

Master’s Degree

in Economics and Finance

Final Thesis

Neural Network Models for
Option Pricing

Supervisor

Ch. Prof. Antonella Basso

Graduand

Loris Simeoni

Matriculation Number 863724

Academic Year

2021/2022

To my family

Abstract

There exist several different ways to evaluate financial derivatives but, in general, closed-form

formulas, such as Black and Scholes, tend to provide unsatisfactory results. Therefore, nowadays,

thanks to the increased computational capability of machines numerical methods are commonly

used.

The aim of this dissertation is to develop a nonparametric supervised machine learning method,

namely a Multilayer Perceptron Feedforward Artificial Neural Network, to price financial options

written on the FTSE MIB index. It means we try to implement a data-driven approach which, by

exploiting the architectural structure of a multi-level neural network, is able to correctly identify the

value of the analyzed derivative. In particular, the function used to train the algorithm is the

Levenberg-Marquart backpropagation and the performance is evaluated by relying on the Root

Mean Square Error (RMSE).

Contents

Introduction ... 1

Chapter 1 Option pricing ... 3

1.1 Options ... 3

1.2 Introduction to European option pricing ... 6

1.3 The Black and Scholes model ... 12

1.4 Extensions of the model ... 17

1.5 Drawbacks of the model .. 21

Chapter 2 Machine Learning and Artificial Neural Networks .. 27

2.1 Introduction to Machine Learning ... 27

2.2 History of Artificial Neural Networks ... 33

2.3 Artificial Neural Networks .. 40

Chapter 3 Data analysis ... 53

3.1 Italian equity and option markets .. 53

3.2 Structure of the dataset ... 56

3.3 Data manipulation .. 62

Chapter 4 An Artificial Neural Network for pricing MIBOs .. 71

4.1 Why an artificial neural network .. 71

4.2 Tuning the hyperparameters ... 75

4.3 Selecting the best model .. 82

4.4 Final results and comparison of competing models .. 93

Conclusion .. 103

Appendix A – MATLAB Code: Put – Call parity ... 107

Appendix B – MATLAB Code: Neural Network and BSM model.. 109

References ... 119

Sitography .. 133

List of Tables

Table 1 – Proof that the value of a portfolio made of a call and a riskless bond with face value X has

a final value greater than or equal to that of the underlying asset if this pays no dividends 9

Table 2 - Proof that the value of a portfolio made of a call and a riskless bond with a face value

equal to X + D has a final value greater than or equal to that of the underlying asset which pays D

dividends at the expiration of the option ... 10

Table 3 - Proof that a convex combination of calls with different strike prices yields a final value not

lower than that of a call which is the convex combination of the other two exercise prices 11

Table 4 - Proof that a portfolio made of one share of stock, one European put, and X dollars

borrowed for T periods provides a final value equal to that of a European call with the same strike

price and time to expiration ... 19

Table 5 - Proof that a portfolio made of one European call, a bond with a face value of X, and one

share of stock sold short provides a final value equal to that of a European put with the same strike

price and time to expiration ... 20

Table 6 - FTSE MIB composition (source: FTSE RUSSELL: FTSE MIB Index (31 August 2022))............ 54

Table 7 - Put - Call parity relationship .. 62

Table 8 - Results of the first experiment .. 83

Table 9 - Results of the second experiment ... 84

Table 10 - Results of the third experiment ... 85

Table 11 – Average results ... 86

Table 12 - Results of the 18 nodes Neural Networks ... 91

Table 13 - Averages of the 18 nodes Neural Networks .. 91

Table 14 - Testing alternative split compositions .. 92

Table 15 – Alternative split composition averages .. 93

Table 16 - RMSE of the Network .. 98

Table 17 - MAPE comparison ... 100

Table 18 - RMSE per moneyness .. 101

Table 19 - MAPE per moneyness .. 101

List of Figures

Figure 1 - Annual option volume and annual growth rate (source: SeekingAlpha.com) 4

Figure 2 - Evolution of Black and Scholes call option price for different underlying asset values

(source: Journal of Financial Economics) ... 17

Figure 3 – Example of volatility smile (source: National Bureau of Economic Research) 25

Figure 4 - Accuracy of different learning algorithms as a function of the training set size (source:

BMC Bioinformatics) .. 32

Figure 5 - Sketch of a human neuron (source: International Journal of Plant and Soil Science) 34

Figure 6 - Diagram of a perceptron (source: DeepAI.org).. 36

Figure 7 – Overfitting versus Underfitting (source: TheStartup.com) .. 42

Figure 8 - Bias and Variance contribution to total error (source: Scott.Fortmann-Roe.com)............ 44

Figure 9 - Example of a feedforward multilayer neural network characterized by two hidden layers

(TowardsDataScience.com) .. 45

Figure 10 - Most common activation functions ... 47

Figure 11 - Example of Gradient Descent (source: IBM Cloud Education (2020)).............................. 49

Figure 12 - Number of publications regarding the application of ANNs to option pricing per decade

(source: constellate.org) .. 59

Figure 13 - Option price distribution .. 65

Figure 14 - Volatility and Maturity distributions .. 66

Figure 15 - Moneyness and Interest rate distributions .. 66

Figure 16 - New option price distribution .. 68

Figure 17 - New Volatility and Maturity distributions ... 68

Figure 18 - New Moneyness and Interest rate distributions .. 69

Figure 19 - Volatility and Maturity effects on call price ... 72

Figure 20 - Moneyness and Interest rate effects on a call price .. 72

Figure 21 - Model performance versus model complexity (source: International Journal of

Engineering Trends and Technology) ... 74

Figure 22 - Artificial Neural Network structure .. 77

Figure 23 - Grid search vs Random search (source: github.com) ... 79

Figure 24 - First experiment – RMSE for different activation functions, computed by averaging the

provided split settings .. 87

Figure 25 - Second experiment – RMSE for different activation functions, computed by averaging

the provided split settings .. 88

Figure 26 - Third experiment – RMSE for different activation functions, computed by averaging the

provided split settings .. 88

Figure 27 - Average computed with respect to the three experiments ... 88

Figure 28 - Performance of the network in the training set .. 96

Figure 29 - Performance of the network in the validation set ... 97

Figure 30 - Performance of the network in the test set ... 97

Figure 31 – Performance of the Black-Scholes-Merton model .. 99

1

Introduction

Since the publication of the famous Black and Scholes model in 1973, there has been an incredible

growth in the research and the trading activities regarding financial options. This development was

further supported by favorable policies implemented starting from the early 1980s by financial

regulators all over the world. Thanks to the rapid succession of these positive conditions, the

increase of the importance of this kind of contracts has been so strong that nowadays options are

among the most popular components in the portfolios of financial institutions.

Of course, the increasing importance of a financial asset always translates into a series of positive

effects; indeed, the efficiency of the market has increased over time, reducing transaction costs,

attracting more capital, and partially removing the existing asymmetries. However, it poses also new

challenges for all the market participants; for instance, following the subprime crisis, the need of

reforming the regulatory structure became evident. Moreover, larger volumes imply a stronger

demand for correct pricing models able to provide arbitrage-free estimates. Therefore, we should

not be surprised in knowing that following the publication of the Black and Scholes equation, many

refined and more sophisticated pricing systems have been developed.

The problem that all these systems have in common is the fact that they are closed-form formulas,

meaning they try to present a formalized function describing how much the analyzed options should

cost. Of course, the ability to draw up a correct estimate depends on how capable the proposed

model is in understanding the existing relationship between the explanatory variables and the

dependent output. Moreover, the overall performance is determined by the necessary assumptions

of each model. Indeed, simplifying assumptions are always required by deterministic formulas in

order to be able to deal with any kind of real-life problem. This is because it is way too complex to

try to account for every possible existing variable. However, this approach always determines a huge

drawback, i.e., by doing so we are introducing biases, abstractions, and incoherencies in our model,

which inevitably make it less precise and distant from a real-world scenario. For instance, many

studies have shown that even if the Black and Scholes equation is still able to overperform many

other pricing models, it shows a recurrent mispricing when it faces deep-out-of-the-money and

deep-in-the-money options, see for instance Yao et al. (2000). Therefore, many alternatives have

been proposed trying to smooth the magnitude of these biases by reducing, or even completely

removing, the underlying assumptions.

In this sense, an interesting family of alternative approaches, which has now become the state-of-

the-art, consists in relying on artificial intelligence and machine learning algorithms. It should be

noted that, in the thesis, we chose to address the option pricing task by developing a so-called

Artificial Neural Network.

Artificial Neural Networks are data-driven algorithms which try to mimic the functioning of a human

brain in order to solve complex problems. In particular, they are extremely good instruments in

dealing with high dimensional and complex dataset, since they are capable of detecting patterns

and nonlinear connections existing between the inputs and the outputs. However, these algorithms

are so good in understanding the structure of the data that quite often there is the risk of

“overfitting”, meaning the model fits the analyzed observations too well and it is not able to

2

generalize the results. With this regard, we need to say that we will present useful techniques which

help preventing such kind of behaviour. A second “problem” about neural networks is the fact that

they are “expensive algorithms” from a computational point of view. Indeed, they require large

amount of data to be properly trained, and computers with strong enough softwares that make the

required computations feasible both from a time perspective point of view and in terms of use of

resources. Consequently, their exploitation was not convenient in the past, mainly due to technical

limitations. However, the increasing data availability and the improved performances of computers

make it possible to use these tools today in an efficient way. Therefore, since they tend to

outperform traditional pricing methods, it is clear why neural networks are nowadays implemented

in many different applications such as regression and classification problems.

Having said that, we can now state the objective of the thesis. First of all, we need to highlight that

we have a twofold objective which is based on the following hypotheses:

Hypothesis 1. It is possible to develop a multilayer perceptron artificial neural network able to

correctly price European call options written on the FTSE MIB index.

Hypothesis 2. Option prices generated by such a model overperform those provided by a traditional

pricing formula, i.e., the Black-Scholes-Merton model.

With this respect, we are extremely proud to underline the fact that the model we are going to build

is applied to the Italian equity market, meaning that this thesis does something that has never been

done before. Indeed, at the time of writing, there exists no paper in which an artificial neural

network is applied to the pricing of financial options with the FTSE MIB index as the underlying asset.

In performing this task, we relied on the version R2021b of MATLAB, and we exploited some useful

packages which helped us to develop our artificial neural network, namely the Machine Learning

Toolbox and the Deep Learning Toolbox.

According to the specific structure followed by the thesis, Chapter 1 introduces the concept of

financial options, their features and why it is essential to develop a model able to provide reliable

estimates. In doing so, it presents the Black and Scholes formula, its most popular extensions and

its most serious drawbacks, explaining at the same time what makes the development of alternative

pricing models necessary.

Chapter 2, instead, is focused on machine learning, the theory behind it and the most popular

existing approaches. In particular, the Chapter pays a lot of attention to neural networks, their

development both from an historical and mathematical point of view, and their main properties.

Then, in the first part of Chapter 3, the Italian equity and option markets are presented, whereas in

the second part of the Chapter the structure of the available dataset is analyzed. Moreover, the

operations performed on the data, such as the removal of outliers or the applied regularization

techniques, are described and deeply explained.

Finally, Chapter 4 shows the hyperparameter optimization procedure that we implemented in

developing the best possible architecture for our artificial neural network, and the obtained results

are presented. In particular, we focused on the comparison between the forecasts of our model and

the ones provided by the BSM model.

3

Chapter 1 Option pricing

Chapter 1 presents an overview of financial options and the most famous model for pricing such

instruments. In particular, the first paragraph provides a definition of these contracts, their main

characteristics and the reason why we need efficient pricing techniques. Then, section 1.2

introduces the features and the necessary conditions that each pricing method must respect in

order to be coherent and to not allow for arbitrage opportunities. These are derived from the

dominance principle, and if a model violates them it would necessarily mean that it is inefficient,

and it is possible to detect arbitrages. After that, the third paragraph is focused on deriving the Black

and Scholes equation in a formal way, and it concludes by presenting the mathematical formulation

found in the original paper of 1973. In section 1.4, the most popular extensions of the original model

are presented. These have been developed with the scope of trying to generalize the provided

results by relaxing one or more of the founding assumptions of the Black and Scholes formulation.

Finally, the last section of the Chapter is about the most serious drawbacks and biases of the former

model, and it introduces the reasons why it is necessary to develop new pricing techniques capable

of overcoming the problems that can be found in the BS model.

 1.1 Options

Contracts similar to options have been used since ancient times. Initially created as a hedging tool

for agricultural products, they quickly developed into more complex instruments which may serve

a lot of different purposes. However, even if options contracts had been known for decades, it was

only in 1973, with the establishment of the Chicago Board Options Exchange (CBOE), that

standardized contracts were defined and a guaranteed clearing house was created. Moreover, in

the same year, Fischer Black and Myron Scholes published a fundamental paper which became a

milestone on the derivatives literature1.

In the article the two researchers presented a closed-form formula for the pricing of European-style

derivatives, which was obtained through a dynamic hedging argument and a no-arbitrage condition.

From that moment on, both trading activity and academic research have exponentially increased to

the point that nowadays it would be virtually impossible to provide an exhaustive review of the

existing literature.

1 “The Pricing of Options and Corporate Liabilities” by Black, F., and Scholes, M. (1973) The Journal of Political Economy,
Vol. 81, pp. 637-654.

4

Figure 1 - Annual option volume and annual growth rate (source: SeekingAlpha.com)2

As we can see from Figure 1, starting from 1973 option growth has never stopped; on the contrary,

it has gained speed in the last years. Just to have an idea, during 2021 a record on the daily total

option volume was set 17 times and, overall, about 9.87 billion contracts were traded, meaning a

rise of more than 30% when compared with 2020’s maximum. Moreover, according to CBOE Global

Markets data, the average daily notional value3 of traded options has risen to more than $450

billion4. Therefore, it should be clear that nowadays options are an extremely important part of

financial markets, and efficient pricing techniques which allow investors to rapidly evaluate such

instruments are essential.

At this point a question naturally arises: what is an option? It should be clear that an option is a

flexible contract between two counterparts5. Indeed, an option represents the right, not the

obligation, for the buyer to buy or sell the underlying asset at, or within, a future point in time for a

predetermined price. We have said that an option is not an obligation, however this is true only for

the buyer of the contract. The seller of the derivative instrument, indeed, has a contractual, legally

binding commitment to sell or to buy the underlying if the buyer chooses to exercise it. Therefore,

we can say options are a sort of asymmetric contract, since the right of the buyer is opposed to the

obligation of the seller.

Let us clarify the terminology. Being a derivative, an option is an instrument whose value depends

on the value of another instrument, which is known as underlying asset. The underlying asset can

be of any kind, both financial and real. In the first case, it may be a stock, an index, an interest rate

and so on, even another derivative. In the second case, instead, it could be, for example, a course

of actions to be taken or to be avoided.

2 “Options Clearing Corp and Cboe LiveVol, LLC, 12/31/21” from SeekingAlpha.com.
3 The notional value is computed as the trading volume multiplied by the spot price.
4 In the same period, stocks were about $405 billion.
5 On this regard it is possible to consider Hull (2008) or any other book about options.

5

A primary distinction which can be made regards the type of right the owner of the option is entitled

with. In particular, if the buyer has the right to buy the underlying asset, the option is a call option,

whereas if the owner has the right to sell the underlying asset to the writer of the option, i.e., the

seller, the option is a put option.

Additional distinctions can be made according to the timing of the exercise and the way in which

the price is determined.

With respect to the exercise of the contract, namely the style of the option6, a common but not

exhaustive classification is made between European and American options. The difference is that

European-style options give the buyer the right to exercise the contract on the expiration date, also

called maturity date; it means that the option can be exercised only on the last day of its life.

American-style options instead are more flexible, in the sense that they provide a stronger right to

the owner of the contract which can, in this case, exercise the option anytime up to the expiration

date7.

Note that the style of the contract is mainly determined by market conventions and operational

decisions, which may change from one provider to another; however, since it has a great importance

on the pricing of the option, it is crucial for anybody interested in dealing with these instruments to

be well aware of the type of contract under consideration.

In regard to how the delivery price is determined, there exist two main approaches which are now

the state of the art in the industry. The simplest and most common one for exchange-traded options

(ETOs)8 is to use a fixed, predetermined price, called strike price9. However, a quite popular

alternative concerns the so-called Asian options and consists in determining the payoff of the

contract by comparing the strike price of the option with the average price of the underlying asset

computed over a specific period of time, usually the life of the option itself.

These are the main features of a standard, “vanilla”, option. However, there are many possible

alternatives that someone interested in option contracts can come in touch with. In general, options

whose payoff and characteristics are different from the ones above mentioned are called “exotic

options” and are usually traded over the counter (OTC). They are usually case-specific, meaning that

they have peculiar attributes which vary a lot from case to case, and therefore they often embed a

significant counterparty risk, a low-price transparency and a lack of data availability10.

To conclude, we need to explain the meaning of the following terms: in-the-money (ITM), out-of-

the-money (OTM), and at-the-money (ATM)11. An option is said to be ITM when it has a positive

value for its owner. In case of a call option this happens when the current price of the underlying is

6 The style of an option is sometimes also called “family”.
7 Other less common exercise styles in which the payoff remains the same, but the early exercise may differ are:
Bermudan options, Canary options, Capped-style options, Compound options, Shout options, Double options, Swing
options, Evergreen options, but it is possible to consider also exotic options with a standard exercise style, like for
instance Composite options.
8 T. Hann: “Option pricing using artificial networks: an Australian perspective”, Doctoral thesis (2014).
9 Other common names are exercise price or contract price.
10 Note that exotic options can differ not only on the above-mentioned characteristics but also in others such as the lot
size, the way in which the underlying is transfer, etc.
11 It is also possible to add the term “deep” to ITM and OTM options to point out that the strike price is far away from
the current price.

6

above the strike price. For put options, instead, the contract is in-the-money when the current price

lies below the strike. OTM options are the opposite case and thus represent a “negative” value for

the holder of the contract. Finally, at-the-money options are “neutral”, in the sense that they neither

provide a profit nor a loss to the option buyer. Therefore, ATM is a term used to refer to options

whose strike price is the same as the current price of the underlying12. Note that, moneyness is

another term used to describe whether a contract is ITM, OTM, or ATM.

 1.2 Introduction to European option pricing

Having observed the constantly increasing importance of this kind of instrument in current financial

markets, it should be clear the need to develop sophisticated and accurate pricing formulas able to

provide reliable estimates, in a time efficient way, regarding option prices. As already mentioned,

in 1973 Black and Scholes published a paper presenting an analytical solution for the problem of

pricing European-style options. The proposed model rapidly became the foundation of any further

research in the field of derivatives evaluation and hedging, and therefore must be correctly

explained and understood.

In deriving their model, Black and Scholes relied on the following assumptions:

• There are no penalties for short sales; therefore, it is possible to buy and sell any amount

of the asset, even fractional, without any penalizations in terms of market impact, broker

restrictions, etc.

• Transaction costs and taxes are excluded from the model computations, meaning we are

considering a frictionless market.

• The market operates continuously, there are no interruptions in the trading activity.

• The risk-free interest rate is assumed to be constant over time. Moreover, it is possible to

borrow and lend any amount of cash at the riskless rate.

• The stock price is continuous, therefore there are no “jumps” in its trajectory13.

• The stock does not pay any dividends.

• The considered options are European and can only be exercised on the expiration date.

An important note can be made about these assumptions. In particular, some of them are not

strictly necessary and can easily be removed without any loss of generality, while others are more

cumbersome to deal with, and impose stronger limitations to the model. They can still be relaxed,

but the effects on the pricing formula are more complex and affect the results in deeper ways.

What is truly amazing about the Black and Scholes model is its simplicity combined with its

robustness; indeed, Black and Scholes were able to provide a closed-form solution of the problem

as a function of only five variables:

12 Coherently with these definitions, in-the-money options are the only one having an intrinsic value for the holder of
the contract, whereas ATM and OTM prices are determined only by the time value of the option.
13 Roughly speaking, if we consider the time series of the price of a stock, it can be drawn without ever lifting the pen.

7

• The stock price,

• The strike price,

• The variability of the stock price, expressed as the variance of the price returns,

• The time to maturity of the option, i.e., the life of the contract,

• The risk-free interest rate.

At this point, two important observations can be made. First of all, the solution does not require

variables such as the expected return of the stock, or any kind of “risk aversion” parameter14.

Secondly, the only variable of the solution which is not directly observable is the variance, however

it can be estimated by relying on the time series of past prices15.

Since its first publication the model has been extremely popular, and many adjustments and

refinements have been proposed. Moreover, many researchers have tested the goodness and the

reliability of the model by relaxing the previous assumptions and have found it to be quite robust,

to the point that “no single assumption seems crucial to the analysis”, Smith (1976).

Among all the various publications that followed the article, one of the most important was the one

provided by Robert Cox Merton (1974). Merton was able to generalize the model to the case of

stochastic interest rates and he was also able to develop an adjustment that allows the model to

deal with dividends-paying stocks. Furthermore, Merton (1976) and Cox and Ross (1976) were

successful in generalizing the Black and Scholes formula to the case in which the stock price

movements are discontinuous. They also showed that the solution found was appropriate to

evaluate American-style call options.

Before considering the Black-Scholes-Merton model it is necessary to provide some preliminary

concepts which define a set of equilibrium conditions on the price of a call option. These were

derived by Merton and are independent of distributional assumptions. What does it mean? It simply

means that Merton made no previous assumptions on the process generating the data, i.e., the

stock prices; therefore, these restrictions simply followed by the concept of dominance and

represent a no-arbitrage condition.

The idea is that a rational investor has always to prefer more over less. This translates into the fact

that if the return of portfolio A is, over a certain period of time, always16 greater or equal than the

return of portfolio B17 and they have the same risk, portfolio A is dominant over portfolio B. The

problem is that in equilibrium there cannot exist such a situation, otherwise it would be possible to

detect an arbitrage opportunity. In our example, this means that everybody would buy portfolio A

and sell portfolio B. By doing so, the price of the first portfolio would increase, while the one of the

second would decrease, therefore reducing the existing spread, up to the point that the dominance

relationship ceases to exist.

14 With risk aversion parameter I want to denote any variable able to represent the investor attitudes toward risk.
15 Clifford W. Smith Jr, Option pricing: a review. Journal of Financial Economics (1976).
16 Always in this case should be read as “in every possible state of the world”.
17 It has to be at least one time higher than the other and never smaller.

8

Note that this is a general result known as no-arbitrage condition and must be verified in every time

instant in order to ensure the efficiency of any economic model.

From the concept of dominance and thus from the no-arbitrage condition it is possible to define a

series of boundaries that have to be met, assuming the model being efficient.

At this point it should be clear that the exercise of an option is a voluntary action taken by the owner

of the contract. Since it will be pursued only when in the best interests of the option buyer, it defines

a first lower bound both for European and American options:

𝑐(𝑆, 𝑇, 𝑋) ≥ 0

𝐶(𝑆, 𝑇, 𝑋) ≥ 0

Therefore, call prices cannot be negative.

It should be mentioned that we denote with the capital letter, C, the American call option and with

the small letter, c, the European one. S represents the price of the stock at time t, T is the time to

expiration, and it is computed as the difference between the maturity date, 𝑡𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛, and the

current date, t, and X is the strike price of the call option18.

Then it is possible to derive the value of the call at maturity. At the expiration, the call will be equal

to the maximum of either the difference between the stock price and the exercised price or zero.

𝑐(𝑆∗, 0, 𝑋) = max⁡(0, 𝑆∗ − 𝑋)

𝐶(𝑆∗, 0, 𝑋) = max⁡(0, 𝑆∗ − 𝑋)

It is interesting to notice that, in this case, at maturity 𝑇 = 0, since the expiration date and the

current date are the same.

For the American case it is also possible to define some additional conditions. Indeed, given the fact

that the exercise can be made at any point up to the maturity date, the value of the American call

should always be at least equal to:

𝐶(𝑆, 𝑇, 𝑋) ≥ max⁡(0, 𝑆 − 𝑇)

Moreover, if we consider two American call options which only differ for the expiration date, the

one with the longest time to maturity could never be worth less than the one with the closest

expiration:

𝐶(𝑆, 𝑇𝑙𝑜𝑛𝑔, 𝑋) ≥ 𝐶(𝑆, 𝑇𝑠ℎ𝑜𝑟𝑡, 𝑋)

Considering all has been said so far, we should not be surprised in knowing that an American call

option could never cost less than the corresponding European option:

𝐶(𝑆, 𝑇, 𝑋) ≥ 𝑐(𝑆, 𝑇, 𝑋)

Another condition we derive from the no-arbitrage principle is that if two call options are identical

except for the strike price, the one with the lower exercise price must value no less than the other.

18 The notation comes from “Option pricing: a review” by Clifford W. Smith Jr, The Journal of Financial Economics, Vol.
3, pp. 3-51 (1976).

9

𝐶(𝑆, 𝑇, 𝑋𝑙𝑜𝑤) ≥ 𝐶(𝑆, 𝑇, 𝑋ℎ𝑖𝑔ℎ)

𝑐(𝑆, 𝑇, 𝑋𝑙𝑜𝑤) ≥ 𝑐(𝑆, 𝑇, 𝑋ℎ𝑖𝑔ℎ)

Now we can ask ourselves: what is the relationship existing between the underlying stock value and

different calls written on it? If we consider a perpetual call, meaning a call in which the expiration

date tends to plus infinite, with a zero-strike price we get:

𝑆 ≥ 𝐶(𝑆,∞, 0)

The value of a non-dividend paying stock today is at least equal to the value of a call option with an

infinitely long maturity and a zero-strike price. Then, from the previous conditions it is also possible

to generalize the concept by adding the finite case:

𝑆 ≥ 𝐶(𝑆,∞, 0) ≥ 𝐶(𝑆, 𝑇, 𝑋)

Remember we are considering stocks that do not pay any dividends; if that was not the case the

stock value may exceed the value of the perpetual call.

From this relationship immediately follows that a call option on a worth nothing stock, i.e., a stock

with a current price equal to zero, must have a zero-value:

𝐶(0, 𝑇, 𝑋) = 𝑐(0, 𝑇, 𝑋) = 0

Another interesting result derived by the stochastic dominance principle is that the early exercise,

i.e., the exercise before the maturity, of an American option on a non-dividend paying stock is never

optimal. To derive this result, we first need to define with 𝐵(𝜏) the price of a risk-free zero-coupon

bond that pays one dollar in 𝜏 years. Assuming positive interest rates it is straightforward to

understand that bonds of this kind characterized by longer maturities will be valued less than similar

bonds with shorter maturities.

Now, suppose we built two different portfolios C and D:

• C: buy one European call 𝑐(𝑆, 𝑇, 𝑋) and buy X bonds for 𝑋𝐵(𝑇);

• D: buy the stock, S.

 𝑆𝑡𝑜𝑐𝑘⁡𝑝𝑟𝑖𝑐𝑒⁡𝑎𝑡⁡𝑇 = 0

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑣𝑎𝑙𝑢𝑒 𝑆𝑒𝑥𝑝 < 𝑋 𝑆𝑒𝑥𝑝 ≥ ⁡𝑋

𝐶 𝑐(𝑆, 𝑇, 𝑋) ⁡+ ⁡𝑋𝐵(𝑇) 0 + 𝑋 (𝑆𝑒𝑥𝑝 − 𝑋) + 𝑋

𝐷 𝑆(𝑡) 𝑆𝑒𝑥𝑝 𝑆𝑒𝑥𝑝

⁡𝐹𝑖𝑛𝑎𝑙⁡𝑣𝑎𝑙𝑢𝑒 𝛱𝐶 > 𝛱𝐷 𝛱𝐶 = 𝛱𝐷

Table 1 – Proof that the value of a portfolio made of a call and a riskless bond with face value X has a final value greater
than or equal to that of the underlying asset if this pays no dividends

𝑆𝑒𝑥𝑝 is the price of the stock at the expiration date and 𝛱𝐶 ⁡and 𝛱𝐷 are respectively the final values

of portfolio C and D.

10

Since, in every possible state of the world, the value of portfolio C at maturity is greater or equal

than the one of D, the current value of C has to be greater or equal than the one of D to avoid

arbitrage opportunities. Therefore, it is possible to rewrite the value of a European call option at

maturity as:

𝑐(𝑆, 𝑇, 𝑋) ≥ max⁡(0, 𝑆 − 𝑋𝐵(𝑇))

Recalling the relationship existing between the price of European and American options, we can add

another term to the inequality:

𝐶(𝑆, 𝑇, 𝑋) ≥ 𝑐(𝑆, 𝑇, 𝑋) ≥ max⁡(0, 𝑆 − 𝑋𝐵(𝑇))

Again, this is true for non-dividend paying stocks and in the absence of transaction costs. If the asset

provides a positive dividend yield, it is necessary to rely on Merton’s adjustment19.

In case of an early exercise of an American-style option, the payoff would be max⁡(0, 𝑆 − 𝑋) which,

assuming a positive interest rate and a positive time to maturity, is lower than max⁡(0, 𝑆 −

𝑋𝐵(𝑇))20. Acknowledging this result, the economically rational buyer of an American call will always

choose the most efficient solution, thus, in such a scenario, he or she will sell the option rather than

exercising it. The strong implication of this outcome is that for non-dividend paying assets it is never

optimal to exercise the contract prior to the maturity date, and therefore American and European

call options on such securities will have the same value.

So far, we have focused only on stock not providing any dividend yield, but what changes in case

the asset does pay dividends? When the underlying security does pay a dividend to its holder, the

early exercise of an American call option may become economically desirable. To understand why,

let us consider the following portfolios in which we assume that the stock pays a dividend, D, on the

expiration date of the analyzed option:

• E: purchase one European call and 𝑋 + 𝐷 bonds.

• F: purchase one stock.

 𝑆𝑡𝑜𝑐𝑘⁡𝑝𝑟𝑖𝑐𝑒⁡𝑎𝑡⁡𝑇 = 0

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑣𝑎𝑙𝑢𝑒 𝑆𝑒𝑥𝑝 < 𝑋 𝑆𝑒𝑥𝑝 ≥ ⁡𝑋

𝐸
𝑐(𝑆, 𝑇, 𝑋) ⁡
+ (𝑋 + 𝐷)𝐵(𝑇)

0 + 𝑋
+ 𝐷

(𝑆𝑒𝑥𝑝 − 𝑋) + 𝑋 + 𝐷

𝐹 𝑆(𝑡) 𝑆𝑒𝑥𝑝 + 𝐷 𝑆𝑒𝑥𝑝 + 𝐷

⁡𝐹𝑖𝑛𝑎𝑙⁡𝑣𝑎𝑙𝑢𝑒 𝛱𝐸 > 𝛱𝐹 𝛱𝐸 = 𝛱𝐹

Table 2 - Proof that the value of a portfolio made of a call and a riskless bond with a face value equal to X + D has a final
value greater than or equal to that of the underlying asset which pays D dividends at the expiration of the option

19 “On the pricing of corporate debt: the risk structure of interest rates” by Merton, R. C., the American Finance
Association Meeting (1974).
20 Indeed, when T is greater than 0 and the risk-free rate is positive, the term B(T) will be less than 1. Therefore, the
difference 𝑆 − 𝑋𝐵(𝑇) will be greater than 𝑆 − 𝑋

11

Since the final value of portfolio E is never less than the one of portfolio F, in order to not allow

arbitrage opportunities, the actual price of E must be not less than F. Therefore, it is possible to

write:

𝑐(𝑆, 𝑇, 𝑋) ≥ max⁡(0, 𝑆 − (𝑋 + 𝐷)𝐵(𝑇))

Since the difference between the stock value and the discounted strike price plus the discounted

dividend may be either positive or negative, in case of dividend payments it may be advantageous

to early exercise an American call option.

An interesting and useful result that will be exploited in the development of the neural network

regards the relationship existing between the option price and the exercise price.

In particular, the price of a call option can be seen as a convex function of the strike price21. Suppose

we have three identical call options which differ only for the strike price. Specifically, let us assume

that 𝑋1 ≥ 𝑋2 ≥ 𝑋3 and let us define a weighting parameter lambda, 0 ≤ 𝜆 ≤ 1.

The convexity condition will imply that 𝑋2 = 𝜆𝑋1 + (1 − 𝜆)𝑋3 and therefore:

𝐶(𝑆, 𝑇, 𝑋2) ≤ 𝜆𝐶(𝑆, 𝑇, 𝑋1) + (1 − 𝜆)𝐶(𝑆, 𝑇, 𝑋3)

To demonstrate why this restriction has to be true we simply need to form two portfolios G and H.

• G: buy 𝜆 calls with strike price 𝑋1 and 1 − 𝜆 calls with exercise price 𝑋3;

• H: buy one call option with strike price 𝑋2.

 𝑆𝑡𝑜𝑐𝑘⁡𝑝𝑟𝑖𝑐𝑒⁡𝑎𝑡⁡𝑇 = 0

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑣𝑎𝑙𝑢𝑒 𝑆𝑒𝑥𝑝 ≤ 𝑋3 𝑋3 < 𝑆𝑒𝑥𝑝 < 𝑋2 𝑋2 < 𝑆𝑒𝑥𝑝 < 𝑋1 𝑆𝑒𝑥𝑝 ≥ 𝑋1

𝐺

𝜆𝐶(𝑆, 𝑇, 𝑋1) ⁡
+ (1 − 𝜆)
∗ 𝐶(𝑆, 𝑇, 𝑋3)

0 + 0 0 + (1 − 𝜆)(𝑆𝑒𝑥𝑝 − 𝑋3) 0 + (1 − 𝜆)(𝑆𝑒𝑥𝑝 − 𝑋3)
𝜆(𝑆𝑒𝑥𝑝 − 𝑋1)
+ (1 − 𝜆)
∗ (𝑆𝑒𝑥𝑝 − 𝑋3)

𝐻 𝐶(𝑆, 𝑇, 𝑋2) 0 0 𝑆𝑒𝑥𝑝 − 𝑋2 𝑆𝑒𝑥𝑝 − 𝑋2

𝐹𝑖𝑛𝑎𝑙⁡𝑣𝑎𝑙𝑢𝑒 𝛱𝐺 = 𝛱𝐻 𝛱𝐺 > 𝛱𝐻 𝛱𝐺 > 𝛱𝐻 𝛱𝐺 = 𝛱𝐻

Table 3 - Proof that a convex combination of calls with different strike prices yields a final value not lower than that of a
call which is the convex combination of the other two exercise prices

Since the value at maturity of portfolio G is no less than the one of portfolio H, to eliminate

stochastic dominance the present value of H must be small than or at least equal to that of G.

21 In chapter 4, we will see empirically that this relationship holds also in a real-world scenario like the one presented in
this dissertation.

12

 1.3 The Black and Scholes model

The fundamental idea in the Black and Scholes model is to form a riskless hedge by constructing a

portfolio made of stocks and European call options. In such a portfolio, the only source of

uncertainty is given by the evolution of the prices over time. Indeed, since the price of the call option

can be expressed as a function of the underlying price and the time to maturity, it follows that

changes in the value of the option are determined by changes in the stock price and by the remaining

life of the contract.

Black and Scholes observed that, at any point in time up to the expiration date, the portfolio could

become a riskless asset by choosing the appropriate mixture of stocks and calls. For instance, if we

form a portfolio buying a share of the stock and going short on the corresponding European call, a

rise in the stock prices would have a twofold effect. On one side, the stock value would increase.

However, on the other side, the profit of the long position would be offset by the proportional

decrease of the value of the short position.

Someone could argue that once the price has changed the hedge is no more realized. This is true.

Indeed, the model requires that the portfolio is continuously adjusted in an appropriate way, in

order to compensate for the changes of the prices over time. If we perform this operation in the

right manner, accounting for the value changes of the underlying asset, the portfolio becomes

riskless. Therefore, to avoid arbitrage opportunities and to satisfy the stochastic dominance

principle, we can conclude that it has to earn the risk-free rate.

In their model, Black and Scholes expressed the value of the hedge portfolio as the sum of two

products:

• The number of shares of the stock times the stock price.

• The number of European call options times the call price.

Π𝐻 = 𝑆𝑄𝑠 + 𝑐𝑄𝑐

where Π𝐻 ⁡is the value of the hedge portfolio, S is the stock price, 𝑄𝑠 is the quantity of stock currently

held in the portfolio, 𝑐 is the price of the European call option, and 𝑄𝑐 is the current quantity of calls.

The change in the value of the portfolio, 𝑑Π𝐻, is given by the first derivative of the previous formula:

𝑑Π𝐻 = 𝑄𝑠𝑑𝑆 + 𝑄𝑐𝑑𝑐

In order to express the change in the value of the call option, Black and Scholes relied on stochastic

calculus. In particular, by assuming that the stock price follows a Geometric Brownian Motion22, i.e.,

the instantaneous log-return of stock price is an infinitesimal random walk with drift, Itô’s lemma

can be exploited to express 𝑑𝑐 as:

22 We are assuming that the dynamics of the stock price evolution over time can be described as

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑧,

where 𝜇 is the instantaneous expected return on S, 𝜎2 is the instantaneous variance of the return, and 𝑑𝑧 is a Wiener
process (Merton, 1971 and McKean, 1969). Note that in the original BSM (Black and Scholes model) the drift and the
volatility are assumed to be constant.

13

𝑑𝑐 =
𝜕𝑐

𝜕𝑆
𝑑𝑆 +

𝜕𝑐

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝑐

𝜕𝑆2
𝜎2𝑆2𝑑𝑡

What is interesting to notice is that the only stochastic term in this expression is 𝑑𝑆 since all the

other quantities are deterministic. By substituting the expression of 𝑑𝑐 into the formula expressing

the change in the value of the riskless portfolio, we obtain:

𝑑Π𝐻 = 𝑄𝑠𝑑𝑆 + 𝑄𝑐 [
𝜕𝑐

𝜕𝑆
𝑑𝑆 +

𝜕𝑐

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝑐

𝜕𝑆2
𝜎2𝑆2𝑑𝑡]

Note that by taking arbitrary values of 𝑄𝑠 and 𝑄𝑐 the evolution of the portfolio value is stochastic.

However, if we choose in an appropriate way these quantities so that 𝑄𝑠𝑑𝑆 + 𝑄𝑐
𝜕𝑐

𝜕𝑆
𝑑𝑆 = 0, in other

words if we pick 𝑄𝑠 and 𝑄𝑐 ensuring that
𝑄𝑠⁡

𝑄𝑐⁡
= −

𝜕𝑐

𝜕𝑆
23, then the portfolio return becomes riskless.

By setting 𝑄𝑠 = 1 and 𝑄𝑐 = −
1

𝜕𝑐
𝜕𝑆⁄

 and plugging them into the previous equation, the change in

the hedge portfolio can be expressed as:

𝑑Π𝐻 = −(
1

𝜕𝑐
𝜕𝑆⁄
) [
𝜕𝑐

𝜕𝑡
+
1

2

𝜕2𝑐

𝜕𝑆2
𝜎2𝑆2] 𝑑𝑡

We are well aware that, in equilibrium, two perfect substitutes have to provide the same rate of

return to avoid arbitrage opportunities; thus, having constructed a riskless portfolio, to be coherent

with stochastic dominance, the return has to be the same as the risk-free one.

dΠ𝐻

Π𝐻
→ 𝑟⁡𝑑𝑡24

If we now rewrite this “equality” exploiting the definitions of dΠ𝐻 and Π𝐻 we already derived, we

obtain:

𝜕𝑐

𝜕𝑡
= 𝑟𝑐 − 𝑟𝑆

𝜕𝑐

𝜕𝑆
−
1

2

𝜕2𝑐

𝜕𝑆2
𝜎2𝑆2

which is a differential equation for the value of the option.

To solve this analytically, Black and Scholes relied on the equilibrium, no-arbitrage, condition

imposing that on the maturity date the cost of the option must be equal to the maximum of either

the difference between the stock price and the strike price or zero25:

𝑐𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = max⁡(0, 𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑋)

23 Note that this condition affects the ratio

𝑄𝑠⁡

𝑄𝑐 ⁡
; therefore, it makes no difference which asset is sold and which asset is

purchased. If the stock were sold instead of the option, we simply need to adjust the result so that the number of shares

sold per each bought call should be −
𝜕𝑐

𝜕𝑆
.

24 Note that in this case we prefer to use the symbol → instead of the equal one to highlight the existing difference
between the two. Indeed, this is “equal in equilibrium” and has a different meaning.
25 They also exploited the heat exchange equation from physics.

14

To avoid overcomplex computations which go behind the scope of this thesis, it is better to rely on

a more intuitive and simple solution technique presented by Cox and Ross (1976), which however

leads to the same result.

The core idea is that whatever the solution of this differential equation is, it would be a function of

only five variables: 𝑟, 𝑆, 𝑇, 𝜎2, 𝑎𝑛𝑑⁡𝑋26.⁡Moreover, in the portfolio construction phase, the only

assumption regards the fact that, in equilibrium, two perfect substitutes have to earn the same rate

of return to ensure efficiency. This means that no further assumptions are made on the risk aversion

of the market participants. Therefore, if a solution can be found assuming a proper preference

structure, this should also be the general solution, meaning a valid solution for the differential

equation for any different preference structure that ensures the equilibrium.

In other terms, we are allowed to choose the best structure, meaning the one that simplifies the

computations the most.

The most useful assumption we can make is to assume a risk-neutral world. Therefore, Cox and Ross

assumed all market participants to be risk-neutral investors. In such a case, the equilibrium rate of

return is the same for all the assets, 𝑟, and the current value of a call option must be equal to the

discounted expected value of the contract at maturity:

𝑐 = 𝑒−𝑟𝑇𝐸(𝑐𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛)

𝑐⁡ = 𝑒−𝑟𝑇∫ (𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑋)𝐿′(𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛)𝑑𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
∞

𝑋

where 𝐿(𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛) is the cumulative log-normal distribution function and 𝐿′(𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛) is the

log-normal density function for 𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛.

Note that it is possible to exploit a useful theorem in solving integrals involving the log-normal

distribution. The theorem says that if 𝐿(𝑆∗)⁡is a log-normal density function with

𝑄 = {
𝜆𝑆∗ − 𝛾𝑋⁡⁡⁡⁡𝑖𝑓⁡𝑆∗ −Ψ𝑋 ≥ 0
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑆∗ −Ψ𝑋 < 0

then

𝐸(𝑄) = ∫ (𝜆𝑆∗ − 𝛾𝑋)𝐿′(𝑆∗)𝑑𝑆∗
∞

Ψ𝑋

= 𝑒𝜌𝑇𝜆𝑆 ∗ 𝑁 {
ln (

𝑆
𝑋) − 𝑙𝑛Ψ + [𝜌 + (

𝜎2

2)] 𝑇

𝜎√𝑇
} − 𝛾𝑋 ∗ 𝑁{

ln (
𝑆
𝑋) − 𝑙𝑛Ψ + [𝜌 + (

𝜎2

2)] 𝑇

𝜎√𝑇
}

26 Respectively: the risk-free rate of return, the current stock value, the time to maturity, the variance of the returns,
and the exercise price of the option.

15

where 𝜆, 𝛾, 𝑎𝑛𝑑⁡Ψ are arbitrary parameters, 𝜌 is the expected average rate of growth of the stock

price27, and 𝑁 is the cumulative standard normal distribution function28.

Therefore, it is possible to solve the equation of the call option value by applying the above-

mentioned theorem with 𝜆 = 𝛾 = 𝑒−𝑟𝑇 and Ψ = 1. By substituting 𝜌 with the risk-free rate, it is

then possible to derive the general solution:

𝑐 = 𝑆 ∗ 𝑁 {
ln (

𝑆
𝑋) + [𝑟 + (

𝜎2

2)] 𝑇

𝜎√𝑇
} − 𝑒−𝑟𝑇𝑋 ∗ 𝑁{

ln (
𝑆
𝑋) + [𝑟 − (

𝜎2

2)] 𝑇

𝜎√𝑇
}

This is the Black-Scholes model.

Let us try to provide a more intuitive understanding of the equation. In order to reach this objective,

let us suppose there is no uncertainty about the outcome, the future value of the stock. In such a

situation, the final value of the call option will be strictly positive, otherwise no one would have ever

purchased it. In particular, the cost of the contract will be equal to the difference between the final

value of the stock and the exercise price: 𝑐𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑋.

Since in equilibrium the return of all assets must be the same in order to prevent arbitrage

opportunities, it is possible to express the final value of the stock as: 𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑒𝑟𝑇 considering

a continuously compounded rate of return. Therefore, the current option value can be rearranged

in the following way:

𝑐 = (𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑋)𝑒−𝑟𝑇 = (𝑆𝑒𝑟𝑇 − 𝑋)𝑒−𝑟𝑇 = 𝑆 − 𝑋𝑒−𝑟𝑇

As we can see, this expression differs from the previous one only in the fact that it is not multiplied

by the cumulative standard normal distribution. Indeed, if we consider a real-world scenario,

characterized by some uncertainty about the possible final result, those two cumulative

distributions can be seen as the probabilities reflecting the existing uncertainty.

We already pointed out that the Black and Scholes model is a function of only five variables, all

observable except for the variance, which has to be properly estimated. However, in more recent

papers, different variables, both observable and unobservable, have been introduced in the effort

of developing models capable of providing more accurate predictions and estimates. In any case,

these modifications have to respect the restrictions placed on the option value by the stochastic

dominance principle. In particular:

• When the underlying asset price increases, so does the option price:

𝜕𝑐

𝜕𝑆
= 𝑁{

ln (
𝑆
𝑋) + [𝑟 + (

𝜎2

2
)] 𝑇

𝜎√𝑇
} > 0

Assuming a log-normal distribution of stock prices, the expected final value is a positive function of

the current price.

27 𝑒𝜌𝑇 = 𝐸 (

𝑆∗

𝑆
)

28 𝑁(𝑞) = ∫
1

√2𝜋
𝑒−

𝑧2

2 𝑑𝑧
𝑞

−∞

16

• If the strike price rises, the call value decreases:

𝜕𝑐

𝜕𝑋
= −𝑒−𝑟𝑇𝑁{

ln (
𝑆
𝑋) + [𝑟 − (

𝜎2

2
)] 𝑇

𝜎√𝑇
} < 0

• As the time to expiration expands, the option price increases:

𝜕𝑐

𝜕𝑇
= 𝑋𝑒−𝑟𝑇 [

𝜎

2√𝑇
𝑁 {

ln (
𝑆
𝑋) + [𝑟 − (

𝜎2

2
)] 𝑇

𝜎√𝑇
} + 𝑟𝑁{

ln (
𝑆
𝑋) + [𝑟 − (

𝜎2

2
)] 𝑇

𝜎√𝑇
}] > 0

This reflects the idea that the present value of the strike price becomes lower if the time to maturity

increases.

• A growth of the risk-free rate determines a growth of the call price:

𝜕𝑐

𝜕𝑟
= 𝑇𝑋𝑒−𝑟𝑇𝑁{

ln (
𝑆
𝑋) + [𝑟 − (

𝜎2

2
)] 𝑇

𝜎√𝑇
} > 0

This property is extremely similar to the previous one. By increasing the discount rate, the present

value of the sum discounted diminishes.

• Finally, the variance and the price of the option are positively correlated. By increasing the

first, also the second follows its path.

𝜕𝑐

𝜕𝜎2
= 𝑋𝑒−𝑟𝑇𝑁′{

ln (
𝑆
𝑋) + [𝑟 − (

𝜎2

2
)] 𝑇

𝜎√𝑇
}
√𝑇

2𝜎
> 0

 The idea is that an increase in the variability of the rate of return makes large positive price

 movements more likely to happen. Of course, also the probability of large negative changes

 rises but, since the price cannot be negative, this has overall a positive effect on the price of

 the call.

By merging together all the previous results and ideas, it is possible to derive a theoretical graph of

how the Black and Scholes price evolves considering changes of the underlying prices, a fixed

interest rate, a constant variance rate, and a given time to maturity.

17

Figure 2 - Evolution of Black and Scholes call option price for different underlying asset values (source: Journal of
Financial Economics)29

We can observe that the Black-Scholes price lies between two extremes: the maximum possible

value, 𝐶 = 𝑆30, and the minimum price, 𝐶 = max⁡(0, 𝑆 − 𝑋𝑒−𝑟𝑇).

 1.4 Extensions of the model

Having said that, we can now consider the most popular extensions of the model. Specifically, we

will focus on Merton’s adjustment for dividends, since the model we will use as a benchmark to test

the performance of our neural network will be the Black-Scholes-Merton model. First of all, we need

to clarify that papers following the first publication of the Black and Scholes article had a twofold

objective. On one side, they wanted to assess the goodness and the reliability of the model by

testing it both from a theoretical and an empirical point of view. On the other side, they tried to

relax one of the several assumptions that Black and Scholes had made, analyzing and testing the

robustness of the equation31.

We already said that Merton was able to prove that if a stock pays no dividends, then it will not

make any economic sense to early exercise a call option written on it. Consequently, for non-

dividend paying stocks the Black-Scholes pricing model may be applied to evaluate also American

options. Merton then moved on with his research by improving the original model. One of the key

assumptions of the pricing equation was the fact that the asset did not pay any dividend over the

life of the option. However, Merton was able to relax this condition by assuming a special dividend

policy. Specifically, he supposed that dividends were paid continuously. With this restriction the

dividend yield, 𝛿, became constant over time. So, it was possible to compute the riskless portfolio

in the usual way. However, in this case, the stock return was given by two factors: the return itself

and the dividends yield. Therefore, the change in the value of the hedge portfolio can now be

expressed as:

29 “Option pricing, a review” by C. W. Smith, Jr, Journal of Financial Economics, Vol. 3, pp. 3-51 (1976).
30 We are excluding for simplicity the extreme case in which 𝑆 = 0.
31 A summary discussion about the most important adjustments to the BS equation is provided by Haug (2007).

18

𝑑𝛱𝐻 = 𝑄𝑠(𝑑𝑆 + 𝛿𝑆𝑑𝑡) + 𝑄𝑐 (
𝜕𝑐

𝜕𝑆
𝑑𝑆 +

𝜕𝑐

𝜕𝑡
𝑑𝑡 +

1

2

𝜕2𝑐

𝜕𝑆2
𝜎2𝑆2𝑑𝑡)

Again, by taking into consideration a proper number of shares and calls, it is possible to make the

hedge riskless. Setting 𝑄𝑠 =
𝜕𝑐

𝜕𝑆
 and 𝑄𝑐 = −1 the change in the value of the portfolio becomes:

𝑑𝛱𝐻 =
𝜕𝑐

𝜕𝑆
𝛿𝑆𝑑𝑡 − (

𝜕𝑐

𝜕𝑡
+
1

2

𝜕2𝑐

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡

Since in equilibrium no arbitrage opportunities may be detected, the hedge portfolio must earn the

riskless interest rate. Therefore, considering 𝑟 = 𝜌 + 𝛿 the price of the call becomes:

𝑐 = 𝑒−𝑟𝑇∫ (𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 − 𝑋)𝐿′(𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛)𝑑𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
∞

𝑋

Relying on the theorem and setting 𝜆 = 𝛾 = 𝑒−𝑟𝑇 and Ψ = 1 we get:

𝑐 = 𝑒−𝛿𝑇𝑆𝑁{
ln (

𝑆
𝑋) + [𝑟 − 𝛿 + (

𝜎2

2
)] 𝑇

𝜎√𝑇
} − 𝑒−𝑟𝑇𝑋𝑁{

ln (
𝑆
𝑋) + [𝑟 − 𝛿 − (

𝜎2

2
)] 𝑇

𝜎√𝑇
}

which is the solution for the European-style call option pricing problem in case the stock does pay a

continuously compounded dividend yield, 𝛿. Note that, since dividends are paid, this equation is not

appropriate in valuing American options, because in that case an early exercise is possible.

By defining two new variables 𝑑1 and 𝑑2:

𝑑1 =
ln (

𝑆
𝑋) + [𝑟 − 𝛿 + (

𝜎2

2
)] 𝑇

𝜎√𝑇

𝑑2 =
ln (

𝑆
𝑋) + [𝑟 − 𝛿 − (

𝜎2

2
)] 𝑇

𝜎√𝑇

It is possible to express the result in a more compact way:

𝑐 = 𝑆𝑒−𝛿𝑇𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2)

Other useful extensions of the original model have been proposed over time. It is interesting to

notice that they have all been developed following a similar procedure. Once a proper setting was

defined, the researcher proceeded by relaxing one of the assumptions made by Black and Scholes.

Just to mention a couple of examples, Merton further generalized the model considering a variable

interest rate instead of a constant yield, and Ingersoll (1975) modified the model to account for

taxes and transaction costs.

By removing the assumption on the stock price dynamics, things become a lot more complicated. In

particular, we have already seen that the most common settings are the ones that assume the price

movements to be generated by an Arithmetic Brownian motion or a Geometric Brownian motion.

The problem is that these models are fine only when applied to continuous data and, in reality, this

19

is not always the case. An alternative specification which allows for discrete scenarios is to assume

the price dynamics to follow a Poisson process. According to it, the stock value will jump to a new

level in each period of time with a low probability32. Note that the Poisson distribution is a good

choice since a corollary to Itô’s lemma can be exploited to differentiate such processes.

So far, we have only focused on call options. Therefore, a question should spontaneously arise: what

about put options? Following the same procedure adopted for call options, Merton was able to

develop some equilibrium conditions on the value of a put. From the stochastic dominance

argument Merton derived that the value of a put option at expiration has to be equal to either the

difference between the strike price and the underlying price or zero:

𝑃(𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛, 0, 𝑋) = 𝑝(𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛, 0, 𝑋) = max(0, 𝑋 − 𝑆𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛)

If we suppose borrowing and lending rates to be the same, the cost of a European put option can

be expressed as the value of a portfolio made of a European call option with the same characteristic

as the put, plus a riskless bond with a face value of X and a short position in the underlying asset. In

order to show this relationship, let us consider the following two portfolios I and L:

• I: buy one share of the stock, one European put option, and X dollars borrowed for T time

periods.

• L: long one European call with the same underlying asset, expiration, and strike price as the

put.

 𝑆𝑡𝑜𝑐𝑘⁡𝑝𝑟𝑖𝑐𝑒⁡𝑎𝑡⁡𝑇 = 0

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑣𝑎𝑙𝑢𝑒 𝑆𝑒𝑥𝑝 ≤ 𝑋 𝑆𝑒𝑥𝑝 > ⁡𝑋

𝐼 𝑆 + 𝑝(𝑆, 𝑇, 𝑋) − 𝑋𝐵(𝑇) 𝑆𝑒𝑥𝑝 + 𝑋 − 𝑆𝑒𝑥𝑝 − 𝑋 𝑆𝑒𝑥𝑝 + 0 − 𝑋

𝐿 𝑐(𝑆, 𝑇, 𝑋) 0 𝑆𝑒𝑥𝑝 − 𝑋

⁡𝐹𝑖𝑛𝑎𝑙⁡𝑣𝑎𝑙𝑢𝑒 𝛱𝐼 = 𝛱𝐿 𝛱𝐼 = 𝛱𝐿

Table 4 - Proof that a portfolio made of one share of stock, one European put, and X dollars borrowed for T periods
provides a final value equal to that of a European call with the same strike price and time to expiration

To avoid dominance, the call option has to be priced so that:

𝑐(𝑆, 𝑇, 𝑋) ≤ 𝑆 + 𝑝(𝑆, 𝑇, 𝑋) − 𝑋𝐵(𝑇)

where B(T) is the current value of one dollar payable in T years from now.

Of course, it is possible to rewrite the inequality in terms of the put value by considering two

different portfolios M and N:

• M: long a European call, X riskless bonds and short the stock.

• N: long a European put with the same features as the call.

32 A simple version of a Poisson process can be seen as:

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + (𝛾 − 1) with probability 𝜆𝑑𝑡, and

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 with

probability (1 − 𝜆)𝑑𝑡. The 𝜆 parameter is the intensity of the process while 𝛾 − 1 is the magnitude of the movement.

20

 𝑆𝑡𝑜𝑐𝑘⁡𝑝𝑟𝑖𝑐𝑒⁡𝑎𝑡⁡𝑇 = 0

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐶𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑣𝑎𝑙𝑢𝑒 𝑆𝑒𝑥𝑝 ≤ 𝑋 𝑆𝑒𝑥𝑝 > ⁡𝑋

𝑀 𝑐(𝑆, 𝑇, 𝑋) − 𝑆 + 𝑋𝐵(𝑇) 0 − 𝑆𝑒𝑥𝑝 + 𝑋 𝑆𝑒𝑥𝑝 − 𝑋 − 𝑆𝑒𝑥𝑝 + 𝑋

𝑁 𝑝(𝑆, 𝑇, 𝑋) 𝑋 − 𝑆𝑒𝑥𝑝 0

⁡𝐹𝑖𝑛𝑎𝑙⁡𝑣𝑎𝑙𝑢𝑒 𝛱𝑀 = 𝛱𝑁 𝛱𝑀 = 𝛱𝑁

Table 5 - Proof that a portfolio made of one European call, a bond with a face value of X, and one share of stock sold
short provides a final value equal to that of a European put with the same strike price and time to expiration

According to the stochastic dominance principle, the put has to be worth not less than:

𝑝(𝑆, 𝑇, 𝑋) ≤ 𝑐(𝑆, 𝑇, 𝑋) − 𝑆 + 𝑋𝐵(𝑇)

This means that, assuming the borrowing and lending rate to be the same, a European put must be

priced so that:

𝑝(𝑆, 𝑇, 𝑋) = 𝑐(𝑆, 𝑇, 𝑋) − 𝑆 + 𝑋𝐵(𝑇)

This is an extremely important relationship in the derivatives field and, by expressing it in a slightly

different way, it becomes the well-known put-call parity.

𝑃𝑢𝑡 − 𝐶𝑎𝑙𝑙⁡𝑝𝑎𝑟𝑖𝑡𝑦:⁡⁡𝑝(𝑆, 𝑇, 𝑋) + 𝑆 = 𝑐(𝑆, 𝑇, 𝑋) + 𝑋𝑒−𝑟𝑡

where 𝐵(𝑇) = 𝑒−𝑟𝑡.

From this point, relying on the same restrictions applied for the call option case, it is possible to

derive a series of conditions that have to be met in order to ensure efficiency and to avoid arbitrage

opportunities. In particular, the price of a European put cannot be greater than the one of a zero-

coupon bond with face value X33:

𝑝(𝑆, 𝑇, 𝑋) ≤ 𝑋𝐵(𝑇)

Moreover, an American put option cannot be traded at a lower price than the corresponding

European counterpart:

𝑃(𝑆, 𝑇, 𝑋) ≥ 𝑝(𝑆, 𝑇, 𝑋)

Furthermore, since, differently from the call option case, when we consider a put option the

probability of an early exercise is never zero, either if the asset does or does not pay any dividend,

the American put option price should be strictly greater than the corresponding European one34.

33 This is the same as the condition on the call option saying that a call price cannot be greater than the underlying stock
price.
34 Suppose for instance that the underlying asset price falls far below the strike price, the maximum value that the put
can deliver is, in any case, X and it will be obtained only if the stock value reaches zero. If the put can be early exercised,
a risk-free bond can be purchased allowing the investor to earn the corresponding interest rate. For extreme cases, such
as the one above described, the return provided by holding the put can be lower than the one we may obtain through
an early exercise and the subsequent purchase of the bond. Therefore, the put may be more valuable if exercised.

21

Given the Black and Scholes assumptions, the value of the European put, assuming a Geometric

Brownian motion, is:

𝑝 = 𝑋𝑒−𝑟𝑇𝑁{
− ln (

𝑆
𝑋) − [𝑟 + (

𝜎2

2
)] 𝑇

𝜎√𝑇
} − 𝑆𝑁{

− ln (
𝑆
𝑋) − [𝑟 + (

𝜎2

2
)] 𝑇

𝜎√𝑇
}

All we have to do to modify the model and make it able to deal with dividends, etc. is to substitute

the appropriate solution already derived.

Considering the previous expressions of 𝑑1 and 𝑑2 it is then possible to compactly express the price

of a European put as:

𝑝 = 𝑋𝑒−𝑟𝑇𝑁(−⁡𝑑2) − 𝑆𝑁(−⁡𝑑1)

 1.5 Drawbacks of the model

Now, we should have a clear understanding of how the Black-Scholes model works, and in theory

we should be able to correctly price any European option, once the required inputs have been

provided. Remember that this discussion was started after having observed the increasing

importance of this derivative instrument in today’s financial markets, and consequently the need

for a correct and efficient pricing formula. The next step will focus on explaining the most important

drawbacks of this equation, which derive from the fact the model is built on non-real life

assumptions, and will introduce the reasons why we need to develop more sophisticated, usually

numerical, solving methods for addressing this kind of problems. Indeed, it should be obvious that

the simplifying assumptions the model is based on often fail to meet real market data.

Let us start by presenting the easiest limitations for which a satisfactory solution has already been

derived. Then we will move to the restrictions which are harder to tackle.

We know that the original model presented by Black and Scholes assumes a constant and known

interest rate. In particular, given the no-arbitrage condition, the considered rate is the risk-free one.

The problem in this case is twofold, since in the real world there is no such thing as a completely

riskless asset, and interest rates are not constant over time, but they tend to change following

macroeconomic events or changes in market volatility35. However, we already know that Merton

et. al (1976) were able to introduce an adjustment which allows the model to deal with a variable

interest rate.

A problem of the same magnitude is the one set by the no-dividend assumption and, even in this

case, Merton (1975) was able to derive an analytical solution which makes the model suitable for

securities paying dividends. However, also this new equation relies on some strong assumptions. In

particular, it defines a continuously paid dividend yield which is supposed to be fixed over time.

35 Despite this, it is still possible to detect some assets, like for instance long-term U.S. Government bonds, which are
good substitute of theoretically risk-free securities.

22

Therefore, even this approach lacks the ability to deal with the evolution of dividend policies we

usually observe in real world scenarios36.

The assumption regarding the absence of transaction costs is strictly correlated with what has just

been said. The model assumes the market to be frictionless, however in reality things are not that

easy, and we have to account for commissions, fees, spreads and other transaction costs, including

the time delay for the execution of an order, which may translate in practice into the impossibility

of reaching a perfect hedge. About this, it is worth mentioning that Grossman and Zhou (1996)

showed that the volatility behaviour depends, to a certain degree, also on the volume of the trade

and the transaction costs, and not only on the stock price dynamics. Remember that, as already

told, Ingersoll (1975) modified the model to account for taxes and transaction costs.

Other limitations that do compromise the investor’s ability to construct the hedge portfolio

described by Black and Scholes are the presence of arbitrage opportunities in financial markets and

the illiquidity of some securities. On one hand, one prerequisite of the pricing equation is the one

derived by Merton relying on the stochastic dominance principle: in equilibrium arbitrage

opportunities cannot exist. However, many papers have showed empirically that this assumption is

quite often violated. Arbitrages do exist and they can be exploited, see for instance Ambrož (2002).

Of course, a model which does not account for this possibility has a strong limit and may lead to

abnormal results. On the other hand, the model assumes that an investor can buy and sell any

number of stocks and options without any limitations37. Again, this is not coherent with what we

observe in reality, where one is bounded by various factors: buying power, market liquidity,

institutional factors38, available shares, regulations, and so on.

Note that even if it may not seem so important, this is a crucial assumption when it comes to the

real world. Therefore, assuming perfectly liquid markets is not only unrealistic, but can also be

fatal39.

Another problem of the former formulation is the fact it only considers European-style options.

While in the case of American-style call options on non-dividend paying assets the model is still valid,

for put contracts and calls written on dividend paying stocks this is not true anymore, and extending

the result is not always straightforward and can indeed require complex pricing techniques40.

The last two drawbacks deriving from the Black and Scholes model assumptions regard the process

generating the prices and the volatility.

We already saw that the price dynamic is usually determined by exploiting an Arithmetic Brownian

motion or a Geometric Brownian motion. According to these models the asset prices rise and fall

due to unobservable circumstances. The problem in this case is that with a random walk the price

of the underlying can go up or down, at any point in time, with the same probability and magnitude.

36 Usually, we expect dividend to increase over time. However, in problematic situations they can also decrease or be
canceled.
37 In terms of quantities, trading hours, etc.
38 Like for instance the “possibility of extension”, meaning the potential increasing of the life of the contract. See
Longstaff (1990) as an example.
39 One should take as an example what happened in 2007-2008.
40 Note that also in these cases the pricing task requires preliminary assumptions concerning the behaviour of the
underlying asset.

23

This is usually not the case, since stock prices are determined by a lot of different factors that affect

these probabilities in complex and usually asymmetric ways. Furthermore, with these model

specifications we are implicitly saying that the price movement at time 𝑡 + 1 is independent from

the movement of the price at time 𝑡41, however in reality price movements tend to exhibit a positive

correlation.

At this point, we have to recall that in the Black and Scholes paper they chose to rely on the normal

distribution42. The problem is that the results provided by the model are strictly dependent on the

distributional form chosen for the equation. Therefore, once a distribution has been applied, the

model is locked in by that choice. It means that, even assuming the normal distribution to be able

to correctly deal with market data, and, in reality, this is often not true, the results will always be

bounded by this restriction. Obviously, this is a huge problem, since empirical analyses43 have clearly

showed that prices and returns tend to display “strange” behaviours which cannot be harmonized

with a normal distribution, such as:

• heavy-tailed returns44,

• positive correlations of the squared returns,

• changing volatility,

• volatility clustering.

Note that since most of these limitations are about fundamental aspects of the market, it is

necessary, in order to provide accurate and reliable predictions, to come up with more sophisticated

models. So far, many different formulas, trying to capture all these features, have been proposed.

However, we can only attempt to capture most of the aspects, since it would be virtually impossible

to transpose every relevant factor in a closed-form formula which can be analytically solved. As we

will see in a moment, this is the reason why we are more and more interested in developing

numerical methods, such as neural networks.

The last and most serious problem arising from the Black and Scholes model regards the volatility.

We already know that this is the only unobservable variable in the formula; therefore, its estimation

is a crucial aspect which has attracted more and more interest over time45.

We all know that volatility is a measure of how much an asset can be expected to move in a certain

period of time. Considering options, it is possible to define a first main distinction between historical

volatility and implied volatility:

41 This is the martingale property of the Brownian motion.
42 This is already a mistake since according to Hull’s research, empirical data have showed that returns tend to be
“leptokurtic”, meaning they have a much higher probability of exhibiting outliers than would be the case if they were
truly normally distributed.
43 Consider for instance Teneng (2011) who proved that the Black and Scholes model fails to correctly address many
aspects of real data.
44 Securities returns tend to show finite variance and semi-heavy tails which is in contrast to stable distributions like log-
normal with tend to display infinite variance and heavy tails (Clark, 1973).
45 Limiting the volatility modeling to the derivatives pricing field still leaves many different models. Grouping them
according to their basic assumptions we can define the following categories: historical volatility, stochastic volatility,
volatility term-structure, volatility surface models, and non-parametric volatility.

24

• Historical volatility, sometimes called statistical volatility, is a sort of past-looking metric

which is defined as either the observed standard deviation or the observed variance46 of the

price changes of the underlying asset over a specified period of time.

• Implied volatility instead, also called projected volatility, is a forward-looking measure which

tries to estimate how volatile the underlying security will be in the near future. It is derived

from the quoted option prices. In particular, relying on a pricing model and exploiting the

information provided by the current value of an option, it is possible to solve the equation

and to compute the volatility the market is currently pricing.

So, while historical volatility refers to the observed past data, implied volatility represents the

market expectations. Therefore, there is a huge advantage in using the implied volatility, since it

relies on present market data instead of historical observations. Furthermore, many papers have

proved that relying on historical volatility can be a huge mistake, since the past conditions may be

significantly different from the current ones, see for instance Černy (2008).

The drawback of the Black and Scholes former model is the fact it assumes a constant volatility over

time. Empirical studies have indisputably proved that the constant volatility assumption is not met

when we consider real financial data. Moreover, it has been showed that it is the violation of this

restriction which generates the most significant mistakes in the pricing task.

In any case, we have to make some distinctions. Indeed, even if it is true that volatility changes over

time, the magnitude of the changes is not always the same. In particular, if we consider a short-term

horizon, volatility seems to be relatively constant. If instead we increase the length of the analyzed

period, this behaviour is disrupted. In other words, this measure shows some positive partial

correlation: in the short-term, large price changes tend to be followed by large movements, and

vice versa. This is a property called volatility clustering47.

Note also that volatility measures are usually negative correlated with asset price returns. Indeed,

analyses on real data have showed that security volatilities tend to decrease as the stock prices rise,

Christie (1982); this is the so-called leverage effect.

Taking into account all what has been said so far, we should not be surprised in hearing that when

applying the Black-Scholes model to real data, the results provided by the pricing formula present

some systematic differences with respect to the observed prices. In particular, when we plot the

implied volatility determined by options with the same time to maturity but different strike prices

or different moneyness, the graph that will be created is referred to as the volatility smile. This

means that the pricing differential equation is better in estimating the price of at-the-money options

than the ones of ITM and OTM options48.

We can see a graphical representation of this pattern in Figure 3:

46 Also, other variability measures can be used, but these two are by far the most common ones.
47 Nowadays, a common way to deal with such a behaviour is thorough the use of generalized autoregressive conditional
heteroskedasticity models, i.e., GARCH models.
48 See for example Campa, Chang and Reider (1998) or Rosenberg (1997). However, it has to be said that ATM options
are the most traded ones.

25

Figure 3 – Example of volatility smile (source: National Bureau of Economic Research) 49

Note that smiles and other recurrent biases50 we come in touch with when applying the Black and

Scholes model are often attributed to departures from the original assumptions.

To conclude this first chapter, we can say that, regardless of its considerably limiting assumptions,

the Black and Scholes model is still widely used by investors to price European-style options, and it

is still one of the most fundamental equations in the derivative field.

Over time, many refined versions of the original formula have been proposed to improve the model

accuracy by removing some of its key restrictions. Among all the assumptions, we have seen that

the most serious and problematic is the one concerning the volatility, both because it is the one

impacting the most on the results, and because it is the hardest to tackle. With this regard, a lot of

possible solutions have been developed in the attempt to include a non-constant volatility in the

model, either in a deterministic or in a stochastic way. Nevertheless, so far there is no such thing as

a general formula which is recognized to be universally applicable. However, it is also true that some

of the assumptions introduce a small limitation which can be seen as insignificant, and therefore

the Black and Scholes model can be considered a good pricing model which provides approximately

correct estimates of option prices. Yet, it is characterized by some serious problems and the

systematic presence of biases cannot be ignored. Therefore, having observed the constantly

increasing importance of this kind of financial instruments, we understand the pressing need for

more advanced pricing tools which allow for better estimates both in terms of accuracy and time

efficiency.

As already told, it will be virtually impossible to account analytically for all the relevant aspects

determining the price of an option, however, relying on the expanding computational ability of

computers and the huge amount of available data, nowadays it is possible to take a different path

and exploit numerical solving techniques and machine learning algorithms which do not provide

analytical closed-form solutions but extremely precise approximations instead. The next chapter will

49 Note that the figure comes from the paper “Implied exchange rate distributions: evidence from OTC option markets”
by Campa et al. (1998) and it regards one-month deutschemark options for five different strikes on April 3, 1996.
50 For instance, it is possible to identify a systematic bias in the pricing of ATM options with short-time maturities. In
particular, Black (1975) said that “Options with less than three months to maturity tend to be overpriced” by the Black
and Scholes formula, and other economists confirmed it. See for example Bodurtha and Courtadon (1987).

26

focus precisely on presenting these new concepts and how they can be applied to the task of option

pricing.

27

Chapter 2 Machine Learning and Artificial Neural Networks

In this Chapter Machine Learning (ML) and Artificial Neural Network (ANN) models are presented.

Specifically, the first section introduces the concept of machine learning, the most popular

techniques and the classifications that it is possible to apply to such models. Paragraph 2.2 instead

is mainly focused on the historical development of ANNs, presenting both the theoretical

foundations and the mathematical formulation that have been proposed over time. Finally, in the

third part of the Chapter the functioning and the most important characteristics of these algorithms

are described, paying, at the same time, close attention to the solutions that can be implemented

to deal with the main drawbacks of such models.

 2.1 Introduction to Machine Learning

We concluded the previous chapter making clear that closed-form models may not be the most

efficient way to follow when trying to develop methods for solving complex problems, such as

option pricing. Indeed, analytical solutions always require preliminary assumptions which inevitably

make the model unrealistic and, to a certain degree, abstract from reality; therefore, they usually

lead to unsatisfactory results. With this regard, an alternative procedure consists in not trying to

provide an exact analytical solution but a reliable numerical approximation instead.

In order to achieve this objective, many artificial intelligence (AI) systems and machine learning (ML)

algorithms have been developed in the past decades51. What do we refer to when using these

terms? Answering the question is not an easy task. Indeed, “The definition of machine learning is

inchoate, and it is often context specific.” (Gu, Kelly and Xiu, 2020). According to Arthur Samuel

(1959) machine learning is “the field of study that gives computers the ability to learn without being

explicitly programmed”. Therefore, we can summarize by saying that machine learning methods are

techniques used to teach computers how to handle data in a more efficient manner exploiting a sort

of self-improvement approach.

Providing a more formal definition, these are data-driven models which try to mimic intelligent

behaviours existing in nature52 with the aim of solving problems in a nonparametric way, relying on

a collection of high-dimensional formulas, combined with regularization techniques and algorithms

for efficient model selection.

The first difference with traditional methods is therefore the high-dimensional nature of machine

learning systems, feature that helps explaining the huge degree of flexibility of these kinds of

51 Preliminary distinction: the term Artificial Intelligence refers to the theory and the development of computers able to
perform tasks normally requiring a human intelligence. The concept of Machine learning instead applies to a branch of
AI that aims at providing machines the ability to automatically learn from data and past experiences.
52 For instance, Genetic Algorithms (GA) are inspired from the way in which genes and chromosomes reproduce and try
to exploit the concept of natural selection and survival of the fittest. Particle Swarm Optimization (PSO) is a
computational technique that aims at optimizing a process by iteratively improving a candidate solution copying the
movement of organisms in a bird flock or fish school. Neural networks (NN) take inspirations from the human brain, and
so on.

28

models. As already told, ML algorithms follow a data-driven approach, meaning their structure

evolves according to the data we feed them with, in a way that tries to maximize the use of the

existing information. Moreover, responding to structural changes in the process generating the

observation and not being fixed at priori, these algorithms are able to deal with any kind of process,

even highly nonlinear, making them an extremely flexible tool and a “universal approximator”.

Finally, since they do not rely on any previously specified assumption, they tend to be much more

robust to specification errors which do plague closed-form formulas instead.

Of course, all these advantages do not come without a cost. Indeed, machine learning techniques

require extremely large quantities of data to properly train the algorithms and computers with a

sufficiently strong computational ability to perform all the required operations in a time efficient

and manageable way. Fortunately, nowadays, thanks to the success of computer science53 and the

huge amount of data availability, these two problems can be partially solved. Therefore, the

drawbacks of such methods have to be sought elsewhere. In particular, being so flexible and relying

so much on past data, machine learning techniques have a high propensity to overfitting, meaning

that they tend to produce results that represents too well a specific set of data and fail to generalize

additional observations, i.e., their predictive power is not reliable. However, we will see that

regularization techniques may be exploited to prevent this kind of behaviour, reducing the impact

of overfitting.

It is possible to classify these systems along many different dimensions. For instance, we can provide

a classification based on the operating principle exploited by the learning algorithm. As an example,

we can think about decision trees, which try to learn by discriminating among classes of objects, or

neural networks which instead learn by adjusting and continuously improving the weighting

coefficients they rely on54. An alternative is to organize these models according to the task they try

to solve. In particular, a macro distinction in this case is between classification and regression

problems. In the first case, the algorithm assigns distinct labels to the observed data according to

some relevant characteristics, while in the second case it tries to provide correct estimates of the

analyzed variables55.

It should be noted that both problems concern option pricing. For instance, “one possible

application of classification is the decision of whether to exercise an American option early” (Hahn,

2014), while for regression-type problems, it is sufficient to remember that the aim of this thesis is

exactly to provide a model for option pricing.

A third distinction regards the domain for which the knowledge is acquired (Carbonell, Michalski

and Mitchell, 1983). Indeed, machine learning is a multidisciplinary concept which comes in touch

with a lot of different areas and has many practical applications. Just to mention, nowadays machine

learning helps making medical diagnoses and has various uses in a lot of different fields such as

agriculture, engineering, and finance. Furthermore, these algorithms are used for several tasks like

image and speech recognition, spam identification, self-driving cars and so on. These are just few

53 The emergence of GPUs leads to significant improvements in the performance of computers and makes working with
big data easier.
54 See for instance Vanstone and Hahn (2010).
55 Therefore, a classification problem arises when the output is a category while a regression problem is present when
the result is a real continuous value.

29

examples of possible applications of machine learning systems, but of course this is by no means an

exhaustive list, since these algorithms affect potentially every aspect of our life by now.

In any case, the most important categorization is the one based on the underlying learning

methodology the algorithm uses. Actually, depending on the data availability and the amount of

inference the learning system performs, we can identify three basic families of machine learning:

• Supervised learning (SL),

• Unsupervised learning (UL),

• Reinforcement learning (RL).

The goal of supervised learning is to detect a function able to link the input features, namely the

explanatory variables, to the output values, also called labels56, by exploiting the information

contained in the available data. Therefore, it tries to infer the unknown connection that may exist

between the provided input-output pairs. In particular, supervised learning requires that the data

we feed to the algorithm are correctly labelled/classified, meaning we know every useful

information about the data except for the relationship that maps the input to the outputs.

Having said that, it should be clear that during a supervised learning procedure the model will always

be able to check if either its classification or its prediction is correct. The model learns from the

training dataset, i.e., the labeled data, by comparing its predicted output to the true output, and

evolving its structure accordingly. Then, once the model has been sufficiently trained, it can be used

to predict or classify any new, future, unseen observation.

At this point we can ask ourselves when is it possible to say that the model has been properly

trained? Or better, how do we measure the model precision?

There exist several alternatives to define accuracy measures but, in general, machine learning

algorithms rely on a so-called loss function, also known as cost function. This function simply

quantifies the difference between the true value provided by the available data and the output

estimated by the model. Of course, the goal of the algorithm is to minimize this difference making

the cost function as small as possible.

We already mentioned that there are many possible machine learning models which can be

implemented to solve different kind of problems. With this regard, Mahesh (2019) said that there

is “no single one-size-fits-all type of algorithm that is best to solve a problem”. Therefore, the

algorithm we are going to use depends on the nature of the problem we are trying to solve. Critical

elements that guide us in selecting a model over another are the number of variables we have to

deal with, the quantity and quality of the available data, the level of precision we need, etc.

Now, it is worth mentioning some of the most famous and widespread supervised machine learning

algorithms, which are:

• Decision tree: The core idea is to represent the possible choices and their results in form of

a tree with nodes and mutually exclusive branches. Each node represents a feature of a

group that has to be classified and each branch represents the value that a node can take.

56 Both input and output variables can be quantitative or categorical quantities, Hastie et al. (2009).

30

A generalization of such approach is called “random forest” and simply consists in

considering together many decision trees.

• Support vector machine (SVM): This is one of the most robust prediction methods currently

available. Its functioning is quite simple, provided a set of labeled data the SVM algorithm

builds a model that assigns new examples to one category or the other. Relying on the so-

called “Kernel trick”, or Kernel adjustment, SVMs are able to perform even highly non-linear

classifications.

• Artificial neural network (ANN): We will see it in detail in the next paragraphs57.

At the extreme opposite of supervised learning there is unsupervised learning. The main differences

are that in this second case the input features are not labeled, and the correct output is not known

a priori58. Therefore, while in SL the algorithm is taught by the provided input-output pairs and there

is a sort of external assistance which reduces the amount of inference the model has to perform, in

UL this is not true, and the algorithms are left on their own in discovering particular structures and

patterns present in the data.

Of course, the different nature of the learning procedure also affects the tasks that these methods

are employed to solve. Indeed, unsupervised machine learning models are mainly focused on

approximately learn the distribution of the data in the space, meaning they try to recognize

recurrent patterns and group together similar observations59. Hence, instead of providing a precise

estimate of a variable such systems help in developing a better understanding of the environment

from which the data are extracted, thus they are primarily used for clustering and feature reduction

(Hull, 2021).

The most common unsupervised learning algorithms are:

• K-means clustering. The main idea is to define k centers, where k is the number of clusters

we need in our classification task. These centers should be located in an efficient and smart

way since their location affects the result. The best choice is to place them as far away one

from the other as possible. Then each data point is associated with the nearest center. Once

it has been done, k new centroids are computed exploiting the new incorporated

information and the process is repeated iteratively.

• Hierarchical clustering. Also known as hierarchical cluster analysis, it is an algorithm that

starts by considering each observation as a separate cluster. Then, it identifies the two

clusters that are closest together and merges them. The procedure continues until all the

clusters are merged or until the result is satisfactory enough60.

• Principal Component Analysis (PCA). It is a statistical method that uses orthogonal

transformations to convert a set of possibly correlated variables into a set of values of

57 Note that the structure of an ANN makes it a hybrid able to deal with both supervised and unsupervised learnings.
58 See for instance Hull (2021).
59 This task is also known as Data Clustering and nowadays it is extremely important in a lot of different applications
such as market and consumer analysis and classification.
60 As for all the others machine learning algorithm, a crucial point is the definition of a stopping criterion which can be
based on a satisfactory measures or different rules such as the maximum number of iterations.

31

linearly uncorrelated measures called principal components. It is used to perform a change

of basis on the data, and therefore it is often exploited as a dimension reduction technique61.

Lastly, reinforcement learning. This is the area of machine learning which is closer to how humans

learn since it is based on a sort of “trial and error” learning procedure. Indeed, in these kinds of

models the learner improves its knowledge by exploiting what it has already learnt and exploring

new opportunities with the aim of achieving better and better results62. In particular, RL is

concerned with how agents should act in a given environment in order to maximize some notion of

cumulative reward. Already from this definition we notice some important distinctions with the

previous learning paradigms since reinforcement learning is not a static concept but a dynamic one.

It differs from supervised learning and unsupervised learning because it is not focused on the

present result, but instead it tries to maximize the summation of both current and future rewards.

In practice, reinforcement learning methods try to solve a given problem by taking subsequent

actions in a given environment63. As consequence of such actions, the agent, meaning the model,

receives from the surrounding environment negative or positive rewards which represent

informative signals. Then, on the basis of these signals, the ML method improves its knowledge of

the environment dynamics64 and, after a proper number of iterations, approximately learns the

optimal policy to follow, i.e., the optimal sequence of actions that maximizes the cumulative

rewards.

We can conclude by highlighting the fact that reinforcement learning methods are the most

powerful learning procedures among the ones presented, but they are also the most difficult to

implement65. Therefore, it should not surprise us to know that supervised learning is by far the most

widespread learning paradigm.

So far, we have introduced a lot of different machine learning methods to the point that someone

could argue “which model should we use?” As already told, a thing such as a general answer

applicable in every possible situation does not exist. Indeed, specific problems require specific

solutions and the characteristics of the algorithm we aim to implement are a critical aspect to

consider with this regard. However, there is some empirical and theoretical evidence that comes to

our rescue. In particular, Banko and Brill (2001) proved that the performance of different learning

methods on a natural language disambiguation task tends to converge with the increase of the input

data66. Moreover, they showed that the performances of these algorithms increase all in a sort of

monotonical way so that if you pick an “inferior algorithm”, meaning a model that tends to display

poorer performances than the others, and give it more data, then it looks like it will most likely beat

every other “superior algorithm”.

61 From: “Machine learning algorithms – a review” by Batta Mahesh (2019).
62 See for instance Sutton et al. (2018).
63 With given environment we simply mean that the environment is well defined. It does not mean that the environment
is fixed or constant over time, indeed it can change but following the specified rules.
64 In other words, thorough these interactions the agent learns the state of the environment.
65 This is the reason why we do not provide a list of such algorithms. Indeed, they vary a lot from company to company.
A couple of examples are the Asynchronous Advantage Actor-Critic (A3C) developed by Google’s DeepMind group and
the Trust Region Policy Optimization (TRPO) or the Proximal Policy Optimization (PPO) from OpenAI.
66 “Scaling to very large corpora for natural language disambiguation” by M. Banko and E. Brill (2001).

32

It is to be noted that since this original paper there have been a lot of different studies showing

similar results. Therefore, we can say that what can really drive the performance and the quality of

the learning procedure is, in large part, the amount of training data we can provide to the model,

as we can see in Figure 4. To show the pervasiveness of this kind of algorithms in different fields and

the fact they are multidisciplinary tools, we can mention that Figure 4 comes from a paper of

Hanczar et al. (2020) where an artificial neural network is exploited in helping to take clinical

decision.

Figure 4 - Accuracy of different learning algorithms as a function of the training set size (source: BMC Bioinformatics)67

Which model should we use, then? Even if it is true that by increasing the training set size we can

obtain similar results, until now we have not taken into account the specific nature of our problem.

In particular, we need to remember that our goal is to develop a machine learning system able to

provide correct and reliable estimates for the price of option contracts. Therefore, it is a regression

problem. This information alone already enables us to shrink the number of models to consider,

indeed it would not be efficient to rely on algorithms such as decision tree or random forest since

they are more suitable for classification tasks. Furthermore, in our process we will feed the machine

labeled input-output pairs, meaning we will exploit the supervised learning paradigm. Finally, given

the particular features of our problem, meaning the multi-dimensionality and the high nonlinearity

of the model, we will have to rely on an algorithm able to deal with such characteristics.

To draw a preliminary conclusion in order to summarize what has been said so far, we can state that

while a large number of models exist for regression problems68, they are not all applicable to the

special case of option pricing. Regarding this specific task, the most frequently used machine

learning algorithms are artificial neural networks (ANNs). As a matter of fact, neural networks have

been found to perform well in a lot of applications where other models have failed. Especially, when

it comes to forecasting financial market variables characterized by non-stationarity, non-linearity

67 The figure comes from the paper “Biological interpretation of deep neural network for phenotype prediction based
on gene expression” by Hanczar et al., BMC Bioinformatics, Vol. 21, No. 501 (2020).
68 See for instance Hastie, Tibshirani, and Friedman (2009).

33

and high dimensions, such models have been proved to have a significant edge and to embed useful

benefits. These are the reasons why from now on we will focus on such algorithms.

 2.2 History of Artificial Neural Networks

Since we decided to rely on neural networks, it may be beneficial for us to understand the evolution

and the main features characterizing these kinds of models so that we can get a better sense of

what we can expect them to do.

First of all, we need to clarify that neural networks (NNs) are actually a pretty old idea, which had

fallen out of favor for a while, mostly for hardware and theoretical limitations, but nowadays they

undoubtedly have become the state-of-the-art technique for a lot of different ML problems. So,

what is the basic idea on which NNs are based? We already said that machine learning algorithms

are and have been developed trying to mimic intelligent behaviours which can be observed in

nature69; also in this case it is the same.

The basic idea of neural networks was to develop an algorithm able to reproduce the brain

functioning. We know that our brain is an amazing structure able to learn many different things: it

can process images, recognize what we touch and hear, perform abstract thinking, and so on.

Therefore, it seems that if we want to replicate it, we have to develop a lot of different software to

perform all the required tasks. However, there exists a fascinating hypothesis according to which

the brain is able to do all these things exploiting just one single learning algorithm70. If this is the

case, it means that instead of needing to implement a thousand alternative programs, we just need

to develop a system which teaches the machine how to learn by itself and how to process different

kinds of data.

Having this in mind and considering that the structure of artificial neural networks is mainly shaped

from the anatomy of natural neurons and from the neural system, it makes sense to start analyzing

the features of such nerve cells.

69 Consider for instance footnote number 52 for a short list of nature inspired algorithms.
70 Many proofs have been proposed over time. For a detailed list see for instance the course of Machine Learning by
Andrew Ng, Stanford University.

34

Figure 5 - Sketch of a human neuron (source: International Journal of Plant and Soil Science)71

As we can see from Figure 5 a single neuron has a cell body which is composed by three main parts:

the nucleus, the dendrites and the axon. The nucleus is where the computations are made, the

dendrites are the input wires which receive signals from the external environment, and the axon

can be thought of as an output wire used to send messages to other neurons.

So, at a simplistic level a neuron is a computational unit that first gets electrical signals, also called

spikes, from the outside thanks to the dendrites. Then this input information is aggregated through

some biological procedure that takes place in the nucleus. Note that during this aggregation step

the relative importance of these signals can be increased or reduced according to what the neuron

“thinks” about it. Finally, the computed output is passed to other neurons through the exploitation

of the axiom. Therefore, the way through which neurons communicate with each other is with

pulses of electricity.

These continuous computations and transmits of messages are the way in which our brain works.

However, single neurons alone are not able to achieve good results, so that in practice most of the

strength of our brain is given by the huge number of connections that exist within these cells. The

idea according to which it is the network of interconnected neurons to provide the larger part of

the computational ability characterizing our brain, is called connectionism, and together with the

biological structure of the neurons represents one of the two founding ideas that drove the

developing of artificial neural networks.

From an historical point of view, the growth of artificial neural networks has been characterized by

different phases. The first phase lasted from the early 1940s to the end of the 1960s. During those

nearly 30 years the first rudimental implementations of neural networks were proposed. In

particular, the theory for the development of a single artificial neural network, namely a perceptron,

was proposed by McCulloch and Pitts (1943) in a paper that quickly became a milestone72. That first

71 Figure from “Artificial neural network model for the prediction of the cotton crop leaf area” by Aboukarima et al.,
International Journal of Plant and Soil Science, Vol. 8, pp. 1-13 (2015).
72 “A logical calculus of the ideas immanent in nervous activity” by W. S. McCulloch and W. Pitts (1943).

35

publication was rapidly followed by other studies among which the most important are the ones

from Hebb (1949)73 and Rosenblatt (1958)74, which leaded to the creation of the first perceptron.

These researchers took the necessary steps to build the foundations on which the theory concerning

the development of ANNs is based. Specifically, McCulloch and Pitts derived the mathematical

transposition of the biological neuron defining the following essential properties that underly the

structure of an artificial neuron:

• A natural neuron is an “all-or-none” process. This means that a neuron is a binary cell only

capable of dealing with positive and negative results. In other words, it is able of classifying

only two possible inputs: the presence or the absence of the electrical signal. Therefore, we

can represent it, in mathematical terms, relying on logical values and Boolean functions.

• A certain fixed number of synapses must be excited at the same time in order to excite a

neuron and produce an output. Moreover, this fixed number has to be independent from

the previous activity and the position of the cell.

• The only significant delay within the nervous system is the synaptic delay.

• The activity of any inhibitory synapse absolutely prevents the activation of a neuron at that

time. Therefore, if a neuron is excited though the use of an inhibitory synapse it can be

deactivated.

• The structure of the network is stable and does not change with time.

We have said that the work of McCulloch and Pitts was essential in defining the mathematical

framework of the problem. Indeed, this can be considered as the theoretical birth of the concept of

perceptron; however, they neither provided a concrete model nor a structure to further develop,

but only the core idea. Moreover, they primarily focused on the definition of a single neuron only

partially considering the role of the network. Therefore, there was still a huge lack in the field.

With this regard, the studies of Hebb were extremely useful in clarifying the importance of

connectionism. Indeed, Hebb studied the physiology of the nervous system, and he tried to find

some sort of “community-effect” in how neurons are structured. In particular, he proved that "some

growth process or metabolic change" in one or both cells takes place as a result of repeated

transmissions across synapses. This simply means that the more a neuron “dialogues” with another,

the more their connection strengthens. So, according to Hebb’s model, the exchange of signals

among different neurons is an extremely important aspect which cannot be ignored, since it is able

to affect the network and its efficiency.

Finally, starting from the above-mentioned theorems and relying on the results of other research75,

Rosenblatt was capable of developing the first “hypothetical nervous system”, i.e., a perceptron, in

1958, presenting the first mathematical formulation of such artificial structure.

73 “The organization of behaviour, a neuropsychological theory”.
74 “The perceptron: a probabilistic model for information storage and organization in the brain”.
75 Other useful references are Kleene (1956), Von Neumann (1956) and Minsky (1960).

36

Figure 6 - Diagram of a perceptron (source: DeepAI.org)

Figure 6 represents the structure of the perceptron created by Rosenblatt. As we can see, we have

a set of inputs that can be represented by a vector of real values: (176, 𝑥1, 𝑥2, ⋯ , 𝑥𝑛). These are

equivalent to the electric signals the biological neuron receives. The information received from the

external environment is then weighted. Indeed, we have to remember that also in natural cells the

relative importance of each signal can be amplified or reduced. By assigning a greater or a lower

weight the perceptron is able to modify the magnitude of the inputs, privileging the information

that it considers to be most important. Once all the inputs have been weighted there is the

aggregation step, which is the operation that is performed by the nucleus in the biological

counterpart and consists in performing a weighted sum of the input values using the vector of real-

valued weights. Finally, the output is released by means of a step function.

Note that since the output is provided through the use of a step function which can take only binary

values, the perceptron can be seen as a sort of classifier77.

From a mathematical point of view, it is possible to formulate the previous problem as follows:

𝑜(∙) = {
+1⁡𝑖𝑓⁡∑ 𝑤𝑖𝑥𝑖 > 0

𝑛

𝑖⁡=⁡0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

Where 𝑥𝑖 represents the generic input and 𝑥0 is set by convention equal to 1 and is known as bias.

𝑤 is the vector of the weights by which it is possible to compute the weighted sum, also called

weighted aggregation. Lastly, 𝑜(∙) is the transformation/squashing function.

The functioning of a perceptron is quite straight forward. Once the weighted inputs have been

aggregated the result is compared to a given threshold, which is zero in the simplest case78. Then, if

the result is greater than such limit value the perceptron provides an answer, otherwise it gives

76 Note that 𝑥0 is usually assumed to be equal to 1 in order to account for the bias. To have a better understanding,
suppose we aim to perform a linear regression. If we do not estimate the constant term the result will always be biased.
Therefore, the bias term has the same role in a perceptron as the one of the constant in a linear regression.
77 See for instance Alpaydin (2020).

78Note that it can be easily generalized introducing a general value K: 𝑜(∙) = {
+1⁡𝑖𝑓⁡ ∑ 𝑤𝑖𝑥𝑖 − K > 0𝑛

𝑖⁡=⁡0

0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

37

another output. At this point, we can highlight the fact that this former model had some important

drawbacks. In particular, the transformation function cannot be differentiated, and it is not

continuous79. If we keep in mind the task we are trying to tackle, namely the pricing of financial

options, we immediately understand that these are huge limitations. In any case, we will see how

to cope with them in a moment.

Note that in our formulation the only unknown is the vector of weights. Therefore, the goal of the

perceptron can be summarized by saying that it has to estimate in a proper way such variables. Now,

from what has been said, a question should follow: how does the model correctly determine these

weights? The answer was provided directly from Rosenblatt. Indeed, he developed a learning rule

for the artificial neuron known as Delta rule or Training rule80.

The Delta rule is an iterative algorithm which represents a key element in the field of machine

learning. This is a derivative free procedure which works as follows:

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦⁡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒⁡𝑡ℎ𝑒⁡𝑣𝑒𝑐𝑡𝑜𝑟⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑤𝑒𝑖𝑔ℎ𝑡𝑠

 𝑓𝑜𝑟⁡𝑘 = 1,… , 𝐾

 𝑓𝑜𝑟⁡𝑛 = 1,… ,𝑁

 𝑓𝑜𝑟⁡𝑗 = 0,… , 𝐽

𝑤𝑛
𝑘+1 = 𝑤𝑛

𝑘 + ∆𝑤𝑛
𝑘 = 𝑤𝑛

𝑘 + 𝛼(𝑦𝑛 − 𝑜𝑛)𝑥𝑗,𝑛

The first step consists in randomly generating the weights. Then the iterative procedure starts. In

particular, the procedure will be repeated K times, where K is the number of iterations chosen by

the user. N times, meaning it will be reiterated for every input-output training example81, and J

times, i.e., we keep into account each different weight.

As we can notice, the value of the weights changes in each next iteration and it is determined as the

current value plus an increment, ∆𝑤𝑛
𝑘, which represents a percentage of the difference between

the true value of the output and the computed one. We say it is a percentage of the difference,

indeed we can see that this increment is multiplied by two terms: the input value 𝑥𝑗,𝑛 and a

coefficient 𝛼 known as learning rate. This learning rate is the value that determines the speed of the

learning, and it is a positive, small value.

Now it is possible to make a further observation: thanks to the Delta rule the perceptron is able to

modify the weights adjusting them according to the information provided by the data. However, are

we sure that there is a convergence? Meaning, can we say that the Delta rule is effectively capable

of detecting a vector of weights such that the algorithm is able to learn the analyzed process? Also

in this case Rosenblatt was capable of presenting a solution deriving the so-called perceptron

convergence theorem: “let ((𝑥1,𝑗 , … , 𝑥𝑛,𝑗), 𝑦𝑗) with 𝑗 = 1,… ,𝑚 and 𝑦𝑗 ∈ {−1,+1} for all 𝑗, be a set

79 Indeed, the step function assigns the value of 1 x is greater than 0, and -1 or 0 if x is lower than the origin.
80 Notice that it took over 15 years to find the proper way to “code” this algorithm. From the theoretical definition of
perceptron provided by McCulloch and Pitts (1943) up to its mathematical formulation by Rosenblatt (1958).
81 Notation: with 𝑦𝑛 we mean the generic real output observed in the available data. While 𝑜𝑛 represents the generic
output originated by the model.

38

of linearly separable instances, then the Delta learning rule terminates the updating of the weights

𝑤𝑖, with 𝑖 = 0,… , 𝑛,after a finite number of iterations” Rosenblatt (1958).

It is possible to prove that the presented training rule does work, and moreover it is robust, meaning

that even in presence of noise it is able to correctly provide an answer82. See for instance the

example provided by Rosenblatt about the classification of the Boolean function AND.

We started this section by saying that the development of neural networks has been characterized

by different phases and periods of great innovation were followed by moments of “abandonment”

of these instruments. But if the perceptron is such an amazing structure, why has it been forgotten

for a long time? The reason is simple, a single perceptron is only able to classify “linearly separable

instances”.

In 1969 Minsky and Papert published a fundamental paper83 which proved that if we do not consider

the Boolean function AND but for instance another simple logical function, namely the XOR, or

Exclusive OR84, the perceptron is no more able to learn it. In other words, it fails in correctly

classifying the outputs since they are not linearly separable. This is the main drawback of the single

perceptron and the reason why from 1969 up to 1980 the studies about machine learning and neural

network crashed down. This period is now known as “AI winter” to underline the dramatic situation

artificial intelligence had to face.

In order to overcome the limitations of these algorithms many possible strategies were proposed.

In particular, in the early 1980s an idea had taken over the others: connectionism. Indeed, with the

development of artificial neurons, we only addressed half of the problem, and we completely forgot

about the importance of the other half: the network. As already said, most of the power of our brain

is not given by the specific structure of a single neuron, but it is provided instead by the billions of

connections that exist between our neural cells. Therefore, the solution they proposed lied on the

idea of combining the concept of perceptron and the concept of connectionism in order to develop

a network of perceptron, namely a multilayer perceptron (MLP).

Unlike the perceptron for which it is possible to identify a date of birth, artificial neural networks do

not have a precise and unique “birthday”. Indeed, it is possible to find mentions of such a concept

in a lot of different studies. However, there are some fundamental papers and empirical results

which cannot be ignored. In particular, Cybenko (1989) derived a theoretical solution85 stating the

reason why MLPs are nowadays known as universal function approximators: “[the] networks with

one internal layer and an arbitrary continuous sigmoidal function can approximate any continuous

function with arbitrary precision providing that no constraints are placed on the number of nodes or

the size of the weights”86.

82 Of course, if the noise is too high the perceptron is not able to perform a right classification. However, in normal
situations where we use reliable data it works perfectly.
83 “Perceptron: an introduction to computational geometry” by M. Minsky and S. Papert (1969).
84 The XOR function is an extension of the function OR. In this case, the output of the logical function is true if and only
if one of the two inputs is true and the other is false.
85 “Approximation by superpositions of a sigmoidal function” by G. Cybenko (1989).
86 Note that, even if the original Universal Approximation Theorem relied on the concept of sigmoidal functions, Lensho
et al. (1993) proved that a huge set of alternative functions can be used, we will see it in the next paragraphs.

39

Let us clarify it better. First of all, it is necessary to highlight another point which is questionable in

the original formulation of the problem: the transformation function. Indeed, the first perceptron

relied on a step function. As already mentioned, this function has serious limitations since it is

neither differentiable nor continuous and, being binary, it allows us to make only strong

classifications, (0, 1). Therefore, alternative squashing functions were proposed, and it turned out

that sigmoid functions and s-shaped functions87 in general were the ones that provided the best

results.

Now, it is possible to look at Cybenko convergence theorem from a more formal point of view. It

says that if we consider any continuous sigmoidal function 𝜎, the finite sums of the form:

𝐺(𝑥) =∑𝛼𝑗𝜎(𝑦𝑖
𝑇𝑥 + 𝜃𝑗)

𝑁

𝑗=1

are dense in 𝐶(𝐼𝑛),⁡meaning that given any 𝑓 ∈ 𝐶(𝐼𝑛)⁡𝑎𝑛𝑑⁡𝜖 > 0⁡there is a sum, 𝐺(𝑥), for which:

|𝐺(𝑥) − 𝑓(𝑥)| < 𝜖⁡𝑓𝑜𝑟⁡𝑎𝑙𝑙⁡𝑥 ∈ 𝐼𝑛

Therefore, the neural network is able to approximate any unknown continuous function 𝑓(𝑥) with

any arbitrary desired level of accuracy 𝜖. In other words, if a relationship between the input and the

output does exist, the ANN properly trained will always be able to detect it.

Another extremely important result was the one found in the same year, 1989, by the Defense

Advanced Research Projects Agency (DARPA) which is one of the most important agencies of the

U.S. We have to remember that the perceptron was not able to classify the XOR function. However,

DARPA proved that relying on MLPs we can make the algorithm able to solve such a problem. In

particular, they showed that when increasing the amount of perceptron in the network, which are

called layers, the system is capable of separating the space of the problem not only linearly, but also

in convex and more complex ways. Therefore, the classification ability of the network improves as

the number of neurons grows.

A third milestone was set by the development of the “error backpropagation algorithm88” by

Rumelhart et al. in 198689. Similarly to the Delta rule previously presented, this is a repetitive

algorithm used to train the network. Specifically, the error back propagation algorithm is an iterative

numerical optimization approach based on the gradient descent method, which is a first-order

derivative optimization technique for detecting points of relative minimum of given functions. It

works as follows:

87 This kind of functions are continuous, differentiable and bounded.
88 It is also called Generalized Delta rule.
89 “Learning representations by back-propagating errors” D. Rumelhart, G. E. Hinton, and R. J. Williams (1986).

40

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦⁡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒⁡𝑡ℎ𝑒⁡𝑣𝑒𝑐𝑡𝑜𝑟⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑤𝑒𝑖𝑔ℎ𝑡𝑠

 𝑓𝑜𝑟⁡𝑘 = 1,… , 𝐾

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒⁡𝑡ℎ𝑒⁡𝑒𝑟𝑟𝑜𝑟:⁡⁡𝐸 =
1

2
∑ (𝑦𝑖 − 𝑜𝑖)

2;𝐾
𝑖=1

 𝑆𝑜𝑙𝑣𝑒⁡𝑡ℎ𝑒⁡𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑝𝑟𝑜𝑏𝑙𝑒𝑚:⁡⁡𝑚𝑖𝑛𝑤1,…,𝑤𝑊
⁡𝐸

 𝑓𝑜𝑟⁡𝑛 = 1,… ,𝑁

 𝑓𝑜𝑟⁡𝑗 = 1,… , 𝐽

 𝑤𝑛
𝑗+1

= 𝑤𝑛
𝑗
+ ∆𝑤𝑛

𝑗+1
= 𝑤𝑛

𝑗
+ 𝛼

𝜕𝐸

𝜕𝑤𝑛

As we notice, this process is extremely close to the Delta rule, but it presents some important

modifications. In this case indeed we compute also the summation of the squared errors quantified

as the difference between the true output and the one predicted by the model, and we try to

minimize it before adjusting the weights. We will see it in a more detailed way in the next sections.

Thanks to all these results the development of artificial neural networks experienced a second phase

of huge growth which lasted about 15 years until the mid-1990s. Then for various reasons, mainly

related to hardware limitations, their popularity diminished in the late 90’s, but they quickly

bounced back to the point that nowadays they are, as previously mentioned, the state-of-the-art

technique for various machine learning applications.

The major reason for this resurgence is linked to the progress of computer science. Indeed, neural

networks are in a sense expensive algorithm when compared to other machine learning models;

therefore, they require computers fast enough to deal with large size datasets. This last phase,

whose beginning can be traced back to the mid-2000s and which has continued without any

interruption ever since, is characterized by the development of new ANN models and improvements

that allow for a more efficient implementation. We will present some of them in the next paragraphs

and chapters.

 2.3 Artificial Neural Networks

Now we should have a clear understanding of the idea behind ANNs and of the historical

development that characterized these machine learning algorithms. Let us try to better understand

their functioning and the main features that distinguish them from alternative machine learning

models.

We know that artificial neural networks are basically massive computational models that, by

imitating the structure of a human brain, try to map the input values, also called features, into one

or multiple outputs90. Therefore, we can say that the main goal of such models is to approximately

learn the function that connects the vector of the inputs to the corresponding outputs. Note that

90 See for instance the paper by Xu et al. (2019).

41

we will focus on supervised neural networks, meaning we will make available for the system a

training set composed of labeled input-output pairs.

Relying on a bit of notation, it is possible to provide a more formal representation of such processes.

Indeed, we want to detect a function 𝑓 such that 𝑓: 𝑋 → 𝑌 where 𝑋⁡is the vector of the features and

𝑌 is the related output. In order to perform this task, we will rely on a training set which is composed

of all the observable features (𝑥1, 𝑥2, … , 𝑥𝑁) and the true output (𝑦1, 𝑦2, … , 𝑦𝑁). We have to

highlight that both the inputs and the outputs may be multidimensional. Therefore, the generic

feature 𝑥𝑖 ⁡or the generic result 𝑦𝑗 can be seen respectively as a vector of inputs or a vector of

outputs.

Once the network is fed with a new, additional, and unobserved value 𝑥, the output that will be

produced by the model will be the one ensuring the lowest prediction error, or, in other words, the

one that maximizes the coherence with the relationship already detect by the model starting from

the training set. This can be expressed in two alternative ways:

• 𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈𝑌⁡𝐸, where 𝐸 is the error metric we choose to exploit91.

• 𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌⁡𝑆, where 𝑆 is a satisfaction measure which represents the similarity

between the predicted output and the true one.

We already presented the functioning of a single artificial neuron92, therefore at this point we just

need to mention that in case of neural network each perceptron is known as “node”.

We know that a single neuron performs a dual task. On one side, it receives the inputs from the

external environment or from other neurons and does some computations. On the other side, it

transmits this weighted sum by means of a so-called activation function, which we have to

remember is usually a s-shaped function such as a Sigmoid. So, each node receives a set of inputs,

that always include the bias term, and performs some sort of operations, usually a linear

transformation, in which it exploits the weights associated with every input.

Then the result is transformed by means of the activation function. Once all the outputs have been

collected, it is possible to evaluate the goodness of the model by comparing the predicted results

with the true available output, and then the network can adjust the weights rely on this information.

The process is iteratively repeated until a satisfactory result is obtained or another stopping criterion

is met.

Question: when a result is considered to be satisfactory enough? Or what can we say about such

stopping criteria? To answer these doubts, we need to introduce some preliminary notation and a

few additional concepts.

First of all, we need to clarify that in order to properly assess the performance of a machine learning

algorithm, we cannot usually rely on traditional evaluation methods, but instead we have to define

new specific metrics. A primary distinction that it is possible to make regards the available data we

91 Note that the most common error measure is the Mean Square Error or better its square root, i.e., the Root Mean
Square Error.
92 See the Perceptron proposed by Rosenblatt and described in paragraph 2.2.

42

provide the model with. Indeed, in case of machine learning systems the dataset has to be divided

into three93 different and mutually exclusive subsets which are respectively:

• The training set is the sample of data used to fit the model, meaning the actual dataset we

use to teach the model about the relationship existing between inputs and outputs. For this

reason, it is a good practice to make it the largest among the three subgroups. Having said

that, it should be clear that the training set affects the model directly.

• The validation set has a particular function since it is used to provide an unbiased evaluation

of how the model fits the training dataset while we are tuning the hyperparameters, i.e.,

during the process in which we select the best characteristics of the machine learning

algorithm94. Thus, the purpose of such dataset is to understand how well the model behaves

when exploiting different data never seen before. It affects the model, but only indirectly.

• The test set is the sample of data used to provide a correct evaluation of the final proposed

model, of its ability to properly fit the data, and so on. It is usually the smallest part of the

available data which is exploited to perform such a task. Note that this is only used at the

end of the training process and therefore it does not affect the model specification. We can

rely on it when comparing competing models.

According to the performance of the system and how well the model fits the data both in in-sample

and out-of-sample analyses, meaning in the analyses made in the training set and in the test set, it

is possible to draw interesting conclusions which help us to understand the behaviour of the

network and the steps we can take to improve it. In particular, we can face three alternative

scenarios, two negatives and one positive. Underfitting and overfitting are the two sides of a coin

when it comes to negative scenarios, while a positive outcome means the presence of a good and

balanced fitting of the data.

Figure 7 – Overfitting versus Underfitting (source: TheStartup.com)95

As we can derive from Figure 7, a model will be said to be overfitted when it has learned the training

set too well. In such a case, it may mistake the noise presented in the data for actual information.

93 Or at least two in case we are considering unsupervised or reinforcement learning paradigms.
94 For instance, if we consider a decision tree the hyperparameters to adjust are the number of nodes and branches.
95 Figure by K. Hoffman (2021) “Machine learning: how to prevent overfitting” published by The Startup.com.

43

Therefore, in case of overfitting, the in-sample performance will be extremely good while the out-

of-sample-performance will be poor, meaning the model does not generalize well when additional

unseen data are provided.

Underfitting is the opposite case. When the model has not been sufficiently trained it usually cannot

understand the structure that underlies the data, and it fails to capture relevant patterns that a

properly trained model would have detected. Therefore, if the network underfits both the in-sample

and the out-of-sample analyses will provide unsatisfactory results. In both cases, the system cannot

effectively adapt to new data and, considering that our main objective is to perform some future

analysis, we have to solve these drawbacks. According to Bishop (1995)96 “The goal of network

training is not to learn an exact representation of the training data itself, but rather to build a […]

model of the process which generates the data.” Then he continued by saying that it is important

for the applied method “to exhibit good generalization, that is, to make good predictions for new

inputs.”. So, we do not want to learn the data but the process generating them, however since in

case of both underfitting and overfitting generalization is not possible, we have to understand how

to cope with these two kinds of problems.

In order for us to do this, it is sufficient to think that if we detect overfitting, we are probably

including too much information in our system which has become too complex; in a similar situation

simplifying the model structure may be the best way out. This can be done removing some features,

i.e., decreasing the training set size, or some explanatory variables which in reality do not add useful

information (maybe because they are highly correlated with the others).

In presence of underfitting the solutions we have to pursue are the opposite. The model is indeed

too simple, meaning we can try to solve such a problem providing additional observations (if

possible) or adding some hyperparameters, i.e., we both try to train the network better and to

specify a more complex and hopefully more efficient model.

Related to the concepts of overfitting and underfitting there is the so-called bias-variance trade-off.

The idea is the following: when a model is too simple it is not able to learn the data structure well.

This means that when underfitting occurs the model’s predictions will be characterized by a small

variability, but at the same time some of them will be more biased. In case of overfitting instead the

variance associated with each prediction is very high, but the bias tends to be extremely low. A well-

defined machine learning model should achieve both a low variance and a low bias since this ensures

the predictions to be corrected and the performance high.

By adjusting the hyperparameters and the splits of the dataset between training, validation, and

test sets, in other words by modifying the complexity of the model, we can reduce the variance

and/or the bias of the network. The problem is that this is a trade-off, therefore when we try to

minimize the variance the bias rises, and vice versa97. Of course, our goal is to detect the best

possible balance between these two errors.

In Figure 8 it is possible to see a graphical representation of the existing relationship between bias

and variance and how they contribute to the total prediction error of the model.

96 “Neural networks for pattern recognition” by C. M. Bishop published by Oxford University Press (1995).
97 With this regard it is possible to consult, for instance, the works of Fortmann-Roe (2012) or Gèron (2019).

44

Figure 8 - Bias and Variance contribution to total error (source: Scott.Fortmann-Roe.com)98

From the definition of the bias-variance trade-off and the concepts of overfitting and underfitting

one could ask: how is it possible to train the network in such a way that it exhibits good

generalization capabilities? To achieve such a result, it is possible to rely on a lot of different

techniques which will be seen in more detail later on during the thesis. However, a short list of these

methods includes cross-validation, early stopping criterions, and regularization techniques.

Going back to neural networks, we can say that what is truly interesting about such models is the

fact they combine the structure of the perceptron with the idea of connectionism. In order for us to

better understand how these two concepts merge together, we need to define a new “unit” in the

structure of ANNs, the so-called layer. Indeed, a set of perceptrons, here called nodes, on the same

“level”, can be grouped together to become a layer. It is then possible to define three different types

of layers according to their position in the network:

• Input layer. It is the first level of the network and consists in the perceptrons that receive

signals from the external environment.

• Hidden layer. First of all, we need to say that, according to the number of hidden layers, it is

possible to distinguish between machine learning and deep learning systems. Indeed, neural

networks exploiting multiple hidden layers are part of the so-called deep learning, a branch

of ML characterized by powerful algorithms. Note it is the presence of hidden layers that

makes the system intelligence meaning that if we do not consider this intermediate level we

end up with a single artificial neural network, which is a simple perceptron, and therefore

we end up with a structure unable to learn complex functions, for example the XOR.

Regarding the existing connections, we can highlight that the nodes of the hidden layers

receive signals from neurons and release their output to other different neurons, so that

they have no interactions with the external environment.

• Output layer. It is the last level of the network, and it provides the final result to the

“outside”.

98 Figure from Fortmann-Roe.com “Understanding the Bias-Variance tradeoff” (2012).

45

Depending on the architectural structure, also called topology, that is exploited by the net, in other

words depending on the way in which different nodes are connected, many alternative kinds of

networks can be defined. The most common ones are the following:

• Auto associative ANN. In this structure, there are usually two levels of nodes, and each single

node is linked only to nodes of the other level. However, there is not a precise direction in

the flow of the information.

• Fully connected ANN. Each node is connected to all the other neurons.

• Unstructured ANN. There are more or less random links between the various perceptrons.

• Feedforward ANN99. It is similar to the auto associative neural network, in the sense that

different nodes are organized on different levels. However, in this scenario, the nodes of a

specifical level are connected only with the nodes of a subsequent level and there is a sort

of linear progression, meaning the information can only flow in one direction, i.e., there are

no nodes coming back.

Figure 9 - Example of a feedforward multilayer neural network characterized by two hidden layers
(TowardsDataScience.com)100

Since the feedforward ANN is the architecture that we will employ in the practical implementation

presented along the thesis, let us focus a bit more on this specific structure, which can be observed

in Figure 9.

A MLP feedforward ANN has an input layer made of 𝑛 + 1 neurons, with 𝑛 ≥ 1 being the number

of input features we are providing to the network. Note that we add 1 to account for the bias unit.

Then there are one or more hidden layers constituted by what are usually called “thinking neurons”.

In particular, each of these hidden layers contains ℎ𝑗 ∈ 𝑁+ hidden nodes, with 𝑗 = 1,… ,𝐻, where

𝐻⁡is the number of hidden layers. Observe that the number of neurons of the j-th hidden layer is

expressed as ℎ𝑗 + 1.

99 It is worth mentioning that deep learning methods directly derive from an extension of feedforward neural networks.
See for instance Zhang et al. (2017).
100 Figure from “Coding Neural Network – Feedforward propagation and backpropagation” by Dabbura, I. published by
TowardsDataScience.com (2018).

46

It is interesting to notice that both the number of hidden layers (𝐻) and the number of neurons for

each hidden layer (ℎ𝑗) are chosen by the user, therefore these are two hyperparameters we can

adjust in our optimization process in order to maximize the performance and to find the best

balance in the bias-variance trade-off.

Finally, the output layer is the one constituted by the artificial neurons which provide the result to

the external environment. In particular, there are 𝑞 of such neurons where 𝑞 ≥ 1 and equal to the

number of outputs we need. The feedforward structure can then be seen in the fact that each layer,

except for the output layer, is fully connected only with the next layer, as we can see in Figure 9,

and the flow of information is forward, meaning it moves on starting from the input neurons and

arriving at the output without ever coming back.

To highlight the complexity of such models, we have to understand that to each “arrow” of the

network, which represents the flow of information from one neuron to the others, a weight, the

model has to compute and improve over time, is associated. Therefore, a MLP feedforward neural

network is characterized by a number of weights equal to:

𝑊 = (𝑛 + 1)ℎ1 +∑ (ℎ𝑖 + 1) + (ℎ𝐻 + 1)𝑞
𝐻−1

𝑖=1

If we consider the simple network presented in Figure 9, we can compute the number of weights

the model has to estimate which is equal to (3 + 1)4 + (4 + 1)4 + (4 + 1)1 = 41.

It should be clear that, with respect to the design of the network, there are many possible

parameters to tune. In particular, we have to choose the number of hidden layers, the quantity of

input and output neurons, which are given by the nature of the investigated problem, and the

number of hidden nodes. Of course, the higher the number of the hidden units, the greater the

“thinking” ability of the model but, at the same time, by increasing these hyperparameters we make

the required computational capability grows exponentially. Some of these problems can be easily

fixed, for instance we already said that the number of output nodes depends on the characteristics

of the specific work we are performing. However, the determination of the number of hidden layers

and hidden neurons is a more complex task to deal with.

We have to say that, in reality, there is no such a thing as a general answer or a universal procedure

to follow and instead most of the times we will have to rely on a trial-and-error sequence of actions.

In any case, as a rule of thumb, it is possible to fix an upper limit for the number of the total weights,

and consequently for the number of neurons, which is a good practice to respect. This is called

Training to Weights Ratio (TWR) and it is defined as follows:

𝑇𝑊𝑅 =
𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡

𝑤
≥ 10⁡⁡⁡𝑓𝑟𝑜𝑚⁡𝑤ℎ𝑖𝑐ℎ⁡𝑖𝑡⁡𝑓𝑜𝑙𝑙𝑜𝑤𝑠⁡𝑡ℎ𝑎𝑡⁡⁡⁡𝑤 ≤

𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡

10

Now, considering more in detail the structure of each neuron we can say that in general the nodes

of both input and hidden layers are characterized by a logistic, usually sigmoidal, transformation

function while the ones of the output layer rely on a linear transformation function. The idea is that

the computations have to be performed in the first steps of the network, whereas the last layer has

only the task of releasing the result already computed without modifying it.

47

Notice that it is possible to demonstrate that the activation function plays an essential role in the

ability of the network to learn a relationship, indeed, if we consider for instance a constant function,

the network becomes only able to perform simple linear regression, losing most of its predictive

power. Therefore, it is essential to spend few more words regarding this concept which is a key part

of the design of neural networks.

Activation functions, also known as transfer functions or squashing functions, are applied to the

aggregated result computed by each node. Their main goal is to transform this output into a more

useful and manageable result, that is then sent to the subsequent neuron. Theoretically, it is

possible to use any kind of function, both linear and nonlinear, but as already mentioned, in order

to ensure the full computational capability of the network, linear functions have to be exploited

only in the output node.

Indeed, on one hand, the choice of the activation function in the hidden layers will determine how

well the network is able to learn the data. “In order to access to a much richer hypothesis space that

would benefit from deep representations, you need non-linearly activation functions”101 (Chollet,

2017). On the other hand, the choice of the activation function in the output layer will define the

types of predictions that the model can make. Therefore, if we want our system to be able to provide

an unbounded, real, scalar result, the choice of a linear function is perfect. That is why they are a so

popular alternative for the output layer.

Nowadays there are some functions that have been proved to provide the best results when used

as activation functions in machine learning systems and have become the state-of-the-art

techniques. These are the Sigmoid function, the Rectified Linear Unit Function (ReLU), and the

Hyperbolic Tangent function (Tanh) which can be seen in Figure 10:

Figure 10 - Most common activation functions

We have to highlight that activation functions are typically defined on the line of real numbers, i.e.,

their domain is ℝ, they are all nonlinear and usually differentiable, meaning that their first-order

derivative can be computed. This is a fundamental condition since it is necessary to apply the error

backpropagation algorithm, which requires to compute the derivative of the error in order to update

101 From “Deep learning with Python” by F. Chollet (2017).

48

the weights of the model; we will see it in detail in a moment. However, it can be noticed from the

graph that the ReLU function is not differentiable when 𝑥 = 0, so we have to use a little trick by

“manually” including that point.

The mathematical formulations of these functions are the following:

• 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1+𝑒−𝑥

• 𝑇𝑎𝑛ℎ =
1−𝑒−2𝑥

1+𝑒−2𝑥

• 𝑅𝑒𝐿𝑈 = max(0, 𝑥) = {
𝑥⁡⁡𝑖𝑓⁡𝑥 ≥ 0
0⁡⁡𝑖𝑓⁡𝑥 < 0

The Sigmoid function, also called logistic function, can take any real value as input, while the output

values range in the (0, 1) interval. In particular, the larger the positive input provided, the closer the

result will be to 1. Alternatively, the smaller the value, i.e., the more negative it is, the closer the

output will be to 0.

The Tanh is extremely close to the Sigmoid: they are both s-shaped, they behave in a similar way,

and they can take any real number as input. However, the output lies in a different range, (−1, 1),

which makes the Tanh function less steep than the Sigmoid.

Lastly, the ReLU activation function is probably the most used one thanks to its simplicity and

effectiveness. Indeed, despite the non-differentiability of the zero point, which can be easily solved,

it is possible to prove that such a function tends to provide robust results, less susceptible to other

problems that plague alternative activation functions102.

The question that rises now is about how we can choose which activation function to exploit. To

begin, we have to point out that a neural network will almost always rely on the same activation

function for all its hidden layers. Indeed, it is very rare to change it from one layer to the others. In

any case, there is not a general consensus about which function we should use, so that the choice

is mostly determined by empirical analyses, experiments, and depends on the specific nature of the

problem we are dealing with. However, it is possible to mention some previous studies and the

empirical results they derived.

Traditionally, the Sigmoid was the default activation function but through the mid to late 2000s the

Tanh function took over. With this regard, Karlik and Olgac (2011) proved that the Tanh function is

a proper choice for achieving high accuracy and good performance in many MLP implementations.

On the other side, different studies showed that ReLU was able to outperform other activation

functions in a lot of applications103. In any case, the fact that there are not too significant differences

between these functions make them all a suitable choice, therefore it is better to empirically test

which one provides the best performance for the specific case we are considering.

The last important elements we have to understand to conclude the definition of the structure of

artificial neural networks are the concepts of gradient descent and backpropagation. These are two

strictly connected ideas that refer to how machine learning algorithms, and neural networks

specifically, learn. Therefore, we have to exploit such techniques in the optimization process of any

102 Like for instance the vanishing gradients that compromise the ability of a model of being trained.
103 See for instance Sharma et al. (2020).

49

ANN. In particular, we already know that the gradient descent method is a first-order derivative

optimization technique for detecting points of relative minimum, while the error back propagation

algorithm is an iterative numerical optimization approach which relies on the gradient descend104.

Let us try to focus a bit more on them.

First of all, we need to derive a so-called loss function, also known as objective function, cost

function or error function. This is a function representing the difference between the output

produced by our model and the true output which is observable in the data. Therefore, they are

used to evaluate candidate solutions and to compare and rank competing models by quantifying

the errors produced. Moreover, “It is important […] that the function faithfully represents our design

goals. if we choose a poor error function and obtain unsatisfactory results, the fault is ours for badly

specifying the objective of the search.” (Reed, 1999)105. Of course, our goal is to try to minimize such

values relying on an efficient network design made of a proper hyperparameters optimization and

a good and effective training procedure.

As we can imagine, there are many possible alternative loss functions among which we can choose,

and since identifying the best objective function is a hard task, usually the best way to proceed is to

rely on many different functions at the same time. The most common error functions are the Mean

Squared Error (MSE), the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the

Mean Absolute Percentage Error (MAPE), and the 𝑅2. We will define them during the practical

implementation presented in Chapter 4.

Going back to gradient descent and backpropagation we can say that since our goal is to minimize

the loss function, we need to detect the global minimum; by relying on one of the above-mentioned

error functions we are sure that such a point exists because these are all convex functions.

Figure 11 - Example of Gradient Descent (source: IBM Cloud Education (2020))

104 Remember it was developed by Rumelhart, Hinton and Williams in 1986 and it is also called Generalized Delta Rule.
105 “Neural smithing: supervised learning feedforward artificial neural networks” by R. Reed (1999).

50

If we plot a properly defined106 loss function, we get something similar to Figure 11107. As we know,

at the beginning our network will assign randomly generated weights to the features. Since this is a

randomly assignment, we will usually not obtain good results at the beginning; as we can notice in

our example, the starting point is indeed far away from the minimum. Now we clearly see that if, in

our case, we increase the value of the weights, we can minimize the loss function. But how will the

machine be able to do so? We need to optimize the weights to reduce the error, meaning we simply

need to define a way to measure how the error modifies itself according to changes in the weights

so that the network can understand what useful changes are.

To get this result all we have to do is to compute the derivative of the loss with respect to each

weight, which will be called gradient:

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑑 =
𝑑𝐸

𝑑𝑤

Where 𝐸 is the error and 𝑤 is the specific weight considered.

Notice that it will always be the “negative gradient” to show the directions along which the weights

should be moved to optimize the objective function. Therefore, it is this quantity that guides the

network learning procedure and “tells” the model if it has to increase or reduce a specific weight.

So, relying on this concept, the model learns the direction in which it has to move. However, it also

needs to know by how much it should move, meaning how much it should modify the weights.

This is determined by the so-called learning rate, 𝛼. In particular, if this value is too large the

parameters will change too much each time and they may fail in detecting the optimal values that

allow the loss function to converge to its minimum. At the same time, if the learning rate is too low

the model will only be able to take tiny steps and the learning procedure will require a huge amount

of time to reach the minimum. Obviously, neither the first case nor the second scenario is desirable.

Therefore, we need to fix a proper learning rate in order to ensure the model to be effective and

efficient108.

Having said that, it is possible to express the way in which each weight is updated over time, i.e.,

the method we use to teach our feedforward neural network, as:

𝑤𝑖(𝑡) = 𝑤𝑖(𝑡 − 1) − 𝛼 ∗ |
𝑑𝐸

𝑑𝑤
|

We have to remember that this is exactly the Generalized Delta rule, namely the error

backpropagation algorithm, and it is an efficient way to train ANNs. As we see, the i-th weight at

time 𝑡 is a function of the previous weight, time (𝑡 − 1), and the gradient weighted by the learning

parameter 𝛼. This means that with each iteration, called epoch, the model adjusts the weights

according to the information provided by the gradient value. Note that the number of epochs is

another parameter which is chosen by the user and therefore it is an hyperparameter whose

optimization can help improving the general performance of the network.

106 Meaning an objective function which is convex in shape. So that we are sure a global minimum exists.
107 Of course, according to the specific problem we are considering and the available dataset we can observe more
complex situations, but the basic idea is the same.
108 See as an example Gèron (2019).

51

In particular, the backpropagation technique works by computing the gradient of the error function

with respect to each weight and it does exploit the chain rule in this process; the chain rule is a

mathematical technique used to express the derivative of the composing of two differentiable

functions in terms of their single derivatives. Therefore, the network computes the gradient one

layer at a time, and it iterates it backward starting from the last layer in order to avoid redundant

calculations. In other words, this is a dynamic process.

The problem is that there are some drawbacks associated with such a technique, the most notable

being the fact that there are no guarantees that the backpropagation algorithm will be able to find

the global minimum of the loss function. Indeed, relying on derivative computations, the model may

end up being stuck in points of relative minimums, since also these kinds of points are characterized

by a null first-order derivative, i.e., the learning procedure stops when they are reached. However,

it has been proved that in practical implementations this is not a major problem, since it is possible

to exploit random initialization of the weights and to perform multiple optimizations109.

This concludes the introduction of machine learning and neural networks. The following chapters

will focus on presenting the analyzed dataset, its main features, and the proposed model to solve

the option pricing task we want to deal with.

109 See for instance “Efficient backprop” by Yann LeCun et al. (1998).

52

53

Chapter 3 Data analysis

Chapter 3 has two objectives; on one side, it aims at presenting the structure of the Italian equity

market and the main characteristics of option contracts having as underlying the FTSE MIB Index.

On the other side, it wants to present the dataset that has been used in our experiment. In doing

so, it adopts the following form: section 3.1 describes both the Italian stock market and the Italian

option market, focusing, in particular, on their composition and how they are computed and

managed. Paragraphs 3.2 and 3.3, instead, explain the structure of the dataset, what features are

available and which ones will be used, and in general the data manipulation techniques that have

been performed to make the learning process easier and more efficient for the network. Moreover,

in section 3.3, it is empirically proved that our data satisfy the put-call parity relationship.

 3.1 Italian equity and option markets

As already stated, the present dissertation has the objective of applying a machine learning

algorithm to the pricing of financial options written on one of the most important Italian stock

indices: the FTSE MIB110. Therefore, it may be useful to start by briefly presenting such index and its

main characteristics.

From an historical point of view, the FTSE MIB index replaced the MIB-30 in September 2004. It used

to be run by the Standard & Poor until June 2009, when it was bought by the FTSE Group and its

responsibility was consequently placed under the control of the London Stock Exchange Group. The

index is the main reference for the Italian equity market since it tracks the stock performance of the

40 largest and most traded Italian stocks111, which together account for more than 80% of the

domestic market capitalization and represent about 90% of the yearly exchanged value.

Given its importance, it should not surprise us knowing that the index is also a sort of benchmark

for how the Italian economy develops over time112.

The Italian equity market shares many similarities with the equity markets of other developed

countries; however, it is relatively small113 and shows in a certain sense a high degree of

concentration in specific industries, meaning it lacks some sort of sector diversification. In particular,

there is a considerable preponderance of the financial sector, as we can see from Table 6.

110 FTSE MIB is an acronym for Financial Times Stock Exchange Milano Indice di Borsa.
111 Keep in mind that they are Italian stocks which however may have their registered office abroad.
112 Just like CAC 40 is used to measure the performance of the French economy, DAX is a benchmark for Germany, and
IBEX 35 reflects the trend of the Spanish economy.
113 Relying on Borsa Italiana’s report about historical statistics of August 2022, the FTSE MIB has a total capitalization of
around 520 billion which represents the 80.04% of the total Italian stock exchange value. This means that the exchange
is excluded by the top 20 largest markets in the world (considering the capitalization).

54

Table 6 - FTSE MIB composition (source: FTSE RUSSELL: FTSE MIB Index (31 August 2022))

As briefly mentioned, the most relevant component of the market is the financial sector; indeed,

banks, financial services and insurances account for almost one third of the total capitalization.

However, we have to highlight that, following the subprime crisis of 2008, the financial industry has

undergone a major downsizing. In particular, the decline was evident for the banking sector, which

went from a value of over 93 billion euros in 2009 to about 62 billion euros today, corresponding to

a decrease of almost 9 percentage points, from 26,4% to 17,67%. The void left has been filled mainly

by an increasing importance of natural resources (utilities and energy), and industrial and

automotive companies114.

With respect to the structure and the regulatory framework of the FTSE MIB, we can say that they

are not very different from those of most other industrialized countries and, for those who are

interested, they can be found either in the official website of Borsa Italiana or in the relative section

of the FTSE Group’s material.

At this point we can ask ourselves how is the value of the FTSE MIB index computed. We know that

indices are synthetic measures of how the value of a basket of assets changes over time, and we

should also know that, according to how the weight of each security is computed, there are three

main alternative methods which can be employed:

• Equally Weighted Indices assume a constant weighting factor which is identical for all the

securities that make up the index. In such a case, the specific value of each company is not

important since all the stocks have the same weight. Therefore, this is a sort of weighted

average. Of course, the main drawback of such a method is the “constant assumption”,

which ignores the different capitalizations of the stocks.

• Price Weighted Indices, instead, change the relative importance associated with each equity

according to its particular price. It means that if the price of an asset increases relatively

more than the others, its weight within the index increases as well. Thus, the computations

114 This data comes from various sources, one interested can see for instance the website of Borsa Italiana or various
reports (e.g. FTSE Russell: “Per la gestione dell’indice FTSE MIB”).

55

are quite straightforward since they are simply given by the sum of the prices of all the index

components. The problem in this case is that the index does not correctly reflect the

portfolio performance since the most expensive stocks are the heaviest, regardless of the

size of the companies.

• Finally, Value Weighted Indices are nowadays considered the best available choice because

they overcome the limitations of the previous approaches. Indeed, in this case, the weight

of each stock is proportional to its market value. Therefore, it should not surprise us knowing

that most of the main world indices, such as the S&P500, are value weighted indices. The

only disadvantage of this method is the fact that it is the most difficult to compute since it

needs to be continuously adjusted to account for corporate events (stock splits,

extraordinary dividend payments, mergers, and so on).

For its part, the FTSE MIB is a value weighted index, meaning that it is computed in real time keeping

in mind the specific capitalization of each constituent stock and its evolution with respect to a

particular base period. The total market value of a company is obtained by multiplying the price of

the stock by the issued shares. Therefore, the FTSE MIB index value computed at time 𝑡, 𝐼𝑡, is derived

using the following formula:

𝐼𝑡 =
𝑀𝑡

𝐷𝑡

where 𝐷𝑡 is the value of the index divisor at time 𝑡115, and 𝑀𝑡, the total market capitalization at time

𝑡, is equal to:

𝑀𝑡 = ∑𝑝𝐼𝑡 ∗ 𝑞𝐼𝑡 ∗ 𝐼𝑊𝐹𝐼𝑡116

where

• 𝑝𝐼𝑡 is the last traded price, at time 𝑡, of the i-th share.

• 𝑞𝐼𝑡 is the number of shares of the i-th stock in the index at time 𝑡117.

• 𝐼𝑊𝐹𝐼𝑡 is the investable weighting factor for the i-th component118.

This was a short introduction regarding the Italian equity market, but what can we say with respect

to the relative option contracts? Since the aim of the thesis is pricing financial options that consider

as underlying asset the presented index, we will focus only on describing them. In particular, an

option written on the FTSE MIB index is called MIBO, which means MIB Option.

MIBOs were introduced in 1995 and they are traded on the IDEM119 derivatives market since then.

Remember that the FTSE MIB was created in 2004, meaning that, from 1995 up to that point, it was

the MIB-30 index to be MIBOs’ underlying. These kinds of options have a European style, and they

115 This is a value given by the specific corporate events that took place during the considered period and it is used to
adjust the index value in order to account for this relevant aspect.
116 From “Ground Rules: FTSE MIB Index” by FTSERussell.com, Vol. 4.5 (August 2022).
117 This is equal to the number of shares issued for the i-th security net of the treasury shares.
118 𝐼𝑊𝐹 = 100% − 𝑠𝑢𝑚⁡𝑜𝑓⁡𝑡ℎ𝑒⁡%⁡𝑜𝑓⁡𝑠ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑠⁡ℎ𝑒𝑙𝑑⁡𝑏𝑦⁡𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑⁡𝑠ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠.
119 It is the acronym of Italian Derivatives Market.

56

are cash settled. What does it mean? Option contracts can be settled in two alternative ways

depending on the underlying:

• Cash settlement. It means that the position is closed by a transferring of money from the

debtor to the creditor. This is usually used when the underlying asset is a derivative or an

index.

• Physical settlement. In this case, the contract is terminated with the physical delivery of the

underlying asset. It is very common for stock options.

Therefore, since MIBOs are settled in cash they involve a monetary transaction to close the contract.

This exchange of money is made on the first open Euronext Clearing calendar day following the

expiration of the contract, and it is automatic.

To conclude this brief introduction, it is interesting to notice that these contracts are quoted in

“index points” and not euros. In particular, each index point is worth 2,5 euros and this number is

called multiplier. Therefore, for instance, if we want to compute the premium of the option in euros,

we need to multiply the quoted value by this amount. With respect to the strike and expiration

structures, we can say that there are many possible alternatives simultaneously available, but we

will see it better when we will be presenting our dataset in the next sections.

 3.2 Structure of the dataset

The analyzed data comes from OptionMetrics, a data provider specialized in financial options. In

particular, we will rely on the IvyDB Europe database, which was launched in 2008 and rapidly

became the industry standard for historical option prices and implied volatility data in the European

financial markets. Indeed, it is nowadays used by a huge number of institutional investors and other

market participants thanks to its accuracy, reliability and the amount of valuable information it

provides120.

Let us begin by presenting the structure of the original dataset. It should be immediately noted that

this is only the starting point; indeed, once we get the data, we always have to pursue a preliminary

analysis which then will help us in performing further data manipulations. In particular, since we are

considering machine learning algorithms, we will implement the so-called feature engineering, also

known as feature extraction. This is a technique which consists in exploiting the domain of

knowledge we have about the problem we are dealing with, in order for us to extract the most from

the raw data. It can be done in various ways such as numerical transformations or clustering of some

features, and it helps achieving a more parsimonious representation or a better fit of the model.

The data we will consider range from 1st January 2019 to 1st January 2021, and, even if, at first

glance, it may seem a small period, the original dataset includes over 400.000 observations relative

to 30 different features. The available features, provided by the so-called Option_Price File, are:

120 Just to mention, the data includes daily option pricing information, dividend projections, historical corporate actions,
volatility surface estimates, and so on.

57

• Security ID: it is the unique identifier given by OptionMetrics to the specific asset;

• Date: it represents the date in which the observation has been collected;

• Option ID: it is a unique integer identifier for a particular option; it can be used to track

specific option contracts over time;

• Exchange: the code representing the exchange where the option is traded121;

• Currency: the code indicating the denomination currency122;

• Bid: it is the bid price for the analyzed option contract;

• Bid Time: the trade time for the bid price;

• Underlying Bid: this number represents the bid value available for the underlying security

when the bid time was taken;

• Ask: it is the ask price for the analyzed option contract;

• Ask Time: the trade time for the ask price;

• Underlying Ask: this number represents the ask value available for the underlying security

when the ask time was taken;

• Last: the last traded price for the option contract123;

• Last Time: the trade time of the last price;

• Underlying Last: the price of the underlying security synchronized with the last time, i.e.,

available in that specific moment124;

• Implied Volatility: the calculated implied volatility of the option contract;

• Delta: it is the Delta of the option125;

• Gamma: it is the Gamma of the option;

• Vega: it is the Vega of the option;

• Theta: it is the Theta of the option;

• Calculation: this character value represents the calculation principle exploited to compute

the security price implied in the option pricing model126;

• Volume: the volume on the exchange where the option is traded on this specific date;

• Open Interest: the total number of contracts traded for this option contract, up to the date

before the observation was collected, i.e., this value is lagged by one day;

121 Note that the number 42 stands for MDD which is “Mercato Dei Derivati” (Milan, Italy).
122 In this case, 814 represents the euro.
123 We have to highlight the fact that this value is already the premium expressed in monetary terms, therefore we do
not need to adjust it exploiting the multiplier.
124 It should be noted that this value and the one of the “Last” field are used in the computation of the implied volatility.
125 Attention: we do not present the concept of Greeks since it goes beyond the scope of the thesis; furthermore, they
are not exploited in the presented model. However, they are a fundamental tool which helps option traders in evaluating
and managing the risk associated with this kind of contracts. In particular, they are sensitivity measures which represent
how the price of an option changes according to a modification of a relevant variable such as the price of the underlying
(Delta), the time to maturity (Theta), the volatility (Vega) and so on. Gamma is in a sense the only exception, since it
represents the sensitivity of Delta (not the price of the option) to changes in the underlying value.
126 Indeed, the implied volatility computation relies on the option price by exploiting the following principle. Firstly, it
uses the settlement option price when available. The second-best solution is to rely on the last traded price. If even this
value is not available, it uses a midpoint computed as an average between bid and ask prices. If this is not possible, it
uses the bid price or lastly the ask price.

58

• Special Settlement: this is a dummy variable where 0 means the option has a standard

settlement and 1 means the option has a non-standard settlement127;

• Reference Exchange: the ID of the exchange where the underlying price is taken for implied

volatility calculations;

• AM Settlement: a binary variable which distinguishes whether the options expire at the

market closing of the last trading day (0) or at the market opening of the last trading day (1);

• Contract Size: the deliverable quantity of underlying entities. The standardized value is 100

shares;

• Expiry Indicator: this character value indicates if the option is a regular128 (blank), daily (d),

weekly (w) or monthly option (m);

• Strike: the exercise price of the option multiplied by 1000;

• Expiration: the maturity date of the contract;

• Call Put: it is a binary character variable which represents if the derivative is a call (C) or a

put (P) option;

• Option Style: it is an additional code expressing the type of the option (weekly, daily, etc.);

• Exercise Style: a variable defining the style of the option. American (A), European €,

Bermudan (B), unknown or not classified (?);

• Rate: the dividend yield.

After having gone through this list, we should immediately realize we do not need all this

information in order to develop our model, both because some of the items are, in a sense,

repeated, meaning they provide the same knowledge of other items, and because we can suppose

some of them will not have much predictive power. Therefore, to be sure to include only relevant

variables, it may be wise to rely on previous studies, which help us understanding what tends to be

truly useful.

As already said, following the publication of the Black and Scholes paper in 1973, the research about

financial options has continuously increased over time. Moreover, thanks to the results presented

in Chapter 2 regarding the development of artificial neural networks, also the application of this

kind of tool for option pricing and hedging has steadily grown. Figure 12 shows exactly this

phenomenon.

127 The option may have a non-standard settlement in terms of number of shares to deliver, size, additional requested
guarantees, and so on.
128 Regular options are options which expire on the third Friday of the specified month.

59

Figure 12 - Number of publications regarding the application of ANNs to option pricing per decade (source:
constellate.org)

As we can see, the number of publications grew a lot in the early ‘90s, consider for instance Malliaris

and Salchenberger (1993)129 or Hutchinson et al. (1994)130, but this has started exploding only from

the second half of the 2000s131, to the point that nowadays a fully complete literature review is not

possible. However, the attempt to provide an extensive literature survey has been made various

times. In particular, it is worth mentioning the work of Bennell and Sutcliffe (2004)132, Chen and

Sutcliffe (2012)133, Hahn (2013)134 and Ruf and Wang (2020)135.

By relying on the results presented in these studies, it is possible to draw some preliminary

conclusions regarding for instance which features it is better to exploit. First of all, we should

remember that the aim of this thesis is to develop an artificial neural network able to correctly

estimate the price of a European option136 with the FTSE MIB index as underlying asset. In particular,

we want to show that this machine learning algorithm is capable of providing better results than

the Black, Scholes and Merton model even when European options are considered. Moreover, the

choice of the underlying is not accidental, but it was determined by the lack of research on this

specific subject. Indeed, in the over 150 presented papers, no one ever proposed the application of

a neural network to the Italian index.

With respect to the input variables we have to give to the model in order to estimate the option

value, the underlying price and the strike price are absolutely indispensable. In particular, there are

two alternative approaches according to which the neural network can be fed. On one hand, it is

possible to use these two variables separately. On the other hand, we can rely on their ratio, i.e.,

the moneyness. Several reasons have been proposed proving that it is less efficient to use the two

separate inputs instead of exploiting the moneyness. Therefore, it should be clear why “in the

129 “A neural network model for estimating option prices” M. Malliaris and L. Salchenberger (1993).
130 “A nonparametric approach to pricing and hedging derivative securities via learning networks” M. Hutchinson, A. W.
Lo, and T. Poggio (1994).
131 We should be careful of the data. Indeed, from the plot it seems that the growth has stopped in the last years.
However, this is not true. Note in this regard that, in 2022, with only 2 years passed, we have already reached almost
half the publications of the previous decade.
132 “Black-Scholes versus artificial neural networks in pricing FTSE 100 options” J. Bennell and C. Sutcliffe (2004).
133 “Pricing and hedging short sterling options using neural networks” F. Chen and C. Sutcliffe (2012).
134 “Option pricing using artificial neural networks: an Australian perspective” J. T. Hanh (2013).
135 “Neural networks for option pricing and hedging: a literature review” J. Ruf and W. Wang (2020).
136 Note that the option price is the most common output when we consider artificial neural networks applied to
financial options. Alternative outputs include to estimate the implied volatility or a sort of sensitivity measure such as a
hedging ratio.

60

previous ten years, the second approach is used more often” (Ruf and Wang, 2020). The strongest

arguments supporting the use of moneyness are the following:

• it reduces the number of inputs so that it makes the training procedure of the model

easier137;

• it helps reducing the possibility of incurring in overfitting138;

• moneyness is a stationary variable, in contrast to stock and strike prices. It follows that by

using it we can improve the generalization capability of the network139.

Therefore, we will also rely on the use of moneyness in our model.

From what we already know about option contracts, it should be clear that volatility is another

crucial input feature whose use cannot be avoided. We have to say that it can be computed in a lot

of alternative ways, among which the most popular ones consist in:

• using historical volatility;

• using implied volatility;

• using volatility indices such as the VIX140;

• using more complex models, such as GARCH, to estimate the realized or the implied

volatility.

It is interesting to notice that there is no general consensus on which is the best measure to use. For

instance, Andreou et al. (2008) proved that by relying on the implied volatility the performance of

the model improves a lot, when compared with historical volatility-based models. However, Blynski

and Faseruk (2006) showed that an ANN overperforms Black and Scholes equation when using

historical volatility as input, but it tends to underperform it when using implied volatility instead.

Regarding our practical application, we will use the volatility surface computed by OptionMetrics.

This is the implied volatility computed relying on the exploitation of a kernel smoothing

technique141.

Other useful and commonly exploited inputs are the time to maturity, the dividend yield and the

risk-free interest rate. All these data are available in the Option_price File except for the riskless

rate. However, this feature can be obtained by the so-called Zero_Curve file from the IvyDB Europe

database, which provides the current zero-coupon interest rate curves142. The file structure includes

three columns which are:

137 See for instance Hutchinson et al. (1994).
138 See for instance Anders et al. (1998).
139 Consider as an example the work of Garcia et al. (1998).
140 VIX is the acronym for Volatility Index and it is a real-time instrument which represents the market’s expectation for
the short term volatility of the S&P500.
141 For those interested, the complete description of this procedure is available on the IvyDB Europe Reference Manual
(see for instance Version 3.1 rev. 2021).
142 The standard interest rates used by the IvyDB Europe option model are derived from the BBA LIBOR rates. However,
the curve available in the presented data is the one calculated for the euro.

61

• Date: the date of the zero curve;

• Days: the number of days to maturity;

• Rate: the continuously compounded zero-coupon interest rate.

It should be noted that this yield is computed from “a collection of continuously compounded zero-

coupon interest rates at various maturities, collectively referred to as the zero curve143”. Moreover,

we have to say that, for a specific option, the interest rate input we need to use is the one that

corresponds to the zero-coupon rate having the same expiration of the contract. This can be

obtained with a linear interpolation between the rates of the two closest maturities, which works

as follows:

• The Euribor rates for the available maturities, namely 7, 31, 59, 90, 181, and 365144 days, i.e.,

they go from 1 week to 12 months, are converted to discount factors using the following

equation:

𝐷𝐹 = (1 + 𝑟 ∗
𝑑

360
)
−1

where 𝑟 is the Euribor rate and 𝑑 is the actual number of days to maturity.

• The discount factors are transformed into continuous zero rates by means of the next

formula:

𝐿 = −
365

𝑑
∗ ln(𝐷𝐹)

In case the considered option has an expiration greater than the longest available maturity, the

model uses the interest rate associated with the longest maturity. In the opposite case, meaning

when the option has an expiration lower than the lowest available maturity, i.e., 7 days, the data is

removed from the model. There are various reasons to exclude such observations, among which the

most relevant one is that options characterized by short-time maturities are usually traded at their

intrinsic value and therefore they have a small predictive power145.

To conclude we need to mention that, over time, many papers proposing new alternative input

features have been published. In particular, Ghaziri et al. (2000) and Healy et al. (2002) included

open interest in their models. Montesdeoca and Niranjan (2016) investigated the predictive power

of many explanatory variables such as trading volume, and Cao et al. (2019) analyzed the usefulness

of adding the underlying return to the set of input variables. However, in developing our neural

network we will rely on the most common features; therefore, we will provide to the model 5 inputs,

namely moneyness, volatility, risk-free rate, dividend yield and time to maturity146.

143 It comes from the IvyDB Europe Reference Manual.
144 These are the most common values; however, depending on the specific month they may vary. For instance, 28, 29,
and 30 are numbers presented in the dataset.
145 See for instance “Option pricing via regime switching models and multilayer perceptrons: a comparative approach”
by M. Billio, M. Corazza, and M. Gobbo, Rendiconti per gli Studi Economici Quantitativi, Vol. 2002, pp. 39-59 (2002).
146 Note that we feed the model with only 4 variables since it turned out to be more efficient to consider the risk-free
rate and the dividend yield together.

62

 3.3 Data manipulation

So far, we have briefly introduced the dataset. Now, let us focus a bit more on the specific structure

of the observations and on the preliminary operations we have to perform in order to clean the raw

data. We said we have more than 400.000 observations, to be more specific they are 424.138. In

particular, for every trading day about 390 observations are collected, each of which can be

distinguished from the others according to its maturity date and its specific strike price147.

Of all these contracts, 210.138 are call options and 214.000 are put options.

Already from this circumstance a problem arises: indeed, we have to build two distinct models if we

want to be able to correctly price calls and puts. Of course, this is not efficient, but, if we cannot find

an alternative solution, it is the only way we can follow. Fortunately, since we are trying to price

European-style options, we can rely on the useful relationship defined by the put-call parity. Still,

we should remember this is just a theoretical result, i.e., there are no guarantees the equation will

hold in our data. Therefore, the only thing left for us to do it is to test if the relationship is verified

in our dataset148.

Table 7 - Put - Call parity relationship

Table 7 is an approximation149 of a sample of results extracted from our dataset and showing that

the put-call parity holds. Indeed, the first row has been computed as:

𝑆0 −
𝑋

(1 + 𝑟)𝑡

where 𝑆0 is the stock price at time 0, 𝑋 is the strike price, 𝑟 is the interest rate, and 𝑡 is the time to

maturity. The second row is instead computed as:

𝑐 − 𝑝

where 𝑐 is the call option price, and 𝑝 is the cost of the corresponding put option. In other words,

we are exactly calculating the two hand-sides of the put call parity. Then, it is possible to perform a

comparative analysis which aims in proving if the two terms are identical. It should be noted that,

since we are considering real financial data, it would be virtually impossible to obtain a perfect

equality. Therefore, we will be satisfied if the relationship is approximately verified.

147 As an example, there are options traded in 2019 which will expire in 2023. Of course, the closer the maturity the
more strike prices are quoted. For instance, for option contracts traded on the 02/01/2019 and expiring on Friday
04/01/2019 there are about 30 strikes available whereas less than 20 exercise prices are listed for options quoted the
same day but expiring on 15/12/2023.
148 The code is available in Appendix A.
149 Indeed, as we see, decimal digits are not expressed.

70 670 172 422 672 257 758 1257 264 764 1264 1765 83 184 283 465 35 785 1785

68 668 166 416 666 161 661 1161 157 657 1157 1657 82 182 282 469 31 781 1781

63

As we notice, ignoring what can be considered a sampling error, the results are extremely similar to

each other and, since this is true for all the analyzed data, we can assume that the put-call parity

holds within our dataset. Moreover, it is possible to compute the mean absolute deviation and the

mean relative deviation which are respectively 30.54 and 0.076. This means that on average the

difference between the two values will be equal to 7.6%. Considering the large size of the sample,

this is an extremely good result, also because it can be observed that it is mainly determined by the

most expensive contracts, i.e., ITM options, which we know being the most difficult to correctly

price.

Thanks to this result, we can now proceed by developing only one neural network. In particular, we

will build a model capable of providing accurate estimates for the value of European call options.

Why call options? First of all, since we are relying on the put-call parity equation, it does not make

much difference the type of option we choose to price. Secondly, call option pricing models are the

most widespread in the existing literature150.

At this point, we are left with about half of the data. However, these are raw data that include

outliers, missing values, and in general “weird” observations with no predictive powers. It means

that we have to perform some sort of feature engineering to deal with these kinds of problems.

Indeed, to be able to develop an optimal structure for our neural network, it is essential to select a

proper subset of the original data which is able to capture the model generating the data, and to

detect relevant existing input-output patterns. Moreover, if we succeed in such a task, we can

exclude from the learning procedure uninformative observations, therefore boosting the accuracy

of the model and reducing the required computational costs.

What is feature engineering? It is a data manipulation technique which involves different

approaches such as data deletion, combination or mutation with the aim of improving the

performance of our machine learning model. Obviously, to be able to perform an effective

manipulation, we need to exploit our previous knowledge about the nature of the problem and the

structure of the dataset. Therefore, we can start by excluding those option contracts which have

not been traded, since we can suppose they will be characterized by an extremely small predictive

power in determining the price of the option. It is interesting to notice that this operation alone

reduces the number of available data to less than 50.000, meaning that more than three quarters

of our initial dataset has been cleared at once. Following the same logic, we can remove also the

options that have a volume equal to one. In fact, they will be “case-specific”, i.e., these are single

operations which can take place at prices far from those of the market that are not representative

of the general process generating the data.

Relying on the previous literature, we can then delete the observations with a short time to

maturity. In particular, we will remove all the data characterized by a residual life of less than 7 days.

This because these kinds of contracts are usually traded at their intrinsic value, therefore adding

little information about the true relationship linking inputs and outputs.

It should be noted that already with these two operations, we shrank down our dataset size to little

more than 40.000 input-output pairs. However, we still have to deal with missing values and

150 See for instance “Neural networks for option pricing and hedging: a literature review” by Ruf and Wang (2020).

64

outliers. Indeed, the management of such observations is a crucial aspect we necessarily need to

deal with in order to not compromise the quality of the estimates of our model151.

The problem in this case lies in the definition of one of these two terms. If, on one hand, a missing

value can be easily defined as a missing observation, meaning a situation in which one or more

pieces of information about a variable have not been stored; on the other hand, the definition of

outliers is neither unique nor clear. The statistician Hawkins (1980)152 defined an outlier as “An

observation which deviates so much from the other observations as to arouse suspicions that it was

generated by a different mechanism”. Therefore, these are observations that lie at an “abnormal

distance” from the other values collected in our sample. However, there is still a huge degree of

vagueness regarding what can be considered an abnormal distance.

Of course, since these two concepts have different drawbacks, also the way in which we deal with

them changes. In particular, the hard task with missing observations is to find them and to

understand how they are represented within the dataset. In our case, the OptionMetrics database

has different notations for missing values; for instance, when the information about the volatility of

one piece of data has not been recorded, we do not find a blank space or a character string such as

NA, but a numerical value instead, namely -99.99. Obviously, not being aware of these kinds of

circumstances can lead to unsatisfactory results because we can risk including in the model

meaningless values like for example a negative volatility.

The problem with outliers is different. As previously stated, these can be seen as data generated by

a different process other than the one we are trying to analyze. Therefore, they can be misleading.

However, they are in a sense difficult to be recognized and, in this regard, there exist several

techniques we can employ in order to try to detect these strange observations. The most famous

approach is the statistical one based on the so-called Z-score. This simply represents how far from

the sample mean a certain data point is, in terms of standard deviations. Despite its simplicity, this

method has some serious limitations. First of all, we need to know the distribution of the dataset.

Secondly, this distribution has to be well-shaped, meaning it needs to be, at least within a certain

degree, symmetric.

The most common assumption is to rely on the normal distribution153. In such a case, we usually

consider as outliers all the observations that lie at a distance greater than 1.96 standard deviations,

in absolute value, from the mean154. Therefore:

𝐼𝑓⁡𝑍 =
𝑥 − 𝜇

𝜎
≥ |1.96|⁡𝑤𝑒⁡𝑐𝑎𝑛⁡𝑠𝑢𝑝𝑝𝑜𝑠𝑒⁡𝑡ℎ𝑒⁡𝑥𝑡ℎ𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛⁡𝑡𝑜⁡𝑏𝑒⁡𝑎𝑛⁡𝑜𝑢𝑡𝑙𝑖𝑒𝑟

where 𝜇 is the sample mean and 𝜎 is the sample standard deviation of our data.

151 The process of identifying valid, useful patterns in data is known with various different names. For instance, it is
called “knowledge discovery in databases” in the paper “Optics-of: identifying local outliers” by M. M. Breunig, H. P.
Kriegel, R. T. Ng, and J. Sander, PKDD, LNAI, Vol. 1704, pp. 262-270 (1999).
152 “Identification of outliers” (vol. 11) D. M. Hawkins (1980).
153 However, we can rely on different distributions such as the student-t.
154 Note that this value is derived by the specific structure of the standard normal distribution. Indeed, observations
that deviate from the mean more than 1.96 standard deviations have a maximum probability of 5% of being observed.

65

Since we are considering a multidimensional, nonlinear problem it is hard to think that our features

will comply with the normality assumption155, i.e., even in this case it seems better to exploit our

knowledge about the problem and to rely on previous studies. In particular, a lot of different papers

have clearly shown the improvement in the performance of those neural networks that exclude

deep-out-of-the-money and deep-in-the-money options from their learning procedure156. In our

case, the selection was made according to both the moneyness and the premium of the options; as

an example, among the 43.510 input-output pairs obtained by removing the zero-volume contracts,

only 41 observations where so deep ITM that they showed a premium above 8.000 euros. This

means that by removing these data we were deleting only the 0.094% of the total information.

Now, after having managed the outliers and the missing values, all that is left to do is to understand

if it may be helpful to perform some sort of normalization or other kinds of transformations on our

input features and output variable.

Figure 13 - Option price distribution

155 In particular, we tested such hypothesis and proved that our features violate the normality assumption.
156 See for instance “Improving the pricing of options: a neural network approach” by U. Anders, O. Korn, and C. Schmitt,
Journal of Forecasting, Vol. 17, pp. 369-388 (1998).

66

Figure 14 - Volatility and Maturity distributions

Figure 15 - Moneyness and Interest rate distributions

As we can see from Figures 13, 14, and 15, which are showing how our original data are distributed,

some interesting facts can be highlighted. In particular, we notice that, except for the moneyness

which, as we expected157, follows a sort of symmetric distribution, they are all asymmetric variables.

Moreover, we see that they are characterized by different scales, meaning the ranges of values of

their domains are not the same. These are both problems, since they may affect the efficiency of

157 Remember we said that one of the main reasons according to which we choose to rely on moneyness, instead of the
separate stock price and strike price, it is the fact that this variable is stationary and tends to show a nice behaviour.

67

our neural network. Therefore, in order for us to address these drawbacks, we have to apply a

normalization technique and some type of useful transformation.

Before doing that, let us start by drawing some initial observations. First of all, it should be noted

that the vast majority of the data is made of at-the-money options. Indeed, Figure 15 shows that

around 90% of the traded contracts have a moneyness between 0.8 and 1.2. Moreover, as we can

observe, a huge part of these is extremely close to one158. Finally, we have already pointed out that

moneyness follows a symmetric distribution; however, it is not perfectly true, as we can see that

the left tail is a little bit larger, i.e., slightly out-of-the-money options tend to be a bit more traded

than slightly in-the-money contracts, at least in our sample. Consequently, it should not surprise us

to notice that most of the premiums are relatively small, having a monetary value lower than 1.000

euros. Indeed, since most of the traded contracts are ATM or OTM options, we can suppose they

are not too expensive. This is why we observe that kind of right-skewed distribution in the cost of

the options.

Then, regarding the volatility and the maturity plots, it is possible to say they both show an

extremely positive asymmetry. This means we usually expect to find options characterized by a short

time to maturity, in general lower than 100 days, and which embed a relatively small implied

volatility. Lastly, the interest rate is computed to keep into account both the risk-free rate and the

dividend yield. Since we are in a period of negative interests and the paid dividends have been

relatively small, it should be clear why this feature displays a negative asymmetry.

In order to prevent overfitting and to make the learning procedure easier and consequently faster,

it may be beneficial to normalize the variables between 0 and 1 so that they all have the same

magnitude, i.e., their contribution is not determined by the different scale characterizing them but,

instead, by the different weights the network assigns to each of them159.

At the same time, it could be useful to transform some of these features so that they will show a

more symmetric behaviour160. The operations performed on the explanatory and dependent

variables are made available in Appendix B.

The normalization is performed by applying the following formula to each observation:

𝑥𝑛𝑒𝑤 =
𝑥 −𝑚𝑖𝑛𝑥

𝑚𝑎𝑥𝑥 −𝑚𝑖𝑛𝑥

where 𝑥𝑛𝑒𝑤 is the new normalized value, 𝑥 is the original value of the analyzed variable, 𝑚𝑖𝑛𝑥 is the

minimum of 𝑥, and 𝑚𝑎𝑥𝑥 is the maximum of 𝑥. By doing so, we make sure that each feature starts

from 0 and has 1 as maximum.

The results are presented in Figure 16, Figure 17 and Figure 18:

158 Which means perfectly at-the-money options.
159 Note that in case of machine learning this is also called “feature scaling”.
160 Note that these operations do not modify the structure of the data or their influence on the determination of the
output, but they simply make the computation easier for the model. Moreover, once the network has been derived and
the results have been estimated, they are converted back to their original form.

68

Figure 16 - New option price distribution

Figure 17 - New Volatility and Maturity distributions

69

Figure 18 - New Moneyness and Interest rate distributions

As we can see, these new distributions all seem more symmetric. Of course, we have not been able

to make them look perfect, but we have been still capable of improving the initial situation.

Moreover, they are now all between 0 and 1, meaning they all have the same magnitude on the

network and the only variable that matters in determining their impact on the output is the weight

the model assigns to each of them.

This concludes the presentation of the FTSE MIB, the description of the exploited dataset and the

operations performed on the explanatory variables and output. The next Chapter will present the

development of a multilayer perceptron artificial neural network which aims at providing a precise

and reliable estimate for the price of a European call option.

70

71

Chapter 4 An Artificial Neural Network for pricing MIBOs

In this final Chapter the performed experiment, which consists in developing a multilayer

perceptron ANN for forecasting the future price of options contracts, is described in detail. In section

4.1 it is explained why we need to rely on such a kind of algorithm by showing the complexity and

the high nonlinearity of our input feature space. Paragraph 4.2 is then focused on presenting the

hyperparameter optimization techniques on which we chose to rely in order to tune our model. The

third part of the Chapter shows instead the steps we followed to select the best architectural

structure of the network, providing, at the same time, the empirical evidence that supports our

choices. Finally, in section 4.4 the obtained results are analyzed. In particular, the last paragraph is

organized as a comparison between the results of the developed artificial neural network and the

ones of the competing Black-Scholes-Merton model.

 4.1 Why an artificial neural network

At this point, we are well aware of the scope of the thesis, i.e., to develop a MLP ANN to estimate

the price of European call options by exploiting the information provided by a set of input variables.

In particular, in the previous Chapter we described the structure of the data and the main

characteristics of our features which are implied volatility, moneyness, time to maturity and interest

rate161.

Remember we have been able to reduce the number of the inputs so much by starting from the

existing literature and the previous theoretical and empirical results. Moreover, this has been done

with the twofold objective of simplifying the learning procedure162 on one hand, and improving the

network performance on the other hand. However, we can ask ourselves if it is truly necessary to

rely on a complex structure such as the one of a neural network. It means, can we not find a simpler

way to deal with this kind of problem? For instance, why do we not exploit a multiple linear

regression model? There are several reasons that support the choice of the artificial neural network,

let us go into it.

First of all, since our problem has a high dimensionality, it is not possible to show the effect of all

the features on the independent variable at once; in any case, we can still observe the partial effect

of each explanatory variable, meaning we can plot how each individual input affects the output

when the other variables are left free to change:

161 Recall this is an artificial variable built to keep into account both the dividend yield and the risk-free rate.
162 It should be pointed out that by reducing the computational cost the learning of the model accelerates.

72

Figure 19 - Volatility and Maturity effects on call price

Figure 20 - Moneyness and Interest rate effects on a call price

As we can see163, these are all pretty noisy Figures which do not show any clear, detectable

relationship between the input features and the output; in particular, no linear association can be

spotted. However, this is not completely true, since there seems to be one relevant exception:

moneyness.

163 Note these are the existing relationships between the transformed input features and the original output variable.
We have to highlight that these results do not change significantly according to the kind of variables, original or
transformed, we are considering. Therefore, we choose to plot these values to show how they impact on the original
price of the option expressed in monetary terms.

73

Indeed, in case of moneyness, we see some kind of positive correlation between the dependent and

the independent variables, which can be explained relying on the theory. In fact, due to the effect

of the normalization technique we applied to the data, the value 0.5 represents now “perfectly at-

the-money options”, i.e., contracts with a strike price identical to the underlying price. It follows

that all the points that lie on the left of such threshold are, in different ways and with different

degrees, out-of-the-money options, whereas the observations on the right are in-the-money

derivatives. Therefore, knowing that moneyness is determined by the intrinsic value of a contract,

it is quite normal to detect an increasing trend, meaning options with larger intrinsic values are

generally more expensive.

What can really surprise us is to notice that this positive behaviour is not present in other features.

For instance, we already know that an increasing volatility is usually followed by an increase in the

cost of the options. However, we do not spot such a clear relationship in our data. Does it mean that

the theory is wrong? No, more likely it means that the effects produced by a rise in the volatility are

not straightforward to explain, and they tend to affect the price of the contract in more complex

ways, to the point that we can suppose there are also forms of interaction between the explanatory

variables164.

This is the second reason why we should prefer to rely on the structure of the neural network

instead of closed-form formulas or other regression techniques such as multivariate linear

regressions. Let us explain why neural networks tend to overperform such models with an example.

In case of a multivariate linear regressions, we have to add cross products, high order terms, etc. in

order to be able to account for further interactions between the input variables. The problem is that

we are not sure if the new added terms are statistically significant or if they will not improve the

performance of the model, therefore we have to test, in a sense manually, the goodness of this

hypothesis165.

With a neural network model, instead, the algorithm will be able to create its own features

directly166. In other words, it is the system itself to detect the best nonlinear ways to map the inputs

to the output. By recalling the universal approximator theorem of Cybenko (1988), we are also sure

that, by exploiting a deep learning structure167, a MLP ANN can represent any continuous function

with a given arbitrary precision. Moreover, thanks to its particular architecture, an artificial neural

network is proved to be efficient in performing this task, therefore it is a good choice to address

these kinds of problems by relying on such an algorithm.

The problem with artificial neural networks is that the above-mentioned theorem says nothing

about the computational cost that it is required to perform such a task. In particular, what happens

to the number of observations that we need in order to estimate the parameters of the model when

the complexity of the network increases? With this regard, it is well known that machine learning

164 Meaning the effect of one explanatory variable on the output changes if one or more independent variables are
modified.
165 The drawback is that to test a null hypothesis we need to assume a proper distribution of the data, a significant
threshold, and so on. Assumptions which make the model more unrealistic and far from reality.
166 Note these are both weights and biases. However, differently from a linear regression or other kinds of models, in
this case, we will not be able to observe such values. Indeed, neural networks are, in a sense, sort of “black-boxes”.
167 Meaning by relying on a neural network with at least one hidden layer.

74

systems are affected by the so-called “curse of dimensionality” (Bellman, 1957)168. The expression,

coined in the dynamic programming context, refers to a phenomenon that naturally arises in many

high dimensional problems.

In our case, this simply means that the amount of required data grows exponentially when the size

of the network increases. To frame the problem in a different way, we can say that given a fixed

number of training examples, the predictive power of a machine learning algorithm first tends to

increase as the complexity of the model grows, i.e., the system is more capable of detecting relevant

patterns in the dataset, but after a certain point, the performance starts to deteriorate; in a sense,

it is as if there is not enough information to correctly train the whole model (Hughes, 1968)169. Figure

21 shows exactly this relationship.

Figure 21 - Model performance versus model complexity (source: International Journal of Engineering Trends and
Technology)170

Therefore, it should be clear that one of the most concerning aspects in building our neural network

must necessarily regard the choice of a proper structure for the model, meaning the tuning of the

hyperparameters, also known as hyperparameter optimization. In the next sections we will address

exactly this problem, by showing the procedures followed to define the most performing

architecture of our multilayer perceptron.

168 “Dynamic programming” R. Bellman (1957).
169 “On the mean accuracy of statistical pattern recognizers” by G. Hughes (1968).
170 From “A comprehensive review of subspace clustering in the analysis of big data” by T. Gayathri and L. Bhaskari,
International Journal of Engineering Trends and Technology, Vol. 39, pp. 135-142 (2016).

75

 4.2 Tuning the hyperparameters

Considering what has been said so far and given the fact that the number of available data points in

our application is fixed, i.e., the dataset size does not change over time, we are sure that an optimal

number of parameters to use in the model exists and can be found. Therefore, we have to

understand how complex the network needs to be to provide the best possible estimates. To tackle

such a problem various approaches have been developed; we will see them in a moment. Before

doing that, we have to recall that a neural network learns by constantly adjusting its parameters

and, in particular, the operation is performed by exploiting a loss function. Indeed, this metric

measures how similar the true and the predicted outputs are, and of course, the goal of the model

is to minimize it.

This means that the choice of the loss function is a crucial aspect to consider since it may deeply

affect the results of the model, see for instance Girosi, Jones, and Poggio (1993)171. With this regard,

the most popular loss function, that is nowadays the default in most regression applications, is the

Mean Squared Error (MSE)172. It is defined as follows:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦(𝑖) − 𝑦̂(𝑖))

2
𝑛

𝑖=1

where 𝑛 is the number of observations, and 𝑦(𝑖) and 𝑦̂(𝑖) are respectively the real value and the one

predicted by the model for the i-th input-output pair.

The MSE is the preferred loss function, meaning it is the first to be used and it has to be changed if

and only if we can detect strong indications that advise against its exploitation. However, we can

highlight that, in general, there are plenty of reasons that support it.

From a mathematical point of view, we see that it is computed as the average of the squared

differences between the actual and the predicted values, i.e., it is a quadratic function173. It follows

that the result will always be positive, regardless of whether the predicted output is greater or lower

than the target value. Moreover, by squaring the differences we are penalizing the model for making

larger mistakes174. Finally, the MSE is also a convex function, i.e., it has a clearly defined global

minimum, and it is differentiable, unlike other loss functions.

Unfortunately, it has also some disadvantages. Indeed, it tends to be quite sensible to the presence

of outliers and it is scale dependent. However, in the previous Chapter we performed a deep data

manipulation and, by managing the abnormal observations presented in our dataset and by

normalizing the explanatory variables, we were able to reduce the magnitude of these drawbacks.

Therefore, from these results, it follows that we can rely on the backpropagation algorithm and the

gradient descent in the implementation of our artificial neural network175.

171 “Priors, stabilizers and basis functions: From regularization to radial, tensor and additive splines”.
172 Note that the MSE is defined as the L2 loss function, also known as Least Square Error (LSE), divided by the number
of available observations.
173 It ranges from 0 to plus infinity, in particular, a good model will have a low MSE.
174 It means that the penalty is not proportional to the error but to its square instead.
175 See for instance Janocha K, and Czarnecki, W. M. (2017) or Zahra M. M., Ali M. H. E., and Refaee, A. (2014).

76

We have now explained the choice regarding the loss function, but there are still other important

questions that remain unsolved. In particular, we need to define the best architectural structure of

the neural network and, in order to do this, we have to identify a proper value for each of the

following variables:

• The number of hidden layers of the model;

• The number of hidden neurons per each hidden layer;

• The activation function we want to use;

• The partition of the data between training, validation, and test sets;

• The performance measures to exploit in the evaluation of the goodness of the network.

Let us start by addressing the “simplest” task: the number of hidden layers.

First of all, we have to highlight that, despite some decades have already passed since the first neural

networks were applied to the option pricing task, there still does not exist an exact solution to the

problem of what is the right number of hidden layers176. In particular, the existing literature has

mainly exploited a trial-and-error approach. However, in more recent years, there have also been

studies presenting a more formal method to deal with this matter, like for instance the paper by

Stathakis (2009)177.

In any case, we need to mention that the use of multiple hidden layers may cause different

problems. Indeed, we know that very complex structures are more prone to overfitting, and the

complexity of the model grows exponentially with the increase of the number of the hidden

layers178. Moreover, deep neural networks are in general harder to train both in terms of

computational resources, such as time, and dataset size179. Therefore, unnecessary increments of

the hidden layers may have a deleterious effect on the robustness of the model, on its overall

efficiency and on its capability to generalize. Last but not least, we are already aware that neural

networks with one or two hidden layers are sufficiently structured to solve any nonlinear, high

dimensional problem180, meaning there is no need to introduce additional complications. These are

the main reasons why almost all the analyzed papers rely on a single hidden layer structure; in this

regard, consider as an example the work by Ruf and Wang (2020).

Following the previous results, we decided to implement a one hidden layer model. In particular,

having four input variables and one output, the general structure of the network will be similar to

the one presented in Figure 22:

176 See for instance “The application of artificial neural networks to the analysis of remotely sensed data” by Mas, J. F.,
and Flores, J. J. (2008).
177 In his work the author, Stathakis, D. (2009), proposed the application of a genetic algorithm to the specific task of
optimizing the choice of the number of the hidden nodes and the hidden layers. The method was even compared with
other techniques and provided encouraging results.
178 “Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture” by Karsoliya S. (2012).
179 They usually require millions of data to be able to perform a proper training.
180 Cybenko’s theorem of 1988.

77

Figure 22 - Artificial Neural Network structure

Once the problem of how many hidden layers to use has been addressed, the next step is to

understand the optimal number of neurons and the best split. Even in this case a general answer

does not exist yet, and we have to say that it “is unlikely to be discovered any time soon”

(Hutchinson et al., 1994). However, it can be pointed out that, in general, the standard approach to

the problem relies on cross-validation methods and their variations (Wahba, 1990)181. Therefore,

we are left with a question: what is cross-validation?

Cross-validation is a technique used to ensure that the learning process has been performed in a

proper way; in other words, it is exploited to improve the accuracy of the model. It is possible to

define various alternative implementations of such a method, but the plain vanilla version simply

consists in dividing the original dataset into complementary subsets, i.e., they have zero elements

in common, and then performing a series of operations. The usual setting involves the partitioning

of the data into three groups:

• The training set;

• The validation set;

• The testing set182.

The training set is used to teach the model about the structure of the data and the existing

relationship between the inputs and the output. Then the validation set is exploited to provide an

unbiased evaluation of the model, i.e., the information it sends us is used to validate the analyses

previously made. It means this is the portion of the dataset we rely on to tune the hyperparameters.

Finally, the testing set is a separate group of data which is used to assess the ability of the model to

deal with new, unseen observations once the training has been completed. Therefore, in order to

prevent overfitting and to be sure that the model is reliable and has a good generalization ability,

we must divide the available data into two groups: one known, and the other unknown183.

181 “Spline models for observational data” by Wahba, G. (1990).
182 See Chapter 2 for a more detailed explanation.
183 Then the unknown part will be usually divided into the validation and the testing sets.

78

Indeed, since the optimization process aims at maximizing how the model fits the training set,

namely the known part, if we do not introduce a sort of “independent control”, performed through

the unseen observations, the network has a strong incentive to overfitting.

Now, it should be clear why we divide the dataset into multiple groups. However, we said nothing

about how this partition should be made. In particular, since the size of the three sets is a crucial

factor in determining the quality of the estimates of the model, we need to be able to detect its best

“composition”. The problem is that there is not a thing such as an optimal split percentage, and we

also have to account for the bias-variance trade-off. Indeed, on one hand, when the training set is

relatively small, the model tends to show high variance. On the other hand, if the validation/test

sets are not big enough, the performances of the network display a greater variability.

Over time many empirical results have been proposed and alternative rules of thumb have been

developed. For instance, when there are many hyperparameters to tune, it is a good practice to rely

on a larger validation set to optimize in a proper way the network. With this regard, it is interesting

to notice that usually the differences between the performance estimated by the validation set and

the one provided by the test sets tended to decrease “when more samples were available for

training/validation, and this is because the models were then moving towards approximations of the

central limit theory for the simulated datasets used.”. Moreover, “having too many or too few

samples in the training set had a negative effect on the estimated model performance, suggesting

that it is necessary to have a good balance between the sizes of training set and validation set to

have a reliable estimation of model performance.” (Xu and Goodacre, 2018)184.

Keeping in mind all what has been said, in our model, we decided to rely once again on a trial-and-

error approach by testing for different split settings, each of which is characterized by an increasing

portion of training data: 50/25/25, 60/20/20, 70/15/15, and 80/10/10185.

At this point, we have understood how to address the data attribution between the different

subsets. However, we still do not know what method we should use in tuning the hyperparameters,

meaning what is the best technique to find the optimal hyperparameters? There are several possible

approaches, which can be classified in the following three popular families:

• Grid search;

• Random search;

• Other more complex models.

The grid search is the most common approach since it is a theoretically simple and straightforward

procedure. It can be defined as an exhaustive, brute-force estimator, meaning all the possible

combinations of hyperparameters in the search space will be analyzed to determine the

combination that yields to the best performance. Of course, the main advantage of this technique

consists in its pervasiveness. Indeed, there is not a better way to find the optimal solution than

184 “On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling
for estimating the generalization performance of supervised learning” By Xu Y., and Goodacre R., Journal of Analysis
and Testing, Vol. 2, pp. 249-262 (2018).
185 The first number represents the percentage of the data used in the training procedure while the second value is the
portion of the dataset implied in the validation step. Finally, the third number is the percentage that pertains to the test
set.

79

trying all the possibilities. However, arriving at this perfect knowledge is quite expensive. Therefore,

the biggest drawback of the grid search is the fact that it does not scale well and tends to be quite

inefficient when many hyperparameters are considered. In particular, by increasing the

hyperparameter search space, the computational cost, in terms of time and required resources,

exponentially rises.

Random search instead does not analyze all the possible hyperparameters in the search space, but

it evaluates only a specific number of them, given by the user, at random. The main advantage of

this approach is that it usually performs less computations than the grid search, i.e., it is more

efficient from a computational point of view. However, the risk is that, since the search is made at

random, it may fail in capturing relevant information present in the data, leading to poor

performances. Figure 23 shows graphically the difference between these two approaches:

Figure 23 - Grid search vs Random search (source: github.com)

Finally, there are other complex optimization methods that can be employed in tuning the

hyperparameters, like for instance Bayesian optimization or Genetic algorithm techniques. These

methods are becoming more and more popular over time since they are able to provide near

optimal results, extremely close to the ones obtained by a complete grid search, in a time efficient

way. However, since our network considers few hyperparameters, we can rely on the grid search so

that we are sure to detect the best available solution186.

Going on with the concern of how the parameters of the model have to be estimated, we can say

that a huge part of the existing literature shows that the efficiency and the accuracy of the

estimation process depends also on whether the parameters are all estimated simultaneously or

sequentially; in particular, we can distinguish between batch learning algorithms and online learning

algorithms.

186 See for instance “Grid search, random search, genetic algorithm: a big comparison for NAS” by Liashchynskyi P., and
Liashchynskyi P. (2019).

80

They are different one from the other in the sense that the former takes “batches” of data to train

the model all at once, while the latter instead starts from an initial guess and then by picking up the

observations one by one, it recalibrates each parameter every time. Since a rigorous comparison of

estimation methods is not the primary goal of this thesis, we chose to exploit the results provided

by previous studies. Therefore, in our application we rely on the so-called Levenberg-Marquardt

backpropagation algorithm, which has been proved to be the most efficient training function; see

for instance Hutchinson (1993). It is a powerful offline batch training method which updates the

value of all the weights after every simulation. On this regard, it is possible to say that it is not

completely clear why, but online methods tend to overperform batch methods when they are used

with neural networks to deal with large scale, highly nonlinear problems187. However, the

Levenberg-Marquardt algorithm has been proved to provide extremely satisfactory results. In

particular, it is able to yield to faster convergence when compared to other training approaches.

So far, we have made clear how to cope with the number of hidden layers and the split ratio

between training, validation and test sets. Moreover, we have defined the general rules we will

follow in the hyperparameters optimization. Therefore, the last elements we need to address are

the number of hidden nodes, i.e., the number of neurons in the hidden layer, the activation function,

the early stopping criterion, and the learning rate.

With respect to the last two elements, we can say that we chose to rely on the default values. In

particular, the early stopping is a form of regularization technique used to prevent overfitting when

a training iterative method, such as the gradient descent, is applied. The ratio behind is quite simple:

once an arbitrarily large number of training epochs has been specified, 10.000 in our case, it is

possible to suspend the training procedure when the model performance stops improving in the

validation set. Moreover, since we are considering a squared loss function, this can be seen as a sort

of L2 boosting technique, as explained in the work of Yao et al. (2005).

The learning rate, instead, is the hyperparameter determining how quickly the model adapts to the

observed data; a better definition is provided in Chapter 2. As already said, we decided to rely on

the default values for both these two parameters since, as we are going to see, they proved to be

capable of providing excellent results. Therefore, the early stopping is set equal to 6, i.e., the

learning procedure is terminated when the performance in the validation set does not improve for

6 consecutive epochs, and the learning rate is 0.01, meaning 1%.

Finally, also the number of hidden neurons and the choice of the activation function will be

determined by exploiting a trial-and-error approach. Indeed, in the existing literature a universal

rule to be followed to optimize these hyperparameters does not exist. In particular, several rules of

thumb methods have been defined over time, like for instance the followings:

• Boger and Guterman (1997) suggested that the number of hidden nodes should be between

70% and 90% of the size of the input layer. Then, if this is proved to be inefficient, additional

neurons can be added later on;

• Berry and Linoff (1997) developed a different approach according to which the number of

hidden layer neurons should be less than twice the number of nodes in the input layer;

187 For those who are interested, more on this topic can be found by consulting the “stochastic approximation”
literature. Consider for instance Robbins and Monro (1951), Ljung and Soderstrom (1986), or Widrow and Stearns
(1985).

81

• Blum (1992) proposed that the size of the hidden layer, in terms on neurons, should be

between the input layer and the output layer sizes.

However, these and other rules “are not considered to be always true because not only the input

layer and the output layer decide the size of the hidden layer neurons” (Karsoliya, 2012). This means

that there are many other relevant factors that need to be considered, such as the activation

function, the training algorithm employed, and so on. Since the same is true also for the choice of

the activation function, we decided to follow the most common approach by performing a trial-and-

error development.

To summarize, we will build a one hidden layer artificial neural network which takes as input four

explanatory variables, namely moneyness, volatility, time to maturity and interest rate, and

provides as output the monetary price of a European call option written on the FTSE MIB index. In

doing so, we will try to detect the best model architecture by optimizing different hyperparameters.

In particular, nodes between 2 and 30 will be tested relying on cross-validation performed with four

different split settings.

Two activation functions will be alternatively employed. These are the two most performing

functions already presented in Chapter 2, namely the Sigmoid and the Hyperbolic tangent188.

Moreover, the hyperparameter optimization will be carried out by testing all the possible

combinations, i.e., we will perform a complete grid search, and the parameters will be constantly

updated by exploiting the Levenberg-Marquardt algorithm. This means that at the end of each

iteration a new vector of weights will be generated, starting from the previous collected

information.

The exploited loss function is the Mean Squared Error, and each simulation involves a huge number

of epochs, namely 10.000, so that the optimal value can be detected by the model, usually by

triggering the early stopping criterion. To reduce the magnitude of the random initialization of the

model, three independent experiments, called “runs”, will be performed. Finally, once the best

model structure will be detected, a comparative analysis with the Black-Scholes-Merton formula

will be made in order to show which model is able to provide the best results.

Merging all this information, we get:

29𝑛𝑜𝑑𝑒𝑠 ∗ 4𝑠𝑝𝑙𝑖𝑡𝑠 ∗ 2𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 3𝑟𝑢𝑛𝑠 ∗ 10.000𝑒𝑝𝑜𝑐ℎ𝑠 = 6.960.000⁡

It means that, potentially, we will analyze almost 7 million alternative scenarios in the development

of our neural network.

188 Note that Matlab calls these two functions respectively LogSig, Log-Sigmoid transfer function, and TanSig, Tan-
Sigmoid transfer function. Despite the different names, these are exactly the same functions we defined in Chapter 2.

82

 4.3 Selecting the best model

In the previous paragraph we discussed the rules to follow in the definition of the architecture of

our neural network, and the hyperparameters we need to adjust. In particular, we need a

performance metric that allows us to determine which is the best structure among those examined.

With this regard, we already know that the learning procedure is performed by means of a MSE loss

function; however, we will use a different value to assess the goodness of the analyzed model: the

RMSE, namely the Root Mean Squared Error.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦(𝑖) − 𝑦̂(𝑖))2
𝑛

𝑖=1

As we can see, this is simply the square root of the MSE and the reason of using it, instead of the

mean squared error, is to obtain a measure which has the same measurement unit as the

explanatory variables189.

The first element we will define is the number of hidden nodes. Then, we will detect the best

activation function and the most performing split to use. In this selection process, we will perform

a complete analysis of the search space, i.e., we will test all the possible combinations of our

parameters, and we will rely on the RMSE, but in a sort of “strange” way. Indeed, in addition to

considering its pure value, we will try to deeply understand its behaviour. In order to do this, we will

try to answer several questions, like for instance: does it converge from a certain point on? Is it

possible to detect a robust value, meaning a point around which always acceptable results are

grouped? What is the relationship between training and validation results? And so on.

Table 8, Table 9, and Table 10 show the results provided by our experiments.

189 Therefore, we want to obtain an evaluation metric which is simpler to interpret.

83

Table 8 - Results of the first experiment

Activation

Function
Nodes

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

LogSig 208,88 212,56 1,018 241,63 234,05 0,969 330,88 336,63 1,017 238,99 246,33 1,031

TanSig 288,57 263,16 0,912 241,91 234,31 0,969 246,88 206,16 0,835 331,73 266,76 0,804

LogSig 251,42 229,23 0,912 301,85 343,30 1,137 368,60 351,52 0,954 258,10 274,95 1,065

TanSig 182,85 175,83 0,962 293,44 330,56 1,126 294,28 358,33 1,218 249,60 267,15 1,070

LogSig 169,69 193,23 1,139 126,30 127,74 1,011 246,26 174,15 0,707 249,97 191,90 0,768

TanSig 111,57 118,90 1,066 128,17 130,14 1,015 215,31 233,83 1,086 197,53 170,35 0,862

LogSig 198,78 192,85 0,970 122,86 150,96 1,229 271,40 258,18 0,951 100,66 77,99 0,775

TanSig 177,87 167,49 0,942 100,44 122,46 1,219 97,62 125,48 1,285 109,12 110,12 1,009

LogSig 86,91 91,72 1,055 113,76 108,11 0,950 86,88 92,23 1,062 78,57 76,42 0,973

TanSig 175,11 394,42 2,252 190,59 155,33 0,815 187,39 196,44 1,048 137,99 130,96 0,949

LogSig 95,67 71,70 0,749 157,02 149,56 0,952 76,09 73,08 0,960 94,73 100,80 1,064

TanSig 84,70 83,82 0,990 114,60 103,68 0,905 93,53 86,58 0,926 84,22 90,31 1,072

LogSig 74,79 79,56 1,064 72,98 75,02 1,028 82,92 77,87 0,939 111,20 113,38 1,020

TanSig 85,23 90,06 1,057 83,79 90,67 1,082 110,54 196,19 1,775 107,13 108,57 1,013

LogSig 74,17 84,32 1,137 87,21 92,27 1,058 63,40 67,87 1,070 83,99 96,49 1,149

TanSig 61,73 76,38 1,237 70,53 70,93 1,006 63,22 67,25 1,064 64,32 66,40 1,032

LogSig 72,56 76,25 1,051 70,09 72,78 1,038 93,19 75,11 0,806 63,93 57,44 0,898

TanSig 161,98 205,75 1,270 76,73 79,57 1,037 66,10 73,02 1,105 74,94 75,51 1,008

LogSig 56,83 56,84 1,000 69,40 70,91 1,022 57,60 55,13 0,957 75,82 73,07 0,964

TanSig 75,28 88,48 1,175 86,57 84,41 0,975 91,62 90,90 0,992 81,52 85,95 1,054

LogSig 57,93 61,46 1,061 63,55 68,70 1,081 72,39 91,40 1,263 75,88 76,25 1,005

TanSig 70,50 91,08 1,292 54,37 59,93 1,102 60,72 61,57 1,014 59,42 66,84 1,125

LogSig 68,57 76,99 1,123 68,37 75,48 1,104 52,77 52,98 1,004 62,49 49,73 0,796

TanSig 63,05 66,07 1,048 52,76 54,08 1,025 60,23 63,18 1,049 70,04 68,33 0,976

LogSig 58,31 71,28 1,223 67,65 117,48 1,737 63,95 73,16 1,144 61,58 96,68 1,570

TanSig 89,53 104,92 1,172 71,19 79,23 1,113 74,10 70,36 0,950 70,75 101,02 1,428

LogSig 139,93 216,51 1,547 57,18 71,38 1,248 64,25 63,46 0,988 65,41 66,49 1,016

TanSig 64,00 70,67 1,104 55,95 60,13 1,075 59,41 60,61 1,020 60,18 62,25 1,035

LogSig 52,15 86,89 1,666 71,73 90,53 1,262 59,25 71,22 1,202 47,65 48,75 1,023

TanSig 47,14 61,08 1,296 63,67 76,84 1,207 79,37 81,83 1,031 53,64 57,50 1,072

LogSig 46,91 53,63 1,143 49,60 56,37 1,137 52,49 55,94 1,066 111,18 113,98 1,025

TanSig 65,72 78,86 1,200 58,45 59,21 1,013 55,73 56,94 1,022 58,80 59,86 1,018

LogSig 68,04 83,62 1,229 84,26 90,90 1,079 55,06 65,00 1,180 47,87 48,58 1,015

TanSig 43,74 44,69 1,022 66,57 78,26 1,176 52,68 54,36 1,032 48,27 51,43 1,065

LogSig 82,71 101,68 1,229 45,59 51,81 1,136 56,03 97,21 1,735 66,35 71,52 1,078

TanSig 60,55 73,71 1,217 53,95 54,74 1,015 48,68 49,47 1,016 70,54 73,67 1,044

LogSig 63,90 92,86 1,453 57,78 58,23 1,008 56,69 57,32 1,011 50,40 52,88 1,049

TanSig 43,75 70,74 1,617 48,40 50,97 1,053 50,80 52,61 1,036 63,83 67,39 1,056

LogSig 51,81 59,64 1,151 51,11 56,76 1,110 50,91 49,85 0,979 55,94 60,50 1,082

TanSig 48,44 50,21 1,036 45,02 48,87 1,086 48,87 61,70 1,263 61,08 65,08 1,065

LogSig 65,67 85,13 1,296 66,15 135,15 2,043 43,44 45,29 1,042 81,15 94,04 1,159

TanSig 45,13 52,84 1,171 55,24 62,90 1,139 73,16 140,68 1,923 57,98 66,86 1,153

LogSig 40,76 37,26 0,914 58,50 78,89 1,349 48,71 45,81 0,940 56,59 60,31 1,066

TanSig 39,16 47,40 1,210 54,26 112,44 2,072 44,07 51,01 1,158 45,81 84,95 1,854

LogSig 54,71 80,85 1,478 51,51 75,42 1,464 44,79 56,45 1,260 52,82 75,14 1,423

TanSig 42,76 43,72 1,022 45,61 61,67 1,352 49,42 85,60 1,732 65,73 82,32 1,252

LogSig 53,84 61,60 1,144 45,01 52,30 1,162 49,07 68,14 1,389 50,19 65,89 1,313

TanSig 42,08 49,31 1,172 51,56 82,41 1,598 47,21 55,42 1,174 68,15 78,24 1,148

LogSig 38,89 58,77 1,511 60,75 66,59 1,096 56,21 79,84 1,420 53,49 58,44 1,093

TanSig 62,10 65,49 1,055 64,29 61,75 0,961 42,43 66,07 1,557 44,28 61,14 1,381

LogSig 48,98 63,93 1,305 72,03 71,21 0,989 55,39 82,18 1,484 70,49 85,00 1,206

TanSig 53,76 54,52 1,014 66,63 98,98 1,486 74,90 90,04 1,202 58,03 57,36 0,988

LogSig 54,81 69,89 1,275 54,78 98,03 1,790 47,95 63,47 1,324 62,08 68,99 1,111

TanSig 48,71 54,75 1,124 49,40 65,53 1,326 55,50 53,14 0,957 59,06 72,13 1,221

LogSig 44,47 77,55 1,744 50,84 57,90 1,139 55,36 65,76 1,188 43,78 52,06 1,189

TanSig 47,98 62,96 1,312 51,17 63,52 1,241 48,72 60,65 1,245 45,44 49,27 1,084

LogSig 42,86 54,46 1,271 41,03 41,13 1,002 52,76 75,58 1,432 45,24 82,11 1,815

TanSig 40,47 49,74 1,229 52,75 54,20 1,028 48,86 65,01 1,331 80,18 123,21 1,537

Split 50-25-25 Split 60-20-20 Split 70-15-15 Split 80-10-10

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

28

29

30

23

24

25

26

27

84

Table 9 - Results of the second experiment

Activation

Function
Nodes

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

LogSig 283,42 270,68 0,955 328,98 324,13 0,985 335,27 395,51 1,180 323,72 346,80 1,071

TanSig 203,21 229,99 1,132 235,50 220,30 0,935 329,01 332,35 1,010 343,99 365,55 1,063

LogSig 250,36 276,65 1,105 270,71 287,57 1,062 530,23 577,43 1,089 291,36 281,70 0,967

TanSig 167,48 149,34 0,892 309,65 380,71 1,229 308,41 267,03 0,866 301,38 290,86 0,965

LogSig 199,73 185,00 0,926 186,10 231,16 1,242 193,55 205,38 1,061 222,13 202,05 0,910

TanSig 98,71 107,52 1,089 215,34 263,57 1,224 218,23 240,01 1,100 301,69 358,08 1,187

LogSig 162,30 180,78 1,114 119,57 124,94 1,045 92,99 92,25 0,992 201,25 218,04 1,083

TanSig 153,31 153,98 1,004 156,58 160,98 1,028 399,75 572,17 1,431 480,88 272,24 0,566

LogSig 301,93 523,53 1,734 108,23 122,88 1,135 124,36 316,45 2,545 143,14 154,64 1,080

TanSig 120,35 115,49 0,960 84,36 85,68 1,016 78,24 78,39 1,002 116,13 121,99 1,050

LogSig 83,82 85,00 1,014 97,37 91,14 0,936 102,64 104,22 1,015 82,29 101,31 1,231

TanSig 76,23 83,59 1,097 81,88 75,46 0,922 72,90 69,59 0,955 149,48 177,49 1,187

LogSig 95,63 103,89 1,086 85,49 87,65 1,025 96,04 106,98 1,114 93,71 117,52 1,254

TanSig 85,58 97,87 1,144 97,04 81,38 0,839 77,52 77,95 1,006 79,18 87,39 1,104

LogSig 69,69 64,33 0,923 86,90 85,77 0,987 61,85 57,35 0,927 80,27 84,19 1,049

TanSig 280,16 502,43 1,793 71,63 66,04 0,922 65,91 66,45 1,008 103,75 98,47 0,949

LogSig 56,96 53,84 0,945 106,98 125,14 1,170 72,88 71,98 0,988 64,35 94,12 1,463

TanSig 58,12 71,67 1,233 78,62 81,19 1,033 113,17 119,91 1,060 65,17 66,62 1,022

LogSig 67,57 72,46 1,072 59,33 70,13 1,182 124,53 128,69 1,033 81,50 90,03 1,105

TanSig 75,93 63,76 0,840 88,29 173,60 1,966 89,35 82,75 0,926 59,79 64,71 1,082

LogSig 81,92 207,84 2,537 55,61 68,82 1,238 75,93 95,24 1,254 66,52 68,62 1,032

TanSig 61,27 75,24 1,228 64,36 74,85 1,163 56,88 77,33 1,359 69,74 63,84 0,915

LogSig 57,56 57,99 1,007 53,89 78,15 1,450 99,53 117,33 1,179 60,25 61,68 1,024

TanSig 69,16 71,89 1,039 78,00 112,92 1,448 67,06 98,29 1,466 62,37 53,99 0,866

LogSig 60,99 62,67 1,027 58,50 61,29 1,048 66,36 67,50 1,017 86,81 127,69 1,471

TanSig 63,80 84,17 1,319 72,05 97,82 1,358 56,10 62,22 1,109 80,36 86,04 1,071

LogSig 47,14 52,39 1,111 73,72 106,16 1,440 71,76 73,38 1,023 131,01 79,01 0,603

TanSig 67,83 107,31 1,582 71,21 91,20 1,281 57,18 56,60 0,990 85,36 94,68 1,109

LogSig 60,30 63,96 1,061 82,09 104,30 1,271 71,06 85,64 1,205 54,57 59,31 1,087

TanSig 57,10 69,53 1,218 54,76 92,98 1,698 57,39 73,70 1,284 62,08 63,87 1,029

LogSig 52,93 56,93 1,076 56,53 81,21 1,437 53,53 58,80 1,098 50,82 54,84 1,079

TanSig 50,78 51,92 1,023 49,94 67,90 1,360 86,86 108,80 1,253 56,99 69,46 1,219

LogSig 51,35 68,05 1,325 53,65 69,65 1,298 53,73 62,33 1,160 52,57 54,14 1,030

TanSig 41,94 46,68 1,113 65,68 79,00 1,203 66,20 78,37 1,184 69,94 82,60 1,181

LogSig 48,11 49,19 1,023 60,82 61,36 1,009 57,32 122,33 2,134 49,71 55,70 1,120

TanSig 56,36 62,38 1,107 50,02 61,51 1,230 52,82 57,69 1,092 56,64 64,30 1,135

LogSig 46,24 54,40 1,176 51,32 53,52 1,043 44,50 51,78 1,164 77,16 74,13 0,961

TanSig 55,51 57,15 1,030 48,10 49,69 1,033 49,36 50,59 1,025 79,59 83,44 1,048

LogSig 57,26 83,58 1,460 51,38 95,75 1,864 50,38 56,85 1,129 49,64 58,63 1,181

TanSig 68,14 97,85 1,436 45,24 66,68 1,474 56,28 54,25 0,964 54,60 109,88 2,013

LogSig 59,33 82,79 1,395 70,97 72,57 1,023 50,79 60,06 1,182 48,50 49,18 1,014

TanSig 43,16 45,19 1,047 69,77 67,54 0,968 60,15 66,24 1,101 48,69 46,78 0,961

LogSig 154,16 327,86 2,127 62,87 87,59 1,393 53,58 106,18 1,982 44,05 62,65 1,422

TanSig 43,59 49,16 1,128 46,93 70,05 1,493 45,01 58,88 1,308 45,76 58,82 1,285

LogSig 43,48 52,59 1,210 50,05 54,13 1,081 50,73 58,16 1,146 49,91 65,44 1,311

TanSig 45,91 48,23 1,050 48,18 54,22 1,126 43,34 57,80 1,334 58,92 80,21 1,361

LogSig 44,55 61,44 1,379 61,82 71,93 1,163 50,32 69,28 1,377 47,27 71,34 1,509

TanSig 61,12 71,53 1,170 51,72 90,52 1,750 54,03 71,61 1,325 51,74 70,63 1,365

LogSig 38,20 48,31 1,265 51,54 55,28 1,073 43,98 47,97 1,091 44,07 55,89 1,268

TanSig 44,49 52,01 1,169 59,76 155,32 2,599 59,68 81,72 1,369 59,37 70,61 1,189

LogSig 60,82 76,38 1,256 56,34 66,82 1,186 45,93 55,77 1,214 46,13 74,21 1,609

TanSig 35,48 41,76 1,177 58,68 71,90 1,225 55,67 84,51 1,518 60,63 112,78 1,860

LogSig 47,21 65,58 1,389 47,19 67,20 1,424 41,75 49,94 1,196 41,16 39,29 0,955

TanSig 46,15 47,12 1,021 49,23 136,95 2,782 63,03 136,33 2,163 46,44 58,79 1,266

LogSig 41,89 48,37 1,155 41,29 43,52 1,054 45,42 48,19 1,061 43,79 54,97 1,255

TanSig 36,80 45,42 1,235 41,82 50,92 1,218 56,48 73,36 1,299 62,88 130,62 2,077

LogSig 51,55 52,52 1,019 74,66 102,51 1,373 41,20 46,88 1,138 42,21 40,99 0,971

TanSig 40,07 45,36 1,132 50,65 68,41 1,351 53,85 51,54 0,957 50,40 51,41 1,020

Split 50-25-25 Split 60-20-20 Split 70-15-15 Split 80-10-10

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

28

29

30

23

24

25

26

27

85

Table 10 - Results of the third experiment

Activation

Function
Nodes

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

LogSig 303,53 271,67 0,895 322,77 348,64 1,080 328,10 337,78 1,030 330,91 483,17 1,460

TanSig 350,18 362,69 1,036 322,78 348,66 1,080 330,60 333,15 1,008 245,16 299,71 1,223

LogSig 241,98 254,17 1,050 201,62 229,64 1,139 222,30 253,77 1,142 258,01 222,83 0,864

TanSig 252,56 227,54 0,901 229,14 260,77 1,138 272,84 275,17 1,009 257,96 224,30 0,870

LogSig 189,16 251,68 1,331 315,53 344,81 1,093 217,01 177,46 0,818 190,33 194,12 1,020

TanSig 193,56 182,17 0,941 139,02 160,10 1,152 140,40 170,95 1,218 216,85 219,80 1,014

LogSig 92,28 109,75 1,189 88,66 100,25 1,131 113,42 115,15 1,015 108,54 92,21 0,850

TanSig 136,91 403,21 2,945 151,64 125,38 0,827 98,08 118,05 1,204 103,69 89,00 0,858

LogSig 113,85 120,99 1,063 177,92 179,19 1,007 114,52 111,26 0,972 85,58 89,06 1,041

TanSig 78,21 90,02 1,151 85,02 88,15 1,037 85,36 82,03 0,961 81,07 85,35 1,053

LogSig 193,25 130,23 0,674 94,05 84,88 0,903 92,23 98,30 1,066 75,15 77,06 1,025

TanSig 68,53 73,41 1,071 110,87 151,35 1,365 120,06 178,72 1,489 106,82 123,35 1,155

LogSig 84,97 95,76 1,127 84,48 88,30 1,045 85,76 92,95 1,084 80,02 62,63 0,783

TanSig 112,93 105,63 0,935 116,99 118,59 1,014 114,81 121,20 1,056 71,84 61,21 0,852

LogSig 73,83 81,78 1,108 70,88 69,40 0,979 81,25 75,77 0,933 231,83 294,61 1,271

TanSig 68,01 70,47 1,036 96,41 87,56 0,908 73,88 92,08 1,246 72,22 82,47 1,142

LogSig 55,13 57,33 1,040 93,99 94,45 1,005 64,69 67,36 1,041 63,91 64,26 1,005

TanSig 130,83 95,09 0,727 68,35 70,20 1,027 67,22 57,77 0,859 76,67 73,22 0,955

LogSig 71,96 47,82 0,664 75,62 68,28 0,903 62,18 71,24 1,146 68,95 91,57 1,328

TanSig 58,10 62,91 1,083 62,81 68,09 1,084 58,95 50,98 0,865 72,48 63,47 0,876

LogSig 60,18 68,22 1,134 68,28 88,65 1,298 72,71 274,59 3,776 78,74 78,85 1,001

TanSig 68,06 115,84 1,702 82,86 115,94 1,399 66,90 82,01 1,226 64,09 59,86 0,934

LogSig 54,32 52,11 0,959 51,83 53,97 1,041 61,50 63,64 1,035 69,94 136,03 1,945

TanSig 73,10 92,11 1,260 67,29 63,55 0,945 81,07 68,17 0,841 67,85 72,31 1,066

LogSig 48,37 57,21 1,183 61,21 120,65 1,971 50,36 66,44 1,319 52,80 49,81 0,943

TanSig 57,72 58,56 1,015 71,63 128,17 1,789 54,42 66,38 1,220 74,42 77,59 1,043

LogSig 67,01 87,31 1,303 78,67 95,96 1,220 68,83 77,91 1,132 51,90 57,15 1,101

TanSig 48,70 48,38 0,993 61,70 65,89 1,068 50,87 52,93 1,040 62,99 71,57 1,136

LogSig 59,40 60,29 1,015 87,11 114,28 1,312 52,07 82,94 1,593 54,48 65,12 1,195

TanSig 59,81 62,14 1,039 67,99 84,79 1,247 60,58 70,38 1,162 73,01 77,56 1,062

LogSig 45,02 47,31 1,051 55,58 60,67 1,092 61,73 71,58 1,159 53,33 54,78 1,027

TanSig 54,54 69,58 1,276 62,62 70,74 1,130 74,63 122,86 1,646 51,66 52,81 1,022

LogSig 47,06 50,78 1,079 52,37 53,28 1,017 64,55 68,14 1,056 56,10 57,42 1,024

TanSig 46,77 55,99 1,197 60,45 63,19 1,045 48,74 50,07 1,027 51,18 53,84 1,052

LogSig 42,52 46,50 1,094 51,79 54,32 1,049 60,42 98,79 1,635 48,71 51,62 1,060

TanSig 55,87 55,89 1,000 44,13 46,13 1,045 53,13 62,67 1,179 51,35 57,86 1,127

LogSig 51,02 57,69 1,131 47,06 56,12 1,193 70,11 98,86 1,410 66,98 68,11 1,017

TanSig 47,93 59,18 1,235 53,89 68,41 1,269 63,24 69,89 1,105 59,98 76,67 1,278

LogSig 44,05 66,25 1,504 43,53 52,03 1,195 42,00 47,26 1,125 47,82 56,21 1,175

TanSig 53,53 57,86 1,081 52,75 63,95 1,212 75,55 82,30 1,089 52,93 63,46 1,199

LogSig 44,26 56,54 1,277 54,23 100,16 1,847 50,47 59,63 1,182 48,34 46,11 0,954

TanSig 51,39 63,97 1,245 60,39 63,00 1,043 63,88 65,13 1,020 49,20 57,11 1,161

LogSig 43,74 53,17 1,216 52,65 57,71 1,096 53,04 143,31 2,702 45,33 51,51 1,136

TanSig 41,93 39,19 0,935 57,71 61,94 1,073 51,35 59,08 1,151 49,08 72,73 1,482

LogSig 56,65 84,33 1,489 59,19 88,86 1,501 52,72 109,79 2,082 46,53 64,15 1,379

TanSig 56,06 79,30 1,415 74,84 106,33 1,421 45,79 75,33 1,645 46,35 40,65 0,877

LogSig 40,00 47,43 1,186 43,38 68,34 1,575 47,40 68,12 1,437 48,25 51,50 1,067

TanSig 43,35 49,74 1,147 54,57 71,99 1,319 55,03 63,44 1,153 45,51 73,88 1,623

LogSig 41,69 60,47 1,451 53,60 78,14 1,458 58,56 58,84 1,005 44,48 60,42 1,358

TanSig 53,62 67,40 1,257 63,86 85,14 1,333 62,51 78,99 1,264 47,16 47,18 1,001

LogSig 35,13 37,50 1,068 48,22 67,72 1,404 44,09 64,46 1,462 53,49 84,52 1,580

TanSig 38,40 45,78 1,192 58,41 116,25 1,990 60,06 65,62 1,093 53,55 72,54 1,355

LogSig 38,78 42,32 1,091 55,76 66,87 1,199 47,85 48,21 1,008 57,57 54,96 0,955

TanSig 59,33 64,47 1,087 43,00 57,74 1,343 52,06 49,55 0,952 52,82 87,30 1,653

LogSig 65,65 83,62 1,274 51,60 66,87 1,296 44,07 40,75 0,925 42,72 43,44 1,017

TanSig 37,46 83,71 2,235 46,47 64,20 1,381 48,59 63,99 1,317 42,32 63,92 1,510

LogSig 52,80 71,83 1,360 45,11 53,14 1,178 57,87 64,69 1,118 42,15 82,66 1,961

TanSig 40,54 43,02 1,061 39,76 45,62 1,148 49,02 64,71 1,320 42,47 58,47 1,377

28

29

30

23

24

25

26

27

18

19

20

21

22

13

14

15

16

17

8

9

10

11

12

3

4

5

6

7

Split 50-25-25 Split 60-20-20 Split 70-15-15 Split 80-10-10

2

86

Table 11 instead provides the average of the results of the three experiments.

Table 11 – Average results

Activation

Function
Nodes

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

LogSig 265,28 251,64 0,96 297,79 302,27 1,01 331,42 356,64 1,08 297,87 358,76 1,19

TanSig 280,65 285,28 1,03 266,73 267,76 0,99 302,16 290,55 0,95 306,96 310,67 1,03

LogSig 247,92 253,35 1,02 258,06 286,84 1,11 373,71 394,24 1,06 269,16 259,83 0,97

TanSig 200,97 184,24 0,92 277,41 324,01 1,16 291,84 300,18 1,03 269,65 260,77 0,97

LogSig 186,19 209,97 1,13 209,31 234,57 1,12 218,94 185,66 0,86 220,81 196,02 0,90

TanSig 134,61 136,20 1,03 160,85 184,60 1,13 191,31 214,93 1,13 238,69 249,41 1,02

LogSig 151,12 161,13 1,09 110,36 125,38 1,13 159,27 155,20 0,99 136,82 129,41 0,90

TanSig 156,03 241,56 1,63 136,22 136,27 1,02 198,48 271,90 1,31 231,23 157,12 0,81

LogSig 167,56 245,41 1,28 133,30 136,73 1,03 108,59 173,31 1,53 102,43 106,70 1,03

TanSig 124,56 199,98 1,45 119,99 109,72 0,96 117,00 118,95 1,00 111,73 112,77 1,02

LogSig 124,25 95,64 0,81 116,15 108,52 0,93 90,32 91,87 1,01 84,05 93,06 1,11

TanSig 76,49 80,27 1,05 102,45 110,16 1,06 95,50 111,63 1,12 113,51 130,38 1,14

LogSig 85,13 93,07 1,09 80,98 83,66 1,03 88,24 92,60 1,05 94,98 97,84 1,02

TanSig 94,58 97,85 1,05 99,27 96,88 0,98 100,96 131,78 1,28 86,05 85,72 0,99

LogSig 72,56 76,81 1,06 81,67 82,48 1,01 68,84 67,00 0,98 132,03 158,43 1,16

TanSig 136,64 216,43 1,36 79,52 74,84 0,95 67,67 75,26 1,11 80,10 82,45 1,04

LogSig 61,55 62,47 1,01 90,35 97,45 1,07 76,92 71,48 0,94 64,06 71,94 1,12

TanSig 116,98 124,17 1,08 74,57 76,99 1,03 82,16 83,57 1,01 72,26 71,79 1,00

LogSig 65,45 59,04 0,91 68,12 69,78 1,04 81,44 85,02 1,05 75,43 84,89 1,13

TanSig 69,77 71,72 1,03 79,22 108,70 1,34 79,97 74,88 0,93 71,26 71,38 1,00

LogSig 66,68 112,50 1,58 62,48 75,39 1,21 73,68 153,74 2,10 73,72 74,58 1,01

TanSig 66,61 94,05 1,41 67,20 83,58 1,22 61,50 73,64 1,20 64,42 63,51 0,99

LogSig 60,15 62,36 1,03 58,03 69,20 1,20 71,27 77,98 1,07 64,23 82,48 1,25

TanSig 68,44 76,69 1,12 66,01 76,85 1,14 69,45 76,55 1,12 66,75 64,88 0,97

LogSig 55,89 63,72 1,14 62,45 99,81 1,59 60,22 69,03 1,16 67,06 91,39 1,33

TanSig 70,35 82,55 1,17 71,62 101,74 1,42 61,54 66,32 1,09 75,18 88,22 1,18

LogSig 84,70 118,74 1,32 69,85 91,16 1,30 68,28 71,58 1,05 82,77 67,55 0,91

TanSig 60,17 75,45 1,23 62,95 72,41 1,14 55,82 56,72 1,02 69,51 76,17 1,09

LogSig 57,28 70,38 1,25 80,31 103,04 1,28 60,79 79,93 1,33 52,23 57,73 1,10

TanSig 54,68 64,25 1,18 62,14 84,87 1,38 65,78 75,30 1,16 62,91 66,31 1,05

LogSig 48,29 52,62 1,09 53,90 66,09 1,22 55,92 62,11 1,11 71,78 74,53 1,04

TanSig 57,01 66,79 1,17 57,01 65,95 1,17 72,41 96,20 1,31 55,82 60,71 1,09

LogSig 55,48 67,48 1,21 63,43 71,28 1,13 57,78 65,16 1,13 52,18 53,38 1,02

TanSig 44,15 49,12 1,11 64,23 73,49 1,14 55,87 60,93 1,08 56,46 62,63 1,10

LogSig 57,78 65,79 1,12 52,73 55,83 1,06 57,92 106,11 1,83 54,92 59,61 1,09

TanSig 57,59 63,99 1,11 49,37 54,13 1,10 51,54 56,61 1,10 59,51 65,28 1,10

LogSig 53,72 68,32 1,25 52,05 55,96 1,08 57,10 69,32 1,19 64,85 65,04 1,01

TanSig 49,06 62,36 1,29 50,13 56,36 1,12 54,47 57,70 1,06 67,80 75,83 1,13

LogSig 51,04 69,82 1,37 48,67 68,18 1,39 47,76 51,32 1,08 51,13 58,45 1,15

TanSig 56,71 68,64 1,18 47,67 59,83 1,26 60,23 66,08 1,11 56,20 79,47 1,43

LogSig 56,42 74,82 1,32 63,78 102,63 1,64 48,23 54,99 1,14 59,33 63,11 1,04

TanSig 46,56 54,00 1,15 61,80 64,48 1,05 65,73 90,68 1,35 51,96 56,92 1,09

LogSig 79,55 139,43 1,42 58,00 74,73 1,28 51,78 98,43 1,87 48,66 58,16 1,21

TanSig 41,56 45,25 1,09 52,97 81,48 1,55 46,81 56,32 1,21 46,88 72,17 1,54

LogSig 51,61 72,59 1,39 53,59 72,80 1,35 49,41 74,80 1,50 49,75 68,24 1,37

TanSig 48,24 57,08 1,16 56,21 74,07 1,30 46,18 72,91 1,57 57,00 67,73 1,16

LogSig 46,13 56,82 1,24 50,07 64,19 1,30 48,93 68,52 1,40 48,57 62,91 1,30

TanSig 48,85 56,86 1,16 52,61 81,64 1,56 52,09 63,49 1,22 55,13 74,25 1,38

LogSig 39,59 55,85 1,41 55,29 66,67 1,21 52,92 62,22 1,17 47,35 58,25 1,24

TanSig 53,41 61,63 1,16 62,64 100,74 1,63 54,87 75,59 1,40 50,27 59,64 1,19

LogSig 48,31 59,27 1,21 58,86 68,58 1,19 48,47 67,47 1,39 56,70 81,24 1,46

TanSig 42,55 47,35 1,13 61,24 95,71 1,57 63,54 80,06 1,27 57,40 80,89 1,40

LogSig 46,93 59,26 1,25 52,58 77,37 1,47 45,85 53,87 1,18 53,60 54,41 1,01

TanSig 51,40 55,44 1,08 47,21 86,74 1,82 56,86 79,67 1,36 52,78 72,74 1,38

LogSig 50,67 69,85 1,39 47,91 56,10 1,16 48,28 51,56 1,06 43,43 50,16 1,15

TanSig 40,75 64,03 1,59 46,49 59,54 1,28 51,26 66,00 1,29 50,21 81,27 1,56

LogSig 49,07 59,60 1,22 53,60 65,59 1,18 50,61 62,38 1,23 43,20 68,59 1,58

TanSig 40,36 46,04 1,14 47,72 56,08 1,18 50,58 60,42 1,20 57,68 77,70 1,31

28

29

30

Split 50-25-25 Split 60-20-20

22

23

24

25

26

27

16

17

18

19

20

21

10

11

12

13

14

15

4

5

6

7

8

9

2

3

Split 70-15-15 Split 80-10-10

87

By analyzing these results, it is possible to draw some preliminary observations. First of all, we can

say that the learning process seems to work in the proper, expected way. Indeed, we can see a

relatively high RMSE in both training and validation sets, for all the tested splits, when the model

complexity is low. This is a typical behaviour for machine learning algorithms, which can be

explained by the concepts of underfitting and overfitting.

In particular, when the network has only few nodes it is too simple to be able to correctly understand

the existing relationship that maps the inputs to the output; in other words, it will be characterized

by a high bias. This means that there is room for improvement. Therefore, by increasing the

complexity of the structure of the model, we observe that the difference between the predicted

values and the true results, expressed in terms of the RMSE, tends to decrease. However, from a

certain moment on, this relationship is not true anymore. On the contrary, the error seems to

stabilize, and, in a sense, it even starts to increase a bit. This means we are introducing too many

parameters and the network has begun to mistake the noise present in the data for actual

information. Note that these overcomplex models will be prone to overfitting and they will tend to

be characterized by a high variance.

Before going further on, it may be useful to provide a graphical representation of such phenomenon.

In particular, since we are now interested in evaluating the overall performance of the model to

select the right number of neurons for the hidden layer, instead of plotting a curve for each possible

sample190, it may be more efficient to analyze the mean values directly. It means that Figure 24,

Figure 25 and Figure 26 represent, for each of the two activation functions, the average behaviour

of the trained neural networks. In particular, the curves that we can observe are obtained without

making distinction between the different split settings, but, instead, considering all the data of each

experiment as generated by the same “general” split. This has been done to analyze in a synthetic

way if the learning procedure has been performed properly. Then, Figure 27 presents the average

behaviour of the three simulations. Indeed, it was obtained by merging the previous results and

computing their mean values, and it aims at providing a further generalization.

Figure 24 - First experiment – RMSE for different activation functions, computed by averaging the provided split
settings

190 Each sample consisting in the training and validation sets, and the specific split and activation function. This means
that if we want to plot everything, we need 24 different figures: 4𝑠𝑝𝑙𝑖𝑡𝑠 ∗ 2𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 3𝑟𝑢𝑛𝑠.

88

Figure 25 - Second experiment – RMSE for different activation functions, computed by averaging the provided split
settings

Figure 26 - Third experiment – RMSE for different activation functions, computed by averaging the provided split
settings

Figure 27 - Average computed with respect to the three experiments

89

Therefore, now, it should be clear what these Figures show, i.e., the average RMSE, computed as

the mean of every split setting for each experiment, changes by increasing the number of hidden

nodes.

Fortunately, all these plots show a decreasing behaviour, meaning that, by adding some hidden

neurons, the model becomes able to generate new weights and biases which make it more capable

to explain the existing relationship between the features and the output. Moreover, by doing so,

the network is also able to account for interactions between the explanatory variables. However,

while the RMSE in the training set ended up by reaching a sort of plateau, i.e., excluding minimal

variations it becomes constant, the RMSE of the validation set, after having minimized its distance

with the training results, starts to spread again this distance, settling on slightly higher values. This

means that, by continuing to add neurons, the system becomes less capable of generalizing when it

has to address unseen data. That is the reason why it is necessary to conduct such analyses: to avoid

both underfitting and overfitting and to solve in the best possible way the bias-variance trade-off.

We have said that the previous figures are averages, while the tables show all the available results.

Why is that? The reason is simple: since we are interested in finding the best possible solution, we

have to evaluate both the specific and the general performances of the network. Therefore, while

an individual analysis can be performed relying on the tables, an overall evaluation can be

conducted exploiting the information provided by the figures. Indeed, the averages can be

considered a good approximation of the general observable behaviour191. Therefore, what can be

said from these results? The first thing we notice is that the best model is probably around the

middle point, i.e., we have to privilege a structure neither too simple nor too complex. Indeed, on

one hand, we observe an almost constantly decreasing behaviour of both the training and validation

RMSE when increasing the number of neurons from 2 up to 13/14.

The problem is that, even considering such a complex structure, it is still possible to detect some

strange peaks in, more or less, all the available cases. We definitely do not like this circumstance,

which can be interpreted as a signal: probably it is possible to get better results. On the other side,

we see that when the number of neurons is very high, namely above 21/22, the validation

performance begins to deteriorate, meaning that it does not remain constant but starts to show

higher values.

From these results we can say that the best structure should be between 15 and 20 neurons. In

support of this hypothesis, we need to highlight that in general we do not want to pick the single

fittest choice, but instead the one that appears to be the most robust. It means that a good practice

consists in taking an intermediate value between a range of optimal solutions, and not the best

value in absolute terms. This is because a single extremely good value may be due to chance,

whereas by considering the optimal interval we ensure a sort of consistency that supports our

choice. Therefore, the selected model will involve a number of neurons in the hidden layer equal to

18. Indeed, this has proved to be one of the most resistant among all the possible values.

In particular, if we consider all the three experiments, the mean of the RMSE for the training set is

equal to 56.19, and the average of the RMSE for the validation set is 62.93. This represents an

191 Note that once the number of nodes will be selected, in order to detect the best activation function and the most
performing split, we will analyze each case one by one.

90

extremely good achievement, both in terms of low variability and predictive power192. Moreover,

since also the “neighborhood” models tend to provide similar outcomes, this has proved to be a

very robust result.

Note that we do not consider lower values because neural networks with 18 hidden nodes

overperformed them in almost all the considered cases, whereas we do not take higher values into

consideration because, even if they were able to obtain similar results, since the difference was not

substantial, it is possible to rely on the so-called Occam’s razor principle. According to this idea, if

two or more alternative models provide the same results, the simplest one must always be

preferred.

Now, we have decided the number of hidden neurons that our model will have. However, before

analyzing the activation function and the split setting, we need to make some further observations.

Indeed, in our data it is possible to detect some unusual observations. In particular, we can spot that

in some training-validation pairs the error computed by the training set is greater than the one of

the corresponding validation set. How is it possible? This is probably due to the sampling criteria we

adopted.

Since we are interested in testing if a neural network is able to provide accurate estimates to

forecast the value of a call option, we need to partition the data in a chronological way. Therefore,

the division between training- validation and testing observations is based on time. However, to

make sure that the model is able to understand most of the existing patterns and the generating

process, the partition between training and validation data is randomly made. With this regard,

useful references can be found in the works of Yao et al. (2000) and Ruf and Wang (2020). In

particular, since there exists some sort of “time-inhomogeneity” in financial data, i.e., volatility

changes over time, price series are not stationary, etc., this approach may improve the general

performance. Indeed, we have to remember that the distinction between training and validation is

made only to perform the hyperparameter optimization, but the performance of the model will be

evaluated only in the test set, which is composed only by unseen observations193. This explains why

sometimes we find the RMSE of the validation set to be lower than the corresponding RMSE of the

training set194.

Once the number of neurons has been detected, we are left with two relevant questions: which are

the best activation function and the best split ratio to use? To provide a correct answer we need to

perform a deeper analysis focusing on the selected model.

192 It should be noted that with a similar value for the validation set the overall performance of such networks lies in the
best 10th percentile.
193 With this regard, a common practice consists in re-training the whole model once its hyperparameters have been
optimized. Note that in this final training procedure, no validation set is considered.
194 That is because the validation set has encountered easier to predict values.

91

Table 12 - Results of the 18 nodes Neural Networks

Table 12 shows the results of the three runs for the 18 neurons networks. However, also in this case,
it may be more useful to provide the averages. In Table 13 we can observe exactly this, i.e., the
averages computed by activation function first and by split setting then.

Table 13 - Averages of the 18 nodes Neural Networks

As we can see, the first observation that we can make is that the 60-20-20 split is the least efficient

solution. This is in a sense a counterintuitive result since we would have expected the 50-25-25

setting to provide the poorest performance. Indeed, empirical evidence has clearly shown that

having a larger training set size is beneficial for the model. However, this has been proved to not be

completely true in our sample. Nonetheless, even in our case, we observe that assigning more data

to the training process is generally helpful in terms of performances. In particular, we notice that

the 70-15-15 and the 80-10-10 cases tend to outperform the others, since they have relatively small

values and more consistency. With this regard, we can have a look at their validation/training ratios

and observe that they are the lowest.

For this reason, we shrink down our alternatives considering only the splits that assign the largest

part to the training set. Among these two possibilities, we have then to choose on which activation

function we will rely. In particular, since for the considered samples it provides on average better

results, we will exploit the Sigmoid function.

From the previous results, it follows that we will implement a MLP artificial neural network with one

hidden layer and 18 hidden nodes. Moreover, the transfer function will be the Sigmoid. With regard

to the choice of the split ratio, we can choose between two alternatives: 70-15-15 or 80-10-10. The

Activation

Function
Experiment

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validation
Ratio V/T

LogSig 68,04 83,62 1,229 84,26 90,90 1,079 55,06 65,00 1,180 47,87 48,58 1,015

TanSig 43,74 44,69 1,022 66,57 78,26 1,176 52,68 54,36 1,032 48,27 51,43 1,065

LogSig 51,35 68,05 1,325 53,65 69,65 1,298 53,73 62,33 1,160 52,57 54,14 1,030

TanSig 41,94 46,68 1,113 65,68 79,00 1,203 66,20 78,37 1,184 69,94 82,60 1,181

LogSig 47,06 50,78 1,079 52,37 53,28 1,017 64,55 68,14 1,056 56,10 57,42 1,024

TanSig 46,77 55,99 1,197 60,45 63,19 1,045 48,74 50,07 1,027 51,18 53,84 1,052

1

2

3

Split 50-25-25 Split 60-20-20 Split 70-15-15 Split 80-10-10

Activation

Function

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

LogSig 55,48 67,48 1,21 63,43 71,28 1,13 57,78 65,16 1,13 52,18 53,38 1,02

TanSig 44,15 49,12 1,11 64,23 73,49 1,14 55,87 60,93 1,08 56,46 62,63 1,10

Experiment

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation

Mean

Ratio V/T

1 55,89 64,16 1,13 75,42 84,58 1,13 53,87 59,68 1,11 48,07 50,00 1,04

2 47,55 56,37 1,17 60,11 73,96 1,24 53,20 58,35 1,10 50,42 52,78 1,05

3 46,64 57,36 1,22 59,67 74,32 1,25 59,96 70,35 1,17 61,25 68,37 1,11

Split 70-15-15 Split 80-10-10

Split 50-25-25 Split 60-20-20 Split 70-15-15 Split 80-10-10

Split 50-25-25 Split 60-20-20

92

existing literature suggests using the first setting, since it allows for a bigger testing set and helps in

preventing overfitting; however, even in this case, it is better to test if it is true also empirically.

Table 14 - Testing alternative split compositions

Run
RMSE

Training

RMSE

Validation
Ratio V/T

RMSE

Training

RMSE

Validatio
Ratio V/T

1 74,60 104,22 1,397 46,40 54,46 1,174

2 60,15 69,96 1,163 73,14 111,65 1,527

3 58,19 67,87 1,166 48,89 63,91 1,307

4 56,90 59,47 1,045 78,74 103,11 1,310

5 52,92 57,96 1,095 52,60 55,27 1,051

6 53,66 55,96 1,043 58,53 58,77 1,004

7 53,38 54,53 1,022 48,51 68,69 1,416

8 60,39 74,21 1,229 57,30 59,26 1,034

9 53,35 70,28 1,317 59,69 56,34 0,944

10 56,37 62,73 1,113 62,60 63,93 1,021

11 49,86 48,42 0,971 67,97 68,91 1,014

12 59,36 62,26 1,049 57,90 59,76 1,032

13 53,23 57,25 1,075 64,66 68,87 1,065

14 50,81 57,15 1,125 62,30 87,51 1,405

15 61,65 72,54 1,177 50,59 57,25 1,132

16 51,37 54,66 1,064 50,41 60,51 1,200

17 47,18 48,15 1,020 53,65 54,38 1,014

18 49,08 51,85 1,056 65,19 88,88 1,363

19 49,32 52,98 1,074 55,15 57,27 1,038

20 90,51 93,48 1,033 52,71 49,70 0,943

21 48,51 53,46 1,102 51,77 65,07 1,257

22 57,41 59,38 1,034 62,90 76,24 1,212

23 50,95 51,09 1,003 116,37 126,88 1,090

24 66,61 77,01 1,156 56,15 57,46 1,023

25 51,98 57,52 1,107 75,10 90,86 1,210

26 52,99 55,12 1,040 68,70 86,02 1,252

27 53,74 57,78 1,075 66,24 109,38 1,651

28 58,54 66,72 1,140 51,53 59,76 1,160

29 58,34 67,60 1,159 57,91 59,78 1,032

30 68,32 69,43 1,016 56,41 85,99 1,524

31 60,69 90,60 1,493 53,73 54,89 1,022

32 54,69 74,23 1,357 50,68 51,79 1,022

33 49,24 54,63 1,109 49,15 49,90 1,015

34 52,91 58,62 1,108 65,80 80,07 1,217

35 53,45 60,81 1,138 53,70 58,80 1,095

36 80,11 90,92 1,135 72,70 71,58 0,985

37 55,92 59,77 1,069 48,61 54,72 1,126

38 45,56 47,52 1,043 49,72 59,13 1,189

39 55,13 63,20 1,147 52,24 52,16 0,998

40 48,51 49,15 1,013 60,92 65,06 1,068

41 52,73 69,18 1,312 45,46 51,56 1,134

42 49,79 51,18 1,028 51,31 53,14 1,036

43 58,84 64,64 1,098 50,23 64,38 1,282

44 46,75 47,49 1,016 48,58 49,88 1,027

45 66,25 76,65 1,157 72,82 58,28 0,800

46 54,96 63,51 1,156 52,15 57,64 1,105

47 84,78 98,67 1,164 49,49 58,82 1,188

48 66,19 64,79 0,979 49,70 52,30 1,052

49 68,81 73,71 1,071 50,51 52,13 1,032

50 53,61 56,86 1,060 60,92 65,32 1,072

Split 70-15-15 Split 80-10-10

93

Table 14 shows the results of 50 simulations of our neural network in which we test the two

alternative split settings. First of all, we need to clarify why we chose to perform so many

simulations. The main reason that prompted us to do it is that in this way we are able to rely on the

Central Limit Theorem. This means that, by considering a large size sample of independent variables

such as the one we have defined, we are sure195 that the distribution of the sample mean is normal.

Therefore, we know for sure that the mean and the median coincide, we can compute the sample

standard deviation, which are equal to 13.35 and 17.62 respectively196, and so on.

Starting from the obtained results, we can highlight once again the robustness of the model. Indeed,

this is able to provide a satisfactory performance in all the provided cases. In particular, we have to

mention that there are some relatively high values, especially in the 80-10-10 scenario. However,

the averages are extremely good, and they support what has been said so far, as we can see in Table

15.

Table 15 – Alternative split composition averages

Therefore, by exploiting the collected information, it is possible to say that the architecture that has

proved to be the most performing is the one that relies on the 70-15-15 split.

 4.4 Final results and comparison of competing models

Once the model has been properly trained, it is possible to evaluate its performance and to make a

comparison with the results provided by the Black-Scholes-Merton model. However, in order to do

this, we need to define some additional performance measures through which to test the goodness

of the competing systems. In particular, we will still rely on the Root Mean Squared Error since it is

the most popular metrics to perform such kinds of evaluations.

We already mentioned the advantages of using this type of function, i.e., it is convex, differentiable,

the errors have the same unit of the explanatory variables, etc. However, it should be clear that the

RMSE alone is not sufficient to evaluate a model; therefore, we need to identify other useful

measures and, in order to do it, we can rely on previous studies and exploit some useful empirical

results.

195 This is true independently of how the population from where the sample is extracted is distributed.
196 These are the values of the validation set and they are useful because we can exploit them to test different
hypotheses or to construct confidence interval for the analyzed parameters, e.g. the sample mean.

Mean

RMSE

Training

Mean RMSE

Validation
Ratio V/T

Mean

RMSE

Training

Mean RMSE

Validation
Ratio V/T

57,37 64,14 1,11 58,37 66,55 1,14

Split 70-15-15 Split 80-10-10

94

Indeed, by analyzing the paper of Ruf and Wang (2020) it is possible to understand which are the

most common performance metrics applied to evaluate the accuracy of a neural network. From

those results it is possible to draw some interesting conclusions. In particular, we can notice that

MAE, MAPE, and 𝑅2 are, by far, the most popular exploited functions other than MSE and RMSE.

Let us see them in detail, starting with the MAE:

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

where 𝑦𝑖 is the actual value and 𝑦𝑖̂ is the predicted value.

The Mean Absolute Error, also known as the L1 loss function, is one of the simplest to understand,

yet most used evaluation metric. As we can see, it is the arithmetic average of the absolute errors.

In this sense, it is a function that quantifies the magnitude of the errors, ignoring at the same time

their direction. Of course, the lower the value, the better the estimate.

This performance measure has some important advantages; in particular it is very easy to compute,

and the computed errors all have the same weight, meaning that MAE does not penalize larger

errors. However, this may also be seen as a drawback of the model, depending on how we interpret

it. Indeed, MAE treats big and small errors in the same way. The problem is that we usually do not

want to have such a feature, because we prefer more robust and more consistent models, i.e.,

models that are penalized for committing larger mistakes. Moreover, this function is not

differentiable and therefore it cannot be used in backpropagation or similar algorithms unless

complex adjustments are implemented.

With this regard, it is possible to define a sort of refined version of MAE: the Mean Absolute

Percentage Error, MAPE.

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦𝑖̂|

𝑦𝑖

𝑛

𝑖=1

∗ 100%

From its formulation, we immediately notice that this loss function is extremely similar to MAE.

Indeed, these two measures provide the same kind of information but in a slightly different way. In

particular, MAPE is a weighted average of the absolute errors and therefore, it introduces a

weighting parameter which is not present in MAE. Thanks to this adjustment it is possible to express

MAPE in percentage terms, condition that makes it easier to interpret.

The main advantage of such a metric is the fact that, since all the errors are normalized, it is

completely independent of the scale of the variables and consequently very easy to understand.

The drawbacks are similar to the ones of the mean absolute error. In particular, involving an

absolute term it does not distinguish between positive and negative errors. Moreover, being a ratio,

we may face the “division by zero” problem. However, despite these issues, the MAPE is the second

95

most used performance metric, following RMSE, in the papers analyzed by Ruf and Wang. This is the

reason why we also chose to rely on this metric197.

A third extremely common metric is the 𝑅2, also known as coefficient of determination. This is a

very useful performance measure which can be used to evaluate the precision of a regression-type

machine learning model. Specifically, it tries to determine the variability of the predictions, which is

explained by the network. How does it work? First of all, let us see the formula and then we will try

to understand what it means:

𝑅2 = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆

As we can see, the coefficient of determination is essentially a ratio of two terms: 𝑆𝑆𝐸 and 𝑇𝑆𝑆.

These are respectively the Residual Sum of Squares and the Total Sum of Squares. They are

computed as follows:

𝑆𝑆𝐸 =∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑛

𝑖=1

⁡

𝑇𝑆𝑆 =∑(𝑦𝑖 − 𝑦̅)2
𝑛

𝑖=1

where 𝑦̅ is the sample mean of the data.

Therefore, the 𝑅2 measures how much the model is capable of explaining the variance present in

the observations. In general, this provides a useful information which can be seen as complementary

to those given by the other above-defined metrics. Indeed, also this function, as the MAPE, is

expressed in percentage terms and has a quite straightforward interpretation: the higher the value,

the more able to correctly fit the data the model is. In general, with financial data, a kind of rule of

thumb can be applied, according to which a coefficient of determination of 0.7 or greater is

considered an extremely good result, since it means that the analyzed variables show a high level

of correlation.

We have to say that over time many other alternative measures have been suggested. For instance,

in recent years, Buehler et al. (2019) proposed to use the Conditional Value at Risk (CVaR) in

evaluating the performance of a neural network which tries to price option contracts. In any case,

the functions previously described are by far the most exploited ones in real world applications.

Therefore, in our experiment we will rely on: RMSE, MAPE and 𝑅2.

Of course, the performance of our artificial neural network alone will not be much informative, i.e.,

we have to compare it with a given benchmark. As already stated, since we are considering

European call options, the Black-Scholes-Merton formula can be applied. In particular, since it is

such a relevant reference in the derivative pricing field, this will be our benchmark. In reality, the

choice is a pretty popular one; indeed, we should not be surprised in discovering that it is the most

widely used. However, it is worth mentioning that other new approaches are nowadays becoming

197 It should be noted that since MAE and MAPE provide the same kind of information, in the same way of MSE and
RMSE, it is possible to rely only on one of the two. Therefore, we choose to exploit MAPE since it has nicer properties.

96

more and more spread, like for instance the use of volatility pricing models or Greeks as

references198.

At the same time, we have to mention that they have not become the state-of-the-art yet. With this

regard, Ruf and Wang (2020) observed that when the benchmark is defined so that it includes both

the delta and the vega199, then the presented ANNs were never able to overperform other networks.

Now that all the necessary preliminary steps have been taken, it is possible to compare the results

of our neural network and the ones provided by the competing model.

Let us start by having a look at how the network is able to predict the true output in the training,

validation and test sets:

Figure 28 - Performance of the network in the training set

198 See for instance Gencay and Gibson (2007), Jang and Lee (2019) or Liu et al. (2019)
199It means when the benchmark is based on volatility and another Greek.

97

Figure 29 - Performance of the network in the validation set

Figure 30 - Performance of the network in the test set

98

Figure 28, Figure 29 and Figure 30 show on the x-axis the true price of the option and on the y-axis

the price predicted by the network. Therefore, the more the points are aligned, the more precise

the estimates are. As we can see, the model has been able to provide extremely good results in

every analyzed scenario. Nonetheless, it is strange to notice that the training performance seems to

be poorer than the one of the test set. However, this is not true. We will see the numerical values

in a moment but, in the meantime, we need to keep into account the different numerosity of the

three sets.

Indeed, by relying on the 70-15-15 split ratio, we have about 20.000 data in the training set and less

than 4.000 in the validation and test groups. Therefore, it is quite normal that we can spot “stranger”

observations in the training set simply because it contains much more observations. Another useful

note regards the fact that these are all meaningful estimates. Indeed, as we can observe, the model

has never predicted negative values.

Table 16 - RMSE of the Network

The first thing we can notice is that, despite how the graphs look like, the training set is still

characterized by the lowest RMSE. Moreover, we are pleased in observing that the model has

provided a similar outcome to the ones generated by the other artificial neural networks we tested

before. Indeed, this is another confirmation of the robustness of the system.

As we can see, these are also extremely good results. In fact, we have to understand that the average

price of a call in the available dataset is greater than 1.000 Euros. It follows that a RMSE of 57.02

means an error lower than 0.057, i.e., 5.7%, in first approximation200.

An unusual circumstance we have to highlight is the fact that the RMSE of the validation set is larger

than the RMSE of the test set. In any case, this is not a serious problem since they are both unseen

partitions of the data for the network and since the training error outperforms both the validation

and the test errors. Therefore, we can conclude that we are sufficiently sure that the model is not

overfitting. Now, let us see how the BSM model has performed on the same data.

200 In the computation we assume that the average price of a call is exactly equal to 1.000 euros, however, since it is
greater, this is a downward estimate.

RMSE

Training

RMSE

Validation

RMSE

Test

53,35 70,28 57,02

99

Figure 31 – Performance of the Black-Scholes-Merton model

In Figure 31, we can observe the results provided by the Black-Scholes-Merton model. Even at first

glance, the plot seems more confused when compared with the ones provided by the network.

However, we must take into account the RMSE for a more precise comparison. In particular, we

obtain a RMSE equal to 142.29 in this case.

The first remark we can make is about the precision of the pricing equation. Even if it provides worse

results than the network, they are quite good in spite of everything. Indeed, even if we exploited

the original version of the model with Merton’s adjustment for dividends, and we did not take into

account further modifications which have been proved to be able to improve the accuracy of the

formula, the predictions look pretty accurate.

A second note regards the noise present in the Figure. We see that it is prevalently concentrated in

the first part of the plot and in the last observations. These are options characterized by extremely

low and extremely high prices; therefore, we can suppose they are probably out-of-the-money and

in-the-money contracts. With this regard, we already know that the BSM model tends to provide

good forecasts for ATM options, but biased estimates in the other cases. Keeping that into account,

we can state that, overall, the model is quite capable of predicting the future, and this explains why

this formula is still so popular among option traders.

In any case, considering all that has been said, we can conclude that our network has been able to

provide an astonishing result. Indeed, it has been capable of reducing the regression error of the

Black and Scholes model by over 60%.

100

The RMSE is a good measure, however it is not sufficient to correctly evaluate the performance of

the model, meaning that if we want to better understand the general accuracy of our network, we

need to rely also on the other functions we have presented.

Table 17 - MAPE comparison

Table 17 shows how MAPE behaves in the neural network splits and in the BSM model. In particular,

we notice that it supports the previous results. As we can see, the network estimates tend to be

much more precise than the ones of the closed-form formula. Indeed, on one hand, we expect that

the forecast of the network will differ from the real price of about ±4.6%, on average. On the other

hand, the difference between the predictions of the BSM model and the true output is expected to

be around ±26%.

This is a huge achievement in terms of improved performance for our model, but how is it possible

that the Black and Scholes equation is so wrong? The problem is that we are considering all types of

options at the same time. Therefore, it may be useful to analyze if this behaviour changes when the

data are divided in: OTM, ATM, and ITM contracts.

Before doing that, it is necessary to provide a brief comment on the 𝑅2. In particular, the coefficient

of determination is equal to 0.9429 for the test set and to 0.8538 for the BSM model201. It means

that both systems are able to explain most of the variability present in our data, but also that in this

case the network outperforms the former pricing equation.

Now, we can divide the test set, i.e., the last 3488 observations, according to moneyness, so that it

is possible to analyze the specific performances of the models. In particular, by applying the simple

following rule:

{

𝐼𝑇𝑀⁡𝑜𝑝𝑡𝑖𝑜𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 ≥ 1.05
𝐴𝑇𝑀⁡𝑜𝑝𝑡𝑖𝑜𝑛⁡⁡⁡⁡⁡⁡0.95 < 𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 < 1.05
𝑂𝑇𝑀⁡𝑜𝑝𝑡𝑖𝑜𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑀𝑜𝑛𝑒𝑦𝑛𝑒𝑠𝑠 ≤ 0.95

We obtain a sample of 1789 ATM options, 1492 OTM contracts, and 207 ITM derivatives. As already

observed, ATM and OTM options are the most traded, while ITM contracts are usually characterized

by smaller volumes. Now we can have a look at how the results change.

201 Note that training and validation are characterized by comparable values.

MAPE

Training

MAPE

Validation

MAPE

Test

MAPE

BSM

4,33% 4,46% 4,58% 26,49%

101

Table 18 - RMSE per moneyness

Table 19 - MAPE per moneyness

As we can notice, the results are not exactly what we expected, but they are still quite informative.

In particular, we are surprised that both the neural network and the BSM model have been able to

estimate more correctly out-of-the-money options than at-the-money options. However, to try to

explain this phenomenon we can recall that, in our dataset, there seem to be more OTM options,

see for instance Figure 20 of Chapter 4. Therefore, in a sense, our original dataset appears to be

slightly biased. In any case, we see that the differences between the committed errors are quite low

both for OTM and ATM contracts.

Another element which may have contributed to determine this result is the fact that we are

considering only call options. Indeed, since these are characterized by a smaller implied volatility

than other kinds of options, they have probably been less affected by the changing structure of the

available data. This means that, since implied volatility has changed over time, the price of the

options that embed the smallest amount of it can be determined in a simpler and more precise way

because these are in a sense “more deterministic”, or better, less sensible to this random variation.

To conclude, we see that ITM options are the most problematic ones. This is probably due to the

small data availability for such kind of contracts. Therefore, a possible way out consists in providing

the model with more of these observations. With this regard, it should also be noted that our results

partially confirm the “smile bias”. Indeed, ITM options appear to be the most difficult to price and

we know that this is mainly due to the large amount of implied volatility they involve. However, this

is not completely true since both the presented models have been able to deal with OTM options,

whereas according to the volatility smile also these contracts should be difficult to manage due to

their low implied volatility. In any case, we are happy to note that the developed artificial neural

network has been capable of solving a large part of this problem, being able to correctly price also

this kind of derivatives.

Model
RMSE

OTM

RMSE

ATM

RMSE

ITM

Network 48,42 52,89 77,96

BSM 63,86 87,01 196,78

Model
MAPE

OTM

MAPE

ATM

MAPE

ITM

Network 3,87% 4,73% 6,29%

BSM 7,18% 16,93% 29,84%

102

103

Conclusion

The results provided in the previous Chapters allow us to draw some interesting conclusions. In

particular, in presenting our final observations, it is better to start by considering the two initial

hypotheses.

Hypothesis 1. It is possible to develop a multilayer perceptron artificial neural network able to

correctly price European call options written on the FTSE MIB index.

According to the results presented in Chapter 4, we can conclude that there is empirical evidence

supporting this first hypothesis. Indeed, we have clearly shown that when forecasting the price of a

European call option on the FTSE MIB index, it may be useful to rely on a MLP artificial neural

network. However, from the previous results it emerges that, depending on the type of contract we

are considering, the quality of our estimates varies. In particular, the developed model proved to be

much more precise in dealing with out-of-the-money and at-the-money options, with respect to

dealing with in-the-money contracts. With this regard, if we normalize the results so that the

minimum error is equal to 1, i.e., we divide all the computed RMSE for 48.42, which is the RMSE

obtained for OTM options, we notice that the error committed for ATM options is 1.092, meaning

it is 9% larger than the one of OTM options, on average, whereas the ITM error is 1.61. This means

that, when dealing with ITM contracts, our model provides poorer estimates. As we already

mentioned, this is probably due to the small availability of such kind of data points. Indeed, in the

testing set, only 207 observations out of 3488 were ITM options, i.e., only 5.9% of the available data.

Hypothesis 2. Option prices generated by such a model overperform those provided by a traditional

pricing formula, i.e., the Black-Scholes-Merton model.

Even in this second case our outcome strongly supports the hypothesis. Indeed, the neural network

model has been able to provide extremely good performances when compared to the ones of the

Black-Scholes-Merton model. In particular, the machine learning system has been capable of always

committing a smaller error. Moreover, this is true in all the analyzed scenarios. Specifically, the

RMSE computed by the network for OTM options has decreased of almost 25% with respect to the

one of the BSM model; instead, the one of ATM contracts has shrunk down of about 40%, and finally

the error of ITM options has more than halved, diminishing over 60%.

Therefore, the presented results confirm that using an artificial neural network is beneficial for the

option pricing task, at least in the Italian equity market case. Moreover, we notice that the system

is able to outperform the traditional competing model, and in particular it proved to be capable of

partially correcting the volatility smile bias that affects the BSM equation. With this regard, it is

interesting to notice that the size of the improvement is not constant, but instead it depends on the

type of contract considered. Indeed, the largest contribution of the model regards the correction of

the pricing of in-the-money options, but, at the same time, we cannot ignore that the error

committed in this case is, in absolute terms, the most serious one. This means that probably we can

improve the performance of the network by feeding more data to the model.

Of course, in order to not distort the results, we cannot provide arbitrarily more observations by,

for instance, including contracts with a zero-trading volume from the original dataset, otherwise the

algorithm will receive biased and distorted data. Therefore, the best solution in this case is to

104

enlarge the dataset size by increasing the observation period, so that there are more data available

and, at the same time, the true existing proportions of the different kind of options are not altered.

We also have to highlight that the fact the network has been able to overperform the BSM model is

an important finding, since other papers were not able to achieve such a result. It means that our

thesis supports the validity of relying on artificial intelligence, at least in addressing financial

regression-type problems. With this regard, we need to mention that the obtained outcomes and

the process we followed to derive them raise a number of interesting observations. Therefore, by

relying on them, it is possible to suggest some future steps which may be useful to take.

In particular, we already underlined the importance of having a larger training set to correct the

presented biases and to make the model more aware of the process generating the observations.

With respect to this, it may be worth trying to develop a more complex network, exploiting a deep

learning structure based on more than one hidden layer. At the same time, it can be useful to test

different combinations of hyperparameters, like for instance trying to exploit alternative training

and activation functions. Moreover, the lack of a general acceptable performance measure which

can be used to evaluate the accuracy of different machine learning algorithms, emerges from the

thesis. It follows that the formulation of alternative metrics capable of measuring the accuracy of

such systems is another element which requires additional studies and further research.

Related to the data accessibility, there is the problem regarding the input features availability. We

briefly mentioned that other than the presented explanatory variables, it is possible to provide the

model with additional informative features, such as the volume or the open interest. To study the

effect that introducing such variables has on the overall forecasting ability of the model, is definitely

something interesting and that should be done in the future. With this regard, we have to mention

that some papers have already started to test the potential improve of the predicting power of a

network that includes this information, see for instance Montesdeoca and Niranjan (2016) or Cao

et al. (2019), which proposed the use of the underlying return as an additional explanatory variable.

With respect to the input parameters, there are also the problems related to the volatility measure

we want to exploit in our model. In particular, we previously presented the different solutions that

can be adopted according to which kind of “variability formulation” we choose to provide the model

with. The problem is that so far a general approach which has been proved to be always better than

the others does not exist, and the variability computation remains a hard task to tackle. Considering

how crucial this component is in the determination of the cost of an option, developing models able

to provide more precise volatility estimates may be a fundamental step that sooner or later will be

necessarily done.

Finally, it may be helpful to understand which is the best machine learning algorithm that can be

exploited to solve this kind of problems. In doing so, it may be wise to compare the performance of

different models, like for instance Support Vector Machines, when performing this specific task.

With this regard, it may be extremely interesting also to develop systems based on other learning

paradigms; in particular, testing reinforcement learning algorithms may be a very promising

research field.

To summarize, we can say that we have succeeded in demonstrating that neural networks are a

powerful tool to address complex problems characterized by a high dimensionality and nonlinear

105

relationship such as option pricing, therefore additional studies in this sense should be conducted

to improve the general performance of this kind of models, since they will probably represent a

more and more helpful tool for those interested in trading or evaluating option contacts.

106

107

Appendix A – MATLAB Code: Put – Call parity

The first part of the code is about cleaning the data and ordering them, so that we can compare call

and put options characterized by the same features, i.e., same maturity, strike, expiration and

underlying price.

108

In the second part of the code, instead, we compute the left-hand side and the right-hand side of

the put-call parity. Then, we prove that the two sides are comparable in terms of values. This means

that the relationship holds.

109

Appendix B – MATLAB Code: Neural Network and BSM model

First of all, we have to prepare the data by removing the observations with a time to maturity lower

than a week.

Then we need to perform the risk-free interpolation. Note that we have to keep into account all the

different possible maturities.

110

111

112

113

After having performed all these operations, it is possible to retrieve the data for the Black-Scholes-

Merton model and for the Artificial Neural Network.

BSM model:

114

ANN model:

Then we can implement the two competing systems.

115

Black-Scholes-Merton model:

116

Artificial Neural Network:

117

118

119

References

Aboukarima, A., Elsoury, H., and Menyawi, M., 2015. Artificial neural network model for the

prediction of the cotton crop leaf area. International Journal of Plant and Soil Science, Vol. 8, pp. 1-

13.

Ait-Sahalia, Y., and Lo, A. W., 1998. Nonparametric estimation of state-price densities implicit in

financial asset prices. The Journal of Finance, Vol. 53, pp. 499-547.

Ait-Sahalia, Y., and Lo, A. W., 2000. Nonparametric risk management and implied risk aversion.

Journal of Econometrics, Vol. 94, pp. 9-51.

Alpaydin, E., 2020. Introduction to machine learning, fourth edition. The MIT Press.

Ambrož, L., 2002. Oceˇnovanie opcií. C.H. Beck. ISBN: 80-7179-531-3.

Amilon, H., 2003. A neural network versus Black-Scholes: a comparison of pricing and hedging

performances. Journal of Forecasting, Vol. 22, pp. 317-335.

Anders, U., Korn, O., and Schmitt, C., 1998. Improving the pricing of options: a neural network

approach. Journal of Forecasting, Vol. 17, pp. 369-388.

Andersen, L., and Brotherton-Ratcliffe, R., 1997. The equity option volatility smile: an implicit finite-

difference approach. Journal of Computational Finance, Vol. 1, pp. 5-38.

Andreou, P. C., 2008. Parametric and Nonparametric Functional Estimation for Options Pricing with

Applications in Hedging and Trading. PhD thesis, University of Cyprus.

Andreou, P. C., Charalambous, C., and Martzoukos, S. H., 2010. Generalized parameter functions for

option pricing. Journal of Banking and Finance, Vol. 34, pp. 633–646.

Anwar, M. N., and Andallah, L. S., 2018. A study on numerical solution of Black-Scholes model.

Journal of Mathematical Finance, Vol. 8, 372-381.

Arif, J., Chaudhuri, N. R., ray, S., and Chaudhuri, B., 2009. Online Levenberg-Marquardt algorithm for

neural network based estimation and control of power systems. International Joint Conference on

Neural Networks, pp. 199-206.

Ascioglu, A., Holowczak, R., Louton, D., and Saraoglu, H., 2017. The evolution of market share among

the U.S. options market platforms. The Quarterly Review of Economics and Finance, Vol. 64, pp. 196-

214.

Backus, D., Foresi, S., Li, K., and Wu, L., 1997. Accounting for biases in Black-Scholes. Fordham

University.

Bahra, B., 1997. Implied risk-neutral probability density functions from option prices: theory and

application. Bank of England working paper.

Bakshi, G., Cao, C., and Chen, Z., 1997. Empirical performance of alternative option pricing models.

The Journal of Finance, Vol. 52, pp. 2003-2049.

120

Banko, M., and Brill, E., 2001. Scaling to very very large corpora for natural language

disambiguation. Proceedings of the 39th annual meeting of the Association for Computational

Linguistic, pp. 26-33.

Barr, J. K., 2009. The implied volatility bias and option smile: is there a simple explanation?. Iowa

State University.

Bates, D. S., 1995. Testing option pricing models. In chapter 20 of G. S. Maddala and C. R. Rao,

editors, Statistical Methods in Finance, Handbook of Statistics, Vol. 14, pp. 567-611.

Bates, D. S., 1996. Jumps and stochastic volatility: exchange rate process implicit in deutsche mark

options. The Review of Financial Studies, Vol. 9, pp. 69-107.

Bates, D. S., 2008. The market for crash risk. Journal of Economic Dynamics and Control, Vol. 32, pp.

2291-2321.

Bellman, R., 1957. Dynamic programming. Dover Publications Inc.

Bennell, J. A., and Sutcliffe, C., 2004. Black-Scholes versus neural networks in pricing FTSE 100

options. intelligent Systems in Accounting, Finance and Management, Vol. 12, pp. 00-156.

Bergstra, J., and Bengio, Y., 2012. Random search for hyperparameter optimization. Journal of

Machine Learning Research, Vol. 13, pp. 281-305.

Berry, M. J. A., and Linoff, G. S., 1997. Data mining techniques. Wiley and Sons.

Billio, M., Corazza, M., and Gobbo, M., 2002. Option pricing via regime switching models and

multilayer perceptrons: a comparative approach. Rendiconti per gli Studi Economici Quantitativi,

Vol. 2002, pp. 39–59.

Bishop, C. M., 1995. Neural networks for pattern recognition. Oxford University Press.

Black, F., and Scholes, M., 1973. The pricing of options and corporate liabilities. The Journal of

Political Economy, Vol. 81, pp. 637-654.

Bloch, D. A., 2019. Option pricing with machine learning. Universitè Paris VI et Marie Curie.

Block, H. D., 1970. A review of “Perceptrons: an introduction to computational geometry”.

Information and Control, Vol. 17, pp. 501-522.

Blum, A. L., and Rivest, R., 1992. Training a 3-node neural network is NP-Complete. Neural networks,

Vol. 5, pp. 117-127.

Blynski, L., and Faseruk, A., 2006. Comparison of the effectiveness of option price forecasting: Black–

Scholes vs simple and hybrid neural networks. Journal of Financial Management and Analysis, Vol.

19, pp. 46–58.

Bodurtha, J. N., and Courtadon, G. R., 1987. The pricing of foreign currency options. New York:

Salomon Brothers Center for the Study of Financial Inst.

Bodurtha, J. N., and Jermakyan, M., 1996. Nonparametric estimation of an implied volatility surface.

Georgetown University.

121

Boger, Z., and Guterman, H., 1997. Knowledge extraction from artificial neural network models. IEEE

International Conference on Systems, Man and Cybernetics, Vol. 4, pp. 3030-3035.

Bossu, S., and Henrotte, P., 2012. The Black-Scholes model. Wiley and Sons.

Bouchaud, J. P., and Potters, M., 2000. Theory of financial risk and derivative pricing. From statistical

physics to risk management. Cambridge University.

Brenner, M., and Eom, Y. H., 1997. No-arbitrage option pricing: new evidence on the validity of the

martingale property. New York University.

Breunig, M. M., Kriegel, H. P., Ng, R. T., and Sander, J., 1999. OPTICS-OF: identifying local outliers.

Proceedings of the third European Conference on Principles and Practice of Knowledge Discovery in

Databases, Prague.

Broadie, M., and Detemple, J. B., 2004. Option pricing: valuation models and applications.

Management Science, Vol. 50, pp. 1145-1177.

Brown, S. J., and Dybvig, P. H., 1986. The empirical implications of the Cox, Ingersoll, Ross theory of

the term structure of interest rates. The Journal of Finance, Vol. 41, pp. 617-630.

Brownlee, J., 2018. Use early stopping to halt the training of neural networks at the right time.

Published in Deep Learning Performance.

Buehler, H., Gonon, L., Teichmann, J., and Wood, B. 2019. Deep hedging. Quantitative Finance, Vol.

19, pp. 1271–1291.

Campa, J. M., and Chang, P. H. K., 1995. Testing the expectations hypothesis on the term structure

of volatilities in foreign exchange options. Journal of Finance, Vol. 50, pp. 529-547.

Campa, J. M., and Chang, P. H. K., 1996. Arbitrage-based tests of target-zone credibility: evidence

from ERM cross-rate options. The American Economic Review, Vol. 86, pp. 726-740.

Campa, J. M., Chang, P. H. K., and Reider, R. L., 1998. Implied exchange rate distributions: evidence

from the OTC option markets. Journal of International Money and Finance, Vol. 17, pp. 117-160.

Cao, J., Chen, J., and Hull, J. C., 2019. A neural network approach to understanding implied volatility

movements. SSRN 3288067, 2019

Carbonell, J. G., Michalski, R. S., and Mitchell, T. M., 1983. Machine learning: an artificial intelligence

approach. Morgan Kaufmann.

Carr, P. P., and Madan, D., 1998. Determining volatility surfaces and option values from an implied

volatility smile. University of Maryland.

Carsten, J. J., 1999. Option implied risk-neutral distributions and implied binomial trees: a literature

review. Journal of Derivatives, Vol. 7, pp. 66-82.

Carverhill, A. P., and Cheuk, T. H., 2003. Alternative neural network approach for option pricing and

hedging. SSRN 480562, 2003.

Cawley, G. C., and Talbot, N. L. C., 2010. On overfitting in model selection and subsequent selection

bias in performance evaluation. Journal of Machine Learning Research, Vol. 11, pp. 2079-2107.

122

Černy, M., 2008. On estimation of volatility of financial time series for pricing derivatives. Prague

University of Economics and Business.

Chappell, D, 1992. On the derivation and solution of the Black-Scholes option pricing model: a step-

by-step guide. Sheffield University Management School.

Chen, F., and Sutcliffe, C., 2011. Pricing and hedging short sterling options using neural networks.

Henley University of Reading, ICMA Centre.

Cho, H., Kim, Y., Lee, E., Choi, D., Lee, Y., and Rhee, W., 2020. Basic enhancement strategies when

using Bayesian optimization for hyperparameter tuning of deep neural networks. IEE Access, Vol. 8,

pp. 52588-52608.

Chollet, F., 2017. Deep learning with Python. Manning Pubns.

Christie, A. A., 1982. The stochastic behaviour of common stock variances: value, leverage and

interest rate effects. Journal of Financial Economics, Vol. 10, pp. 407-432.

Clark, P. B., 1973. Uncertainty, exchange risk, and the level of international trade. Economic Inquiry,

Vol. 11, pp. 302-313.

Clark, P. K., 1973. A subordinated stochastic process model with finite variance for speculative

process. Econometrica, Vol. 41, pp. 135-155.

Colusso, P., 2019. A machine learning approach to parametric option pricing. M. Sc. Thesis.

Commarata, M., 2016. Corporate diversity in corporate governance and its effect on financial

performance: a study on FTSE MIB listed companies. Universidade NOVA, M. Sc. Thesis.

Constantinides, G. M., Jackwerth, J. C., and Perrakis, S., 2009. Mispricing of S&P500 index options.

the Review of Financial Studies, Vol. 22, pp. 1247-1277.

Contreras, M., Llanquihuen, A., and Villena, M., 2016. On the solution of the multi asset Black-

Scholes model: correlations, eigenvalues and geometry. Journal of Mathematical Finance, Vol. 6,

Art. No. 4.

Corrado, C. J., and Su, T., 1996. Skewness and kurtosis in S&P500 index returns implied by option

prices. The Journal of Financial Research, Vol. 19, pp. 175-192.

Cox, J. C., and Ross, S. A., 1976. The valuation of options for alternative stochastic processes. Journal

of Financial Economics, Vol. 3, pp. 145-166.

Cox, J. C., Ross, S. A., and Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of

Financial Econometrics, Vol. 7, pp. 229-263.

Culkin, R., and Das, S. R., 2017. Machine learning in finance: the case of deep learning for option

pricing. Santa Clara University.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, Vol. 2, pp. 303-314.

Daburra, I., 2018. Coding neural network – feedforward propagation and backpropagation.

Published by Towards Data Science.

123

Dar, A. A., and Anuradha, N., 2018. Comparison: binomial model and Black-Scholes model.

Quantitative Finance and Economics, Vol. 2, pp. 230-245.

Das, S. P., and Padhy, S., 2017. A new hybrid parametric and machine learning model with

homogeneity hint for European-style index option pricing. Neural Computing and Applications, Vol.

28, pp. 4061-4077.

Das, S. R., and Sundaram, R. K., 1999. Of smiles and smirks: a term structure perspective. The Journal

of Financial and Quantitative Analysis, Vol. 34, pp. 211-239.

Dayhoff, J. E., 1990. Neural network architectures: an introduction. Published by Van Nostrand

Reinhold Company.

Dey, A., 2016. Machine learning algorithms: a review. International Journal of Computer Science

and Information Technologies, Vol. 7, pp. 1174-1179.

Dongare, A. D., Kharde, R. R., and Kachare, A. D., 2012. Introduction to artificial neural network.

International Journal of Engineering and Innovative Technology, Vol. 2.

Dreyfus, S. E., 1957. Computational aspects of Dynamic Programming. Operations Research, Vol. 5,

pp. 409-415.

Dreyfus, S. E., 1973. The computational solution of optimal control problems with time lag.

Transactions on Automatic Control, Vol. 18, pp. 383-385.

Dreyfus, S. E., 1990. Artificial neural networks, back propagation, and the Kelley-Bryson gradient

procedure. University of California, Berkeley.

Duarte, J. C., and Echeverria, F. R., 2002. Time series forecasting using ARIMA, neural networks and

neo fuzzy neurons. Universidad de Los Andes.

Dufour, J. M., and Neves, J., 2019. Conceptual econometrics using R. Grid search. Handbook of

statistics, Vol. 41, pp. 2-314.

Dugas, C., Bengio, Y., B ́elisle, F., Nadeau, C., and Garcia, R. 2009. Incorporating functional knowledge

in neural networks. Journal of Machine Learning Research, Vol. 10, pp.1239–1262.

Fradkov, A. L., 2020. Early history of machine learning. IFAC – Papers Online, Vol. 53, pp. 1385-1390.

Garcia, R., and Gencay, R., 1998. Option pricing with neural networks and a homogeneity hint.

Decision Technologies for Computational Finance, pp. 195–205.

Gayathri, T., and Bhaskari, L., 2016. A comprehensive review of subspace clustering in the analysis

of big data. International Journal of Engineering Trends and Technology, Vol. 39, pp. 135-142.

Gencay, R., and Salih, A., 2003. Degree of mispricing with the Black-Scholes model and

nonparametric cures. Economics and Finance, Vol. 4, pp. 73-101.

Géron, A., 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts,

tools, and techniques to build intelligent systems. O'Reilly Media.

Ghaziri, H., Elfakhani, S., and Assi, J., 2000. Neural networks approach to pricing options. Neural

Network World, Vol. 10, pp. 271–277.

124

Ghysels, E., Patilea, V., Renault, E., and Torres, O., 1997. Nonparametric methods and option pricing.

CIRANO Working Paper.

Gibbons, M. R., and Ramaswamy, K., 1993. A test of the Cox, Ingersoll, and Ross model of the term

structure. The Review of Financial Studies, Vol. 6, pp. 619-658.

Gikhman, I. I., 2006. Drawbacks in options definition. SSRN.

Girosi, F., Jones, M. J., and Poggio, T. A., 1993. Priors, stabilizers and basis functions: from

regularization to radial, tensor and additive splines. MIT Press.

Gradojevic, N., Gencay, R., and Kukolj, D., 2009. Option pricing with modular neural networks.

Transactions on Neural Networks, Vol. 20, pp. 626-637.

Grossman, S. J., and Zhou, Z., 1996. Equilibrium analysis of portfolio insurance. The Journal of

Finance, Vol. 51, pp. 1379-1403.

Gu, S., Kelly, B., and Xiu, D., 2020. Empirical asset pricing via Machine Learning. The Review of

Financial Studies, Vol. 33, pp. 2223-2273.

Gupta, M., 2017. Cross-validation in machine learning. Published by Towards Data Science.

Gupta, M., 2022. A comparative study on supervised machine learning algorithm. Published by

Towards Data Science.

Hahn, T., 2014. Option pricing using artificial neural networks: an Australian perspective. PhD thesis.

Bond University.

Hakan, O. Y., 2005. Criticism of the Black-Scholes model: but why is it still used? (The answer is

simpler than the formula). MPRA, paper No. 63208, New York University.

Hamid, S. A., and Habib, A., 2005. Can neural networks learn the Black-Scholes model? A simplified

approach. Southern New Hampshire University.

Hammoudeh, S., and McAleer, M., 2013. Risk management and financial derivatives. An overview.

The North American Journal of Economics and Finance, Vol. 25, pp. 109-115.

Hanczar, B., Zehraoui, F., Issa, T., and Arles, M., 2020. Biological interpretation of deep neural

network for phenotype prediction based on gene expression. BMC Informatis, Vol. 21, Art. No. 501.

Hastie, T., Tibshirani, R., and Friedman, J., 2009. The elements of statistical learning. Data mining,

inference, and prediction. Springer Series in Statistics. Springer, Second Edition.

Haug, E. G., 2007. Derivatives: models on models. Wiley and Sons.

Haug, E. G., 2007. The complete guide to option pricing formulas. McGraw Hill, second edition.

Haug, E. G., and Taleb, N. N., 2009. Option traders use (very) sophisticated heuristics, never the Black-

Scholes-Merton formula. Journal of Economic Behaviour and Organization, pp. 97-106.

Hawkins, D. M., 1980. Identification of outliers. Part of the series Monographs on Statistics and

Applied Probability.

125

Healy, J., Dixon, M., Read, B., and Cai, F., 2002. A data-centric approach to understanding the pricing

of financial options. The European Physical Journal, Vol. 27, pp. 219–227.

Hebb, D. O., 1949. The organization of behaviour; a neuropsychological theory. Wiley and Sons.

Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A.

I., and Ramkumar, P. N., 2020. Machine learning and artificial intelligence: definitions, applications,

and future directions. Current Reviews in Musculoskeletal Medicine, Vol. 13, pp. 69-76.

Hentschel, L., 2009. Errors in implied volatility estimation. Journal of Financial and Quantitative

Analysis, Vol. 38, pp. 779-810.

Heskes, T., and Wiegerinck, W., 1996. A theoretical comparison of batch-mode, on-line, cyclic, and

almost-cyclic learning. IEEE Transactions on Neural Networks, Vol. 7, pp. 919-925.

Hoffman, K., 2021. Machine learning: how to prevent overfitting. Published in The Startup.

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks,

Vol. 4, pp. 251-257.

Hughes, G., 1968. On the mean accuracy of statistical pattern recognizers. Transactions on

Information Theory, Vol. 14, pp. 55-63.

Hull, J. C., 2008. Options, Futures, and other Derivatives. 7th ed. Upper Saddle River, New Jersey:

Pearson Education.

Hull, J. C., 2021. Machine learning in business: an introduction to the world of data science. Amazon

Fulfillment Poland Sp. Zoo.

Hutchinson, J. M., Lo, A. W., and Poggio, T., 1994. A nonparametric approach to pricing and hedging

derivatives securities via learning networks. The Journal of Finance, Vol. 49, pp. 851-889.

Ingersoll, J. E., Cox, J. C., and Ross, S. A. J., 1985. A theory of the term structure of interest rates.

Econometrica, Vol. 53, pp. 385-407.

Ismiguzel, I., 2021. Hyperparameter tuning with grid search and random search and a deep dive into

how to combine them. Published by Towards Data Science.

Ivascu, C. F., 2021. Option pricing using machine learning. Bucharest University of Economic Studies.

Jackwerth, J. C., and Rubinstein, M., 1996. Recovering probability distributions from option prices.

The Journal of Finance, Vol. 51, pp. 1611-1631.

Jankova, Z., 2018. Black-Scholes model differential equation and its modifications for valuation of

financial derivatives. Brno University of Technology.

Jankova, Z., 2018. Drawbacks and limitations of Black-Scholes model for option pricing. Journal of

Financial Studies and Research, Vol. 2018, pp. 1-7.

Janocha, K., and Czarnecki, W. M., 2017. On loss functions for deep neural networks in classification.

Cornell University.

126

Jarrow, R., 2013. Option pricing and market efficiency. The Journal of Portfolio Management, Vol.

40, pp. 88-94.

Karlik, B., and Olgac, A. V., 2011. Performance analysis of various activation functions in generalized

MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert

Systems, Vol. 1, pp. 111-122.

Karsoliya, S., 2012. Approximating number of hidden layer neurons in multiple hidden layer BPNN

architecture. International Journal of Engineering Trends and Technology, Vol. 3, pp. 714-717.

Kelley, H. J., 1960. Gradient theory of optimal flight paths. ARS Journal, Vol. 30, pp. 947-954.

Kleene, S. C., 1956. Representation of events in nerve nets and finite automa. The Annals of

Mathematics Studies, Vol. 34, pp. 3-41.

Kotsiantis, S. B., Zaharakis, I. D., and Pintelas, P. E., 2007. Supervised machine learning: a review of

classification techniques. Published in the Emerging Artificial Intelligence Applications in Computer

Engineering conference.

Lajbcygier, P. R., and Connor, J. T., 1997. Improved option pricing using artificial neural networks and

bootstrap methods. International Journal of Neural Systems, Vol. 8, pp. 457-471.

Larsson, J., 2020. Optimization of option pricing. Variance reduction and low-discrepancy techniques.

Umea School of Business, Economics and Statistics, Bachelor Thesis.

Lauterbach, B., and Schultz, P., 1990. Pricing warrants: an empirical study of the Black-Scholes model

and its alternatives. Journal of Finance, Vol. 45, pp. 1181-1209.

Lawrence, S., Giles, C. L., and Tsoi, A. C., 1998. What size neural network gives optimal

generalization? Convergence properties of backpropagation. University of Maryland.

LeCun, Y., Bottou, L., Orr, G. B., and Muller, K. R., 1998. Efficient backprop. New York University.

Liashchynskyi, P., and Liashchynskyi, P., 2019. Grid search, random search, genetic algorithm: a big

comparison for NAS. Cornell University.

Liu, S., Oosterlee, C. W., and Bohte, S. M., 2019. Pricing options and computing implied volatilities

using neural networks. Risks, Vol. 7, pp. 1–22.

Longstaff, F. A., 1990. Pricing options with extendible maturities: analysis and applications. The

Journal of Finance, Vol. 45, pp. 935-957.

 Longstaff, F. A., 1995. Option pricing and the martingale restriction. Review of Financial Studies,

Vol. 8, pp. 1091-1124.

Lurent, J. P., and Leisen, D. P. J., 1998. Building a consistent pricing model from observed option

prices. Stanford University.

Mahesh, B., 2019. Machine learning algorithms – a review. International Journal of Science and

Research, Vol. 9, pp. 381-386.

Malliaris, M., and Salchenberger, L., 1993. A neural network model for estimating option prices.

Applied Intelligence, Vol. 3, pp. 193-206.

127

Mas, J. F., and Flores, J. J., 2008. The application of artificial neural networks to the analysis of

remotely sensed data. International Hournal of Remote Sensing, Vol. 29, pp. 617-663.

McCulloch, W. S., and Pitts, W. H., 1943. A logical calculus of ideas immanent in nervous activity.

Bulletin of Mathematical Biology, Vol. 5, pp. 115-133.

McKean, H. P. J., 1969. Stochastic integrals. Academic Press, New York.

Merton, R. C., 1971. Optimum consumption and portfolio rules in a continuous-time model. Journal

of Economic Theory, Vol. 3, pp. 373-413.

Merton, R. C., 1973. Theory of rational option pricing. The Bell Journal of Economics and

Management Science, Vol. 4, pp. 141-183.

Merton, R. C., 1974. On the pricing of corporate debt: the risk structure of interest rates. The

American Finance Association Meeting 1974.

Merton, R. C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of

Financial Economics, Vol. 3, pp. 125-144.

Merton, R. C., 1976. The impact on option pricing of specification error in the underlying stock price

returns. The Journal of Finance, Vol. 31, pp. 333-350.

Merton, R. C., 1991. Continuous-time finance. John Wiley and Sons.

Minsky, M. and Papert, S., 1969. An introduction to computational geometry. Cambridge University.

Minsky, M. and Papert, S., 1972. Research at the Laboratory in Vision, Language, and Other Problems

of Intelligence: Progress Report. Massachusetts Institute of Technology.

Minsky, M., 1960. Steps toward artificial intelligence. Cambridge University.

Montesdeoca, L., and Niranjan, M., 2016. Extending the feature set of a data-driven artificial neural

network model of pricing financial options. IEEE Symposium Series on Computational Intelligence,

pp. 1–6.

Mostafa, F., and Dillon, T., 2008. A neural network approach to option pricing. WIT Transactions on

Information and Communication Technologies, Vol. 41, pp. 71-85.

Nair, A., 2022. Grid search vs random search vs Bayesian optimization. Published by Towards data

Science.

Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., Reuter, U., Gama, J., and

Gandomi, A. H., 2020. Data science in economics: comprehensive review of advanced machine

learning and deep learning methods. Journal of Mathematics, Vol. 8, issue 10.

Osborne, M. F. M., 1959. Brownian motion in the stock market. Operations Research, Vol. 7, pp. 145-

173.

Phani, B. V., Chandra, B., and Raghav, V., 2011. Quest for efficient option pricing prediction model

using machine learning techniques. International Joint Conference of Neural Networks, 2011, pp.

654-657.

128

Pires, M. M., and Marwala, T., 2005. American option pricing using Bayesian multilayer perceptrons

and Bayesian support vector machines. International Conference on Computational Cybernetics,

2005, pp. 219-224.

Pogorui, A., and Rodriguez-Dagnino, R. M., 2009. Evolution process as an alternative to diffusion

process and Black-Scholes formula. Random Operators and Stochastic Equations, Vol. 17, pp. 61-68.

Pohlodek, J., Morabito, B., Zometa, P., and Findeisen, R., 2022. Flexible development and evaluation

of machine learning supported optimal control and estimation methods via HILO-MPC. Published by

DeepAI.

Rachev, S. T., Menn, D. C., and Fabozzi, F. J., 2008. Black-Scholes option pricing model. Wiley and

Sons.

Rao, S. V. A., Kondaiah, K., Chandra, G. R., and Kumar, K. K., 2017. A survey on machine learning:

concept, algorithms and applications. Published in International Conference on Innovative Research

in Computer and Communication Engineering.

Reed, R., 1999. Neural smithing: supervised learning feedforward artificial neural networks. MIT

Press.

Reshma, P., Prasanth, P., and Udayanandan, K. M., 2021. The curse of dimensionality in physics.

Progress in Physics, Vol. 17.

Riachy, W., 2019. Comparing Black-Scholes and binomial models for pricing European options. Usek

School of Business.

Robbins, H., and Monro, S., 1951. A stochastic approximation method. The Annals of Mathematical

Statistics, Vol. 22, pp. 400-407.

Rosenberg, J. V., 1998. Pricing multivariate contingent claims using estimated risk-neutral density

functions. Journal of International Money and Finance, Vol. 17, pp. 229-247.

Rosenberg, J. V., and Engle, R. F., 1997. Option hedging using empirical pricing kernels. New York

University.

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization

in the brain. Psychological Revie, Vol. 65, pp. 386-408.

Ross, S. A., 1976. Options and efficiency. The Quarterly Journal of Economics, Vol. 90, pp. 75-89.

Rubinstein, M., 1985. Nonparametric tests of alternative option pricing models using all reported

trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August

31, 1978. The Journal of Finance, Vol. 40, pp. 455-480.

Rubinstein, M., 1994. Implied binomial trees. The Journal of Finance, Vol. 49, pp. 771-818.

Ruf, J, and Wang, W., 2020. Neural networks for option pricing and hedging: a literature review.

Journal of Computational Finance, Vol. 24, pp. 1-46.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986. Learning representations by

backpropagating errors. Nature, Vol. 323, pp. 533-536.

129

Samuel, A. L., 1959. Some studies in machine learning using the game of checkers. IBM Journal of

Research and Development, Vol. 3, pp. 210-229

Samur, Z. I., and Temur, G. T., 2009. The use of artificial neural network in option pricing: the case

of S&P 100 index options. International Journal of Social, Behavioral, Educational, Economic,

Business and Industrial Engineering, Vol. 3, pp. 644–649.

Sasakawa, T., Hu, J., and Hirasawa, H., 2007. A brain like learning system with supervised,

unsupervised, and reinforcement learning. Wiley and Sons.

Scholes, M., 1976. Taxes and the pricing of options. The Journal of Finance, Vol. 31, pp. 319-332.

Shah, T., 2017. About train, validation and test sets in machine learning. Published in Towards Data

Science.

Sharma, S., and Sharma, S., 2020. Activation functions in neural networks. International Journal of

Engineering Applied Sciences and Technology, Vol. 4, pp. 2455-2143.

Shinde, A. S., and Takale, K. C., 2012. Study of Black-Scholes model and its applications. Procedia

Engineering, Vol. 38, pp. 270-279.

Singh, A., Thakur, N., and Sharma, A., 2016. A review of supervised machine learning algorithms.

Published in the International Conference on Computing for Sustainable Global Development.

Smith, C. W. Jr, 1976. Option pricing: a review. Journal of Financial Economics, Vol. 3, pp. 3-51.

Smiti, A., 2020. A critical overview of outlier detection methods. Computer Science Review, Vol. 38.

Spiegeleer, J. D., Madan, D. B., Reyners, S., and Schoutens, W., 2018. Machine learning for

quantitative finance: fast derivative pricing, hedging and fitting. Quantitative Finance, Vol. 18, pp.

1635-1643.

Srivastava, T., 2015. Introduction to online machine learning: simplified. Published by Analytics

Vidhya.

Stathakis, D., 2009. How many hidden layers and nodes?. International Journal of Remote Sensing,

Vol. 30, pp. 2133-2147.

Stewart, M., 2019. Simple guide to hyperparameter tuning in Neural Networks. Published by

Towards Data Science (2019).

Stutzer, M., 1996. A simple nonparametric approach to derivative security valuation. Journal of

Finance, Vol. 51, pp. 1633-1652.

Su, X., and Tsai, C. L., 2011. Outlier detection. Wires Data Mining and Knowledge Discovery, Vol. 1,

pp. 261-268.

Sutton, F. E., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., and Peterson, C. M., 2018. Early time

restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without

weight loss in men with prediabetes. Cell Metab, Vol. 27, pp. 1212-1221.

Telgarsky, M., 2016. Benefits of depth in neural networks. JMLR: workshop and Conference

Proceedings, Vol. 49, pp. 1-23.

130

Teneng, D., 2011. Limitations of the Black-Scholes model. International Research Journal of Finance

and Economics, pp. 99-102.

Twomey, J. M., and Smith, A. E., 1995. Performance measures, consistency, and power for artificial

neural network models. Mathematical and Computer Modeling, Vol. 21, pp. 243-258.

Vanstone, B. J., Finnie, G., and Hahn, T., 2010. Stock market trading using fundamental variables

and neural networks. Bond Business School.

Von Neumann, J., 1956. Probabilistic logics and synthesis of reliable organisms from unreliable

components. The Annals of Mathematics Studies, Vol. 34, pp. 43.98.

Wahba, G., 1990. Spline models for observational data. Society for Industrial and Applied

Mathematics.

Wang, M. X., and Qu, Y., 2021. Approximation capabilities of neural networks on unbounded

domains. Harvard University.

Wang, S. C., 2003. Artificial neural network. Interdisciplinary Computing in Java Programming, pp.

81-100.

Weigand, A., 2019. Machine learning in empirical asset pricing. Financial Markets and Portfolio

Management, Vol. 33, pp. 93-104.

Werbos, P., 1975. Backpropagation through time: what it does and how to do it. Proceeding of the

IEEE, Vol. 78, pp. 1550-1560.

Widrow, B., and Stearns, S. D., 1985. Adaptive signal processing. Alan V. Oppenheim Editor.

Wilamowski, B. M., 2009. Neural network architectures and learning algorithms. Industrial

Electronics Magazine, Vol. 3, pp. 56-63.

Wistuba, M., Rawat, A., and Pedapati, T., 2019. A survey on neural architecture search. Cornell

University.

Xu, S., and Cheng, L., 2008. A novel approach for determining the optimal number of hidden layer

neurons for FNN’s and its application in data mining. International Conference on Information

Technology and Applications, 2008.

Xu, Y., and Goodacre, R., 2018. On splitting training and validation set: a comparative study of cross-

validation, bootstrap and systematic sampling for estimating the generalization performance of

supervised learning. Journal of Analysis and Testing, Vol. 2, pp. 249-262.

Yalincak, O. H., 2019. Criticism of the Black-Scholes model: but why is it still used? The answer is

simpler than the formula. New York University.

Yang, Y., Zheng, Y., and Hospedales, T., 2017. Gated neural networks for option pricing: rationality

by design. Conference of Artificial Intelligence.

Yao, J., Li, Y., and Tan, C. L., 2000. Option price forecasting using neural networks. Omega, Vol. 28,

pp. 455-466.

131

Yao, Y., Rosasco, L., and Caponetto, A., 2007. On early stopping in gradient descent learning.

Constructive Approximation, Vol. 26, pp. 289-315.

Yathish, V., 2022. Loss functions and their use in neural networks. Published by Towards Data Science

(2022).

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2016. Understanding deep learning (still)

requires rethinking generalization. Communications of the ACM. Vol. 64, pp. 107-115.

Zhang, D., Lyle, M., and Nault, B. R., 2020. Trading volume and open interest from options markets

as measures of the effect of IT announcements. Haskayne School of Business.

Zhang, G. P., 2003. Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing, Vol. 50, pp. 159-175.

Zhang, G. P., and Qi, M., 2005. Neural network forecasting for seasonal and trend time series.

European Journal of Operational research, Vol. 160, pp. 501-514.

Zhang, T, and Yu, B., 2005. Boosting with early stopping: convergence and consistency. The Annals

of Statistics, Vol. 33, pp. 1538-1579.

Zheng, M., Tang, W., and Zhao, X., 2018. Hyperparameter optimization of neural network driven

spatial models accelerated using cyber-enabled high-performance computing. International Journal

of Geographical Information Science, Vol. 33, pp. 1-32.

Zhou, Y., 2022. Option trading volume by moneyness, firm fundamentals, and expected stock

returns. Journal of Financial Markets, Vol. 58, 100648.

132

133

Sitography

Analytics Vidhya. Available at: https://www.analyticsvidhya.com/

Banca d’Italia. Available at: https://www.bancaditalia.it/

Banco BPM: IDEM. Available at: https://www.bancobpm.it/magazine/glossario/idem/

Bloomberg. Available at: https://www.bloomberg.com/

Board of Governors of the Federal reserve System. Available at: https://www.federalreserve.gov/

Borsa Italiana. Available at: https://www.borsaitaliana.it/homepage/homepage.htm

Cambridge digital library. Available at: https://cudl.lib.cam.ac.uk/

CBOE Global Markets. Available at: https://www.cboe.com/

Commodity Futures Trading Commission. Available at: https://www.cftc.gov/

Constellate. Available at: https://constellate.org/

Corporate Finance Institute: Put-Call parity. Available at:

https://corporatefinanceinstitute.com/resources/knowledge/finance/put-call-parity/

DeepAI. Available at: https://deepai.org/

Fortmann-Roe: Understanding the Bias-Variance tradeoff. Available at: https://scott.fortmann-

roe.com/docs/BiasVariance.html

FTSE Russell. Available at: https://www.ftserussell.com/

GitHub. Available at: https://github.com/

IBM Cloud Education: Gradient Descent. Available at: https://www.ibm.com/cloud/learn/gradient-

descent

InteractiveBrokers. Available at: https://www.interactivebrokers.ie/en/

Investing. Available at: https://it.investing.com/

Investopedia. Available at: https://www.investopedia.com/

Matlab. Available at: https://it.mathworks.com/

National institute of Standards and Technology. Available at: https://www.nist.gov/

Option Metrics: https://optionmetrics.com/

SeekingAlpha. Available at: https://seekingalpha.com/

Sole24Ore. Available at: https://www.ilsole24ore.com/

StackExchange. Available at: https://stackexchange.com/

Statista. Available at: https://www.statista.com/

https://www.analyticsvidhya.com/
https://www.bancaditalia.it/
https://www.bancobpm.it/magazine/glossario/idem/
https://www.bloomberg.com/
https://www.federalreserve.gov/
https://www.borsaitaliana.it/homepage/homepage.htm
https://cudl.lib.cam.ac.uk/
https://www.cboe.com/
https://www.cftc.gov/
https://constellate.org/
https://corporatefinanceinstitute.com/resources/knowledge/finance/put-call-parity/
https://deepai.org/
https://scott.fortmann-roe.com/docs/BiasVariance.html
https://scott.fortmann-roe.com/docs/BiasVariance.html
https://www.ftserussell.com/
https://github.com/
https://www.ibm.com/cloud/learn/gradient-descent
https://www.ibm.com/cloud/learn/gradient-descent
https://www.interactivebrokers.ie/en/
https://it.investing.com/
https://www.investopedia.com/
https://it.mathworks.com/
https://www.nist.gov/
https://optionmetrics.com/
https://seekingalpha.com/
https://www.ilsole24ore.com/
https://stackexchange.com/
https://www.statista.com/

134

Supervised Machine Learning: regression and classification. By Ng, A., Coursera. Available at:

https://www.coursera.org/learn/machine-learning

The OCC. Available at: https://www.theocc.com/Market-Data/Market-Data-Reports/Series-and-

Trading-Data/Directory-of-Listed-Products

The StartUp. Available at: https://medium.com/swlh

Towards Data Science. Available at: https://towardsdatascience.com/

U.S. Security and Exchange Commission. Available at: https://www.sec.gov/

Wiley online library. Available at: https://onlinelibrary.wiley.com/

https://www.coursera.org/learn/machine-learning
https://www.theocc.com/Market-Data/Market-Data-Reports/Series-and-Trading-Data/Directory-of-Listed-Products
https://www.theocc.com/Market-Data/Market-Data-Reports/Series-and-Trading-Data/Directory-of-Listed-Products
https://medium.com/swlh
https://towardsdatascience.com/
https://www.sec.gov/
https://onlinelibrary.wiley.com/

