and for the setting of the risk measures both from the PSO and the 

GWO. These parameters are kept constant and equal for both the algorithms during the 

computation of the objective function. More in detail, they are:  

❖ The desired daily expected return (equation (4.6)) is set equal to the portfolio mean 

return over the in-sample period, considering assets as equally weighted: 𝜋 =

∑ �̂�𝑖
𝑁
𝑖=1 /𝑁 where �̂�𝑖 is the i-th asset’s mean return over the in-sample period and it 

is equal to �̂�𝑖 =
1

𝑇
∑ 𝑟𝑖,𝑇

𝑇

𝑖=1
. In this way the desired daily expected return depends 

form the historical time series of the in-sample prices of each security, allowing it to 

change depending on the sub-period considered; 

❖ The minimum number of assets of the portfolio (equation (4.7)) is set equal to:   

 𝑘𝑙 = 5; 
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❖ The maximum number of assets of the portfolio (equation (4.8)) is set equal to: 

 𝑘𝑢 = 9; 

❖ The minimum percentage of wealth invested in each security (equation (4.9)) is set 

equal to: 𝑙𝑖 = 3%; 

❖ The maximum percentage of wealth invested in each security (equation (4.10)) is set 

equal to: 𝑢𝑖 = 20%; 

❖ The confidence level for both risk measures, VaR and ES, is set equal to: 𝛼 = 5%; 

❖ Initial capital invested: 𝐶 = 100$. I set it equal to 100 in order to have VaR and ES 

results expressed in percentage terms, in accordance with the other variables used for 

the composition of the portfolio, 𝑥1, 𝑥2, … , 𝑥𝑁55. Thus, VaR and ES outputs will 

highlight the loss in percentage terms to which the portfolio is subjected to. 

 

4.2.2 PSO Parameters’ Setting 

I choose to use the inertia weight version of the PSO presented in subparagraph 3.2.2 of 

chapter 3 since it provides a more stable model, preventing the explosion of the velocity 

without having to set its upper limit, which as discussed earlier can be tricky.   

Now I provide the list of the parameters’ setting for this metaheuristic:  

❖ Inertia weight: 𝜔 = 0.7298; 

❖ Cognitive acceleration coefficient: 𝛷1 = 1.49618; 

❖ Social acceleration coefficient: 𝛷2 = 1.49618; 

❖ Penalty parameter: 𝜀 = 1𝑒 − 05; 

❖ Number of particles: 𝑝 = 7056; 

❖ Number of iterations: 𝑛𝑖𝑡𝑒𝑟 = 3000. 

 

The parameters governing the equations for the position and the velocity of each particle 

(equation (3.7)) have been chosen in accordance with literature’s advice. Thus, inertia weight, 

cognitive and social acceleration coefficients have been chosen according to what presented 

in the previous chapter.  

 
55 Recalling from paragraph 2.1 that they express the percentage wealth to be invested in 

each security. 
56 To ensure a good exploration of the searching space it is best to use a number of particles 

that is at least the double of the number of securities.  
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The penalty parameter epsilon, 𝜀, that ensures the coincidence between the solution of the 

original constrained problem and that of its reformulation in unconstrained form, has been 

chosen empirically, since the Exact Penalty Theorem does not provide any help. I run the 

PSO algorithm57 five times for a different value of epsilon in order to test such values. Then, 

I took the average of the results of the five runs and calculated the normalized fitness value, 

along with their standard deviation. The results are reported in Table 2. As we can see the 

slowest value of the normalized fitness is when 𝜀 = 1𝑒 − 05, thus I chose to use this value.  

 

 

Table 2: Results for the setting of epsilon parameter in the PSO algorithm.  

 

Once this parameter is set, I proceed with the setting of the number of particles and of the 

number of iterations. The correct setting of these two parameters is important since it directly 

impacts the efficiency of the algorithm, with respect to the quality of the solution and to the 

computational time. Increasing the number of particles or the iterations too much, without 

having a proportional improvement of the solution, would cause a waste of computational 

effort and time. 

For the number of particles, that represents the number of searching agents, I run the PSO 

algorithm five times with different numbers (30, 40, 50, 60, 70) and then I choose again the 

one with lower fitness value, that corresponds to 70 particles.  

I have done the same test for the number of iterations, choosing 3000. Figure 26 shows the 

convergence curve58 of the PSO algorithm with Expected Shortfall: as we can see the 

 
57 with 50 particles and 1000 iterations. 
58 It is the curve plotted with each value of the final fitness function obtained at each 

iteration, it shows the convergence of the algorithm’ solution towards the optimum as the 

iterations increase.  

EPSILON
NORMALIZED 

FITNESS

STANDARD 

DEVIATION

1 0.2525061 0.4760110

0.1 0.2754862 0.3604500

0.01 0.3359008 0.1743508

0.001 0.2264751 0.3699218

0.0001 0.2157207 0.2201669

0.00001 0.1354620 0.2527649

0.000001 0.1844512 0.2535577

0.0000001 0.2789033 0.8783957
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convergence is very fast initially, and then it almost stops very close to 0 for the largest part 

of the remaining iterations. This suggests that a smaller number could have been used, 

because for a considerable part of the final iterations the solution is not improving, while we 

are wasting computational time. However for comparability reasons with the GWO 

algorithm, that as we will see shortly has a far slower convergence, 3000 iterations have to 

be chosen.  

 

 

Figure 26: Convergence curve of the PSO algorithm with Expected Shortfall, with 70 

particles and 3000 iterations.  

 

4.2.3 GWO Parameters’ Setting 

Focusing on the GWO, I chose to use the original version of the algorithm presented in 

paragraph 3.3 of chapter 3.  The parameters to be set are: 

❖ Lower bound: 𝑙𝑏 = −1𝑒18  

❖ Upper bound: 𝑢𝑏 = 1𝑒18  

❖ Number of variables; it corresponds to the number of securities taken into 

consideration: ⅆ𝑖𝑚 = 11; 

❖ Penalty parameter: 𝜀 = 1𝑒 − 05; 

❖ Number of searching agents: 𝑆𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔𝐴𝑔𝑒𝑛𝑡𝑠_𝑛𝑜 = 70; 

❖ Number of iterations: 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 3000. 
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The upper and lower bound have been chosen in order to not impact the behaviour of 

searching agents in the solution space, as it is for the PSO. By reducing these bounds, the 

algorithm would reallocate all the searching agents that go beyond them. Thus, by setting 

them equal to very large and small numbers this mechanism has been neutralized. 

To chose the penalty parameter epsilon, I run the same test of the PSO and found out that the 

lowest normalized fitness value is in correspondence to 𝜀 = 1𝑒 − 05. 

 

 

Table 3: Results for the setting of the epsilon parameter in the GWO algorithm. 

 

 

Figure 27: Convergence curve of the GWO algorithm with Expected Shortfall, with 70 

particles and 3000 iterations. 

EPSILON
NORMALIZED 

FITNESS

STANDARD 

DEVIATION

1 0.308360 0.152421

0.1 0.298832 0.165099

0.01 0.369005 0.189747

0.001 0.322043 0.208138

0.0001 0.310252 0.143093

0.00001 0.296688 0.165456

0.000001 0.343073 0.204618

0.0000001 0.315252 0.131414
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The number of searching agents, for comparability reasons, corresponds to the number of 

particles in the PSO. However, I have run the same test of the PSO and I found out that by 

increasing the number of particles the quality of solutions increases together with the 

computational time. Thus, 70 searching agents is once more a good trade-off.  

Again for comparability reasons, the number of iterations is set equal to 3000. Nonetheless, 

in this case it could have been greater because as shown in Figure 27, the convergence is far 

slower than in the PSO, and even after 3000 iterations it struggles to go to 0. However, 3000 

is a good trade-off between the solution’s quality and computational time.  

 

4.3 Application and Discussion 

Now that the initial tuning of the two algorithms is completed, I begin the presentation of the 

experiment.  

For each sub-period I run the four algorithms (PSO-VaR and PSO-ES, GWO-VaR and 

GWO-ES) 5 times each on the in-sample period to build the efficient portfolio, and then I 

select the run with lowest fitness value. Next, I use the out-of-sample period as a virtual future 

to test the performance of the portfolio built, focusing on the expected return and on the value 

of the risk measure. I report the data in tables and discuss them in relation to the specific sub-

period. Furthermore, I analyse the performance of the two algorithms, comparing the results 

obtained in relation to Model Risk, especially considering: 

❖ the best fitness value obtained after the five runs; 

❖ the violations of the constraints; 

❖ the computational effort and time required by the algorithm to fully execute the 

code. 

 

Since our aim is to minimize the fitness value59, if the final output of an algorithm has a high 

fitness level this would suggest a worse convergence towards the real optimal solution, 

highlighting that the solution fund may be in reality far from the real one. Thus, the risk of 

taking the wrong decisions by making an inefficient allocation is looming.  

Constraints’ violations are linked with the fitness value obtained. If a large amount of them 

is heavily violated, the fitness value would rise, highlighting again the worse quality of the 

 

59 As shown in subparagraph 4.1.1, it is the objective function to be minimized, containing both the 

risk measure and the sum of the violations of each constraint, penalized by the epsilon parameter.  
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solution found. Here, it is important to consider how many of the constraints are violated and 

by how much they are violated. In fact, as previously pointed out, a higher magnitude of 

violations would be amplified by the 𝜀 parameter in the computation of the fitness value (as 

equation 4.12 suggests), causing its value to increase. 

Computational effort is another component, linked to Model Risk, that has to be taken into 

consideration: if an algorithm is able to achieve better solutions (thus with lower fitness 

values) with less iterations and fewer searching agents, it should be considered more efficient. 

As pointed out in the previous sections (4.2.2 and 4.2.3) where I Made the setting of the two 

algorithms’ parameters, increasing the number of iterations or the number of searching agents 

would have a direct impact on computational time. More specifically, fixing the number of 

iterations and repeating the steps required by the algorithm for a higher number of searching 

agents, will increase the time required. In the same way, fixing the number of searching 

agents and increasing the number of iterations will increase the time required by both 

algorithms. In fact, the computational time requirement is a crucial aspect, because having 

correct information more rapidly may directly impact on the investment decisions taken by 

the portfolio manager. 

Then, in paragraph 4.4, considering the best portfolios among the ones obtained by the 

algorithms I perform Model Risk assessment for risk measures through a backtesting analysis 

in the three sub-periods, focusing on the three properties that a good risk forecast should 

possess, presented in paragraph 1.460. 

 

4.3.1 First Sub-period 

As pointed out in the previous section, the first sub-period takes into consideration the period 

of the Great Financial Crisis between mid 2007 and 2008.  

Table 4 reports the best results obtained by the two algorithms, when applying both the VaR 

and the ES, in the five runs in terms of best fitness value; furthermore it reports also the 

number of assets selected, the values of the risk measures (both in-sample and out-of-

sample), the average return of the portfolios (both in-sample and out-of-sample), and the 

violations of the constraints. 

 

 
60 Expected frequency of violations, absence of violation clustering and suitable magnitude of 

violations. 
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Table 4: Results and constraints violations form the application of the PSO and GWO to 

the first sub-period. 

 

Starting from the fitness value it can be seen that the PSO algorithms are able to obtain far 

better results than the GWOs. This is in line with what showed in Figure 26 and 27, where 

the PSO converges much faster touching almost 0 in the first 1000 iterations. Whereas, the 

GWO convergence is slower, and neither 3000 iterations are sufficient to move it close to 0. 

This could be considered an important component of Model Risk in relation to the two 

algorithms, that has to be taken into account when choosing between the two, because the 

PSO allows a better convergence towards the real optimal solution in less iterations, thus with 

less computational effort. Furthermore, the higher fitness values obtained by the GWO are 

due to the fact that it violates more constraints than the PSO, and the magnitude of these 

violations is greater on average. Thus, the results of the PSO are more reliable because they 

are in line with the requests of the portfolio manager. For example, the PSO-VaR violates the 

budget constraint only by 1.04E-14, whereas the GWO-VaR violates it by 9.39E-05. It can 

be also noticed that every algorithm violates the budget, the minimum and maximum 

invested percentage and the Z constraints; instead none of them violates the constraints 

regarding the minimum and the maximum number of assets of the portfolio and the return 

constraint (excluding the GWO-VaR).  

Output PSO-VaR PSO-ES GWO-VaR GWO-ES

Best fitness 0.020714983 0.029448534 7.65E+03 8.35E+03

Number of selected assets 6 9 5 6

Risk measure in-sample 2.071498274 2.944684713 2.341363633 2.73018614

Mean return in-sample 1.03E-04 5.30E-05 -1.63E-04 -1.06E-05

Risk measure out-of-sample 5.568303355 7.369277529 5.933193277 6.74748208

Mean return out-of-sample -1.83E-03 -2.25E-03 -2.61E-03 -1.87E-03

Constraints

Budget 1.04E-14 2.10E-12 9.39E-05 7.97874E-05

Return 0 0 1.16E-04 0

Min number of assets 0 0 0 0

Max number of assets 0 0 0 0

Min investment % 8.33E-24 2.80E-14 1.02E-03 3.03E-02

Max investment % 3.65E-24 1.61E-13 2.06E-02 1.92E-02

Z 2.96E-22 1.63E-11 5.47E-02 3.39E-02

OUTPUT OF THE PROBLEM
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Now, focusing on the performances of the portfolios, the risk measures in-sample are almost 

in line for the two algorithms: considering the VaR, the GWO shows a slightly higher level 

of VaR than the PSO, with respectively 2.341 against 2.071. On the other hand, considering 

the ES, the results are also coherent, because the ES  measures are greater than the VaR. 

However, in this case the PSO registers a higher ES than the GWO.  

As expected, the values of the risk measures out-of-sample are higher with respect to the in-

sample period, highlighting the greater risk in the market of the next six months. For example, 

the PSO-ES registers a value of 2.944 in-sample and a value of 7.369 out-of-sample.  

With respect to the portfolios’ mean returns in-sample, the PSO is able to outperform the 

GWO obtaining positive returns both for the VaR and the ES, while the GWO’s portfolios 

obtain negative returns in both cases. As expected, in the out-of-sample window every 

portfolio’s return is worse than in the other period. If PSO’s portfolios have negative returns, 

GWO’s ones have even more negative returns than in the in-sample-period.  

 

 

Table 5: Asset allocation in the first sub-period. 

 

Table 5 presents the asset allocation of the four metaheuristics. As we can see, PSO-VaR 

selects 6 assets, PSO-ES selects 9 assets, GWO-VaR selects 5 assets and GWO-ES selects 6 

assets. The portfolio PSO-ES is the one that diversifies mostly, investing in 9 assets. It can be 

noticed that every portfolio suggests to invest heavily on Amazon, especially the GWO’s 

Security PSO-VaR PSO-ES GWO-VaR GWO-ES

Google 0.152868738 0.041235233 0 0.201291418

Amazon 0.186637838 0.171292896 0.196391998 0.206411838

Walmart 0 0.176161488 0.216418401 0.203489321

ExxonMobil 0.171845772 0.181609964 0 0

JP Morgan 0 0.039606437 0 0

Johnson & Johnson 0.196431324 0.033900751 0 0

3M 0 0.141949941 0.195647199 0.207642277

Apple 0 0.095474597 0 0.000639443

DuPont 0 0.118768693 0.199595562 0

American Tower 0.096485000 0 0.192040784 0

Duke Energy 0.195731327 0 0 0.18060549

Tot percentage 1 1 1 1

Number of assets 6 9 5 6

ASSET ALLOCATION
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ones. Furthermore, it can be seen that GWO’s portfolios violate the constraints of the 

minimum and the maximum percentage invested in each asset. For example, even if the 

upper bound is set to 20% of initial capital, the GWO-VaR allocates 21.642% to Walmart. 

On the other hand, the GWO-ES allocates only 0.064% to Apple. This strongly violates the 

lower bound, set to a minimum of 3%. In addition, the GWO-VaR portfolio can be seen as 

an equally weighted portfolio composed of 5 securities.  

Finally, the last aspect to be considered, valid for every sub-periods, is the computational time 

required by the two algorithms to fully execute the code. This can be seen as another point 

when assessing Model Risk for the two algorithms. For example, considering the case of 

quantitative trading61, where even a fraction of a second can be crucial for the effectiveness 

of the trade, having good information as quickly as possible is essential. Thus, given the 

settings presented in sections 4.2.2 and 4.2.3, the PSO code is executed on average in 16 

seconds, while the GWO code is executed on average in 30 seconds. Therefore, also in this 

case the PSO seems to prevail over the GWO. 

 

4.3.2 Second Sub-period 

The second sub-period takes into consideration the growing phase of the US economy of mid 

2013 and 2014.  

Table 6 presents  the results obtained by the two algorithms in both their versions. With 

respect to the fitness value, also in this case the PSO achieves better results than the GWO 

for the same reason explained previously: it violates less constraints and with a lower 

magnitude. None of the PSO versions violate the budget constraint, while all the 

metaheuristics violate the Z and the minimum and maximum invested percentage 

constraints.  

As expected, the risk measures in-sample and out-of-sample are lower than in the first sub-

period. Furthermore, there is no remarkable difference, as in the first sub-period, between the 

performances in-sample and out-of-sample. However, the GWO’s portfolios show a strange 

result: the ES both in-sample and out-of-sample is lower than the VaR. This result is not in 

line with the characteristics of the two risk measures presented in paragraph 2.3, because by 

definition the values obtained by the ES must be greater than the VaR. This could be another 

 
61 It is an investment technique that relies on mathematical and statistical analysis in order 

to automate the investing process and the decision making phase, thus requiring a lot of 

computational effort and fast information delivery.  
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factor, for the Model Risk assessment, that may suggest the better reliability of the PSO 

algorithm over the GWO.  

The mean returns in-sample of every portfolio are all positive, and the best one is obtained 

by the PSO-VaR with 1.19E-03. Also in the out-of-sample period all the mean returns are 

positive, with the exception of the GWO-VaR, which shows a negative return of  -5.39E-06. 

This is caused by asset allocation: a reason may be having invested heavily on Google and 

Amazon, which grew in February and March 2014 but then moved sideways for the 

remaining period, with a slower downward tendency in the out-of-sample period, as shown 

in Figure 24.  

 

  

Table 6: Results and constraints violations form the application of the PSO and GWO to 

the second sub-period. 

 

Table 7 presents the asset allocation of the four metaheuristics. The number of assets selected 

for the PSO-VaR, PSO-ES, GWO-VaR and GWO-ES are respectively: 7, 8, 5 and 5. Thus, 

PSO’s portfolios selects more securities than GWOs, allowing a greater diversification of the 

investment; and the portfolio that diversify mostly is the PSO-ES. It can be noticed that 

GWO’s portfolios are almost equally weighted. Nonetheless, allocation more than 20% in 

some securities, they violates in some cases the constraint of the maximum percentage 

allowed to be invested. The only security that is picked by every algorithm is Duke Energy. 

Output PSO-VaR PSO-ES GWO-VaR GWO-ES

Best fitness 0.009893089 0.013436364 3.92E+03 8.04E+03

Number of selected assets 7 8 5 5

Risk measure in-sample 0.989308931 1.343636400 1.396042564 1.293802682

Mean return in-sample 1.19E-03 9.92E-04 9.26E-04 1.07E-03

Risk measure out-of-sample 1.467763461 1.777452136 1.935680869 1.525163506

Mean return out-of-sample 3.56E-04 4.29E-04 -5.39E-06 5.35E-04

Constraints

Budget 0 0 2.23E-05 2.68E-04

Return 0 0 2.62E-06 0

Min number of assets 0 0 0 0

Max number of assets 0 0 0 0

Min investment % 3.97E-26 1.05E-26 9.50E-04 1.98E-03

Max investment % 7.03E-25 2.37E-24 2.44E-03 1.31E-02

Z 4.84E-24 1.22E-23 3.58E-02 6.51E-02

OUTPUT OF THE PROBLEM
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In fact, this security shows a steady and steep growth form the end of 2009 until today (where 

it crosses 100 $ per share), moving in the window considered from an adjusted closing price 

of  47.885 $ on 01/07/2013 to 63.856 $ on 31/12/2014.  

 

 

Table 7: Asset allocation in the second sub-period. 

 

4.3.3 Third Sub-period 

The third sub-period represents again a crisis period: the very recent one due to Covid-19 

outbreak in 2020. Here, as in the first sub-period, the biggest impact of the crisis is in the out-

of-sample period.  

Table 8 presents the results obtained by the two algorithms in both their versions. Looking at 

the fitness value, also in this case the PSO achieves better results than the GWO. The Z and 

the minimum and maximum invested percentage constraints are violated by every 

metaheuristics. However, they are violated heavily by the GWO’s portfolios.  

As expected, the risk measures in-sample are lower than those out-of-sample, where the crisis 

began. For example, the PSO-ES shows a value of 1.610 in-sample, which is close to the 

values reported in the second sub-period, and 7.011 out of sample. Thus, they all behave well 

according to the period. Furthermore, this extreme increase in the value of the risk measures 

is even bigger than the one in the first sub-period, where for example the PSO-ES moves 

from a value of 2.945 in-sample to 7.369 out-of-sample, highlighting the sudden and 

Security PSO-VaR PSO-ES GWO-VaR GWO-ES

Google 0.156308310 0 0.199386901 0.20057737

Amazon 0 0.061666138 0.199139346 0

Walmart 0.072603018 0 0 0

ExxonMobil 0.062193961 0.192942035 0 0

JP Morgan 0 0.10676389 0.200185287 0

Johnson & Johnson 0 0 0 0.197746091

3M 0 0.136843601 0 0

Apple 0.186902514 0.098771526 0 0.188912595

DuPont 0.199879122 0.109689945 0.201516572 0

American Tower 0.124136487 0.173263794 0 0.211097434

Duke Energy 0.197976589 0.12005907 0.199749576 0.201398742

Tot percentage 1 1 1 1

Number of assets 7 8 5 5

ASSET ALLOCATION
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unexpected explosion of the Covid-19 crisis. The mean returns in-sample are all positive, and 

the higher one is obtained by the GWO-ES with 1.20E-03. Focusing on the out-of-sample 

mean returns the PSO’s portfolios perform worse than the GWOs, that are able not only to 

outperform them but also to achieve a positive return. 

 

  

Table 8: Results and constraints violations form the application of the PSO and GWO to 

the third sub-period. 

 

According to Table 9 that shows the asset allocation, this might be due to the fact that the 

GWO’s portfolios invest heavily on Google and especially on Amazon, that after the initial 

plunge is able to recover in few months and finally skyrocketed, according to Forbes, due to 

the diffused lockdowns all around the world that incentivize people to order goods from 

home for daily necessities. The number of assets selected for the PSO-VaR, PSO-ES, GWO-

VaR and GWO-ES are respectively: 7, 8, 5 and 5. Also in this case, the PSO’s portfolios are 

more diversified than the GWOs. The only security that is selected by every algorithm is 

American Tower. Actually, this security shows a huge growth in the period considered, 

moving from an adjusted closing price of 150.3573 $ on 02/01/2019 to 254.5403 $ on 

30/06/2020. It can be also noticed that GWO’s allocations sometimes violate the upper bound 

of the percentage to be invested in each security.  

 

Output PSO-VaR PSO-ES GWO-VaR GWO-ES

Best fitness 0.012160583 0.016103576 3.25E+03 6.27E+03

Number of selected assets 7 8 5 5

Risk measure in-sample 1.216058295 1.610357557 1.71732941 2.249590938

Mean return in-sample 9.70E-04 9.70E-04 4.80E-04 1.20E-03

Risk measure out-of-sample 4.157367409 7.011465069 4.300108186 6.92870834

Mean return out-of-sample -7.32E-04 -5.87E-04 4.82E-04 6.28E-04

Constraints

Budget 0 6.66E-16 8.75E-05 3.22E-04

Return 0 0 3.19E-04 0

Min number of assets 0 0 0 0

Max number of assets 0 0 0 0

Min investment % 4.49E-26 1.05E-17 5.57E-04 1.52E-03

Max investment % 4.24E-25 6.01E-17 1.24E-02 3.46E-03

Z 3.62E-24 3.32E-15 1.91E-02 5.74E-02

OUTPUT OF THE PROBLEM
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Table 9: Asset allocation in the third sub-period. 

 

4.4 Risk Measures Backtesting  

As pointed out in the previous sections, PSO’s portfolios generally are more efficient than 

the GWOs: they are able to achieve better fitness values, violating on average less constraints 

and with lower magnitude. Thus, for this backtesting analysis62 I consider only PSO’s 

portfolios previously built (PSO-VaR and PSO-ES). The aim of this further analysis is to 

assess which of the two risk measures used is better in terms of Model Risk. To do this, I 

consider these two portfolios in the same three sub-periods previously presented. However, 

because I need a higher number of observations for the application of the models that I am 

going to present, in this case I do not make the distinction between out-of-sample and in-

sample periods, instead I consider the time series in its entirety.  

In order to assess Model Risk deriving from the two risk measures, I consider the three 

properties that a good risk forecast should possess, presented in paragraph 1.4: 

❖ Expected frequency of violations;  

❖ Suitable magnitude of violations; 

❖ Absence of violations clustering. 

 
62 A backtesting analysis aims to test quality and the reliability of a predictive model on 

historical data. The main idea is that if a model behaves well on historical data it is likely 

to provide good forecasts.  

Security PSO-VaR PSO-ES GWO-VaR GWO-ES

Google 0.195566671 0 0.187510703 0.201370336

Amazon 0 0.073745028 0.202951784 0.199898843

Walmart 0.185869893 0.154918753 0 0

ExxonMobil 0.113505417 0.188257962 0 0.200093251

JP Morgan 0.184731915 0.114424648 0 0

Johnson & Johnson 0.041882052 0 0 0

3M 0.10121882 0.063002302 0.203196339 0

Apple 0 0.116212438 0 0.200580232

DuPont 0 0 0.203320700 0

American Tower 0.177225233 0.118153394 0.202932933 0.197735392

Duke Energy 0 0.171285475 0 0

Tot percentage 1 1 1 1

Number of assets 7 8 5 5

ASSET ALLOCATION
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For each of them I provide a method to measure it directly on historical data. For doing this, 

using the variance-covariance method63 I implement one static approach and two dynamic 

approaches, that will be presented shortly, to model on historical data both the VaR and the 

ES forecasts. The two dynamic models are an Exponentially Weighted Moving Average 

(EWMA) and a Generalized Autoregressive Conditional Heteroskedasticity (GARCH). 

These two models and the static approach are applied to determine the “historical” forecasts 

of the two risk measures in order to see if what they have predicted is in line with the actual 

return in that specific day64. In this way, I am able to historically check the performances of 

the two risk measures: 

❖ I calculate the number of violations counting all the cases where the historical loss 

exceeds the value predicted by the risk measure. It has to be mentioned that the 

percentage number of violations should be lower than the confidence level required 

(in my case 5%), otherwise this would suggest a misbehaviour of the risk measure. 

❖ I calculate the average magnitude of violations determining for all the violation cases 

the average amount of the losses that exceed the predicted one. In this way, I am able 

to compare the average magnitude of VaR violations with the ES ones.  

❖  I check for violation clustering using a k-mean clustering algorithm through the 

function kmean in MATLAB65. According to Arthur and Vassilvitskii (2007) it is 

an iterative algorithm that partitions the initial dataset into k non overlapping subsets 

(clusters) by seeking “to minimize the average squared distance between points in 

the same cluster.” In this way it is possible to individuate k clusters in the data series. 

The measure used for the distance is the Squared Euclidean Distance: 

 ⅆ(𝑥, 𝑐) = (𝑥 − 𝑐)(𝑥 − 𝑐)′ (4.14)  

where: 𝑥 ∈ 𝑋 is an observation of 𝑋, which is the numeric matrix containing the 

data, and 𝑐 is a centroid66. Thus, by applying this algorithm to the historical series 

that contains only the violations of risk measure’s forecasts, I detect three centroids 

 
63 It is a parametric technique for measuring the VaR and the ES that relies on the 

calculation of the variance-covariance matrix of portfolio’s returns and that assumes they 

follow a multivariate normal distribution. It is a very simple technique to be applied, 

however the main drawback of this approach is that it relies on normality assumption, that 

might be too restrictive, not considering for example the problem of fat tails.  
64 Because I have daily data, also the forecasts of the two risk measures will be daily. 
65 For the complete references about the functioning and the structure of this algorithm 

see: https://it.mathworks.com/help/stats/kmeans.html#bue6nc4-1. 
66 It is the point whose coordinates are the mean values of the coordinates of the points of 

the subset. Thus, each centroid individuates the centre of each cluster. 
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(in my application I decided to select 𝑘 = 3 for every sub-period and for both 

portfolios) highlighting three possible clusters in each series. The presence of a 

cluster of violations underlines a bad behaviour of the risk measure, because it means 

that in a relatively short time period, the forecasts are violated several times, causing 

unpredictable huge losses to the owner of the portfolio.  

 

More in detail, according to the variance-covariance method, the formulas used for the VaR 

and the ES forecasts computation are respectively: 

 𝑉𝑎𝑅 = −(𝛷−1(1 − 𝛼)) × 𝜎𝑅 (4.15)  

 𝐸𝑆 = −(
𝜑(𝛷−1(1 − 𝛼))

𝛼
) × 𝜎𝑅 

(4.16)  

where: 

- 𝛼 is the confidence level; 

- 𝜎𝑅 is the standard deviation of portfolio returns; 

- 𝛷−1(1 − 𝛼) is the inverse of cumulative distribution function (CDF) of a standard 

Normal distribution, thus it is the corresponding quantile to 1 − 𝛼; 

- 𝜑 is the probability density function (pdf) of a standard Normal distribution.  

 

A static approach calculates the value of VaR or ES just once for the investigated time series, 

assuming it to be constant for the entire time series of returns, as I have done in the previous 

paragraph when calculating the value of the two risk measures for the portfolios found 

through the two metaheuristics in-sample and out-of-sample. For this reason, looking at 

formulas (4.15) and (4.16), 𝜎𝑅 is calculated just once and kept constant for the entire period. 

Thus, the value of the risk measures does not change according to market conditions: for 

example in the crisis periods presented in the first and third sub-periods, where the volatility 

of returns is higher, the value of the two risk measures should move accordingly, and be 

increased as 𝜎𝑅 increases, however this is not captured by this method. 

On the other hand, implementing a dynamic approach means to impose a certain time-

dependent structure in the variance-covariance matrix of portfolio returns. Thus, in this case 

𝜎𝑅 will be time dependent. In this way it is possible to adequate the value of the risk measure 

to the corresponding market situation at each instant of the time series. For example, a period 

with higher volatility will correspond to higher values of the risk measures since we are 

introducing a dependence in the variance-covariance matrix with past information. To better 
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show this, I present the formulas of two possible approaches for modelling the dynamics of 

𝜎𝑅: an EWMA and a GARCH(1,1).  

The EWMA models the variance as: 

 𝜎𝑡
2 = (1 − 𝜆) ⋅ 𝑅𝑡−1

2 + 𝜆 ⋅ 𝜎𝑡−1
2  (4.17)  

where 𝜆 = 0.94 is a decay factor, generally ranging from 0.99 to 0.90. A lower value of it 

tends to give a higher weight to recent information. As we can see the current variance (at 

time 𝑡) is a function of portfolio return at time 𝑡 − 1, multiplied by (1 − 𝜆), plus the variance 

at time 𝑡 − 1, multiplied by time 𝜆. 

On the other hand, introducing a GARCH (1,1)67 model means to structure the time 

dependence of the variance in this way: 

 𝜎𝑡
2 = 𝜔 + 𝑎 ⋅ 𝑅𝑡−1

2 + 𝑏 ⋅ 𝜎𝑡−1
2  (4.18)  

where  𝜔,  𝑎 and 𝑏 are three positive parameters. Thus, the main difference is that EWMA 

has only one parameter (𝜆), while GARCH has three. Instant time by instant, equations (4.17) 

and (4.18) have to be substituted into equations (4.15) and (4.16) to introduce those time 

dependent components, otherwise the static approach will derive. 

Figure 28 shows the VaR forecasts made through these three models when applied to the 

PSO-ES portfolio to the first sub-period. As we can see, the static approach (VaR-ex1 in the 

legend) is just a straight line for the entire duration of the time series. On the other hand, 

EWMA (VaR-ex3 in the legend) and GARCH(1,1) (VaR-ex4 in the legend) reacts to current 

market conditions, thus where the volatility is higher, as for example in the last part of the 

time series around October 2008, their forecasts are more negative than during the relatively 

more stable period before. Around October 2008, it is particularly evident, at least in three 

points, that the blue line (representing the actual returns of the portfolio) is even more negative 

than the risk forecasts made through these models. Thus there are some violations of the VaR 

forecasts made through these models. They are actually what I intend to measure: how many 

violations there are in the series, their magnitude and if they are clustered. 

Figure 29 shows the same things but for the ES forecasts. It can be easily noticed that around 

October 2008 the risk forecasts made through the three models are more negative than in the 

previous case, being more in line with the actual returns of the portfolio. This may suggest a 

better behaviour of the ES with respect to the VaR. 

 
67 The two numbers in brackets state the number of lags to be introduced respectively for 

the variance term, 𝜎𝑡−𝑖
2 , and for 𝑅𝑡−𝑖

2 .  
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Figure 28: Historical estimates of the VaR according to the three methods for the PSO-

ES portfolio in the first sub-period plotted against historical returns. VaR-ex1 is the static 

approach, VaR-ex3 is the EWMA and VaR-ex4 is the GARCH(1,1). 

 

 

 

Figure 29: Historical estimates of the ES according to the three methods for the PSO-ES 

portfolio in the first sub-period plotted against historical returns. ES-ex1 is the static 

approach, ES-ex3 is the EWMA and ES-ex4 is the GARCH(1,1). 
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Appendix B shows the MATLAB code used for the backtesting analysis.  

Appendix C shows the figures of the risk forecasts of the three approaches (static, EWMA 

and GARCH(1,1)) for the two risk measures plotted against portfolio returns in the three sub-

periods for PSO-ES portfolios. 

Appendix D shows the figures of the cluster analysis for the two risk measures applied to the 

three sub-periods for PSO-ES portfolio. 

I decided to report only PSO-ES portfolio’ results on Appendix C and D because PSO-VaR’s 

are very similar to these, and their display would not have added any further insight to the 

analysis.  

 

4.4.1 First Sub-period Backtest 

Table 10 shows the results of the checks for the expected frequency of violations in the first 

sub-period. As we can see, according to all the three methods applied, the VaR forecasts are 

violated more than the ES ones for both portfolios. Considering only the VaR, among the 

three approaches the static one violates less than the other two, with respectively only 17 and 

14 violations over 380 observations. Furthermore, in percentage terms, the number of 

violations is lower than 5%, which is consistent with the confidence level required. This may 

suggest that the static approach might be preferred to the other two, however as pointed out 

previously, a method like this does not react with respect to current market conditions, thus 

in crisis periods (like in the first sub-period) it is not able to adapt to extreme downtrends of 

stock prices. Looking at a concrete example, because banks have to allocate reserves with 

respect to the riskiness of their portfolios, during crisis periods they should allocate more 

reserves than in steady periods (where they can have more free capital to be invested), and a 

static approach is not able to capture these dynamics. Thus, it may be risky to rely on such a 

method. 

Furthermore, the EWMA and GARCH(1,1) approaches for the VaR violate the 5% limit, 

being not consistent with the confidence level set. On the other hand, the ES is consistent 

with the confidence level for every model for both portfolios.  

As expected, looking at the average magnitude of violations in Table 11, the static approach 

has higher magnitude both for the VaR, where the average violation is 9.82% for the PSO-

VaR portfolio and 9.78% for the PSO-ES one, and for the ES, where it is 1.81% for the PSO-

VaR and 2.09% for the PSO-ES. Not to mention, the magnitude of VaR violations is far 
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higher than ES. This suggests that the ES adapts better to changes in market conditions, being 

able to predict the downward movements in a better way. 

 

 

Table 10: Results of the three approaches in terms of expected frequency of violations 

applied to the first sub-period. 

 

 

Table 11: Results of the three approaches in terms of average magnitude of violations 

applied to the first sub-period,  

 

 

Table 12: Coordinates of the centres of the three centroids for the cluster analysis in the 

first sub-period. 

 

Considering the cluster analysis, the results are shown in Appendix D (first sub-period) and 

in Table 12, which presents the coordinates of the locations of the three centroids determined 

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

VaR 17 24 19 14 24 19

VaR% 4.49% 6.33% 5.01% 3.69% 6.33% 5.01%

ES 11 12 9 10 14 8

ES% 2.90% 3.17% 2.37% 2.64% 3.69% 2.11%

FREQUENCY OF VIOLATIONS

PSO-VaR PSO-ES

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

VaR 9.82% 7.50% 8.88% 9.78% 6.54% 8.07%

ES 1.81% 1.32% 1.21% 2.09% 1.00% 1.04%

MAGNITUDE OF VIOLATIONS

PSO-VaR PSO-ES

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

(264.00; 0.094) (312.90; 0.108) (296.27; 0.107) (348.33; 0.095) (119.33; 0.051) (323.63; 0.117)

(144.50; 0.084) (57.625; 0.047) (127.00; 0.066) (92.000; 0.076) (282.15; 0.082) (43.400; 0.052)

(331.57; 0.100) (185.29; 0.064) (13.000; 0.051) (318.60; 0.104) (100.33; 0.039) (210.17; 0.056)

(264.00; 0.006) (15.000; 0.008) (289.20; 0.017) (349.60; 0.012) (100.33; 0.007) (317.00; 0.016)

(349.60; 0.015) (283.25; 0.025) (13.000; 0.001) (306.00; 0.038) (287.00; 0.014) (110.50; 0.007)

(317.60; 0.024) (120.20; 0.007) (139.33; 0.005) (320.50; 0.035) (15.000; 0.005) (242.00; 0.003)

VIOLATIONS CLUSTERS

PSO-VaR PSO-ES

VaR

ES
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for each of the three models. The first term in the brackets indicates the coordinate on the x 

axis, which is the time instant; the second term instead indicates the coordinate on the y axis, 

which is the average magnitude of the violations inside the cluster.  

Though a wise comparison of the data reported in the table and the charts reported in 

Appendix D it is possible to see if to each centroid would actually correspond a cluster 

(because the number of centroids, k,  individuated by the algorithm has been set equal to three 

by default, even if the time series may show more or less clusters). For example, recalling 

that in the first sub-period we have 380 observations, 252 in-sample and 128 out-of-sample, 

it can be seen from Figure 30 that, for the PSO-ES portfolio when considering VaR forecasts, 

the static approach individuates three clusters, the first one on observation 348, another on 

observation 318 and the third cluster on observation 92. However, from Figure 30 it can be 

seen that the one on observation 92 is composed of only one violation, thus it is not a cluster, 

while the other two, that are located in the out-of-sample period (where the epicentre of the 

crisis is) can be considered as one cluster because of their proximity. Applying this reasoning 

method we can analyse all the other results. An evidence that confirms the results obtained 

in Table 11 is that looking at the values on the y axis of ES clusters for both portfolios, they 

are lower than VaR clusters’ ones, highlighting the lower average magnitude of violations of 

ES forecasts over VaRs. In addition, comparing Figure 30 with Figure 31 (as well as other 

charts of Appendix D for the other sub-periods) it can be noticed that on average the higher 

concentration of the clusters is in the out-of-sample period, where the epicentre of the crisis 

is. 

 

Figure 30: Cluster analysis for VaR violations of the static approach for the PSO-ES 

portfolio in the first sub-period. See appendix D for all the charts relative to the other 

models. 
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Figure 31: Cluster analysis for ES violations of the static approach for the PSO-ES 

portfolio in the first sub-period.  

 

4.4.2 Second Sub-period Backtest  

Table 13 shows the frequency of violations in the second sub-period. Focusing on VaR 

forecasts, the only method that violates the confidence level is the EWMA for both portfolios, 

with respectively 7.12% and 6.86% of violations. On the other hand, all the ES forecasts’ 

violations are below the 5% bound and the model that violates them less is the GARCH(1,1). 

Looking at Table 14, the ES average magnitude of violations are far lower than the VaR. For 

the VaR case, the static approach has the highest magnitude. By comparing results of Table 

11 and 14, it can be noticed that in the crisis sub-period the average magnitude of violations 

is higher than in the second sub-period. For example, considering the VaR forecasts for the 

GARCH(1,1) in the PSO-ES portfolio, they report an average magnitude of violations of 

8.07% in the first sub-period and 3.35% in the second one.  

Focusing now on the cluster analysis, we can see that the results shown in Table 15 are similar 

to the ones presented in Table 12. However by comparing the charts in the first sub-period 

with the ones in the second sub-period of Appendix D, it can be noticed, better than by the 

comparison of the results in the tables, that the clusters in the second sub-period are more 

dispersed. This can be due to the fact that it is not a crisis period, like in sub-period one, where 

the huge amount of the violations happened during a relatively small amount of days in the 

out-of-sample period (where there is the epicentre of the crisis). However also in this case it 

can be noticed that looking at ES forecasts, the y axis clusters’ coordinates are lower than the 
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VaR ones, suggesting a lower average magnitude of violations. These results are in 

accordance with what was found in Table 14. 

 

 

 

Table 13: Results of the three approaches in terms of expected frequency of violations 

applied to the second sub-period. 

 

 

 

Table 14: : Results of the three approaches in terms of average magnitude of violations 

applied to the second sub-period,  

 

 

 

Table 15: Coordinates of the centres of the three centroids for the cluster analysis in the 

second sub-period. 

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

VaR 15 27 14 15 26 17

VaR% 3.96% 7.12% 3.69% 3.96% 6.86% 4.49%

ES 7 14 6 9 12 7

ES% 1.85% 3.69% 1.58% 2.37% 3.17% 1.85%

FREQUENCY OF VIOLATIONS

PSO-VaR PSO-ES

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

VaR 4.09% 3.08% 3.81% 3.54% 3.04% 3.35%

ES 0.81% 0.52% 0.66% 0.81% 0.62% 0.91%

PSO-ES

MAGNITUDE OF VIOLATIONS

PSO-VaR

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

(326.25; 0.038) (173.00; 0.050) (20.500; 0.016) (333.20; 0.031) (102.33; 0.032) (126.20; 0.036)

(197.40; 0.043) (323.53; 0.031) (333.83; 0.037) (152.00; 0.038) (335.89; 0.027) (316.00; 0.032)

(146.00; 0.050) (27.439; 0.019) (179.67; 0.045) (240.25; 0.038) (224.63; 0.033) (200.00; 0.033)

(176.20; 0.009) (173.00; 0.078) (133.00; 0.007) (146.67; 0.013) (306.83; 0.005) (236.00; 0.008)

(369.00; 0.006) (333.83; 0.004) (369.00; 0.003) (343.5; 0.002) (32.000; 0.003) (365.00; 0.002)

(273.00; 0.004) (19.333; 0.0026) (273.00; 0.008) (236.00; 0.008) (165.60; 0.008) (145.50; 0.014)

VIOLATIONS CLUSTERS

PSO-VaR PSO-ES

VaR

ES
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4.4.3 Third Sub-period Backtest 

Table 15 reports the frequency of violations in the third sub-period. Looking at VaR’s 

forecasts, both the EWMA and the GARCH(1,1) approaches slightly violate the confidence 

level. The static approach again is the one with lower number of violations for the VaR’s 

forecasts. Focusing on the ES, the frequency of violations is lower than 5% in every model 

for both portfolios.  

Looking at Table 16, the VaR average magnitude of violations is far higher than the ES as in 

every other sub-period. However, in general, the magnitude of violations is similar to the one 

of the first sub-period in fact they both consider crisis periods. However, because the first 

sub-period considers a longer period of instability than the third sub-period, where the Covid-

19 crisis breaks out only in the out-of-sample period, this explains the slightly higher values 

reported in Table 11.  

 

 

Table 16: Results of the three approaches in terms of expected frequency of violations 

applied to the third sub-period. 

 

 

Table 17: : Results of the three approaches in terms of average magnitude of violations 

applied to the third sub-period,  

 

With respect to the cluster analysis, Table 18 and Appendix D (third sub-period) show the 

results obtained. It can be noticed, especially from the graphical analysis in Appendix D, that 

the results are more similar to the ones of the first sub-period, where the epicentre of the crisis, 

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

VaR 17 24 19 14 19 20

VaR% 4.52% 6.38% 5.05% 3.72% 5.05% 5.32%

ES 13 12 11 10 16 13

ES% 3.46% 3.19% 2.93% 2.66% 4.26% 3.46%

PSO-VaR PSO-ES

FREQUENCY OF VIOLATIONS

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

VaR 8.15% 6.28% 7.43% 7.11% 5.88% 5.39%

ES 1.80% 1.82% 1.36% 1.82% 0.98% 0.92%

MAGNITUDE OF VIOLATIONS

PSO-VaR PSO-ES
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like in the third sub-period, is out-of-sample. For instance, it can be seen that the biggest 

clusters are on the far right of the charts, around observations 300 and 350, highlighting the 

fact that during the crisis outbreak there were clustering violations for both risk measures’ 

forecasts. 

 

 

Table 18: Coordinates of the centres of the three centroids for the cluster analysis in the 

third sub-period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Static EWMA GARCH(1,1) Static EWMA GARCH(1,1)

(301.75; 0.084) (34.800; 0.041) (107.63; 0.049) (300.67; 0.075) (22.500; 0.040) (316.50; 0.074)

(111.00; 0.073) (301.62; 0.078) (302.43; 0.113) (108.00; 0.057) (303.11; 0.079) (26.800; 0.040)

(368.50; 0.079) (135.50; 0.049) (360.25; 0.058) (349.00; 0.075) (140.33; 0.041) (137.43; 0.041)

(301.56; 0.022) (62.000; 0.026) (369.67; 0.014) (297.29; 0.021) (210.57; 0.013) (7.0000; 0.012)

(92.500; 0.009) (288.00; 0.016) (99.200; 0.015) (21.000; 0.000) (22.500; 0.007) (308.29; 0.010)

(368.50; 0.009) (368.50; 0.014) (291.33; 0.011) (349.00; 0.016) (131.80; 0.007) (126.00; 0.005)

PSO-VaR PSO-ES

VaR

ES

VIOLATIONS CLUSTERS
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Conclusions 

 

The aim of this dissertation is to assess Model Risk deriving from the application of two 

selected risk measures to a realistic financial problem, so that I can compare their results in 

terms of Model Risk. For doing this I decided to follow the idea of Boucher et al. (2014) 

presented in Chapter 1, considering the three properties that a good risk forecast should 

possess: expected frequency of violations, absence of violations clustering and expected 

magnitude of violations.  

Then, in the proposed experiment, I applied the two selected risk measures, VaR and ES, to 

a more realistic version of the original portfolio selection problem, where cardinality 

constraints were introduced. By introducing these constraints,  the portfolio selection problem 

became harder to be solved through exact methods, and approximated algorithms were 

required. Thus, I selected two of these algorithms, the well known PSO and the more recent 

GWO, in order to compare their performances in terms of Model Risk. In fact, since they are 

approximated techniques, another component of Model Risk rose. To take this new risk 

component into consideration I considered three drivers: the best fitness value obtained, the 

number and the magnitude of the violations of the constraints and the computational time 

required by the algorithm to fully execute the code.  

For the application I selected eleven securities from the S&P 500 and three different 

scenarios, two comprising crisis periods (to stress the risk measures), and one focused on a 

growth period of the US economy.  

Thus, in Chapter 4, I applied the two metaheuristics considering both VaR and ES as 

objective functions to be minimized, building four different portfolios in each of the three 

scenarios. From the data reported in subparagraphs 4.3.1, 4.3.2 and 4.3.3 emerged that PSO 

is a more reliable algorithm for solving this complex optimization problem: it was able to 

achieve better fitness values, it violated less constraints and with lower magnitude and it 

required less computational time to be executed in every sub-period. For these reasons, I 

decided to pick only the two PSO’s portfolios for a further backtest analysis. This analysis 

was presented in paragraph 4.4, and aimed to assess Model Risk for risk measures, focusing 

on the three properties of a good risk forecast, by historically modelling the risk forecasts 

made by the two risk measures on the data of each sub-period. I have repeated these backtests 

for each of the three sub-periods and I compared the results obtained by VaR with the ones 



 

114 
 

obtained by ES. For each sub-period it emerged that the ES forecasts were violated less than 

VaRs, being always under the 5% confidence level. Furthermore, when the forecasts were 

violated, the ES violations were on average far lower than the VaRs. Thus ES was able to 

capture the higher riskiness of that specific period better than VaR, providing a more negative 

forecast, which was more in line with the actual negative return. In addition, from the cluster 

analysis emerged that the ES violations are less clustered than the VaR, highlighting less 

consecutive violations on close days, and this is particularly important during crisis periods.  

However, it could be argued that since the comparison between the two metaheuristics have 

been done imposing the same number of iterations and searching agents for PSO and GWO, 

and GWO’s portfolios have in all cases worse fitness values, it could be that a higher number 

of iterations or searching agents might be needed by this algorithm to ensure a better 

convergence towards the optimum. In fact, as previously shown by the comparison between 

Figure 26 and Figure 27, GWO has a far lower convergence speed than PSO. A possible 

explanation might be that GWO is better exploring the searching space, devoting more effort 

and more iterations to find promising areas, as a consequence resulting in a slower exploiting 

phase, i.e. in a slower convergence.  

The two parameters that can be modified in order to try to ensure a better convergence, and 

thus a better solution, are the number of iterations and the number of searching agents. 

However, as previously pointed out, increasing these two components means to increase the 

computational effort required, resulting in a higher computational time. So, there is a trade 

off between increasing these parameters and the time required by the algorithm.  

For this reason I decided to implement two further tests considering only the two GWO’s 

versions (GWO-VaR and GWO-ES) in the third sub-period (where they achieve better 

results in terms of fitness value) in order to see if by increasing one of the two parameters 

(while keeping the other constant) the solutions improve and if they are at least in line (in 

terms of quality) with the ones obtained by PSO. More in detail, for the first test I decided to 

run the code by doubling the number of iterations (now equal to 6000) while keeping the 

number of searching agents constant (equal to 70). On the other hand, the second test is done 

by keeping the number of iterations constant (equal to 3000) and by doubling the number of 

searching agents (now equal to 140). I am not going to report the tables with the results, as 

previously done, but I am just going to present the comments on the results. Recalling that 
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on average GWO takes 30 seconds to be executed68 with 3000 iterations and 70 searching 

agents, in summary the results of both tests showed just a small improvement in the fitness 

value obtained but a far higher time required. The results of the first test highlighted a small 

improvement in the quality of the solution for both portfolios with respect to GWO’s versions 

with 3000 iterations and 70 wolves. The new fitness values found are respectively of 

8.93E+02 for the GWO-VaR portfolio and 1.27E+03 for the GWO-ES, that are slightly 

better than the ones presented in Table 8. However, they still remain far from the ones of 

PSO. Furthermore, these results come with a big cost, in fact the computational time is more 

than doubled, with an average of 65 seconds. Also the second test showed a small 

improvement in the convergence of the algorithms, thus better quality solutions are found. 

The new fitness values are respectively of 6.73E+02 for the GWO-VaR portfolio and 

8.46E+02 for the GWO-ES, that are slightly better than the ones presented in Table 8.  As 

we can see, also in these cases their quality still remains distant from PSO’s results.  

Nonetheless, they come with the huge cost of increasing the computational time more than 

four times, with an average of 133 seconds. To sum it up, by doubling the number of 

iterations, the time required more than doubled; by doubling the number of searching agents 

the time required is four times more for both versions. In conclusion to these tests, by 

increasing these two parameters there is small improvement in the quality of the solutions, 

that however still remain far from the ones obtained by PSO. Moreover, there is an 

unreasonable trade-off between this small improvement and the resulting computational 

time. 

Concluding my work, having collected the results of this further analysis as another clue, I 

shall advise in favour of PSO algorithm for solving this version of the portfolio selection 

problem, because it is able to provide a more reliable output that better approximates the real 

optimum solution. Furthermore, the more reliable financial risk measure in terms of Model 

Risk, that obtained better results in the backtesting analysis for every sub-period, is the 

Expected Shortfall. Being a coherent risk measure (Artzner et al., 1999), it is able to overcome 

the performance of the Value at Risk, which can however still be considered an important 

step forward from the variance, adopted in the Markowitz model. 

 

 

 
68 On MATLAB R2020b in a Windows 10 pc with Intel Core i5-1035G4 processor and 

8GB of RAM. 
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Appendix A 

 

MATLAB Code of the PSO – Expected Shortfall: 

clc 

clear 

format long 

  

%% Input of the problem 

% Uploading historical data and computing logarithmic returns 

[prices] = importdata("Data.xlsx");  

[t,n_asset] = size(prices); % t is the period of time, n_asset is the number of assets 

considered  

returns = log(prices(2:end,:)./prices(1:end-1,:)); % log returns  

C = 100; % capital invested  

  

% Differentiation between in-sample and out-of-sample 

oos = 127; % number of returns out-of-sample +1  

ris = returns(1:t-oos,:); %returns in-sample 

ros = returns(t-oos+1:(t-1),:); %returns out-of-sample  

TT = (t-oos);  

rm_is = mean(ris); % In-sample mean returns 

rm_oos = mean(ros); % Out-of-sample mean returns 

  

% Data input 

pi = mean(rm_is); % desired daily minimum return, set equal to the portfolio 

mean return over the in-sample period 

alpha = 0.05; % significance level of ES 

Kl = 5; % minimum number of assets 

Ku = 9; % maximum number of assets 

l = ones(1,n_asset)*0.03; % minimum percentage of investment in each asset 

u = ones(1,n_asset)*0.20; % maximum percentage of investment in each asset 

  

% PSO parameters initialization  

P = 70; % particles number 

niter = 3000; % iterations number  

c1 = 1.49618; % individual acceleration coefficient  

c2 = 1.49618; % social acceleration coefficient  

iw = 0.7298 ; % inertia weight  

vmaxx = zeros(1,n_asset);  

vmaxz = zeros(1,n_asset);  

epsilon = 1e-05; % parameter that penalizes violations of constraints  

  

% Creation of vectors useful for objective function  

% Risk measure 

ES_port = zeros(P,1);  

R_is = zeros(TT,P);  
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sorted_R_is = zeros(TT,P);  

VaR = zeros(P,1); 

% Constraints  

constr_1 = zeros(P,1); % budget constraint  

constr_2 = zeros(P,1); % desired minimum return constraint  

constr_3 = zeros(P,1); % minimum number of asset constraint (z>=Kl)  

constr_4 = zeros(P,1); % maximum number of asset constraint (z<=Ku)  

app_5 = zeros(P,n_asset);  

constr_5 = zeros(P,1); % minimum percentage of investment constraint (x>=l)  

app_6 = zeros(P,n_asset);  

constr_6 = zeros(P,1); % maximum percentage of investment constraint (x<=u)  

app_7 = zeros(P,n_asset);  

constr_7 = zeros(P,1); % z is either 0 or 1  

  

%% Computation  

  

% 1-Generation of position and velocity vectors and setting of fitness function 

x = rand(P,n_asset);  

vx = rand(P,n_asset);  

z = rand(P,n_asset);  

vz = rand(P,n_asset); 

f = ones(P,1)*1.0e+255; % fitness function  

x1 = zeros(P,n_asset); % matrix which state if the asset is in the portfolio (x*z)  

% pb=pbest: vector with the best position of particles in previous iterations  

pbx = [x f];  

pbz = z;  

  

% g=gbest: vector with the best global position and the associated objective 

function's value  

gx = zeros(1,n_asset+1);  

gz = zeros(1,n_asset);  

  

% Beginning of the loop  

tic; % measuring time spent in the computation  

for k=1:niter % Identifying dynamic range for maximum velocity  

      for i=1:n_asset  

      vmaxx(i) = abs(max(x(:,i))-min(x(:,i)));  

      vmaxz(i) = abs(max(z(:,i))-min(z(:,i))); 

      end  

% 2-Objective function computation  

       for p=1:P  

             for i=1:n_asset  

             x1(p,i) = x(p,i)*z(p,i); 

             app_5(p,i) = max(0,l(i)*z(p,i)-x(p,i));  

             app_6(p,i) = max(0,x(p,i)-u(i)*z(p,i));  

             app_7(p,i) = abs(z(p,i)*(1-z(p,i))); 

             end   

      % Calculate portfolio returns for each particle (at its position) 

      R_is(:,p)=ris*x(p,:)'; % TTxP matrix 

      % Sort portfolio returns  
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      sorted_R_is = sort(R_is); % TTxP matrix  

      % Store the number of returns  

      num_returns_is = numel(R_is(:,1));  

      % Calculate the index of the sorted return that will be VaR  

      VaR_index_is = ceil((alpha)*num_returns_is);  

      % Use the index to extract VaR from sorted returns  

      VaR(p) = sorted_R_is(VaR_index_is,p);  

      % Calculate historical ES  

      ES_port(p) = -mean(sorted_R_is(1:VaR_index_is,p));  

  

  

      % Sum of investment percentages equal to 1  

      constr_1(p) = abs(sum(x1(p,:))-1); 

      % Expected return at least equal to pi  

      constr_2(p) = max(0,(pi-sum(x1(p,:)*rm_is')));  

      % Minimum number of assets Kl  

      constr_3(p) = max(0,Kl-sum(z(p,:)));  

      % Maximum number of assets Ku  

      constr_4(p) = max(0,sum(z(p,:))-Ku);  

      % Minimum percentage l  

      constr_5(p) = sum(app_5(p,:));  

      % Maximum percentage u  

      constr_6(p) = sum(app_6(p,:));  

      % z is either 0 or 1  

      constr_7(p) = sum(app_7(p,:));  

      end  

  

% Objective function 

f = 

(ES_port+(1/epsilon)*(constr_1+constr_2+constr_3+constr_4+constr_5+constr_6

+constr_7));  

  

% 3-Comparing objective function's value with pbest  

      for p=1:P  

              if f(p) <pbx(p,n_asset+1) 

              pbx(p,n_asset+1) = f(p); 

              for i=1:n_asset 

              pbx(p,i) = x1(p,i); 

              pbz(p,i) = z(p,i); 

              end  

      end  

end 

  

% 4-Identifying the particle with the best position (g) 

[minimum,position] = min(pbx(:,n_asset+1)); 

gx(n_asset+1) = minimum;  

      for i=1:n_asset  

      gx(i) = pbx(position,i);  

      gz(i) = pbz(position,i); 

      end 
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% 5-Updating velocity and position  

      for p=1:P   

              for i=1:n_asset  

              vx(p,i) = iw*vx(p,i)+c1*rand*(pbx(p,i)-x(p,i))+c2*rand*(gx(i)- x(p,i));  

              vz(p,i) = iw*vz(p,i)+c1*rand*(pbz(p,i)-z(p,i))+c2*rand*(gz(i)- z(p,i));  

                        if vx(p,i)>vmaxx(i) % maximum velocity limitation  

                        vx(p,i) = vmaxx(i); 

                        end  

                        if vz(p,i)>vmaxz(i) % maximum velocity limitation 

                        vz(p,i) = vmaxz(i);  

                        end  

               x(p,i) = x(p,i)+vx(p,i);  

               z(p,i) = z(p,i)+vz(p,i); 

               end 

      end 

converg(k,:) = gx(:,end); 

  

% 6-Go back to Step 2 until stop condition 

end 

% End of loop 

  

toc; 

  

%% Output of the problem 

% Results 

optimum_shares = gx(1,1:n_asset)'  

best_fitness = gx(1,n_asset+1) 

n_selected_assets = sum(z(position,:))  

wealth_invested_percent = sum(optimum_shares) 

constr_budget = constr_1(position)  

constr_return = constr_2(position)  

constr_Kl = constr_3(position)  

constr_Ku = constr_4(position)  

constr_min_share = constr_5(position)  

constr_max_share = constr_6(position)  

constr_z = constr_7(position)  

  

% In sample analysis 

ES_is = ES_port*C;  

ES_in_sample = ES_is(position)  

rm_in_sample = gx(1,1:n_asset)*rm_is' 

  

% Out of sample analysis 

R_oos=ros*optimum_shares;  

sorted_R_oos = sort(R_oos); % TTxP matrix  

num_returns_oos = numel(R_oos);  

VaR_index_oos = ceil((alpha)*num_returns_oos);  

ES_oos = -mean(sorted_R_oos(1:VaR_index_oos));  

ES_out_of_sample = ES_oos*C 
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rm_out_of_sample= gx(1,1:n_asset)*rm_oos' 

  

% Graph comparing the behaviour of the fitness function (Y axis) in relation to 

the number of iterations made (X axis)  

plot(converg,'Color','r','LineWidth',1.25) 

title('Objective space') 

xlabel('Iteration'); 

ylabel('Best score obtained so far'); 

axis tight 

grid on 

box on 

legend('PSO') 

 

MATLAB Code of the GWO – Expected Shortfall:  

Main:  

clear  

clc 

format long 

  

% Uploading historical data and computing logarithmic returns 

[prices] = importdata("Data.xlsx"); 

  

SearchAgents_no=70; % Number of search agents 

Max_iteration=3000; % Maximum number of iterations 

C = 100; % capital invested  

  

% Load details of the selected benchmark function 

lb=-1e18;  

ub=1e18; 

dim=11; 

  

% dividing in sample and out of sample periods 

[t,n_asset] = size(prices); % t is the period of time, n_asset is the number of assets 

considered  

returns = log(prices(2:end,:)./prices(1:end-1,:)); % computing log returns  

oos = 127; % number of returns out-of-sample +1  

ris = returns(1:t-oos,:); %returns in-sample 

ros = returns(t-oos+1:(t-1),:); %returns out-of-sample  

TT = (t-oos);  

rm_is = mean(ris); % In-sample mean returns 

rm_oos = mean(ros); % Out-of-sample mean returns 

  

  

[Best_constraints,Best_score,Best_pos,Best_pos_z,GWO_cg_curve,alpha,ES_por

t]=GWO_ES(SearchAgents_no,Max_iteration,lb,ub,dim,prices);  

  

%****Output of the problem**** 
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% Results of the optimization problem  

optimum_shares = Best_pos(1,1:dim)'  

best_fitness = Best_score 

n_selected_assets = sum(Best_pos_z) 

wealth_invested_percent = sum(optimum_shares) 

display(Best_constraints') 

  

% In sample analysis 

ES_is = mean(ES_port); 

ES_in_sample = mean(ES_port).*C  

rm_in_sample = Best_pos(1,1:dim)*rm_is' 

  

% Out of sample analysis 

R_oos=ros*optimum_shares;  

sorted_R_oos = sort(R_oos); % TTxP matrix  

num_returns_oos = numel(R_oos);  

VaR_index_oos = ceil((alpha)*num_returns_oos);  

ES_oos = -mean(sorted_R_oos(1:VaR_index_oos));  

ES_out_of_sample = ES_oos*C 

rm_out_of_sample= Best_pos(1,1:dim)*rm_oos' 

  

%Draw objective space 

plot(GWO_cg_curve,'Color','r','LineWidth',1.25) 

title('Objective space') 

xlabel('Iteration'); 

ylabel('Best score obtained so far'); 

axis tight 

grid on 

box on 

legend('GWO') 

 

Initialization function:  

% This function initialize the first population of search agents 

function [Positions_x, 

Positions_z]=initialization_ES(SearchAgents_no,dim,ub,lb) 

  

Boundary_no= size(ub,2); % number of boundaries 

  

if Boundary_no==1 

        Positions_x = rand(SearchAgents_no,dim); 

    Positions_z = rand(SearchAgents_no,dim); 

end 

  

% If each variable has a different lb and ub 

if Boundary_no>1 

    for i=1:dim 

        ub_i=ub(i); 

        lb_i=lb(i); 
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        Positions_x(:,i)=rand(SearchAgents_no,1); 

        Positions_z(:,i)=rand(SearchAgents_no,1); 

    end 

end 

 

GWO function:  

% Grey Wolf Optimizer 

function 

[Alpha_constraints,Alpha_score_x,Alpha_pos_x,Alpha_pos_z,Convergence_curv

e,alpha,ES_port]=GWO_ES(SearchAgents_no,Max_iter,lb,ub,dim,prices) 

  

%****initialize alpha, beta, and delta_pos**** 

Alpha_constraints= zeros(1,dim)'; 

Alpha_pos_x=zeros(1,dim); 

Alpha_pos_z=zeros(1,dim); 

Alpha_score_x=inf; %change this to -inf for maximization problems 

Alpha_score_z=inf; %change this to -inf for maximization problems 

Beta_pos_x=zeros(1,dim); 

Beta_pos_z=zeros(1,dim); 

Beta_score_x=inf; %change this to -inf for maximization problems 

Beta_score_z=inf; %change this to -inf for maximization problems 

Delta_pos_x=zeros(1,dim); 

Delta_pos_z=zeros(1,dim); 

Delta_score_x=inf; %change this to -inf for maximization problems 

Delta_score_z=inf; %change this to -inf for maximization problems 

  

% Initialize prices 

[t,n_asset] = size(prices); % t is the period of time, n_asset is the number of assets 

considered  

returns = log(prices(2:end,:)./prices(1:end-1,:)); % compute the log returns  

  

% Differentiation between in-sample and out-of-sample 

oos = 127; % number of returns out-of-sample +1  

ris = returns(1:t-oos,:); %returns in-sample 

ros = returns(t-oos+1:(t-1),:); %returns out-of-sample  

TT = (t-oos);  

rm_is = mean(ris); % In-sample mean returns 

rm_oos = mean(ros); % Out-of-sample mean returns 

  

% Data input 

pi = mean(rm_is); % desired daily minimum return, set equal to the portfolio 

mean return over the in-sample period 

alpha = 0.05; % significance level of ES  

Kl = 5; % minimum number of assets 

Ku = 9; % maximum number of assets 

l = ones(1,n_asset)*0.03; % minimum percentage of investment in each asset 

u = ones(1,n_asset)*0.20; % maximum percentage of investment in each asset 
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epsilon = 1e-05; % parameter that penalizes violations of constraints 

  

%****Creation of vectors useful for objective function**** 

% Risk measure 

R_is = zeros(TT,SearchAgents_no);  

sorted_R_is = zeros(TT,SearchAgents_no);  

VaR = zeros(SearchAgents_no,1); 

ES_port = zeros(SearchAgents_no,1);  

  

% Constraints  

constr_1 = zeros(SearchAgents_no,1); % budget constraint  

constr_2 = zeros(SearchAgents_no,1); % desired minimum return constraint  

constr_3 = zeros(SearchAgents_no,1); % minimum number of asset constraint 

(z>=Kl)  

constr_4 = zeros(SearchAgents_no,1); % maximum number of asset constraint 

(z<=Ku)  

app_5 = zeros(SearchAgents_no,dim);  

constr_5 = zeros(SearchAgents_no,1); % minimum percentage of investment 

constraint (x>=l)  

app_6 = zeros(SearchAgents_no,dim);  

constr_6 = zeros(SearchAgents_no,1); % maximum percentage of investment 

constraint (x<=u)  

app_7 = zeros(SearchAgents_no,dim);  

constr_7 = zeros(SearchAgents_no,1); % z is either 0 or 1  

  

%Initialize the positions of search agents 

[Positions_x, Positions_z]=initialization_ES(SearchAgents_no,dim,ub,lb); 

Convergence_curve=zeros(1,Max_iter); 

Positions_x1 = zeros(SearchAgents_no,dim); % matrix which state if the asset is 

in the portfolio (x*z)  

  

%****Main loop**** 

loop_counter=0;% Loop counter 

tic; 

  

while loop_counter<Max_iter  

    for p=1:SearchAgents_no  % iterate particles 

         

       %Return back the search agents that go beyond the boundaries of the search 

space 

        Flag4ub=Positions_x(p,:)>ub; 

        Flag4lb=Positions_x(p,:)<lb; 

        

Positions_x(p,:)=(Positions_x(p,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag

4lb;                

        

Positions_z(p,:)=(Positions_z(p,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag

4lb;                

  

        % **** APP **** 
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         for j=1:dim           % iterate titles 

             Positions_x1(p,j) = Positions_x(p,j)*Positions_z(p,j); 

             app_5(p,j) = max(0,l(j)*Positions_z(p,j)-Positions_x(p,j));  

             app_6(p,j) = max(0,Positions_x(p,j)-u(j)*Positions_z(p,j));  

             app_7(p,j) = abs(Positions_z(p,j)*(1-Positions_z(p,j))); 

         end   

         

        % **** VAR ***** 

        % Calculate portfolio returns for each particle (at its position) 

        R_is(:,p)=ris*Positions_x(p,:)'; % TTxP matrix 

        % Sort portfolio returns  

        sorted_R_is = sort(R_is); % TTxP matrix  

        % Store the number of returns  

        num_returns_is = numel(R_is(:,1));  

        % Calculate the index of the sorted return that will be VaR  

        VaR_index_is = ceil((alpha)*num_returns_is);  

        % Use the index to extract VaR from sorted returns  

        VaR(p) = -sorted_R_is(VaR_index_is,p);  

        % Calculate historical ES  

        ES_port(p) = -mean(sorted_R_is(1:VaR_index_is,p));  

         

        % **** CONSTR **** 

        % Sum of investment percentages equal to 1  

        constr_1(p) = abs(sum(Positions_x1(p,:))-1); 

        % Expected return at least equal to pi  

        constr_2(p) = max(0,(pi-sum(Positions_x1(p,:)*rm_is')));  

        % Minimum number of assets Kl  

        constr_3(p) = max(0,Kl-sum(Positions_z(p,:)));  

        % Maximum number of assets Ku  

        constr_4(p) = max(0,sum(Positions_z(p,:))-Ku);  

        % Minimum percentage l  

        constr_5(p) = sum(app_5(p,:));  

        % Maximum percentage u  

        constr_6(p) = sum(app_6(p,:));  

        % z is either 0 or 1  

        constr_7(p) = sum(app_7(p,:));  

                 

        % % Calculate objective function for each search agent 

        fobj = 

(ES_port+(1/epsilon)*(constr_1+constr_2+constr_3+constr_4+constr_5+constr_6

+constr_7));  

  

        fitness=fobj(p); 

          

        % Update Alpha_x, Beta_x, and Delta_x 

        if fitness<Alpha_score_x 

            Alpha_score_x=fitness; % Update alpha 

            Alpha_pos_x=Positions_x1(p,:);  
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            Alpha_constraints= [constr_1(p) constr_2(p) constr_3(p) constr_4(p) 

constr_5(p) constr_6(p) constr_7(p)];            

        end 

  

        if fitness>Alpha_score_x && fitness<Beta_score_x 

            Beta_score_x=fitness; % Update beta 

            Beta_pos_x=Positions_x1(p,:); 

        end 

  

        if fitness>Alpha_score_x && fitness>Beta_score_x && 

fitness<Delta_score_x 

            Delta_score_x=fitness; % Update delta 

            Delta_pos_x=Positions_x1(p,:); 

        end 

         

        % Update Alpha_z, Beta_z, and Delta_z 

        if fitness<Alpha_score_z 

           Alpha_score_z=fitness; 

           Alpha_pos_z=Positions_z(p,:); 

        end 

         

        if fitness>Alpha_score_z && fitness<Beta_score_z 

           Beta_score_z=fitness; % Update beta 

           Beta_pos_z=Positions_z(p,:); 

        end 

         

        if fitness>Alpha_score_z && fitness>Beta_score_z && 

fitness<Delta_score_z            

            Delta_score_z=fitness; % Update delta 

            Delta_pos_z=Positions_z(p,:); 

        end 

    end 

  

    a=2-loop_counter*((2)/Max_iter); % a decreases linearly from 2 to 0 

  

    % Update the Position of search agents including omegas 

    for p=1:SearchAgents_no 

        for j=1:dim    

             

            %***Alpha_x*** 

            r1=rand(); % r1 is a random number in [0,1] 

            r2=rand(); % r2 is a random number in [0,1] 

  

            A1=2*a*r1-a;  

            C1=2*r2;  

  

            D_alpha_x=abs(C1*Alpha_pos_x(j)-Positions_x(p,j));  

            X1_x=Alpha_pos_x(j)-A1*D_alpha_x;  

             

            %***Alpha_z*** 
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            r1=rand(); % r1 is a random number in [0,1] 

            r2=rand(); % r2 is a random number in [0,1] 

  

            A1=2*a*r1-a;  

            C1=2*r2;  

  

            D_alpha_z=abs(C1*Alpha_pos_z(j)-Positions_z(p,j));  

            X1_z=Alpha_pos_z(j)-A1*D_alpha_z;  

             

            %***Beta_x*** 

            r1=rand(); 

            r2=rand(); 

  

            A2=2*a*r1-a;  

            C2=2*r2;  

  

            D_beta_x=abs(C2*Beta_pos_x(j)-Positions_x(p,j));  

            X2_x=Beta_pos_x(j)-A2*D_beta_x;  

             

            %***Beta_z*** 

            r1=rand(); % r1 is a random number in [0,1] 

            r2=rand(); % r2 is a random number in [0,1] 

  

            A1=2*a*r1-a;  

            C1=2*r2;  

             

            D_beta_z=abs(C2*Beta_pos_z(j)-Positions_z(p,j));  

            X2_z=Beta_pos_z(j)-A2*D_beta_z;  

             

            %***Delta_x*** 

            r1=rand(); 

            r2=rand();  

  

            A3=2*a*r1-a;  

            C3=2*r2;  

  

            D_delta_x=abs(C3*Delta_pos_x(j)-Positions_x(p,j));  

            X3_x=Delta_pos_x(j)-A3*D_delta_x;  

             

            %***Delta_z*** 

            r1=rand(); % r1 is a random number in [0,1] 

            r2=rand(); % r2 is a random number in [0,1] 

  

            A1=2*a*r1-a;  

            C1=2*r2;  

             

            D_delta_z=abs(C3*Delta_pos_z(j)-Positions_z(p,j));  

            X3_z=Delta_pos_z(j)-A3*D_delta_z;  

             

            %***Omega_x and Omega_z*** 
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            Positions_x(p,j)=(X1_x+X2_x+X3_x)/3; 

            Positions_z(p,j)=(X1_z+X2_z+X3_z)/3 ; 

  

        end 

    end 

    loop_counter=loop_counter+1;     

    Convergence_curve(loop_counter)=Alpha_score_x; 

  

 end 

  

toc; 
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Appendix B 

 

MATLAB Code for the Backtesting Analysis 

clear 

clc 

close all 

  

%% Upload dataset 

DataSet = xlsread('Data_3'); 

  

DateTime=readtable('Calendar_3'); 

DateTime.Var1=datetime(DateTime.Var1,'InputFormat','MMM-yy'); 

  

%% Portfolios 

  

returns_AA = diff(log(DataSet(:,26)));  

%25->PSO VaR 

%26->PSO ES 

%27->GWO VaR 

%28->GWO ES 

  

a = 0.05; 

N_crit_value = norminv(a); 

ES_crit_value = normpdf(N_crit_value); 

%% 4 different models 

  

% ****Model 1 - no time-varying**** 

% r_t = eps_t , eps_t - iid N(0, sigma2) 

% N(0, sigma2) = sigma*N(0,1) 

% histfit(returns_AA) 

  

standard_dev_ex1 = std(returns_AA); 

VaR_ex1 = N_crit_value*standard_dev_ex1; 

ES_ex1 = -standard_dev_ex1*(ES_crit_value/a); 

  

  

% ****Model 3 - EWMA**** 

% r_t = sigma_t * eps_t , eps_t - N(0,1) 

% sigma_t^2 = (1-\lamba)*r_{t-1}^2 + lambda*sigma_{t-1}^2 

% r_t | I_{t-1} - N(0, sigma_t^2) 

  

T = size(returns_AA,1); 

lambda = 0.94; 

sigma2_ex3 = zeros(T,1); 

  

for t = 2 : T 
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sigma2_ex3(t,:) = (1-lambda)*returns_AA(t-1,:)^2+lambda*sigma2_ex3(t-1,:); 

VaR_ex3(t,:) = N_crit_value*(sigma2_ex3(t,:)^0.5); 

ES_ex3(t,:) = -(sigma2_ex3(t,:)^0.5)*(ES_crit_value/a); 

end 

  

%% 

% ****Model 4 - GARCH(1,1) - ARCH(2)**** 

% r_t = sigma_t * eps_t , eps_t - N(0,1) 

% sigma_t^2 = omega + alpha*r_{t-1}^2 + beta*sigma_{t-1}^2 (GARCH(1,1)) 

% sigma_t^2 = omega + alpha1*r_{t-1}^2 + alpha2*r_{t-2}^^2 (ARCH(2)) 

% r_t | I_{t-1} - N(0, sigma_t^2) 

  

% ARCH(2) 

model_ARCH_2 = garch(0,2); 

[est_ARCH2, est_SE_ARCH2, logL_ARCH2] = 

estimate(model_ARCH_2,returns_AA); 

% GARCH(1,1) 

model_GARCH_11 = garch(1,1); 

[est_GARCH11, est_SE_GARCH11, logL_GARCH11] = 

estimate(model_GARCH_11,returns_AA); 

  

% Akaike: -2*loglk + 2*k 

Akaike_ARCH2 = -2*logL_ARCH2+2*3; 

Akaike_GARCH11 = -2*logL_GARCH11+2*3; 

% BIC: -2*loglk + k*log(T) 

BIC_ARCH2 = -2*logL_ARCH2+3*log(T); 

BIC_GARCH11 = -2*logL_GARCH11+3*log(T); 

  

% we have selected GARCH(1,1) 

omega_hat = est_GARCH11.Constant; 

alpha_hat = est_GARCH11.ARCH{1,1}; 

beta_hat = est_GARCH11.GARCH{1,1}; 

  

sigma2_ex4 = zeros(T,1); 

  

for t = 2 : T 

sigma2_ex4(t,:) = omega_hat + alpha_hat*returns_AA(t-

1,:)^2+beta_hat*sigma2_ex4(t-1,:); 

VaR_ex4(t,:) = N_crit_value*(sigma2_ex4(t,:)^0.5); 

ES_ex4(t,:) = -(sigma2_ex4(t,:)^0.5)*(ES_crit_value/a); 

end 

  

%% Figure VaR and ES 

  

figure(1) 

plot(DateTime.Var1,[returns_AA ES_ex1*ones(T,1) ES_ex3 

ES_ex4],'LineWidth',1.25) 

title('Expected Shortfall Predictions') 

legend({'Returns','ES - ex1','ES - ex3','ES - ex4'})  

xlabel('Date') 
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figure(2) 

plot(DateTime.Var1,[returns_AA VaR_ex1*ones(T,1) VaR_ex3 

VaR_ex4],'LineWidth',1.25) 

title('Value at Risk Predictions') 

legend({'Returns','VaR - ex1','VaR - ex3','VaR - ex4'})  

xlabel('Date') 

  

  

figure(3) 

plot(DateTime.Var1,[returns_AA VaR_ex3 ES_ex3]) 

legend({'Returns','VaR - ex3','ES - ex3'})  

xlabel('Date') 

  

  

figure(4) 

plot(DateTime.Var1,[returns_AA VaR_ex4 ES_ex4]) 

legend({'Returns','VaR - ex4','ES - ex4'})  

xlabel('Date') 

  

%% Frequency of Violations 

%When the returns are lower than the predicted VaR 

  

VaR_cond_1 = sum(returns_AA<VaR_ex1*ones(T,1));  

VaR_cond_3 = sum(returns_AA<VaR_ex3); 

VaR_cond_4 = sum(returns_AA<VaR_ex4); 

  

ES_cond_1 = sum(returns_AA<ES_ex1*ones(T,1));  

ES_cond_3 = sum(returns_AA<ES_ex3); 

ES_cond_4 = sum(returns_AA<ES_ex4); 

  

  

summary_cond_VaR = [VaR_cond_1 VaR_cond_3 VaR_cond_4] 

summary_cond_percent_VaR = [VaR_cond_1 VaR_cond_3 VaR_cond_4]./T 

  

summary_cond_ES = [ES_cond_1 ES_cond_3 ES_cond_4] 

summary_cond_percent_ES = [ES_cond_1 ES_cond_3 ES_cond_4]./T 

  

%% Magnitude of Violations 

  

VaR_magnitude1=zeros(T,1); 

ES_magnitude1=zeros(T,1); 

VaR_magnitude3=zeros(T,1); 

ES_magnitude3=zeros(T,1); 

VaR_magnitude4=zeros(T,1); 

ES_magnitude4=zeros(T,1); 

  

%****Model 1 non-time-varying MA**** 

for t = 1 : T 
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    if returns_AA(t,:)<VaR_ex1*ones(T,1) 

    VaR_mag1(t,:) = -returns_AA(t,:) - N_crit_value*standard_dev_ex1; 

    end 

     

    if returns_AA(t,:)<ES_ex1*ones(T,1) 

    ES_mag1(t,:) = -returns_AA(t,:) - standard_dev_ex1*(ES_crit_value/a); 

    end 

end 

   

VaR_magnitude1 = VaR_mag1(VaR_mag1~=0); 

VaR_magnitude1_mean= mean(VaR_magnitude1) 

ES_magnitude1 = ES_mag1(ES_mag1~=0); 

ES_magnitude1_mean= mean(ES_magnitude1) 

  

  

%****Model 3 - EWMA**** 

for t = 1 : T 

    if returns_AA(t,:)<VaR_ex3(t,:) 

    VaR_mag3(t,:) = -returns_AA(t,:) - N_crit_value*(sigma2_ex3(t,:)^0.5); 

    end 

     

    if returns_AA(t,:)<ES_ex3(t,:) 

    ES_mag3(t,:) = -returns_AA(t,:) - (sigma2_ex3(t,:)^0.5)*(ES_crit_value/a); 

    end 

end 

  

VaR_magnitude3 = VaR_mag3(VaR_mag3~=0); 

VaR_magnitude3_mean= mean(VaR_magnitude3) 

ES_magnitude3 = ES_mag3(ES_mag3~=0); 

ES_magnitude3_mean= mean(ES_magnitude3) 

  

  

%****Model 4 - Garch(1,1)**** 

for t = 1 : T 

    if returns_AA(t,:)<VaR_ex4(t,:) 

    VaR_mag4(t,:) = -returns_AA(t,:) - N_crit_value*(sigma2_ex4(t,:)^0.5); 

    end 

     

    if returns_AA(t,:)<ES_ex4(t,:) 

    ES_mag4(t,:) = -returns_AA(t,:) - (sigma2_ex4(t,:)^0.5)*(ES_crit_value/a); 

    end 

end   

  

  

VaR_magnitude4 = VaR_mag4(VaR_mag4~=0); 

VaR_magnitude4_mean= mean(VaR_magnitude4) 

ES_magnitude4 = ES_mag4(ES_mag4~=0); 

ES_magnitude4_mean= mean(ES_magnitude4)  

  

%% Violation Clusters  
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%****Model 1 non-time-varying MA**** 

%VaR 

Time1=[1:1:size(VaR_mag1)]'; 

VaR_mag1(VaR_mag1==0)=NaN; 

AA1_VaR = [VaR_mag1, Time1]; 

[idx,C1_VaR,sumd1_VaR] = kmeans(AA1_VaR,3); 

  

C1_VaR 

sumd1_VaR 

  

figure 

gscatter(AA1_VaR(:,2),AA1_VaR(:,1),idx,'bgm') 

hold on 

plot(C1_VaR(:,2),C1_VaR(:,1),'kx') 

legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid')  

title('Value at Risk Violations Clusters') 

xlabel('Date') 

ylabel('Magnitude of Violations') 

  

%ES 

  

Time1=[1:1:size(ES_mag1)]'; 

ES_mag1(ES_mag1==0)=NaN; 

AA1_ES = [ES_mag1, Time1]; 

[idx,C1_ES,sumd1_ES] = kmeans(AA1_ES,3); 

  

C1_ES 

sumd1_ES 

  

figure 

gscatter(AA1_ES(:,2),AA1_ES(:,1),idx,'bgm') 

hold on 

plot(C1_ES(:,2),C1_ES(:,1),'kx') 

legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid')  

title('Expected Shortfall Violations Clusters') 

xlabel('Date') 

ylabel('Magnitude of Violations') 

  

  

%****Model 3 - EWMA**** 

%VaR 

Time3=[1:1:size(VaR_mag3)]'; 

VaR_mag3(VaR_mag3==0)=NaN; 

AA = [VaR_mag3, Time3];  

[idx,C3_VaR,sumd3_VaR] = kmeans(AA,3); 

  

C3_VaR 

sumd3_VaR 

  

figure 
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gscatter(AA(:,2),AA(:,1),idx,'bgm') 

hold on 

plot(C3_VaR(:,2),C3_VaR(:,1),'kx') 

legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid') 

title('Value at Risk Violations Clusters') 

xlabel('Date') 

ylabel('Magnitude of Violations') 

  

%ES 

Time3=[1:1:size(ES_mag3)]'; 

ES_mag3(ES_mag3==0)=NaN; 

AA3_ES = [ES_mag3, Time3]; 

[idx,C3_ES,sumd3_ES] = kmeans(AA3_ES,3); 

  

C3_ES 

sumd3_ES 

  

figure 

gscatter(AA3_ES(:,2),AA3_ES(:,1),idx,'bgm') 

hold on 

plot(C3_ES(:,2),C3_ES(:,1),'kx') 

legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid') 

title('Expected Shortfall Violations Clusters') 

xlabel('Date') 

ylabel('Magnitude of Violations') 

  

  

%****Model 4 - Garch(1,1)**** 

%VaR 

Time4=[1:1:size(VaR_mag4)]'; 

VaR_mag4(VaR_mag4==0)=NaN; 

AA4_VaR = [VaR_mag4, Time4]; 

[idx,C4_VaR,sumd4_VaR] = kmeans(AA4_VaR,3); 

  

C4_VaR 

sumd4_VaR 

  

figure 

gscatter(AA4_VaR(:,2),AA4_VaR(:,1),idx,'bgm') 

hold on 

plot(C4_VaR(:,2),C4_VaR(:,1),'kx') 

legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid') 

title('Value at Risk Violations Clusters') 

xlabel('Date') 

ylabel('Magnitude of Violations') 

  

%ES 

Time4=[1:1:size(ES_mag4)]'; 

ES_mag4(ES_mag4==0)=NaN; 

AA4_ES = [ES_mag4, Time4]; 
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[idx,C4_ES,sumd4_ES] = kmeans(AA4_ES,3); 

  

C4_ES 

sumd4_ES 

  

figure 

gscatter(AA4_ES(:,2),AA4_ES(:,1),idx,'bgm') 

hold on 

plot(C4_ES(:,2),C4_ES(:,1),'kx') 

legend('Cluster 1','Cluster 2','Cluster 3','Cluster Centroid') 

title('Expected Shortfall Violations Clusters') 

xlabel('Date') 

ylabel('Magnitude of Violations') 
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Appendix C 

 

Application to the First Sub-period 

PSO-ES portfolio 

Notice that ex1 is the static approach, ex3 is the EWMA and ex4 is the GARCH (1,1). 
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Application to the Second Sub-period 

PSO-ES portfolio 
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Application to the Third Sub-period 

PSO-ES portfolio 
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Appendix D 

 

Application to the First Sub-period 

PSO-ES portfolio, Static approach 

 

 

PSO-ES portfolio, EWMA approach 

 

 

PSO-ES portfolio, GARCH(1,1) approach 
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Application to the Second Sub-period 

PSO-ES portfolio, Static approach 

  

 

PSO-ES portfolio, EWMA approach 

  

 

PSO-ES portfolio,  GARCH(1,1) approach 
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Application to the Third Sub-period 

PSO-ES portfolio, Static approach 

  

 

PSO-ES portfolio, EWMA approach 

  

 

PSO-ES portfolio, GARCH(1,1) approach 
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