
UNIVERSITÀ CA’ FOSCARI – VENEZIA
Facoltà di Scienze Matematiche, Fisiche e Naturali

Master Degree in Computer Science

Graduation Thesis

Author: Alessandro Frazza

An Information Flow Type System for Android

Supervisor:
Professor Michele Bugliesi

Assistant Supervisors:
Alvise Spanò, Ph.D

Stefano Calzavara, Ph.D

Academic Year 2011/12

To Elsa and Renato

Abstract

The growing adoption by mobile devices of the Android operating system has in-

creased interest in security mechanisms which are able to ensure secrecy and in-

tegrity of user data. This thesis describes a new type system which, exploiting the

Decentralized Label Model, allows developers to guarantee that their application

respects the former security properties, in a way which is totally transparent to the

end-user. The proposed framework tackles some peculiar challenges raised by the

Android platform, such as a non-standard control flow, a non-typed communication

system based upon Intents and the introduction of a support to some of the most

recent features of Java, such as Generics. Being a mostly static analysis, the im-

pact on performance is negligible. The thesis also describes as the hereby proposed

solution blends in with the Lintent framework, which statically analyzes Android ap-

plications in order to detect privilege escalation attacks and verify inter-component

communication.

Acknowledgments

There are indeed several people whose help allowed me to complete this work, and

as such achieve my master’s degree. First, I start by thanking my supervisor Michele

Bugliesi, whose efforts in starting a research group made up of graduate and doctoral

students was the spark that generated this thesis. His patience and willingness to

help have been invaluable ever since my bachelor’s degree thesis. Equally important

were Alvise Spanò, the first of my two assistant supervisors. His undeniable design

and programming skills were a key factor in implementing the type system in time

for the due date. Priceless was also the help of my second assistant supervisor,

Stefano Calzavara, as he never denied his help or its bright thoughts, no matter how

many silly idea I bounced at him.

I have lost count of how many exams were made easier thanks to the help of some

wonderful fellow graduate student, that is why I must not forget Alessio, Andrea,

Giuseppe, Simone and Stefano. There is only one reason because I am not a mad,

solitary workaholic, and it is because of the support of my friends. A laugh with

them has always been the best way to wash problems away: Alice, Andrea, Anna,

Chiara, Daniela, Daniele, Davide, Elisa, Emil, Giulia, Manuel, Mattia and Stefania.

A special mention must be made for my girlfriend Sara and her patience, who

endured the sight of my back bent over my laptop computer for several months,

always cheering me up in moments of discomfort. All my relatives do indeed deserve

to be thanked, for their lovely care and support, especially my grandmother Alida

and my sister Jessica, whose delightful food nourished me throughout all these years.

At last, but first in order of importance, come my parents Catia and Paolo, which

I will never thank enough for their support, both moral and financial, despite my

undeniable grumpiness. They have always raised me with those sound values that

let me be happy about the person I became to be.

Contents

1 Introduction 1

2 Information Flow 5

2.1 Dynamic Information Flow . 6

2.2 Static Information Flow . 7

3 Decentralized Label Model 9

3.1 Motivating Example . 10

3.2 Principals . 11

3.2.1 Acts-For Relationship . 12

3.2.2 The Top Principal . 12

3.2.3 The Bottom Principal . 12

3.3 Confidentiality . 12

3.3.1 Reader Policies . 13

3.3.2 Conjunction of Reader Policies 14

3.3.3 Disjunction of Reader Policies 14

3.3.4 Ordering on confidentiality . 15

3.4 Integrity . 16

3.4.1 Writer Policies . 16

3.4.2 Conjunction of Writer Policies 17

3.4.3 Disjunction of Writer Policies 17

3.4.4 Ordering on Integrity . 18

3.5 Labels . 18

3.5.1 Ordering on Labels . 19

3.5.2 Labels Relabeling . 20

3.5.3 Declassification . 20

4 Android 23

4.1 Security Overview . 23

4.2 Apps Structure . 24

4.2.1 Activities . 24

4.2.2 Services . 24

4.2.3 Broadcast Receivers . 25

4.2.4 Content Providers . 25

4.2.5 Intents . 26

4.3 Activity Lifecycle . 26

ii Contents

4.4 Peculiar Challenges . 27

4.4.1 Creating an Activity . 27

4.4.2 Returning Results . 27

4.4.3 Terminating an Activity . 28

4.4.4 Tracking Key-Value Pairs . 28

4.4.5 Handling Intents . 29

4.4.6 Supporting Generics . 30

5 Information Flow Typing 33

5.1 Motivations . 33

5.2 Implicit Flows . 34

5.3 Labels . 36

5.3.1 Label Syntax . 36

5.3.2 Method Labels . 36

5.3.3 Label Inference . 38

5.3.4 Default Labels . 38

5.3.5 Dynamic Labels . 39

5.3.6 Authority . 39

5.4 Type System Model . 40

5.4.1 Definitions . 40

5.4.2 Types Environment . 42

5.5 Typing Rules . 43

5.5.1 Type-Checking Java Expressions 43

5.5.2 Type-Checking Java Statements 49

5.5.3 Type-Checking Classes and Methods 57

5.6 Tackling Android Challenges . 58

5.6.1 Partial Evaluation . 58

5.6.2 Handling Intents . 59

5.6.3 Tracking Key-Value Pairs . 62

5.6.4 Creating an Activity . 64

5.6.5 Returning Results . 66

5.6.6 Terminating an Activity . 66

5.6.7 Supporting Generics . 67

5.6.8 Dealing with Undecidable Cases 67

6 Implementation 69

6.1 Lintent Architecture . 70

6.2 Annotations . 71

6.2.1 Grammar . 72

6.3 Programming Style . 73

6.4 State of the Type-Checker . 74

Contents iii

6.5 AFC Implementation . 75

Conclusions 79

C.1 Future Work . 81

Bibliography 83

iv Contents

List of Figures

3.1 Medical Study Scenario . 10

3.2 Example hierarchy, arrows from the acting-for principal to the acted-for. 20

4.1 Lifecycle of an activity. 27

6.1 Lintent architecture. 70

vi List of Figures

List of Tables

3.1 Examples of reader policies. 13

3.2 Examples of conjunctions between reader policies. 14

3.3 Examples of disjunctions between reader policies. 15

3.4 Examples of ordering over reader policies. 15

3.5 Examples of writer policies. 16

3.6 Examples of conjunctions between writer policies. 17

3.7 Examples of disjunctions between writer policies. 17

3.8 Examples of ordering over writer policies. 18

3.9 Examples of label ordering with the hierarchy found in Figure 3.5.1. . 19

5.1 The syntax for labels used in our type system. 36

5.2 Environment and judgments. 43

5.3 Simplified AST representation of Java types, expressions and state-

ments. 44

6.1 Names for AFC annotations. 71

6.2 Grammar for AFC annotations. 72

viii List of Tables

1
Introduction

The ubiquitous presence of smartphones and tablets in our lives is nowadays a

fact that cannot be ignored. People are every day more connected, with all sort

of devices that are continuously communicating through the Internet. Albeit this

represents a great achievement for mankind, it is not a mystery that cybercrimes are

increasing, both in numbers and in variety. Hundreds of millions of handheld devices

already contain sensitive personal, government and corporate data, huge numbers

that are bound to increase. Hence, it is clear that IT security cannot be limited

to desktop computers anymore, as protecting mobile data is felt as an increasingly

urgent need ([32],[9]). Android, that as of now is the most wide-spread mobile

Operating System[28], is no exception to this. Although system resources and user

data are protected by permissions, they heavily relies on users carefulness in order

to work properly. It has been already pointed out that security systems that do

count on users for their effectiveness often end up being vulnerable[21]. Therefore,

it is of the uttermost importance that devices are protected from harm in a way

that is transparent to the end-users, relieving them from the burden of protecting

sensitive information.

The goal of computer security is to guarantee two essential properties, secrecy

and integrity. The former, also known as privacy, refers to ensuring that private

data is not leaked to unauthorized parties. The latter, instead, requires sensitive

data to be protected from any sort of damage that may be caused by other entities.

Existing Android security mechanisms do not work well with untrusted code. When

installing an application, indeed, the user grants it the required permissions. Once

granted, though, these permissions do not limit the application anymore. If given

the possibility to access the Internet, an application is free to misuse it without the

user even knowing it. Alas, bona-fide code is often more dangerous than malicious

one. As an example, hundreds of Android applications use IMEI1 numbers and user

locations to display ad-hoc advertisements[9], without informing the user. Whilst

this may be borne by some, most users are likely to be annoyed, preferring not to

be tracked.

1International Mobile Equipment Identity, a code that univocally identifies a mobile device.

2 1. Introduction

Predictably, much effort has been made throughout the years to improve the

situation. Enhanced policy systems[12], data-flow analysis[13] and real-time taint

tracking[7] are just the tip of the iceberg of all proposed techniques to check the An-

droid security problem. Regrettably, they all have some flaws. Run-time approaches

do have serious overhead, making devices slower and more cumbersome. Static anal-

yses, on the other hand, often only prevent a limited set of leakages. Besides, almost

all proposals found in the literature are aimed at detecting weird behaviours on al-

ready deployed applications. Surprisingly enough, little-to-no effort has been put

in detecting errors when they are being created, that is at compile-time, when the

developer is programming.

The goal of this work is to explore the field of static Information Flow analysis

in the Android world, by means of a new type system specifically tailored for it.

Chapters 2 and 3 give the reader a brief, yet complete explanation of what Informa-

tion Flow is and which is the model that has been adopted. Chapter 4 talks about

the Android Operating System, pointing out the challenges that are posed by the

non-standard behaviour of some of its features. In Chapter 5 it is possible to find

a formalization for the proposed type system, Android Flows Checker , containing

all the typing rules that allow to prevent illegal information flows. Finally, Chapter

6 highlights the most interesting facts about the implementation of the hereby pro-

posed type system, which is integrated in a larger statical analysis framework called

Lintent. At the moment in which this document has been written, both Lintent

and Android Flows Checker were under active development, counting more than

ten thousands line of code. For these reasons the source code has not been attached

to this thesis, nevertheless all interested readers may find the source code for the

F# implementation of Android Flows Checker at [38].

3

4 1. Introduction

2
Information Flow

Security models have to ensure that secrecy and integrity of information is pre-

served. To preserve secrecy of data, any kind of unintended propagation must be

prevented, be it accidental or malicious. To protect integrity, instead, it must be

ensured that data is not overwritten or destroyed without the explicit authorization

of their owner. Nowadays, most common models (e.g., discretionary access control)

are able to wholly guarantee only the integrity of information, while they cannot

offer the same guarantees regarding secrecy. As a matter of fact, they protect data

disclosure, but once information exits the system they do not have the tools to pre-

vent its unauthorized propagation[1]. This is due to the fact that even if access

control mechanisms can help to prevent data from being released to unauthorized

third parties, they cannot stop entrusted parties from mishandling confidential infor-

mation. To better understand the limits of most common security models you could

think of them as perfectly-crafted strongboxes: valuables inside them are effectively

protected from harm and from being stolen, but once the owner retrieves them they

immediately become vulnerable, and thus their safety relies entirely on how they

are handled and used. It is evident that such a system cannot be deemed as safe, it

is in fact common for sensitive information to be leaked due to the carelessness of

people expected to protect it.

The ability of retrieving valuables from a safe and freely using them, without low-

ering their safety as if they still were in their container, would surely be an amazing

feat. Even if such a prowess with common world objects is beyond our possibili-

ties, it is exactly what Information Flow models enable in the digital world. This

is achieved by monitoring the flow of data inside an application: Information Flow

mechanisms, in fact, do not limit themselves in controlling that only authorized en-

tities access confidential sources of information, but also prevent data from reaching

untrusted sinks. This is achieved by tagging data as either secret or public, disal-

lowing secret data to flow into public destinations. By doing so, the application is

guaranteed to be safe both from direct attacks and bad programming habits, which

are often even more harmful than most malicious theft attempts.

6 2. Information Flow

Looking at the literature we can distinguish two main groups of Information Flow

models, Dynamic and Static ones. Even if radically different in the way they are im-

plemented, they share most of the key concepts on how to get the job done. In both

approaches, as a matter of fact, the programmer attaches a label1 to confidential

sources, pinpointing them as such, and to sinks, in order to identify them as either

trustworthy or not. All these models simply propagate source labels to every value

that is affected - even if only partially - by a source or another previously labelled

value. Code is thus allowed to be executed only if no tainted 2 value reaches a sink

marked as not trustworthy.

2.1 Dynamic Information Flow

A big cut of all the models to be found in the literature fall within the definition

of a Dynamic Information Flow security model. Their key concept is to test the

code at run-time, looking for any potential flow from a confidential data source to

an untrusted sink. The reason why this solution is so widely spread is that you can

test one instruction at a time, having the full control over what is being computed.

In fact, in a static environment, whenever you encounter a branch in the flow of

your code you have to take a strict conservative approach, assuming that the actual

computation will fall in the worst case possible (from a security point of view),

otherwise your static model would be broken. In a dynamic environment, instead,

there is no point in analyzing all possibilities in a branch, as you are able to correctly

predict which one will be executed. This is particularly useful in situation such as

the one shown in Listing 2.1, where there’s no point in always rejecting a piece of

code which would be dangerous only in a small amount of cases.

The ability to eradicate false positives comes at a price, though. Run-time checks

are costly and, in the average, they slow down the application by a 13-15%, as

stated empirically in [6] and [7]. What hinders them most, however, is probably the

necessity to incorporate these run-time checks within the executing environment, be

it an operating system, a virtual machine or a sandbox interpreter. To patch such

an environment, as a matter of fact, could be a troublesome operation, since many

of them are proprietary softwares and to modify them could lead to copyright issues.

Finally we must not forget that, even if we are dealing with open source software,

such a cumbersome patch would be quite an intrusive one, therefore it is likely that

many users would find it to be annoying, at the very least.

1Many names are given to this kind of metadata attached to sources and values, such as tags,
labels, coloured taints and so on. For the sake of simplicity and clarity hereby we will refer to all
this types of metadata as labels.

2Data labelled as secret, thus not to be propagated to unreliable entities.

2.2. Static Information Flow 7

Listing 2.1: This piece of code would be accepted at run-time as long as x is not 0

1 int m(int x){
2

3 if (x == 0){
4 ... information leakage ...
5 }
6 else{
7 return x+1;
8 }
9

10 }

2.2 Static Information Flow

As opposed to performing run-time tests, statical information flow analysis relies

on a series of compile time checks that closely resemble the ones performed by a

typical type checker[1]. Even though statical soundness sometimes forces them to

reject legit programs - as shown earlier in 2.1 - they allow to certify a piece of code as

trustworthy, without adding some run-time overhead, neither in space nor in time.

It also comes with the pleasant side effect that no bits of information can be learned

at run-time whenever a test fail, since they are all executed before the application

is deployed to the final user.

Another important aspect that makes static models differ from dynamic ones is

their typical target user. To check an application at run-time means it is likely ready

to be deployed to the end-user device. To check the same application statically,

instead, you need to have its source code, which, in general, is available only to the

developer. Thus, while a dynamic information flow checker could be used both as a

debugger by the developer and as a sort of anti-malware patch by the end-user, a

static one is more likely to be used as a certifier from the developer.

8 2. Information Flow

3
Decentralized Label Model

Many information flow models limit themselves to labelling information as either

secret or public. Others, instead, allow to specify a set of accredited parties to

manipulate data. Both cases rely on a centralized trusted authority to label data.

Although easy to model, it is clear that it is a quite simplistic abstraction. As a

matter of fact, in real-world scenarios it is rather difficult to give a centralized no-

tion of secret or public. People usually consider their own data as private, and are

understandably less concerned about the secrecy of the data of other users. Never-

theless, for a security model all policies must be treated as equally important. For

this reason the Decentralized Label Model focuses on providing security guarantees to

different users and groups (or principals), rather than monolithic entities[1]. Hence,

any principal might express its own security policy for every piece of information.

The key concept of this model is the support for mutual distrust between all the

entities involved in the computation. This is done to allow the representation of

all those scenarios where all principals may have conflicting interests on data, with

possibly different opinions on each other. Principals can express requirements on

sources of information, computed values and data sinks (or channels). The goal is to

statically ensure that every possible flow of information respects all security require-

ments, from all involved principals. However, there are many plausible situations in

which a principal may feel that a label has become overly restrictive, thus preferring

to temporarily relax its restrictions. To handle this situation, at any point of the

computation the Decentralized Label Model allows principals to declassify informa-

tion, so as to be able to carry out operations that would not be allowed otherwise.

By allowing a principal to lower its security requirements, it is possible to add ex-

pressivity to the code without hampering data security. It must not be forget, in

fact, that every principal expresses its own policies. For this reason, if both Alice

and Bob express their requirements on a value v, relaxing Alice’s policy does not

concern Bob. Indeed, the model contemporaneously enforces all restrictions, so Bob

constraints are still in effect.

10 3. Decentralized Label Model

3.1 Motivating Example

When the DLM was first proposed, the authors of the article shown some mo-

tivating examples to help the readers to better understand the usefulness of their

model. One of those depicts a group of researchers (R) which are performing a

medical study on some data collected from the patients (P) of an hospital (H). It

is reasonable that even if the patients gave permission to the researchers, they do

not want specific details - such as identifying or wealth information - to be leaked.

It would be understandable from the patients to do not fully trust the researchers,

especially if they were part of a for-profit organization (e.g., a pharmaceutical com-

pany), as they could try to exploit patients’ medical and personal information to

their advantage (e.g, by contacting the patients and trying to sell them their prod-

ucts). Instead, it is more likely that they would give their trust to an automated

data extractor (E) - which would be distributed by a highly reliable entity (such

as the government’s health ministry) - that strips the database from any kind of

confidential information.

Figure 3.1: Medical Study Scenario

3.2. Principals 11

The scenario is depicted in Figure 3.1, with the medical history of every patient

that is labeled as being owned by the patient (p) itself - the left hand side of the label

{ p:p,H } - and as being accessible by the patient and the hospital as described by

the right hand side. The extractor then operates with the authority granted by both

the patient and the hospital, producing a new record retained by the researchers but

still readable by p. The researchers would like to supply those data to a statistics

package (S) they obtained from a third party, but they do not want it to perform a

leakage of any sort. Thus, they relabel their data as { R: R,S } which means that

they will still be owned by the researchers, but that also the statistics package can

access them. This will work because any principal at the right of the colon does

not have the ability to distribute the information to anyone outside those permitted

by the owner (i.e, R and S). Since the results of the computation are influenced

by both the medical data and the statistical database, the information produced at

the end will be labeled with the joint label { R: R,S; S: S }, which corresponds to

enforcing both policies at the same time. However, this joint label only permits

flows to S 1 and, so as to return the results of the computation to the researchers,

they declassify their data to { R: R,S } (basically removing the second label) just

before sending them.

3.2 Principals

A key role in the model is played by principals. A principal can be an entity of any

kind, be it a person, an user group, a role, a company or any sort of legal person. Any

principal is given the possibility to express a security requirement, or policy, for any

information related to the program. Should it not express a requirement on certain

data, then it would consider them to be public, thus distributable to anyone. If two

principals p and q are both entitled to express policies on the same information, they

can exclude the other one from the list of readers, thus disallowing them to access it.

This is considered to be perfectly fine, as it models the case in which two conflicting

owners are not able to agree upon the release of their information. A conflicting

and troublesome scenario, indeed, yet absolutely legit and plausible. It is important

to notice that excluding a principal is completely different than removing its policy.

Excluding an entity from an information means that it cannot read or write it any

more, but its requirement are still enforced. Removing one’s policy means that it

may still be able to read or write data, but its restrictions are no longer applied.

1This is due to the fact that the first label permits flows to R and S, while the second to S.
Since both policies must be enforced, we can obtain all flows allowed by the joint label by applying
the intersection between the flows allowed by each label, i.e., {R,S} ∩ S ≡ {S}

12 3. Decentralized Label Model

3.2.1 Acts-For Relationship

There is a reflexive and transitive relation between principals, called acts-for rela-

tionship, whose symbol is �. We say that p � q, or p acts for q, when the principal

p has been granted authority by q and that every action taken by p is implicitly con-

sidered to be authorized by q. The acts-for relationship can be used to implement

common concepts such as groups or roles. As an example, a company could create

a principal Employee to represent all of its workers, in addition to a personal one

for any of them (e.g, Alice and Bob). In such a situation, both Alice � Employee

and Bob � Employee would hold, as both Alice and Bob are employees. Notice

that a principal can act for many different principals at the same time so, should

the same company have a manager called Charlie, then both Charlie � Employee

and Charlie �Manager would be true.

3.2.2 The Top Principal

The first of two special pre-defined principals is the Top Principal, which is ba-

sically a fictional principal that can act for everybody, but that nobody can act for

it. Should an information be labeled as being owned - and readable - by Top alone

then no one would be able to access it. It is represented by the symbol >.

3.2.3 The Bottom Principal

The Bottom Principal is basically the opposite of Top. It is a principal for whom

anybody can act for, but it cannot act for any other principal. Should an information

be labeled as being owned by Bottom alone then it would be considered as public,

since any principal is implicitly considered to have been granted at least the same

authority as Bottom. It is represented by the symbol ⊥.

3.3 Confidentiality

It has already been said that principals may express two kinds of security require-

ments on information. The first of these regards the confidentiality, or secrecy, of

information. Any principal p that expresses a confidentiality policy on some data,

defines that, for what concern itself, only the principals listed in the policy are al-

lowed to read that information. Please notice that this does not mean that p believes

data have been read or edited by those readers, but it simply gives them its own

authorization to access them.

3.3. Confidentiality 13

3.3.1 Reader Policies

These requirements on confidentiality are expressed through security policies called

reader policies (or confidentiality policies). Such a policy is written as

o : r1, r2, ...rn

where o represents the principal that is the owner of that policies and r1 up

to rn represent the list of allowed readers. The owner of a policy is the principal

that imposes the security requirements represented by the policy itself and is always

considered to be listed amongst the readers of that policy, even if not explicitly

defined as such. A reader r of the policy is trivially a principal that is allowed to

access the information. Thus the only difference between the owner and a reader is

that the former also has the power to modify the policy itself, be it by modifying

the set of readers or by deleting the policy altogether. It is to be noted that every

principal acting for a principal listed in the policy is implicitly added to the list with

the same role of the principal it is acting for, even if not expressively mentioned.

Policy Owner Allowed readers
Alice: Alice Alice
Alice: Alice Alice Alice
Alice: Bob, Charlie Alice Alice, Bob, Charlie
Alice: Bob (Charlie � Alice) Alice, Charlie Alice, Charlie, Bob
Alice: Bob (Charlie � Bob) Alice Alice, Bob, Charlie
>: Top No one can read
>: Alice Top Alice
⊥: Everyone Everyone
⊥: Alice Everyone Everyone
Alice, Bob: Charlie Invalid policy: only one principal can be listed as explicit owner
: Bob Invalid policy: at least one principal must be listed as owner

Table 3.1: Examples of reader policies.

Definition 3.3.1. (Readers Function). Let o be the owner of a confidentiality policy

c. Let q be another generic principal. We define as readers(o,c) the set of principals

allowed to access a certain information, based on the requirements imposed by the

owner o and the policy c. This list of readers is composed of the owner o, the readers

r1, r2, ...rn listed in the policy and any other principal that can act for either o or

one of the readers ri.

readers(o, c) , {q | q � o or ∃i ∈ [1, n] s.t. q � ri}

14 3. Decentralized Label Model

3.3.2 Conjunction of Reader Policies

It is allowed to conjugate reader policies, so as to enforce warranties requested by

multiple principals. The resulting joint confidentiality policy is defined as the policy

that enforces all policies and it is written as c t d, where c and d are two confi-

dentiality policies. In order to speed up the writing process of a list of conjugated

policies, they conjugation is often also represented by a semicolon (;).

In terms of the readers function, we define the set of readers of a conjunction as

the set of all readers that are part of the reader set of all the policies involved in

the conjunction. It is, in other words, nothing more than the common intersection

operation of the Set Theory. The most careful readers will have already noticed that

even the owner of a policy will be excluded from the joint reader set if just one of

the policies does not list it as reader. Thus, it is safe to say that c t d is at least as

restrictive as both c and d.

readers(o, c t d) , readers(o, c) ∩ readers(o, d)

Policies Reader Set
Alice: ; {Alice}
Alice: Bob; Bob: {Bob}
Alice: ; ⊥: {Alice}
Alice: Bob; Bob: Alice {Alice, Bob}
Alice: Bob; Bob: Alice, Charlie; Charlie: Bob {Bob}
Alice: Bob; >: {>} (No one)
Alice: ; Bob: {>} (No one)
Alice: Bob; Bob: Charlie; Charlie: Alice {>} (No one)

Table 3.2: Examples of conjunctions between reader policies.

3.3.3 Disjunction of Reader Policies

The disjunction of two or more reader policies is intuitively the opposite of the

conjunction, and it is written as c u d. Therefore, the resulting policy is defined as

the policy that lists all readers that are allowed by at least one of the policies in

question. The set of all readers authorized by a disjunction policy is thus the set of

all readers that are part of at least one reader set of the involved policies. In terms

of Set Theory operations, it corresponds to the union operator. We can also say

that c u d is at most as restrictive as either c or d.

readers(o, c u d) , readers(o, c) ∪ readers(o, d)

3.3. Confidentiality 15

Policies Reader Set
Alice: u {Alice}
Alice: u Bob: {Alice, Bob}
Alice: Bob u Bob: {Alice, Bob}
Alice: Bob u Bob: Alice {Alice, Bob}
Alice: Bob u >: {Alice, Bob}
Alice: u ⊥: {⊥} (Everyone)
Alice: Bob u Bob: Charlie u Charlie: Alice {Alice, Bob, Charlie}
Alice: Bob u Bob: Alice, Charlie u Charlie: Bob {Alice, Bob, Charlie}

Table 3.3: Examples of disjunctions between reader policies.

3.3.4 Ordering on confidentiality

There exists a relation over confidentiality policies, which is written as c vC d

and is read c no more restrictive than d. We define it in the following way:

vC (c, d) , readers(o, c) ⊇ readers(o, d)

If, in other words, c is no more restrictive than d, then the set of readers allowed

by the first policy is a superset of the set of readers allowed by the second policy.

The relation vC forms a pre-order over confidentiality policies and thus a lattice,

where the least restrictive policy (or bottom level) is written as ⊥:⊥, while the most

restrictive one (or top level) is written as > : >. For what concerns the conjunction

and the disjunction previously described, the former is the join operator of this

lattice, while the latter is the meet operator. It is obvious that an information labeled

with a low level confidentiality policy, such as the bottom one, can be accessed by

more principals and can be used in more contexts than a higher level one. Viceversa,

the higher the policy, the lesser the places that information can be used into.

Alice: vC Alice:
Alice: Bob vC Alice:

Alice: 6vC Alice: Bob
Alice: Bob vC Alice: ; Bob:
Alice: Bob vC Charlie: Bob (iff Charlie � Alice)
Alice: Bob 6vC Charlie: Bob (generally can’t relate, different owners)

Alice: Bob, Charlie vC Alice: Bob; Alice: Charlie
Alice: Bob; Alice: Charlie 6vC Alice: Bob, Charlie

Alice: Bob 6vC Charlie: David
Alice: Bob u Alice: Charlie vC Alice: Bob, Charlie

Alice: Bob, Charlie vC Alice: Bob u Alice: Charlie
Alice: u Bob: Charlie vC Alice: Charlie ; Bob: Charlie

Alice: u Bob: 6vC Alice: Bob, Charlie

Table 3.4: Examples of ordering over reader policies.

16 3. Decentralized Label Model

3.4 Integrity

Integrity has long been shown to be the dual of Confidentiality[8] and so are

integrity and confidentiality policies. They represent the integrity of the information

in terms of its believed provenance.

3.4.1 Writer Policies

Writer policies (just another name for integrity policies) are used by principals to

specify their beliefs on who may have influenced some data. It is written as:

o← w1, w2, ..., wN

Likewise to reader policies, they have an owner, but instead of being followed by

a colon, it is followed by a left-faced arrow that precedes a list of principals known

as writers. It is extremely important to understand that, through a writer policy,

the owner does not specify which principals are allowed to alter information, but

tells to the model which principals the owner believes that may have affected the

information in question. Like confidentiality ones, integrity policies do automatically

include in the list of writers both the owner and any principal that can act for the

owner or any of the listed writers.

Policy Owner Influencing writers
Alice← Alice Alice
Alice← Alice Alice Alice
Alice← Bob, Charlie Alice Alice, Bob, Charlie
Alice← Bob (Charlie � Alice) Alice, Charlie Alice, Charlie, Bob
Alice← Bob (Charlie � Bob) Alice Alice, Bob, Charlie
>← Top No one have influenced the datum
>← Alice Top Alice
⊥← Everyone Everyone
⊥← Alice Everyone Everyone
Alice, Bob← Charlie Invalid policy: only one principal can be listed as explicit owner
← Bob Invalid policy: at least one principal must be listed as owner

Table 3.5: Examples of writer policies.

Definition 3.4.1. (Writers Function). Let o be the owner of an integrity policy i.

Let q be another generic principal. We define as writers(o,i) the set of principals

that the owner o believes may have affected the information labelled with policy i.

This list of writers is composed of the owner o, the writers w1, w2, ...wn listed in the

policy and any other principal that can act for either o or one of the writers wj.

writers(o, i) , {q | q � o or ∃j ∈ [1, n] s.t. q � wj}

3.4. Integrity 17

3.4.2 Conjunction of Writer Policies

Dually with respect to reader policies, the conjunction of writer policies is repre-

sented by cud, where c and d are two writer policies. Despite the swap in symbols,

the meaning is altogether the same of the conjunction of reader policies. In terms

of the writers function, we define the set of writers of a conjunction as the set of all

writers that are part of the writer set of all the policies involved in the conjunction.

Thus, exactly for confidentiality, it is the intersection of two or more sets.

writers(o, c u d) , writers(o, c) ∩ writers(o, d)

Policies Writer Set
Alice← ; {Alice}
Alice← Bob; Bob← {Bob}
Alice← ; ⊥← {Alice}
Alice← Bob; Bob← Alice {Alice, Bob}
Alice← Bob; Bob← Alice, Charlie; Charlie← Bob {Bob}
Alice← Bob; >: {>} (No one)
Alice← ; Bob← {>} (No one)
Alice← Bob; Bob← Charlie; Charlie← Alice {>} (No one)

Table 3.6: Examples of conjunctions between writer policies.

3.4.3 Disjunction of Writer Policies

In a manner similar to the conjunction, when we talk about the disjunction of

writer policies we use the opposite symbol with respect to the disjunction of reader

policies: ct d. Nevertheless the meaning is exactly the same, a writer is believed to

have influenced a piece of information if it appears in any of the policies involved, as

you would do with the union of two or more sets. In order to speed up the writing

process, their conjugation is often represented with a semicolon (;).

writers(o, c t d) , writers(o, c) ∪ writers(o, d)

Policies Writer Set
Alice← t {Alice}
Alice← t Bob← {Alice, Bob}
Alice← Bob t Bob← {Alice, Bob}
Alice← Bob t Bob← Alice {Alice, Bob}
Alice← Bob t >← {Alice, Bob}
Alice← t ⊥← {⊥} (Everyone)
Alice← Bob t Bob← Charlie t Charlie: Alice {Alice, Bob, Charlie}
Alice← Bob t Bob← Alice, Charlie t Charlie: Bob {Alice, Bob, Charlie}

Table 3.7: Examples of disjunctions between writer policies.

18 3. Decentralized Label Model

3.4.4 Ordering on Integrity

The no more restrictive relation vI on integrity is defined dually with respect to

the one on confidentiality:

vI (c, d) , writers(o, c) ⊆ writers(o, d)

This means that for what concerns the lattice built upon the relation on integrity,

it is the disjunction that corresponds to the join operator, while the conjunction is

the meet. Therefore the least restrictive policy is the one with the highest level

of integrity, that is > ← >. As a matter of fact, this policy represents that an

information can have been influenced by Top alone. The most restrictive policy,

instead, is ⊥←⊥, because it is the one with the lowest level of integrity. This is

due to the fact that anyone could have altered the information, thus it is not to be

trusted. The reader should be careful about the fact that while a piece of information

with confidentiality labeled as ⊥:⊥ can be used in any context, a datum labeled with

an integrity of ⊥←⊥ is most restricted..

Alice← vI Alice←
Alice← Bob 6vI Alice←

Alice← vI Alice← Bob
Alice← Bob 6vI Alice← ; Bob←
Alice← Bob vI Charlie← Bob (iff Alice � Charlie)
Alice← Bob 6vI Charlie← Bob (In general can’t relate, different owners)

Alice← Bob, Charlie 6vI Alice← Bob; Alice← Charlie
Alice← Bob; Alice← Charlie vI Alice← Bob, Charlie

Alice← Bob 6vI Charlie← David
Alice← Bob t Alice← Charlie vI Alice← Bob, Charlie

Alice← Bob, Charlie vI Alice← Bob t Alice← Charlie
Alice← t Bob← Charlie 6vI Alice← Charlie ; Bob← Charlie

Alice← t Bob← vI Alice← Bob, Charlie

Table 3.8: Examples of ordering over writer policies.

3.5 Labels

As hinted in Section 3.1, principals express their security requirements on data

labelling them. A label is a set of confidentiality and integrity policies. It is written

as a list of policies, separated by a semicolon, within curly brackets:

{o : a, b; o← c}

3.5. Labels 19

Notice that while a semicolon separating two confidentiality policies represents

their conjunction, a semicolon separating integrity policies represents their disjunc-

tion. While this choice of notation may seem to be confusing at the least, it will

become clearer to the reader once he will have read of the join of two labels. For now

it will suffice to understand that a label containing policies separated by semicolons

is at least as restrictive as all the policies it contains.

It is possible for a label to do not have any specified integrity (or secrecy) policy,

in which case it receives a default one with the Bottom principal as lone owner and

writer (reader). Should a label have no policy - or should it not exist at all - then

it would be called empty label, i.e., {⊥: ⊥ ; ⊥← ⊥}. Notice that while there is no

strict need to follow any order between policies, with the possibility to mix integrity

policies of a label in the middle of a list of confidentiality policies, from now on we

will always describe labels by writing all the confidentiality policies first, followed

by the integrity ones, for the sake of readability.

3.5.1 Ordering on Labels

Regarding labels, the no more restrictive than relation v is defined by exploiting

vC and vI . In detail, {c; d} v {c′; d′} if and only if c vC c′ and d vI d′. Let us

call C(L) the confidentiality projection of a label - i.e., the confidentiality policy of

that label - and as I(L) the integrity project. We can now redefine the join (t) and

meet (u) operations over the lattice of labels in the following way.

L1 t L2 , {C(L1) t C(L2); I(L1) t I(L2)}

L1 u L2 , {C(L1) u C(L2); I(L1) u I(L2)}

In other words, the join of two labels is the conjunction of its confidentiality

policies and the disjunction of its integrity policies; the disjunction of two labels

works vice-versa.

{} v {⊥: ; ⊥←}
{⊥: ; ⊥←} v {}

{} v {⊥: ; > ←}
{⊥: ; > ←} v {> : ;⊥←}

{Alice: Manager} v {Alice: Charlie}
{Alice← Manager} 6v {Alice← Charlie}

{Alice: Employee; Employee← } v {Alice: Charlie; Manager←}

Table 3.9: Examples of label ordering with the hierarchy found in Figure 3.5.1.

20 3. Decentralized Label Model

Figure 3.2: Example hierarchy, arrows from the acting-for principal to the acted-for.

3.5.2 Labels Relabeling

The primary goal of information flow models is to avert the application from leak-

ing information. Whenever information is transferred (e.g., by applying a variable

as argument for a function or through variable assignment) the old label of the data

is lost and, from that moment onwards, those data will have the same label as their

destination’s. This operation is called relabeling. Therefore, the new label must be

at least as restrictive as the former one, otherwise, after the relabeling, there may

occur some information flows that were previously prohibited. Any relabeling where

this condition holds is called safe. As we have seen before, we say that L1 v L2 is

true as long as L1 is less restrictive than - or equal to - L2; whenever this is true

then a relabeling from L1 to L2 is to be considered safe. In other words, every time

that the label of an information is restricted, then the relabeling is safe.

3.5.3 Declassification

As already introduced, they may be some situation where a certain policy is too

strict to allow an essential information flow, as, for example, in an email client

application where a confidential email - written by Alice and to be read only by

Bob - must be sent over the internet, which, being an untrustworthy medium, must

be labeled as public. Such a relabeling would never be allowed, preventing the

application from sending the email, rendering it useless. In order to solve this

problem, the client can encrypt the message with a key to be known by Bob alone

and declassify the data (i.e., lower the security requirements expressed by the label)

so that they could be sent over the network.

3.5. Labels 21

At any moment of its execution, the application runs with the authority to act

on behalf for a list of principals, possibly empty. Being a decentralized model based

on mutual distrust, it is obvious that a principal may declassify only those policies

that he owns or that are owned by a principal it acts for, thus the process must run

with the authority of that principal. This way it is granted that a malicious - or

bad programmed - application will not hamper the secrecy of data with labels of

principals who have not bestowed on it their authority, because even if it removes

all labels it is allowed to remove, the other principal will still have the guarantee

that their requirements will still be enforced.

22 3. Decentralized Label Model

4
Android

Android is - as of now - the most widespread operating system to be designed

primarily for touch-screen mobile devices such as smart phones and tablets[28]. It is

an open source project built upon a Linux kernel, with low-level libraries and APIs

written in a combination of Java and C/C++ languages, acting as a middleware

through which applications can access the phone[7]. Developed by Android, Inc. -

initially funded by and now property of Google, Inc. - it allows third party developers

to write custom apps which are written in Java and compiled in a custom byte-code

known as DEX1.

4.1 Security Overview

Every application is executed in a sandbox environment, that is its own interpreter

instance of a Dalvik Virtual Machine[9], so it is isolated from the rest of system’s

resources. In order to access them, it must do so through the system’s APIs, which

will accept calls for a given resource only from those applications that have been

granted the specific permission. An application can list its required permissions

by adding them into its own manifest file, i.e., an XML file that contains miscella-

neous information about the application itself and to be included in the deployment

package. Every time the user installs a new app through the Google’s Play Store2

it is presented the list of permissions requested by the app itself, so as to verify

that it does not require suspicious permissions. Generally, as an example, a game

application should not ask for sending SMSes, therefore, listing such a permission

should lead the user to believe that the game could maliciously send messages to

premium-rate telephone numbers and thus avoid installing the application. Other-

wise, by confirming its download, the user implicitly grants all of the permissions

that have been listed by the app.

Despite this double security layer, an average Android device is far from being

safe from harms. First of all, the whole permission system relies on user choices,

1Dalvik EXecutable.
2The one and only official channel for downloading and installing Android applications.

24 4. Android

who could fail to notice possible threats due to lack of carefulness or knowledge.

Additionally, the initial developer confusion and incomplete documentation reduced

the effectiveness of this system, with about one-third of Android apps being over-

privileged[10]. At last, the system has been proven to be vulnerable to threats such

as privilege escalation attacks[11]. The framework which our proposed tool is part

of detects and prevents all of these problems, warning the developer whenever his

application is found to be over-privileged or vulnerable. For further information the

reader is referred to [2].

4.2 Apps Structure

An Android application is composed of

• A group of standard Java classes,

• A group of resources (e.g., icons, sounds),

• A manifest file.

However, the type checker proposed in this thesis needs only to access the Java

source code, therefore we will not cover how the manifest and the resources work.

The essential building blocks of an Android application are called components. There

are four kind of components, each one fulfilling a specific role and acting as entry

point for the system into the application.

4.2.1 Activities

An Activity is a single, focused thing that the user can do and it generally corre-

sponds to one single screen of the application, automatically managing most of the

User Interface for the developer. An app can be composed of several Activities and

each one of them can be started by any other component to be found in the system,

as long as the developer allows it. When it is the user that starts the application,

though, the first Activity to be invoked at the beginning of the application is called

main (or launcher) Activity. Thus, a simple Android application with a main back-

ground screen and one pop-up menu window would be generally made up of two

Activities, with the background screen being the main one.

4.2.2 Services

A Service is a component designed to run in the background and perform long-

running or remote operations, such as downloading data from the internet or playing

some music while the user might well be using a complete different application. They

4.2. Apps Structure 25

do not provide any kind of user interface, but they can either be started by or bounded

to any Activity. A service can be started by calling its own startService() method

and it will run indefinitely until stopService() is invoked, even if the Activity that

first started it had been killed in the meantime. Otherwise, an application that has

a service bound to it is offered a client-server interface that allows the application

to interact with the Service by IPC3; such a service runs as long as it has at least

one living process bounded to it.

4.2.3 Broadcast Receivers

A Broadcast Receiver is a component that replies to broadcast messages sent

throughout the whole system. Many broadcast messages are sent from the system

(e.g., low battery alert), but they can also be generated by custom components.

Although they do not have an user interface, they can create and display notifications

in the status bar. Most commonly, however, they act as a sort of gateway for

other components and are intended to perform basic operations such as starting an

Activity or a Service in response for the propagation of a certain event. Broadcasts

can either be registered dynamically at runtime through the system API or statically

by publishing the request in the application’s manifest. It is possible to enforce a

single permission both in the sending and in the receiving process. By sending a

broadcast with a certain permission it is ensured that it will be received only by those

applications that have been granted that permission, as to not send confidential data

to those that should not have access to it. By contrast, on the receiving end of a

broadcast message, it is possible to filter out all those broadcasts that have been

sent by components that do not have the specified permission, as to have a certain

assurance about the integrity of data.

4.2.4 Content Providers

The goal of Content Providers is to manage a shared set of application data, not

necessarily on the file-system, as they can also be saved over the internet or in any

other persistent storage location. It allows to access information through a database-

like interface, querying and modifying data. They can be either used to be shared

by different applications (e.g., the system’s provider for contacts information) or to

store data relevant to the application alone (e.g., a note-pad app could use a content

provider to store user’s notes).

3InterProcess Communication

26 4. Android

4.2.5 Intents

Components communicate through objects called Intents. An Intent is an abstract

description of an operation to be performed by the receiver. It offers an interface

through which Activities and Services are started and broadcasts are sent. Generally

it is composed of a dictionary containing key-value pairs and a target that describes

which component should receive those data. In particular you can either start a new

Activity to perform a task (e.g., send an email) by passing the Intent as argument

for the startActivity() method or to get a result (e.g., pick a contact and return its

data) by supplying it to a startActivityForResult(). Services are started by invoking

startService(), while they are bound with a call to bindService().

4.3 Activity Lifecycle

Most examples about challenges and solutions related to the Android lifecycle are

done on Activities, as they are the most used Component. Nevertheless, Services are

modeled likewise, and the few implementation differences do not alter the bulk of

the underlying reasoning. Hence, everything that will be said on Activities regarding

this topic is to be considered valid for Services either.

In a typical Android scenario, the user opens many applications in a brief period

of time and navigates through multiple Activities. As a consequence, Activities are

continuously swapped in and out of focus, rendering their lifecycle quite unusual.

To manage this, Android gives the developer the opportunity to extend the code of

seven callback 4 methods, each of them invoked by the system whenever the Activity

reaches a certain state.

Whether it is started by the user or by another component, an Activity’s entry

point is always its onCreate() method. As illustrated in Figure 4.3, it is followed

by an escalation of callbacks that create the Activity, which are the onStart() and

the onResume(). Once an Activity goes on the background, but is still partially

visible, it becomes paused and the system invokes its onPause() method. If the

Activity instead becomes fully hidden then the system marks it as stopped and will

stay as such until it is killed either by the user or by the system due to memory

shortage. Of course, if an hidden Activity returns to the foreground then its state

will be reverted to the Resumed one. This is obtained by calling the onResume()

callback if the Activity was previously paused, or by invoking its onRestart() if it

was stopped.

4A function or piece of code to be passed as argument to another function or to the operating
system, usually to be called in response to a certain event.

4.4. Peculiar Challenges 27

Figure 4.1: Lifecycle of an activity.

4.4 Peculiar Challenges

There is a whole set of peculiar challenges that needs to be tackled in order

to successfully implement an Information Flow model for the Android operating

system. Their proposed solutions will be detailed later on at Chapter 5.

4.4.1 Creating an Activity

There are two API methods that allows the developer to instantiate a new Ac-

tivity: startActivity() and startActivityForResult(). They both take an Intent as

argument in order to allow the system to discern which activity must be created.

In a general Java application, an Information Flow checker analyzes the invoked

method with the purpose of verifying if it is a legal call. This would not work as

expected in an Android application, because, at the end of the day, those method

calls consist in an invocation of the target activity’s onCreate() method. So, every

time an Activity creation is encountered, rather than analyzing the startActivity()

method, the correct method to be checked is the onCreate() of the Intent’s target

Activity. Therefore, it must be devised a mechanism that allows the checker to

recognize and exploit this pattern.

4.4.2 Returning Results

Every time an Activity must return any kind of response to whoever created it,

the setResult() method is supposed to be used. However, returning results arises

problems similar to those encountered when creating Activities, because the corre-

sponding code is to be found at the caller’s onActivityResult() method. Likewise,

a similar mechanism that recognizes this second pattern must be implemented, as

28 4. Android

performing checks exploiting it would allow the tool to maintain its correctness.

4.4.3 Terminating an Activity

Whenever an Activity completes its job, it is expected to invoke the finish()

method, which carries out all the preliminary tasks required to shut down an Activ-

ity. Nevertheless, this API method does not abruptly end the computation, but it

returns the control of the computation back to the Activity that invoked it, which

will end its current lifecycle callback method. What happens next depend on the

context, in fact there are three possibilities:

• The last lifecycle callback to be executed was the onCreate(). Then, once

the computation of the onCreate() is completed, the onDestroy() is invoked.

• The last lifecycle callback to be executed was the onStart(). In such cir-

cumstances, the following method to be executed is the onStop(), with the

onDestroy() as its consequent.

• The last lifecycle callback to be executed was the onResume(). In this

case, the next callback to be executed would be the onPause(), followed by

onStop() and onDestroy().

The unusual control flow that follows a finish() could lead to leaks due to implicit

flows5 As an example, in Listing 4.1 the value of the confidential boolean variable

secret should never be assigned to the public boolean variable leak. With the purpose

of showcasing a possible attack, a conditional finish invocation is performed based

on the value of secret and the value of leak is adjusted based on whether or not the

onStart() callback is executed. As a matter of fact, should secret be true, then the

finish() would not be performed and the value of leak would be assigned to true

inside the onStart() method. Otherwise, should secret be false, then the value of

leak would be set to false after the execution of the if branch, without being further

modified later.

4.4.4 Tracking Key-Value Pairs

Whenever the system destroys an Activity due to exceptional events (such as

a memory shortage), it needs a way to recreate it as soon as the user navigates

back to it. This is achieved by using a set of saved data - called the instance state

- that describes the state of the activity prior to its destruction. Normally, this

5Implict flows will be covered in detail in Section 5.2. For the moment it will suffice to know
that it is a possible indirect gain of information by an attacker with respect to confidential data,
due to the control flow of the program.

4.4. Peculiar Challenges 29

Listing 4.1: Example of implicit flow exploiting the finish() method.

1 protected void onCreate(Bundle savedInstanceState){
2

3 if (!secret)
4 finish();
5 leak = false;
6

7 }
8

9 protected void onStart(){
10

11 // Here we are sure that secret is equal to true.
12 leak = true;
13

14 }

process of state saving and restoring is completely automatic and transparent to

the developer. In some occasions, though, it may be necessary for the developer to

save additional information. Should that need arise, he can store the data within

an instance of a Bundle object. The developer obtains this object on a special

method called onSaveInstanceState(), where it can be filled with all the necessary

data. The Bundle thus populated is then a formal parameter for the onCreate()

and the onRestoreInstanceState() methods. It works like a dictionary that stores

key-value pairs. While keys must be subtypes of String, values can be of any built-in

type (such as int) or subtypes of Serializable. The Bundle class is not the only one

that represents a built-in dictionary in Android, though, as Intents work in the same

manner. If not taken care of, these dictionaries could be used as a way to launder

restrictive labels into more permissive ones. Therefore, it is crucial to keep track

of every information that enters both dictionaries, so as to be able to compute the

correct label for every value that is retrieved from them.

4.4.5 Handling Intents

Intents themselves can be used as dictionaries in the same way as Bundles. For

that reason, they must be taken care of likewise. As previously hinted in section

4.4.1, though, they are much more than mere dictionaries. Amongst everything, they

also contain a target, which is the activity to be started and expected to retrieve

their data. This rises the additional problem of understanding which component is

the target of an Intent. In most cases it is a trivial task, since it is good practice

to use class literals (e.g., MyActivity.class) or final static variables6 for intra-

6Constants fields whose value is guaranteed to be immutable during the computation.

30 4. Android

application communication, but no language construct prevents the developer to

use expressions, non-final variables or to ask the user at run-time which should be

the target of the Intent. It is thus necessary a mechanism that allows the checker

to determine the target of an Intent with the highest degree of success possible.

4.4.6 Supporting Generics

Although the Android Software Development Kit does not exactly relate to any

Java Standard Edition version, as of now it uses a subset of Apache’s Harmony

SE 6 libraries[27], which can be roughly approximated to Java SE 1.6 version, im-

plementing most of its features and functionalities. Amongst these functionalities

there are Generic Types, which allow to define types to be parameters in the def-

inition of a class, interface or method. Hence, a type checker specifically tailored

for Android needs to support Generics, adding a further layer of complexity in its

implementation.

4.4. Peculiar Challenges 31

32 4. Android

5
Information Flow Typing

In previous chapters we had a glance at the environment in which our newly

devised type system works. Here, instead, we explain how it is conceived, formally

detailing how the concepts of the Decentralized Label Model are translated into it.

Built on top of the Java type system, its purpose is to represent and monitor all

information flows within Android applications, describing how the challenges shown

in Section 4.4 are tackled and solved. It works under the lone assumption that

the source code has been already checked by the Java compiler or, at the least,

that it would not be rejected by it. We believe this assumption to not pose any

meaningful restriction, as there is no point in checking Information Flow properties

in an application that would not be compiled nevertheless. Further details regarding

the implementation are deferred to Chapter 6.

5.1 Motivations

There is a good amount of literature regarding Android security, with plentiful

techniques developed to ensure some information flow properties at system level.

Amongst the many solutions, it is possible to find techniques such as run-time leak-

age detection mechanisms [7], operating system modifications [12] and data-flow

analysis [13]. However, all these techniques have severe limitations, such as a signif-

icant run-time overhead1 or the necessity to have a custom version of the operating

system, which is likely to cause annoyances such as stability or compatibility issues.

Surprisingly enough, typing techniques have instead received little to no attention,

with few notable exceptions such as [15]. Unfortunately, these few tools that use

an off-line approach to statically check Android applications always deal with byte-

code. While this approach allows - in principle - to analyze software just before

the deployment on the device, it does not help the developer to avoid errors and

potential issues while they are still being created, i.e., during the development. This

gap in the literature is rendered more critical by the fact that the need to improve

the development process of Android applications is widely recognized as being of

1In addition to the obvious encumbrance of the computation, an higher CPU load causes a
sensible battery life reduction, where nowadays there is a quest for reducing energy consumption.

34 5. Information Flow Typing

uttermost importance ([17] and [18]). Furthermore, there is not even some kind of

proposal to impose an acceptable degree of discipline. Thus, our goal is to make a

first step towards the filling of this lacuna, allowing the developer himself to cer-

tify its application as safe and well-typed, solving all previously mentioned issues

upstream. We believe this approach to be a better one than the devise of fancy

mechanisms to be used downstream, as all they can do is to limit themselves at

limiting damages.

5.2 Implicit Flows

We have already seen that it is relatively easy to apply the DLM with the purpose

of avoiding explicit illegal flows, such as direct assignments. Although, there are

more subtle information flows called implicit flows. As the name suggests, an implicit

flow consists in an indirect transfer of information from a source to a sink, caused

by the control flow of the program itself. Implicit flows may allow attackers to gain

knowledge about confidential data without having to directly access them. In Listing

4.1 we have already seen one of the most common examples of implicit flows, that

is a side-effect occurring inside an if-then-else statement, whose if-clause is based on

the value of confidential data.

There is a well-known technique used to prevent implicit flows, as first described

in [16]. It consists in using the so-called program counter label (p̃c). It describes

the maximum amount of information that is possible to learn just because a certain

statement is computed in the given context. Every time an expression is computed,

the program counter label is joined with the label of the expression itself and the

resulting one substitutes the expression’s former label. Therefore, the label of an ex-

pression now also carries information about the security requirements of the context,

preventing implicit flows. Applying this technique to the example 5.1, the beginning

of the computation itself gives no knowledge about confidential data, and for this

reason the starting p̃c is {}. This means that no security requirement risks to be

broken by an implicit flow yet. The first assignment (public = false) still does not in-

fluence the program counter label, since nothing can be discovered by the simple fact

that the assignment is performed. When the if -statement is encountered, however,

the program counter label must be updated, because every computation performed

inside the then-branch will happen only if secret is equal to two. This reveals one

bit of information, which in general is much less than the whole information carried

by a variable. Although, static checkers need to take a cautious approach, so every

expression computed inside the branch is considered to carry as much information as

secret does. The p̃c is then raised to {secret}, that is the same label attached to the

variable secret. The label of the literal true is joined with the program counter label

5.2. Implicit Flows 35

Listing 5.1: Basic pseudo-code example of an implicit flow.

1 main (){
2

3 public = false;
4 if (secret == 2) then
5 public = true;
6 another public = 4
7

8 }

and is the same of the variable secret. Thus, the following assignment is rejected by

the tool, because {secret} is more restrictive than {public}.

At last, exiting from a conditional statement reverts the p̃c to the value it had

before entering it. The assignment to the variable another public can be considered

legit, since the p̃c is reverted to {} just after the if-statement is performed. The

obvious reason is that the context at this point of the computation does not carry any

information whatsoever, because whether or not the program executed the previous

if-statement is irrelevant, the latest assignment is performed in any case. It is

important to notice that at any time the program counter label can either be raised

by the join with another label or can be reverted to an old value. Hence, it is safe

to assume that during the type-checking phase it will never be less restrictive than

its starting value.

There are some scenarios in which p̃c cannot be reverted to its previous value.

This happens, as an example, when a return statement occurs inside a conditional

statement. Every time that a return is executed, the method terminates and gives

control back to its caller. As such, every statement or expression that appears after

a return can be executed only if its conditional branch is skipped, otherwise the

method would have been terminated by the return. This allows to learn some infor-

mation about the conditional expressions of all such branches, generating implicit

flows, because the program counter label is reverted at the end of a conditional

statement. To avoid creating overly complicated rules for p̃c, the problem is solved

by introducing a new label, the termination label (or t̃l). Starting from the Bottom

Label, every time that a return is encountered, it is joined with the current program

counter label. Unlike p̃c, though, it is never relaxed, so it represent the maximum

amount of information that can be learned by knowing that the method did not

terminate yet. Hence, every time that a label is joined with the program counter

label, it is also joined with the termination label.

36 5. Information Flow Typing

5.3 Labels

As seen in Section 3.5, DLM labels are treated pretty much the same way as types

are treated in an average programming language. Any standard Java type τ may be

labeled with any label expression L. Information flows are permitted only between

those locations where the type at the source is a subtype of that at the destination.

In other words, in addition to standard Java type-checking rules, the type system

requires the destination label to be at least as restrictive as the source label.

5.3.1 Label Syntax

The formal syntax for labels is more complex than the one informally described

in previous chapter. This is because the type checker allows the developer to extend

the label attached to another variable or class field, with the purpose of making the

process of labeling data faster and more clear. The complete grammar for generating

labels can be found at Table 5.1.

TERMINALS:

IDENTIFIER ::= [‘a’−‘Z’ | | ‘$’] [‘a’−‘Z’ | ‘0’−‘9’ | | ‘$’]∗

SEMICOLON ::= ;
READ ::= : | →

WRITE ::= ←

NON-TERMINALS:

label ::= tyargs element (SEMICOLON element)∗]
tyargs ::= (< label (COMMA label)∗ > SEMICOLON)?

element ::= IDENTIFIER | policy
policy ::= IDENTIFIER (READ | WRITE) IDENTIFIER∗

Table 5.1: The syntax for labels used in our type system.

5.3.2 Method Labels

During the type checking phase, every method invocation needs to be checked so

as to verify that it may not generate any illegal flow. A first naive attempt could

be to look for the method to be invoked and type-check it on-the-fly. However, this

would lead into an explosion in complexity, requiring some muddled strategy to cope

with mutually recursive functions, which would produce an infinite loop otherwise.

Therefore, the necessity of finding a mechanism that would allow to type-check a

method only once is to be considered of uttermost importance.

5.3. Labels 37

During the execution of a program, any method call can be seen as a sort of black

box that takes some data, operates some kind of magic and then returns a result.

Each of these three steps could hide one or multiple illegal information flows, so

they must be checked accordingly. In the first place, it must be ensured that no

information given as argument to the method ends up in a destination with a less

restrictive label. Then, it must be verified that also the body of the method does

not generate any illegal flow, with side-effects as the prime suspects. At last, the

result itself must not be labeled as more restrictive than its destination within the

caller. It is easy to see that this partition itself is not enough, because even if the

second step is context independent, the first and the third are not. Hence, it is still

necessary to type-check methods at every call site.

In order to test for legality a method as a module on its own, as a matter of

fact, there is still a lack of information about the caller’s p̃c and the labels of the

arguments. The safest and easiest approach is to simply assume both to be at Top

level, but this would make the type system so much restrictive to become completely

useless in every real world situation. A much wiser idea is to behave in the same way

as the type system of Java does, i.e. to add types for the p̃c, the input arguments

and the return value in the method declaration. These are respectively the Begin

Label (LBG), the Parameter Labels and the Return Label LRT .

The Begin Label can be considered as an upper bound of the p̃c at the moment

of the invocation. It means that the invocation is legal only if the p̃c of the caller

is less restrictive than - or equal to - the Begin Label. The method is thus checked

with the value of the Begin Label used as starting value for the p̃c. By having the

guarantee that the caller’s p̃c will be equal or lower than the method’s starting p̃c,

it is safe to say that any implicit flow that would be considered illegal at the call

site is considered illegal also within the body of the method.

In any sound type system, if the method by itself is well-typed then any invocation

is well-typed as long as any supplied argument is a subtype of the corresponding

parameter. Likewise in our type system, parameter labels are used as supertypes of

the actual argument labels. If there is no information flow within the method using

these upper bounds as labels for its parameters, any invocation of the method is legal

as long as the supplied arguments are at most as restrictive as the corresponding

parameters.

The same is true for the Return Label. At the call site the type of the result of a

given method is the one specified in the Return Label, which can flow to any value

which is at least as restrictive as itself. Within the method, instead, every return

38 5. Information Flow Typing

statement is checked so as to verify that its expression is at most as restrictive as

the Return Label.

5.3.3 Label Inference

Standard java field, variables and methods all require to have a label attached to

them. To relieve the programmer from the dull task of writing unnecessary labels,

our type system is designed to perform some degree of inference2. Whenever a

variable declaration is not supplied with a label by the developer, it is inferred to

have the same label of the initializing expression. If the declaration does not have

an initializer, then it is temporarily considered to be untyped. As soon as a value is

assigned to the variable, its label is inferred and updated accordingly. As unsafe as

it could seem, it is indeed a sound approach. As a matter of fact, should the need

of knowing the type of a variable arise before it had been assigned a value, then

it would mean that the programmer is trying to use an uninitialized variable. Not

only this should be treated as an error in any case, but is also forbidden by the Java

compiler. Unlike variables, class fields are not inferred. It is due to the fact that

fields can be used outside the class they are defined into, hence their type could be

needed when their class has not been type-checked yet.

5.3.4 Default Labels

In real world scenarios it is likely that a big chunk of the data manipulated by

the application is not to be considered confidential. Should the developer be forced

to define every label that the type checker is not able to infer, even the irrelevant

ones, he would probably consider it a nuisance. For this reason, every time that a

required label cannot be inferred, it is used a default value in its stead, depending

on the kind of location the label should be attached to:

• Field. Class fields are given the Bottom Label, i.e. {⊥: ⊥ ; > ← >}, which

is the least restrictive label. It conservatively ensures that no confidential data

is stored within them. Should the need of storing confidential data inside a

class field arise, then it would be necessary from the programmer to manually

specify its label. This is to prevent unsafe and undesired side-effects, as the

lack of a supplied label could be as well accidental as intentional.

• Begin Label. If not supplied, the method Begin Label is considered to be

the Top Label, i.e. LBG := {> : > ; ⊥← ⊥}. It is the most restrictive label.

Being an upper bound on the caller’s p̃c, it means that the method can be

2Please notice that the label supplied by the programmer always takes precedence over the
inferred one

5.3. Labels 39

invoked from anywhere in the program, but it cannot perform any side-effect

except those whose sink is labeled with the Top Label.

• Parameter Label. By default, method parameters are labeled with the Top

Label ({> : > ; ⊥← ⊥}). As for the Begin Label, it is an upper bound

for the actual argument label, meaning that the default label allows every

expression to be assigned as value for the parameter, maximizing at the same

time method usability and security.

• Return Label. In general the result of a function can be considered to depend

directly on its input data. Thus, if missing, the Return Label is computed as

the join of all parameter labels.

LRT := L1 t L2 t ... t Ln, whereLiisthelabelofthei− thparameter.

5.3.5 Dynamic Labels

Despite the effort to type-check the application in a purely statical fashion, there

are certain use-cases that need some degree of dynamic type-checking. As an ex-

ample, an application that requires an user to authenticate, may want to permit or

deny certain flows, based on the user that logged in. This would be indeed impos-

sible if all labels were static, because a static type checker needs to know all the

principals at run-time. For this reason AFC also handles dynamic labels (or run-

time labels). At compile-time, when the type-checking of a method begins, every

dynamic label is given both a lower and an upper bound, representing the range

of legal values for the label. Should a dynamic label have a run-time value falling

outside this range, then the application would be terminated. The starting lower

and upper bound are respectively the Bottom and the Top label, standing for a

value which is yet unknown. As the type checker sifts through the method, these

constraints are progressively updated. To be more precise, at any point of the type-

checking, these constraints are the most permissive ones that would have passed all

previous checks. Once the type-checking of the method is completed, all dynamic

labels are evaluated. If, for at least one label, the lower bound is not a subtype of

the upper bound, then a type error is reported. In any other case - included the one

in which the two constraints are not comparable - they are saved as meta-data for

the method. Hence, every time that the method is executed, all dynamic labels are

checked against these constraints. Should even only one constraint be failed, then

the whole application would be shut down.

5.3.6 Authority

It has been already hinted that at any point of the computation, the application

runs with the authority of some principals. Basically it is the ability to act-for

40 5. Information Flow Typing

a certain set of principals. As a matter of fact, inside a method it is possible to

compromise the security of a principal p only if that method has been granted

the authority by p. As an example, the developer is not allowed to relax a policy

expressed by p through declassification in a method that does not have the authority

to act for p.

A method can receive authority from two entities, which are the class it has been

defined into and the method that has called it. The set of principals a method is

allowed to act-for is called authority set. Every time that a method needs some

authority, it must specify it in its own declaration. Hence, a call to that method is

considered legal if and only if the union of the authority set of the caller and the

authority set of the callee’s class is a superset of the authority required by the callee.

5.4 Type System Model

In this Section a complete formalization of the proposed type system is given.

From now on, it will be referred as AFC , from Android Flows Checker . In AFC ,

expressions have a type θ, which is a pair made up of a standard Java type τ and a

DLM label L.

θ ⇔ (τ, L)

5.4.1 Definitions

Prior to explaining rules for typing Java statements and expressions, some defi-

nitions are required. Please recall that an in-depth definition of subtyping between

DLM labels has been given in Subsection 3.5.1.

Definition 5.4.1. (Fully Qualified Types). We define a reification function dxe
that maps types to their fully qualified form. A fully qualified type is a type whose

name has been appended to its package, as in the following examples:

dStringe = java.lang.String
dIntente = android.content.Intent
dArrayListe = java.util.ArrayList

Definition 5.4.2. (Java Subtyping). We say that τ1 is a subtype of τ2, written as

τ1 vT τ2, iff τ1 = τ2 or τ1 extends a type τ3 such that τ3 vT τ2.

Definition 5.4.3. (DLM Subtyping). We say that L1 is a subtype of L2, written

as L1 vL L2, iff L1 is at most as restrictive as L2.

Definition 5.4.4. (Subtyping). We say that the pair (τ1, L1) is a subtype of (τ2, L2),

written (τ1, L1) v (τ2, L2), iff τ1 vT τ2 and L1 vL L2.

5.4. Type System Model 41

Java classes form a tree hierarchy where Object can be found at its root, being

a supertype for every other Java type3. An expression whose type is Object can

be assigned only to recipients with type Object. It is formally represented by the

Top Type >τ . The literal null, instead, consists in a blank object reference and can

thus be assigned to any recipient with any type in the Java class hierarchy. This

behaviour is modeled by the Bottom Type ⊥τ . The same reasoning can be applied

to DLM labels and our system’s types, as shown in the following definitions.

Definition 5.4.5. (Top types). We define the following three Top types:

>τ ∈ T such that ∀ τ, τ vT >τ
>L ∈ L such that ∀ L, L vL >L
> ∈ θ such that ∀ τ, L, (τ, L) v >

Definition 5.4.6. (Bottom types). We define the following three Bottom types:

⊥τ∈ T such that ∀ τ, ⊥τ@T τ
⊥L∈ L such that ∀ L, ⊥LvL L
⊥∈ θ such that ∀ τ, L, ⊥v (τ, L)

Java classes can be seen as a collection of fields, methods, nested inner classes and

inner interfaces. They all have unique identifiers within the scope of a class, except

for methods which are subject to overloading. Overloaded methods are methods

with the same identifier but that differ in number and type of formal parameters.

Mind that in Java actual arguments passed to a method do not have to be of the

same type of the corresponding parameter, because all its subtypes are accepted.

Additionally, overloaded methods might well have different begin or Return Labels.

Whilst the tool does not perform most of the standard Java type-checks, it needs

to be able to discern which of the possibly several overloaded methods is targeted,

in order to verify the legality of a method invocation. For all these reasons, two

distinct look-up functions have been defined and implemented in AFC . For further

details about them, please refer to [5].

Definition 5.4.7. (Lookup). Let τ be a Java type, σ̃ be its direct supertype and

τ ↓ x be the look-up members function defined as follows:

τ ↓ x =


ε τ = >
θx (x : θx) ∈ τ
σ̃ ↓ x x /∈ τ ∧ τ 6= >

where ε represents a fail of the Lookup function and thus an unexpected error4.

3Please remember that even built-in types such as int and boolean do have wrappers (namely
java.lang.Integer and java.lang.Boolean) in order to represent them in the Java class hierarchy.

4Such an error should never occur, because it is assumed that the source code has been already
type-checked by Java. Hence, all member accesses are supposed to be correct.

42 5. Information Flow Typing

Definition 5.4.8. (Distance Between Methods). Let m be a method with type

(τ1 × τ2 × ... × τn → τ0) and m′ be a method with type (τ ′1 × τ ′2 × ... × τ ′n → τ ′0).

Then ∆(m, m′) is defined as:

n∑
i=1

δ(τi, τ
′
i)

where δ(τ, τ ′) is the type distance function as described in [5], Section 4.3.

Definition 5.4.9. (Resolve Overloaded). Let τ be a Java type, m be a method

with type (τ1 × τ2 × ... × τn → τ0) and M be the set of all methods with the same

identifier of m. The resolve overloaded methods τ ⇓ m(τ1, τ2, ...τn) is the function

that returns a method m′ : (τ1 × τ2 × ...× τn → τ0) such that:

∀µ ∈M @ µ, ∆(µ, m) < ∆(m′,m)

5.4.2 Types Environment

Typing rules are defined with the aid of an environment, that is a map from

identifiers to types. For the sake of simplicity it is assumed that all Java types

are fully qualified, as the formalization of the process of qualifying types within

imported paths and external libraries is an arduous task that would add little to

nothing to the model, but that of course has been implemented in the tool. The

environment is represented with the letter Γ . In Table 5.2 is possible to find the

syntax used to describe the context in which statements and exceptions are typed.

5.5. Typing Rules 43

Γ Type Environment, maps identifier into types x 7→ (τ, L)
θ Type, a pair made up of a Java type and a label θ : (τ, L)
Γ ` E : θ Judgment, Expression E has type θ when judged with environment Γ
Γ [x] Lookup, looks for the identifier x within environment Γ
Γ, (x := θ) Binding, binds the identifier x to type (τ, L) in Γ
p̃c Program counter label, its current value

t̃l Termination label, its current value
τ̃ Type of this , the class in which the expression/statement is found
τ̃ [m̃] Current method that is being type-checked
Σ Static Authority Map, maps identifier to sets of principals
Σ[x] Static Authority, sets of principals for whom method or class x acts-for
G Go-to Environment, maps Java label to DLM labels
G[L] Target PC Label, value of p̃c before the statement pointed by L
Γ ` τ1 vτ τ2 Java subtyping, Java type τ1 is a subtype of τ2 in environment Γ
Γ ` L1 vL L2 DLM Subtyping, label L1 is at most as restrictive as L2 in Γ
Γ ` θ1 v θ2 Subtyping, pair (τ, L)1 is a subtype of (τ, L)2 in environment Γ

Table 5.2: Environment and judgments.

5.5 Typing Rules

An Android application, like any other Java application, is made up of a list of

compilation units, every of which is a single Java source code file. A compilation

unit consists in a set of classes and interfaces. Classes and interfaces are collections

of fields (or attributes) and methods. Methods are entities that contain a list of

statements. Statements may be calls to functions, binary operators, unary opera-

tors, assignments, expressions and so on. Finally, an expression is either an atomic

operation or a combination of multiple expressions that is evaluated to a certain

value, whose type (or at least one of its supertypes) is known at compile time. In

Table 5.3 it is possible to see a simplified representation of the Java Abstract Syn-

tax Tree5. Please mind that while some Java constructs - such as the type cast

expression - do not appear in this Section, they have been fully handled in the ac-

tual implementation. They have been left out to not burden the formalization with

notions that are not so meaningful for our purposes.

5.5.1 Type-Checking Java Expressions

Expressions are all those sort of Java constructs that may produce a new value as

a result for their computation. Their typing rules do not produce side-effects, which

5A tree-like data structure built by the compiler to represent the structure of the application.

44 5. Information Flow Typing

τ := type
| boolean | char | ... built-in type
| > Top type
| T class type
| τ [] array of τ
| τ < τ1, ...τn > application of type args

e := expression
| ` literal
| x identifier
| τ̃ this
| e1 ? e2 | e3 conditional expression
| op e unary operation
| e1 op e2 binary operation
| e1[e2] array subscript
| new τ []{e1, ...en} array construction
| e.x select
| e.x(e1, e2, ..., en) method invocation
| new τ(e1, e2, ..., en) object construction

s := statement
| ; empty statement
| s; s sequence of statements
| e statement expression
| τ x = e variable declaration
| x = e assignment
| return e return statement
| if ec then st else se if statement
| while e do s while loop
| do s while e do while loop
| for s1; e; s2 do sb for loop
| for τ x← e do s for-each loop
| switch ecase1 → s1; ...casen → sn; default→ sd switch statement
| break L break statement
| continue L continue statement
| this(e1, e2, ..., en) alternate constructor
| super(e1, e2, ..., en) supertype constructor
| L → s labeled statement

Table 5.3: Simplified AST representation of Java types, expressions and statements.

5.5. Typing Rules 45

are modifications of the context in which expressions are given a type. Instead, the

few expressions that need to temporarily alter the context do it so by a technique

called shadowing, that consists in hiding the value bound to an identifier by creating

a new bind between the same identifier and a new value. As a matter of fact, if the

environment contains two bindings with the same identifier, it always give precedence

to the newer one - which hides, or shadows, the older value.

Literals Amongst all the rules to type Java expressions, the one regarding literals

(`) is by far the easiest one. Literals are the representation of a fixed value, such

as the number 231 or ”this is a literal string”. Every kind of literal is syntactically

different to literals of a different type, thus it is possible to identify the type of

literal even if they do not carry along any information of that kind. Being generated

on-the-fly, they do not belong to any principal, but they can still create implicit

flows. Therefore, the type of a literal is the pair composed of its Java type and the

p̃c.

Literal

true

τ̃ ; p̃c; t̃l;G; Σ;Γ ` ` : (τ, p̃c)

Identifiers An identifier (x) can be used both to refer to a local variable or to

a class field. In order to access to a field with a lone identifier, it must have been

declared inside the same class or in any of its superclasses. The type of an identifier

is the same of the variable or field it refers to, which is obtained with a simple access

to the environment Γ .

Identifier

τ̃ ; p̃c; t̃l;G; Σ;Γ ` x : (τ, L) ∈ Γ
τ̃ ; p̃c; t̃l;G; Σ;Γ ` x : (τ, L)

Conditional Expressions. Conditional expressions (e0 ? e1 | e2) work in a way

much similar to the ubiquitous if-then-else statement, except for the fact that they

return a value, instead of executing a statement. As a matter of fact, a run-time test

is performed on the expression e0, to decide whether to return expression e1 or e2 as

the result of the computation. For what regards type-checking, first of all the label

of e0 is typed and then joined with the program counter label. Then follows the

judgment of both e1 and e2, whose labels are computed with the previously updated

46 5. Information Flow Typing

p̃c. At last, the resulting type of the conditional expression is the join of L1 and L2.

Note that in this latter join operation, the program counter label does not appear

because it has been implicitly included in the previous evaluation of L1 and L2.

Conditional Expression

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e0 : (boolean, L0)

τ̃ ; p̃c t L0; t̃l;G; Σ;Γ ` e1 : (τ1, L
′
1 := L1 t p̃c)

τ̃ ; p̃c t L0; t̃l;G; Σ;Γ ` e2 : (τ2, L
′
2 := L2 t p̃c)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (e0 ? e1 | e2) : (τ, L′1 t L′2)

where τ is τ2 if τ1 @τ τ2, τ1 otherwise.

Arithmetic, Boolean and String Operations. The type of an unary operation

is, trivially, the type of its operand. Binary operations, instead, are processed by

judging the left-hand side expression first, followed by the right-hand expression.

Once the label of both expressions is known, they are joined to produce the resulting

label.

Unary Operation

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τ, L)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (unop e) : (τ, L)

Binary Operation

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e1 : (τ, L1)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e2 : (τ, L2)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (e1 binop e2) : (τ, L1 t L2)

Array Subscripts. The first step to type-check the access to an array element

(e1[e2]) is to judge the expression e1, which returns the label of the base type of the

array. Follows the typing of e2, which gives the label of the index. Since it could

be possible to gain some knowledge on which element was accessed by knowing the

index (and viceversa), both labels are joined to produce the type label of the element

itself.

5.5. Typing Rules 47

Array Subscript

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e1 : (τ1, L1)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e2 : (int, L2)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (e1[e2]) : (τ1, L1 t L2)

Array Constructors. A simple array constructor (new τ [n : int]), returns an

array n elements long and is typed to (τ [], p̃c). If it is also provided with a list

of initializer expressions (i.e., new τ []{e1, e2, ...en}), then it must be ensured that

none of these labels reaches a destination with a less restrictive label. If, as an

example, an initializer expression etop is labeled with the Top Label, then the whole

array must be typed with the Top Label, otherwise it could be assigned to a less

restrictive destination, losing track of the high security requirements of etop. Hence,

array constructors are typed with the join of the program counter label and the

labels of all the initializer expressions.

Array Constructor

∀i ∈ [1, n], τ̃ ; p̃c; t̃l;G; Σ;Γ ` ei : (τi, Li)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (new τ0[]{e1, e2, ...en}) : (τ0, p̃c t L1 t L2 t ... t Ln)

Selects. The label for a field access (e.x) is the join of the label of the container

object with the declared label for the field that is to be accessed. Even if it could

be deemed as strange, it is important to take in account the label of the container

object. As a matter of fact, even though x could have a much less restrictive label

than e, it is still part of a sensitive object and it must be treated as such. Public

fields inside confidential object can still be accessed through declassification.

Select

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τe, Le)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` x : (τx, Lx) = e ↓ x
τ̃ ; p̃c; t̃l;G; Σ;Γ ` (e.x) : (τx, Le t Lx)

Method Invocations. Type-checking a method call (eo.m(e1, e2, ...en)) requires

multiple stages, starting by typing the expression e together with the arguments

(e1, e2, ...en). Their types are thus learnt and used to resolve method overloading,

providing information about the , the parameter labels and the Return Label. Not

48 5. Information Flow Typing

all method invocations are legal, though, as all argument labels have to be no more

restrictive than the corresponding parameter labels. Additionally, the p̃c at the call

site must be no more restrictive than the Begin Label (LBG). At last, it must be

ensured that the caller (c) is able to provide the required authority to the callee

(m). It is so if the union of c’s authority set and the authority set of m’s class is a

superset of the required authority set of m. Legal invocations are then typed as the

Java type declared in the method signature and the Return Label joined with the

label of eo.

Method Invocation

τ̃ ; p̃c0; t̃l;G; Σ;Γ ` eo : (τo, Lo)

τ̃ ; p̃c1 = p̃c0 t Lo; t̃l;G; Σ;Γ ` mres = e ⇓ (m : (τ ′1, L
′
1)× ...× (τ ′n, L

′
n))

τ̃ ; p̃c1; t̃l;G; Σ;Γ ` mres〈LBG, LRT 〉 : (τ1, L1)× ...× (τn, Ln)→ (τR, LRT)

∀i ∈ [1, n], τ̃ ; p̃c; t̃l;G; Σ;Γ ` L′i vL Li
τ̃ ; p̃c1; t̃l;G; Σ;Γ ` p̃c vL LBG
τ̃ ; p̃c1; t̃l;G; Σ;Γ ` Σ[mres] ⊆ Σ ∪ Σ[τo]

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (eo.m(e1, e2, ...en)) : (τR, LR t Lo)

Constructor Invocations. Constructor invocations (new T (e1, e2, ...en)) are much

similar to static methods, and as such are checked. However, constructors do not

have a declared Java return type and thus no Return Label either. Instead, they

are typed with the join of the program counter label with the labels of all their

arguments.

Constructor Invocation

τ̃ ; p̃c; t̃l;G; Σ;Γ ` c = τT ⇓ (T : (τ ′1, L
′
1)× ...× (τ ′n, L

′
n))

τ̃ ; p̃c; t̃l;G; Σ;Γ ` c〈LBG〉 : (τ1, L1)× ...× (τn, Ln)→ (τT , p̃c t L1 t ... t Ln)

∀i ∈ [1, n], τ̃ ; p̃c; t̃l;G; Σ;Γ ` L′i vL Li
τ̃ ; p̃c; t̃l;G; Σ;Γ ` p̃c vL LBG
τ̃ ; p̃c; t̃l;G; Σ;Γ ` Σ[c] ⊆ Σ ∪ Σ[τT]

τ̃ ; p̃c; t̃l;G; Σ;Γ ` (new T (e1, e2, ...en)) : (τT , p̃c t L1 t ... t Ln

This. The expression this refers to the instance of the class that contains the field

or the method that is being evaluated. As such it is not possible to know its label

statically, because it depends on the statement or the expression that generated it.

However, remember that before type-checking a call, the Method Invocations rule

joins the program counter label of the caller with the label of the recipient object.

5.5. Typing Rules 49

Only if this updated label is at most as restrictive as the Begin Label of the method,

the call is deemed as legal. For this reason it can asserted that the label of this is

bounded above by the Begin Label. Therefore it is safe to round the label of this up

to the Begin Label of the current method.

This

τ̃ ; p̃c; t̃l;G; Σ;Γ ` τ̃ [m̃]〈LBG, LRT 〉 : (τ1, L1)× ...× (τn, Ln)→ (τT , p̃c t L1 t ... t Ln)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` this : (τ̃ , LBG)

5.5.2 Type-Checking Java Statements

Unlike expressions, Java statements do not return a value, and as such they do

not possess a type in its own right. Instead, they are either considered well-typed or

ill-typed. A well-typed statement is a statement that respects all typing rules and

does not generate any illegal information flow. On the contrary, ill-typed statements

do break at least one type rule and therefore are reported as type errors. Please

mind that some statements do produce side-effects. This behaviour is represented

by the symbol B, meaning that the context for the new statement will be modified

with all the environments or values that appear at the right of the B symbol.

Empty Statements The rule for empty statements (;) is indeed the most trivial

one. An empty statement is, as the name suggests, a statement that does nothing.

Hence, it is always considered to be well-typed.

Empty Statement

true

τ̃ ; p̃c; t̃l;G; Σ;Γ `;

Statement Expressions. Statement expressions (e) are nothing more than ex-

pressions whose return value is discarded. With most expressions, as for example

with literals and identifiers, using them as statement does not make any sense, be-

cause it is just a waste of computing time. Some of them though, such as method

invocations, do have side-effects6 and thus are commonly used disguised as state-

ments. Their type-checking consists in checking expression itself. If the expression

6Side-Effects for Java Expressions and Statements must be not confused with side-effects for
typing rules. In the former case, a side-effect is an alteration of the application’s state during its
execution (e.g., modifying the value of the field of a class), in the latter one it is a change of the
state of the type-checker itself at compile time.

50 5. Information Flow Typing

presents some illegal flows then the statement is considered to be ill-typed, otherwise

it is regarded as well-typed.

Statement Expression

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τ, L)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e

Variable Declarations. Variable declarations (τ x = e) are managed differently

based on which of the following four cases applies:

• No developer defined label, no initializer expression. The variable

is added into the environment with a special label ε, which is a value that

represents an yet unknown value for that variable’s label. The first time a

value is assigned to the variable, ε is replaced with the label of the assigned

value. If, instead, a variable with label ε is found inside any other expression,

it raises a type error. This behaviour do not limit the expressivity of the

language, as the Java compiler rejects code with uninitialized variables.

Decl (No Label, No Expr)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` τ x : (τ, ε)

τ̃ ; p̃c; t̃l;G; Σ;Γ, (x := (τ, ε)) ` st
τ̃ ; p̃c; t̃l;G; Σ;Γ ` τ x; st

• No developer defined label, with an initializer expression. The ini-

tializer expression is evaluated to obtain its label L. If the initializer does not

cause any illegal flow then the variable is added to the environment with label

L and the statement is regarded as well-typed. Otherwise, it is reported as

ill-typed.

Decl (No Label, Expr)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τe, Le)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` x : (τx, ε)

τ̃ ; p̃c; t̃l;G; Σ;Γ, (x := (τx, Le)) ` st
τ̃ ; p̃c; t̃l;G; Σ;Γ ` τ x = e; st

• Developer defined label, no initializer expression. The variable is added

to the environment with the label supplied by the developer. This declaration

5.5. Typing Rules 51

is always considered to be well-typed, as long as there are not syntax errors in

the label definition.

Decl (Label, No Expr)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` x : (τ, L)

τ̃ ; p̃c; t̃l;G; Σ;Γ, (x := (τ, L)) ` st
τ̃ ; p̃c; t̃l;G; Σ;Γ ` τ x; st

• Developer defined label, with an initializer expression. The initializer

expression is typed (Linit) and checked against the label supplied by the devel-

oper Ldev. If Linit is no more restrictive than Ldev the declaration is considered

well-typed, in any other case it is considered ill-typed.

Decl (Label, Expr)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τe, Le)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` x : (τx, Lx)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` Le vL Lx
τ̃ ; p̃c; t̃l;G; Σ;Γ, (x := (τx, Lx)) ` st
τ̃ ; p̃c; t̃l;G; Σ;Γ ` τx x = e; st

Assignments. Assignments (e1 = e2) are regarded as well-typed as long as the

right-hand expression e2 joined with p̃c is no more restrictive than e1. This is done

to prevent implicit flows, as previously explained. Please remind that if e1 evaluates

to an identifer with unknown label ε, than the environment must be modified so its

label is updated to the one that corresponds to the right-hand expression.

52 5. Information Flow Typing

Assignment (Unknown Label)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e1 : (τ1, ε)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e2 : (τ2, L2)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e1 = e2

Assignment (General Case)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e1 : (τ1, L1)

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e2 : (τ2, L2)

τ̃ ; p̃c; t̃l;G; Σ;ΓL2 vL L1

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e1 = e2

Return Statements. A return statement (return e) terminates the method in

which it is found. It is used to pass the value of its expression as a result for the

caller of the method. Its type-checking is straightforward, as is it is enough to test

Le, the label of the expression, against the Return Label of the method LRT . As

previously discussed, however, return statements may generate implicit flows, if not

handled with care. Hence, the termination label of the context is joined with Le.

Return Statement

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τe, Le)

τ̃ ; p̃c; t̃l t Le;G; Σ;Γ ` s
τ̃ ; p̃c; t̃l;G; Σ;Γ ` return e; s

If Statements. An if statement (if ec then st else se) consists in a conditional

expression used to decide at run-time whether to execute the then branch or the

else branch. The type-checking proceeds by typing the conditional expression ec,

whose label is used to temporarily increase the program counter label. Follows the

checking of st and se, under the environment with the newly restricted program

counter label. An if statement is well-typed as long as its conditional expression

and its branches are well-typed.

5.5. Typing Rules 53

If Statement

τ̃ ; p̃c; t̃l;G; Σ;Γ ` ec : (boolean, Lc)

τ̃ ; p̃c t Lc; t̃l;G; Σ;Γ ` st
τ̃ ; p̃c t Lc; t̃l;G; Σ;Γ ` se
τ̃ ; p̃c; t̃l;G; Σ;Γ ` if ec then st else se

While Loops. A while loop (while e do s) is a control flow statement that con-

tinues to repeat a block of code whilst a certain condition e is met at the beginning

of every iteration. As such, it is type-checked similarly to an if statement, with

the condition e evaluated in order to use its label as program counter label for the

following block of statements. Two entries are added to the Go-to Environment,

both bounded to the value of program counter label immediately before the while

statement. These represent the target for an eventual continue or break statement.

Note that they are bounded to the same value because p̃c possesses the same value

both before and after the while statement. A while loop is considered to be well-type

as long as both its conditional expression and its block of statements are well-typed.

While Loop

τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τe, Le)

τ̃ ; p̃c t Le; t̃l;G; Σ;Γ ` s
τ̃ ; p̃c; t̃l;G, (Lcont := p̃c), (Lbrk := p̃c); Σ;Γ ` s2
τ̃ ; p̃c; t̃l;G; Σ;Γ ` while e do s; s2

Do-While Loops. A do-while loop (do s while e) is a statement that continues to

repeat a statement until a certain boolean condition - checked after every iteration -

becomes false. Unlike with plain while loops, type-checking do-while loops requires

to type-check the block of statements first and the conditional expression after.

Therefore, the block of statements is evaluated with the starting p̃c.

Do-While Loop

τ̃ ; p̃c; t̃l;G; Σ;Γ ` s
τ̃ ; p̃c; t̃l;G; Σ;Γ ` e : (τe, Le)

τ̃ ; p̃c; t̃l;G, (Lcont := p̃c), (Lbrk := p̃c); Σ;Γ ` s2
τ̃ ; p̃c; t̃l;G; Σ;Γ ` do s while e; s2

For Loops. A for loop (for sinit; econd; sincr do sb) is a complex statement that

continuously executes s until the given boolean condition econd becomes false. Before

54 5. Information Flow Typing

executing this block, though, it performs an initializer statement sinit. After every

iteration of this code block, an additional statement sincr is executed. The body

of the for loop is checked with the label of the conditional expression as program

counter label. As with all other loops, the Go-to environment is enriched with

targets for break and continue statements, and is considered well-typed as long as

all the statements and expressions it contains are well-typed.

For Loop

τ̃ ; p̃c; t̃l;G; Σ;Γ0 ` sinit B Γ1

τ̃ ; p̃c; t̃l;G; Σ;Γ1 ` econd : (τcond, Lcond)

τ̃ ; p̃c t Lcond; t̃l;G; Σ;Γ1 ` sb
τ̃ ; p̃c; t̃l;G, (Lcont := p̃c), (Lbrk := p̃c); Σ;Γ ` s2
τ̃ ; p̃c; t̃l;G; Σ;Γ ` for sinit; econd; sincr do sb; s2

For-Each Loops. A for-each loop statement (for τx x← e do s) is a syntactical

sugar that allows to quickly write loops to iterate through a collection of items

implementing the Iterable interface, such as the built-in List object.

For-Each Loop

τ̃ ; p̃c; t̃l;G; Σ;Γ0 ` τx x : (τx, Lx)

τ̃ ; p̃c; t̃l;G; Σ;Γ1 = Γ0, (x := (τ1, L1)) ` e : (τe, Le)
Le vL Lx
τ̃ ; p̃c t Le t Lx;G; Σ;Γ1 ` s
τ̃ ; p̃c; t̃l;G, (Lcont := p̃c), (Lbrk := p̃c); Σ;Γ ` s2
τ̃ ; p̃c; t̃l;G; Σ;Γ ` for τxx← e do s; s2;

Switch-Case Statements. A switch statement (switch e case1 → s1; ... casen →
sn; default → sd;) consists in an expression that is checked against several pre-

defined cases and a block of statements. If any of the pre-defined cases matches the

conditional expression than the computation jumps to the statement labeled with

that case, otherwise it will jump directly to the default case. The initial program

counter label for the switch body is the label of the conditional expression. Every

time a case is encountered the p̃c is further restricted with the label of the case

expression. This is done because by knowing that a certain statement has been

executed we can learn something about the conditional expression (e.g. if the second

case is executed and there is a break statement at the end of the first case then we

know that the conditional expression e is different from the first case expression).

5.5. Typing Rules 55

As always, the switch statement is well-typed as long as there are no illegal flows

within it.

Switch-Case Statement

τ̃ ; p̃c0; t̃l;G; Σ;Γ ` e : (τe, Le)

∀i ∈ [1, n], τ̃ ; p̃ci = p̃ci−1 t Li; t̃l;G; Σ;Γ ` casei : (τe, Li)

∀i ∈ [1, n], τ̃ ; p̃ci; t̃l;G; Σ;Γ ` si
τ̃ ; p̃c; t̃l;G; Σ;Γ ` switch ecase1 → s1; ...casen → sn; default→ sd

Break Statements. A break statement (break L) interrupts the normal flow

of the computation, exiting from on ore more loops and directly jumping to the

statement tagged with the target label L7. If a break statement is not provided

with a target label, then the statement jumps at the end of the innermost loop. A

break statement is well-typed if p̃c at the target site is at least as restrictive as the

program counter label where the break occurs.

Break Statement

τ̃ ; p̃c; t̃l;G; Σ;Γ ` p̃c v G[L]

τ̃ ; p̃c; t̃l;G; Σ;Γ ` break L

Continue Statements. A continue statement (continue L) works in the same

manner of a break statement, with the only exception that instead of exiting from

a loop, it jumps at the beginning of the next iteration of the loop identified by the

target label. Nevertheless, it is typed likewise to a break.

Continue Statement

τ̃ ; p̃c; t̃l;G; Σ;Γ ` p̃c v G[L]

τ̃ ; p̃c; t̃l;G; Σ;Γ ` break L

Alternate Constructor Invocations. The invocation of an alternate construc-

tor (this(e1, e2, ...en)) allows the developer to define multiple constructors with one

or more default values for the arguments to be provided. It is exactly what the

name means, i.e. the invocation of a different constructor of the same class inside a

7NB: it is not an information flow label, but just a tag to univocally identify the statement to
be targeted by the break

56 5. Information Flow Typing

first constructor. It is type-checked as a statement expression whose expression is a

static method call that returns no value.

Alternate Constructor Invocation

τ̃ ; p̃c; t̃l;G; Σ;Γ ` c = τ̃ ⇓ (this : (τ ′1, L
′
1)× (τ ′2, L

′
2)× ...× (τ ′n, L

′
n))

τ̃ ; p̃c; t̃l;G; Σ;Γ ` c〈LBG〉 : (τ1, L1)× ...× (τn, Ln)→ (τ̃ , p̃c t L1 t ... t Ln)

∀i ∈ [1, n], τ̃ ; p̃c; t̃l;G; Σ;Γ ` L′i v Li
τ̃ ; p̃c; t̃l;G; Σ;Γ ` p̃c vL LBG
τ̃ ; p̃c; t̃l;G; Σ;Γ ` Σ[c] ⊆ Σ ∪ Σ[ττ̃]

τ̃ ; p̃c; t̃l;G; Σ;Γ ` this(e1, e2, ...en)

Supertype Constructor Invocations. A supertype constructor invocation (su-

per (e1, e2, ...en)) is much similar to an alternate constructor invocation, the lone

difference being the fact that the alternate constructor is part of the class that is

directly extended by the one in which the actual constructor can be found.

Supertype Constructor Invocation

τ̃ ; p̃c; t̃l;G; Σ;Γ ` sc = τ̃ ⇓ (super : (τ ′1, L
′
1)× (τ ′2, L

′
2)× ...× (τ ′n, L

′
n))

τ̃ ; p̃c; t̃l;G; Σ;Γ ` sc〈LBG〉 : (τ1, L1)× ...× (τn, Ln)→ (σ̃, p̃c t L1 t ... t Ln)

∀i ∈ [1, n], τ̃ ; p̃c; t̃l;G; Σ;Γ ` L′i v Li
τ̃ ; p̃c; t̃l;G; Σ;Γ ` p̃c vL 〈LBG, LRT 〉
τ̃ ; p̃c; t̃l;G; Σ;Γ ` Σ[c] ⊆ Σ ∪ Σ[ττ̃]

τ̃ ; p̃c; t̃l;G; Σ;Γ ` this(e1, e2, ...en)

Labeled Statements. A labeled statement (L → s) is a statement that has been

tagged by a Java label. The type-checking of labeled statements is straightforward,

as it is enough to add the target label to the environment Γ and then proceed type-

checking the statement s as normal. A labeled statement is well-typed as long as

its base statement is well-typed.

Labeled Statement

τ̃ ; p̃c; t̃l;G; Σ;Γ ` s
τ̃ ; p̃c; t̃l;G, (L := p̃c); Σ;Γ ` s2
τ̃ ; p̃c; t̃l;G; Σ;Γ ` L → s; s2

5.5. Typing Rules 57

5.5.3 Type-Checking Classes and Methods

The number of checks to be performed on Java classes by an Information Flow

type system is fairly low. All things considered, a class is not much more than a

container, and containers cannot produce information flows on their own. To type-

check a class basically means to type-check all of its components, verifying that no

illegal flow is generated within the declaration of its members and inner classes.

On the other hand, method declarations require a great deal of attention, as there

are multiple subtle aspects that can harm the security of an application. For this

reason, methods are bound in the environment with some further information that

is here summarized to be seen at a glance:

• Begin Label. The label that is used as starting value for the program counter

label when type-checking the method. If not supplied, it is the Top Label.

• Return Label. The label that represents the required secrecy and integrity

on the value returned by the method. If not supplied, it is the join of the label

of all its parameters. If there is no parameter, then it is the Bottom Label.

• Parameter Labels. Every formal parameter has a label associated with it.

By default it is the Top Label.

• Authority Set. The set of principals for which the method can act-for. If

not specified it is {⊥}, meaning that it acts-for the principal Bottom alone.

Whenever a method overrides or implements another method with the same sig-

nature, its labels require some further constraints, otherwise type polymorphism

would enable the generation of uncaught illegal flows. An example of this behaviour

can be found in Listing 5.2, where a string whose type is the Top Label is assigned

to a variable labeled with the Bottom Label, which is clearly unsafe. This is allowed

by the type system because the takeFirstItem() is invoked on the object c which

is bound in the environment as an instance of the Container class. The Return

Label of the method in Container is the Bottom Label, therefore the type system

deems the assignment as legit. However, thanks to polymorphism, the actual type

at run-time of the object c will be Strongbox. Alas, the Return Label of take-

FirstItem() found in Strongbox is the Top Label. Hence, if allowed to run, this

application would leak sensitive information, breaking the type system. To prevent

such mishaps the following restrictions are enforced:

• The Return Label of the overriding (subtype’s) method must be at most

as restrictive as the Return Label of the overridden (supertype’s) method

→ Lsub vL Lsup.

58 5. Information Flow Typing

Listing 5.2: Example of an illegal flow due to polymorphism

1

2 class Main{
3 (int, {Bottom: ; Top <− }) m(){
4 Container c = new Strongbox();
5 (Object, {Bottom: ; Top <− }) item = c.takeFirstItem();
6 }
7 }
8

9 class Container{
10 private Object[] items = {”first”, ”second”, ”third”};
11 (Object, {Bottom: ; Top <− }) takeFirstItem(){
12 return items[0];
13 }
14 }
15

16 class Strongbox extends Container{
17 @Override
18 (Object, {Top: ; Bottom <− }) takeFirstItem(){
19 return items[0];
20 }
21 }

• The Begin Label of the overriding method must be at least as restrictive as

the Begin Label of the overridden method → Lsub wL Lsup

• All Parameter Labels of the overriding method must be at least as restric-

tive as the parameter labels of the overridden method → Lsub wL Lsup

5.6 Tackling Android Challenges

In Section 4.4 we have seen that a standard Information Flow type system cannot

cope with Android applications, as there is a number of issues that require a system

specifically tailored for them. This section describes how the previously general

model is geared to deal with all such challenges, detailing how they are tackled one-

by-one. However, the first step is to introduce a technique that is used to achieve

the above-mentioned goal.

5.6.1 Partial Evaluation

The actual implementation of AFC is not a stand-alone tool, but is built on

top of a larger framework devised to statically check Android applications, called

5.6. Tackling Android Challenges 59

Lintent. Lintent features a very useful, albeit complex, technique called Partial

Evaluation. It consists in a sort of data-flow analysis that keeps track of the type

and, when possible, the run-time value of variables.

To exploit Partial Evaluation, the environment Γ must be enriched. Instead of

mapping identifiers into a couple (τ, L), they are now mapped into triples with form

(τ, L, v), that is made up of a Java type, a DLM label and a value. While the type-

checker sifts through the whole source code, it binds every field or variable Γ to

three aforementioned data. Every time that an assignment or any other side-effect

modifies the value bound to an identifier, the environment is updated accordingly.

In this way it is possible to statically compute the value that most expressions will

have at run-time. Important as it is for our system, Partial Evaluation is a complex

subject that would make this work drift away from its original purpose. As such,

the complete set of rules for Partial Evaluation, along with further details about its

implementation, can be found in [5], Chapter 4.

Definition 5.6.1. (Partial Evaluation). We define as Γ ` x v the application of

the Partial Evaluation rules, where x is an identifier, an expression or a statement

and v is the value obtained through Partial Evaluation.

5.6.2 Handling Intents

One of the most crucial challenges is described in Section 4.4.5, and regards the

necessity to handle both incoming and outgoing Intents correctly. As an example,

it is necessary to understand which Component is the recipient of an Intent in order

to type-check the corresponding onCreate(). At any moment, an Intent can have

one of the three following possible kind of recipients:

• Explicit. Explicit Intents are Intents that have been given the Class object

of their intended target. They are the most common form of communication

between components belonging to the same application or between applications

of the same developer.

• Implicit. Implicit Intents do not have a pre-defined receiver, instead they

are given a string that represents the action to be performed. They might

also have other sorts of filters such as to which category of applications the

recipient should be part of.

60 5. Information Flow Typing

• Undefined. Intents can be built with a default constructor that requires no

arguments. However, it is not possible for an Intent to understand which

Component should be its recipient without any specific information provided

by the programmer. Thus, any Intent built in this way is temporarily lacking

of a recipient, which is set later.

The receiving component of an Intent can change during the execution of the

application. To be more accurate, the developer can set the receiving component

of an existing Intent with the following three methods: setComponent(), setClass()

or setClassName(). This also allows to transform Implicit and Undefined Intents

into Explicit ones. Implicit Intents are indeed a big challenge, as resolving their

action string does not allow to univocally identify which Component will be their

run-time target. As a matter of fact, their resolution depends entirely on the state

of the end-user device, which cannot be predicted at compile time. To avoid making

things overly complicated, the rest of this chapter will deal with Explicit Intents

only, leaving Implicit ones for later. To keep track of all information about Intents,

we start by defining a new environment represented with the Greek letter Xi (Ξ).

Definition 5.6.2. (Components Environment). Let C be an entity known as a

component, then we define as Components Environment the environment Ξ that

maps fully qualified type names into components.

Ξ ` T : C

The environment Ξ is used to relate the fully qualified name of a class, that

extends either a Service or an Activity, to an object that describes the Component

itself, based on the Intents that it sends or receives. Hence, this Component entity

is defined as follows:

Definition 5.6.3. (Component) A component C is defined as the record8 that con-

tains the following four sets.

C : IR ×OR × IA ×OA

where:

• IR are the Incoming Requests, that is the set of all Intents that are obtained

from invoking the getIntent() method;

8A tuple, that is an ordered sequence of values.

5.6. Tackling Android Challenges 61

• OR are the Outgoing Requests, that is the set of all Intents that are sent with

a startActivity(), startActivityFromResult() or startService();

• IA are the Incoming Answers, that is the set of all Intents reconstructed inside

the onActivityResult() method.

• OA are the Outgoing Answers, that is the set of all Intents sent by invoking

the setResult() method.

The previous definitions allow the type-checker to keep track of how an Activity

or a Service communicates, which is indeed compulsory to effectively monitor its

information flows. The last entity that needs to be formally defined is the Intent.

Please mind that all Intents are modeled in the same way, it does not matter whether

they represent an outgoing or an incoming request.

Definition 5.6.4. (Intent) Let an Intent i be a record that contains a recipient r

and a list of triples. The recipient r can be either a fully qualified type T or a

special blank type ε. Any item of the list of triples is made up of a String key k, a

Java type τ and a label L.

i : r × (k1, τ1, L1)× ...× (kn, τn, Ln)

Finally, a formal definition of the subtype relationship between Intents is required.

For mere convenience we assume that, prior to comparing them, Intents are ordered

in a way such that any key with the same value that they possess is at the same

position in both lists. As an example, if both Intents have a key that evaluates to

the string ”aKey”, then the triple that contains this key must be the first (or the

second, or the third and so on) of the list for both Intents. It cannot happen that

it is the first of the list for one Intent and the second of the list for the other one.

Definition 5.6.5. (Intents Subtyping) Let i1 : (ri1×(ki1,1, τi1,1, Li1,1)×...×(ki1,n, τi1,n, Li1,n))

and i2 : (ri2 × (ki2,1, τi2,1, Li2,1)× ...× (ki2,m, τi2,m, Li2,m)) be two Intents. The Intent

i1 is a subtype (vi) of the Intent i2 if and only if all the following relations hold:

m ≥ n

ki1,j = k12,f , ∀j ∈ (1, n)

τi1,j vτ τi2,j, ∀j ∈ (1, n)

Li1,j vL Li2,j, ∀j ∈ (1, n)

62 5. Information Flow Typing

5.6.3 Tracking Key-Value Pairs

Intents’ senders and receivers are not the only information that needs to be

tracked. Intents and Bundles are dictionaries, and as such are used to store data. It

is critical for the type system to be able to retrace the label of those data, otherwise

they could be exploited to launder restrictive labels into more permissive ones. Ev-

ery time that an Intent is created, fetched or accessed for putting or getting extras,

the type checker updates the Component objects of the sender and the recipient

that are affected by that Intent. If, as an example, a i1.putExtra() is performed,

then a triple is added to the list of triples of Intent i1.

PutExtra

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` τ̃ : T

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` Ξ0[T] : C
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` i : (r × (k1, τ1, L1)..× (kn, τn, Ln)) ∈ Ξ0

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` k : String vk
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` e : (τe, Le)

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` i.putExtra(k, e)B Ξ0[i := i, (vk, τe, Le)]

For what concerns retrieving data, the situation is very similar. Java does not

allow to overload methods based on their returned type, hence it is not possible to get

data from Intents by calling a generic getExtra(). Instead they have a plentiful list

of methods whose name contains the type (e.g., getIntExtra()). It can happen that

the type system has yet to type-check the component that sent the corresponding

Intent, as such it is not always possible to be able to access to the label of the

corresponding put value. However, all these methods require to be given a default

value, that is used if the key is not found inside the dictionary. Hence, the getExtra is

considered to return a value labelled with the label of this default value. To prevent

illegal flows, this latter label must be at least as restrictive as the label of the value

that as been put in the Intent. To ensure that this is the case, the incoming Intent

is given a new triple with this default label, that will be checked later against the

corresponding outgoing Intent.

5.6. Tackling Android Challenges 63

GetIntExtra

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` τ̃ : T

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` Ξ0[T] : C
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` i : (r × (k1, τ1, L1)..× (kn, τn, Ln)) ∈ Ξ0

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` k : String vk
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` d : (τd, Ld)

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ0 ` i.getIntExtra(k, d)B Ξ0[i := i, (vk, τd, Ld)]

Once the type system has checked the entire application, it has to verify that the

label of all default values used in the getExtras were at least as restrictive as those

used in the corresponding putExtras. This is done by verifying all entries of Ξ one at

a time. For every Outgoing Intent io there must be at least one Incoming Intent ii
such that io vi ii. Otherwise a type error is reported. Please remember that at the

moment we are dealing with Explicit Intent only, so it is always possible to correctly

identify the recipient of an Outgoing Request.

Bundle objects can also be used to launder labels, if not monitored accordingly.

They are dictionaries that work in a much similar fashion to Intents, but they are

supposed to store intra-component data, and as such they do not possess a recipient.

They are populated inside the onSaveInstanceState() method of the Activity. Over-

riding the method is optional, so the first thing that AFC does is to verify whether

it has been overridden or not. If the answer is negative, then type-checking proceeds

as normal, because it means that the developer did not customize the instance state

Bundle. Otherwise, it performs the type-checking of the onSaveInstanceState() first,

after it continues with the usual ordering.

Definition 5.6.6. (Bundle Set) Let b be a Bundle populated inside a onSaveIn-

stanceState(). Then, its representation in the formal model, is referred as B and is

the set of triples (ki, τi, Li) that represent the keys, Java types and labels of data

put inside a b.

B = {p|p : (ki, τi, Li) ∈ b}

When it skims through the statements of the onSaveInstanceState() method, the

type checker populates B every time that encounters a put. This allows to keep

track of all the labels, that can be accessed from every part of the application by

64 5. Information Flow Typing

accessing the previously defined set. Should a default value be supplied to the get

function, then the returning label would be the join of the label found within the

set with the label of the default value. B becomes thus a part of the type-checking

context.

Put

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` k : String vk
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` e : (τe, Le)

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` b.put(k, e)B B = B ∪ {(vk, τe, Le)}

GetInt

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` k : String vk
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` d : (τd, Ld)

τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` (vk, τk, Lk) ∈ B
τ̃ ; p̃c; t̃l;G; Σ;Γ ; Ξ;B ` b.get(k, d) : (τk, Lk)

5.6.4 Creating an Activity

The problem described in Section 4.4.1 consists in devising a mechanism that rec-

ognizes the unusual Android control flow whenever it has to start new Components.

The code to be type-checked against a startActivity(intent), as a matter of fact, is

not to be found inside the method obtained with the usual resolve overloaded func-

tion (this ⇓ startActivity(intent)). The tool, instead, has to type-check a call to the

onCreate() method of the activity pointed out by the argument Intent. In Section

5.6.2 it has been shown how to discern which Activity is the target of a given Intent,

therefore it is enough to define a limited number of rules that recognize a well-known

syntactical pattern and treat those method calls as special cases. This behaviour is

justified by the fact that the number of methods with such an uncommon behaviour

is reasonably low.

5.6. Tackling Android Challenges 65

startActivity

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` τ̃ : T

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` Ξ[T] : C
τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` eintent (r × (k1, τ1, L1)..× (kn, τn, Ln)) ∈ Ξ

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` r.onCreate()
τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` startActivity(eintent)

startActivityForResult

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` τ̃ : T

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` Ξ[T] : C
τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` eintent (r × (k1, τ1, L1)..× (kn, τn, Ln)) ∈ Ξ

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` r.onCreate()
τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` startActivityForResult(eintent, ecode)

startService

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` τ̃ : T

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` Ξ[T] : C
τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` eintent (r × (k1, τ1, L1)..× (kn, τn, Ln)) ∈ Ξ

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` r.onStartCommand()

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` startService(eintent)

The unusual Android control flow is designed to automatically invoke all life-

cycle callbacks, once a Component is started. For Information Flow purposes this

behaviour can be approximated by adding, at the end of every life-cycle callback, an

invocation to the following method. Two consecutive callbacks with different labels

can lead to implicit flows, as the program counter label at the end of a method could

be higher than the Begin Label of the following. To prevent this from happening,

the proposed type checker requires Android life-cycle callbacks to be labelled as the

66 5. Information Flow Typing

onCreate(). Moreover the onCreate() callback is the only one allowed to be labelled,

from the moment that it is the only one supposed to be invoked directly (through a

startActivity().

5.6.5 Returning Results

Likewise to every other data communication in Android, results are returned

through Intents. The whole process is made up of three steps. In first place, the caller

activity builds an Intent and sends it with an invocation to startActivityForResult(),

with a string that specifies the requested action and a code that is used to discern

between other eventual requests. Second, the callee receives the Intent, performs

the required computation and builds a new Intent containing the results, which

are then sent thanks to a call to the setResult() method. At last, the caller is

woken on its onActivityResult() callback, where it may use the results it asked for.

Regrettably, there is no way to understand which is the activity that requested

the computation, and as such it is not possible to understand to whom the results

are addressed. Hence, it cannot be helped to used the Intent handling mechanism

described in Section 5.6.2. For every Incoming Answer IA, the type checker looks

which Activities are recipient for at least one of its Outgoing Requests OR. Then it

tests all Outgoing Answers OA of every possible recipient against the original Intent

IA. Amongst all Intents that are subtype of IA, the closest one is picked as its

most likely counterpart. If, otherwise, no subtype Intent is found, then an error is

reported.

5.6.6 Terminating an Activity

An Activity that needs to be terminated should invoke the finish() method. De-

spite it does not influence the control flow of the current method, it might prevent

subsequent lifecycle callbacks from being executed, as explained in Section 4.4.3. It

has been found that, in order to avoid the aforementioned implicit flows, the pro-

gram counter label at the call-site of a finish() invocation, to which we will refer

with p̃cfin, must be no more restrictive than the Begin Label of the callback that

follows the current method. As a matter of fact, the Begin Label represents a lower

bound on all side-effects that a method can generate. So, if a side-effect would be

disallowed immediately after the invocation of a finish(), it would be even more so

inside a method whose lowest possible p̃c is at least as restrictive as p̃cfin. Remem-

ber that in Section 5.6.4 it has been said that all callbacks have the same Begin

Label, that is the one of the onCreate(). Hence, a finish() invocation is considered

legal as long as the Begin Label of the onCreate() is at least as restrictive as p̃cfin.

5.6. Tackling Android Challenges 67

Finish

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` τ̃ : T

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` T.onCreate〈LBG, LRT 〉(b) : (Bundle, Lb)→ void

τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` p̃c vL LBG
τ̃ ; p̃c; t̃l;G; Σ;Γ ;B; Ξ ` finish()

5.6.7 Supporting Generics

Every class in Java can be declared with a set of type parameters, that are generic

names each used to refer to an unknown Java type. They are a key feature of Java

that allows to increase code reusability. Introduced in Java 1.5, they are indeed

natively supported by the Android Platform. The typing context described in the

previous rules carries along information about the type of this, that is the class that

is being type-checked. Thus it is possible to access information about the current

class from anywhere in the model. It has been shown how a type in AFC is a pair

made up of a Java type and a DLM label, therefore each Type Parameter has its

own parameter label attached. Parameter labels produce constraints exactly like

dynamic labels (Section 5.3.5). However, they differ in the fact that they can be

checked statically whenever an object of that type is instanced, instead of performing

run-time checks.

5.6.8 Dealing with Undecidable Cases

Alas, there are some cases that cannot be resolved statically. As an example,

it is possible for the developer to present the end-user with the choice of which

Component should be used as target for its Intent. It is obvious that it is not

possible to statically predict user choices by any means. Also Partial Evaluation

may fail to compute some keys, as values too can be influenced from user input.

To cope with these undecidable situations, two countermeasures are taken. The

first is to warn the developer through an Hint message, suggesting him that keys

and values essential for inter-component communication should be final and static

values, because any other solution is very likely to introduce bugs. Second, in order

to restrict the freedom of the developer as little as possible, they are treated for

what they are: undecidable cases for which nothing can be asserted at compile-time.

As such, any label that cannot be tracked or inferred due to their undecidability is

replaced by the corresponding Default Label. This allows the type system to remain

sound, as Default Labels always represent the safest approach possible, preventing

any side-effect.

68 5. Information Flow Typing

6
Implementation

As previously hinted, AFC has not been implemented as a stand-alone tool, but

is part of a larger framework called Lintent[39]. Lintent is designed to statically

check Android applications, providing developers with a powerful - yet user-friendly

- tool that guarantees the quality of their work. In addition to preventing both

malicious and accidental information flows, it detects Privilege Escalation attacks[2]

and reconstructs Intent types to avoid bugs and run-time errors[5].

Any developer interested in writing applications for the Android Operating System

must download and install on its workstation the Android SDK, which provides

the necessary API libraries and tools to build and test Android apps. The official

Integrated Development Environment for Android applications is Eclipse[34], which

is a well-known and widely-spread IDE used by millions of code-writers around the

whole world. Additionally, developers can install an official plug-in for Eclipse called

ADT Lint [35], which scans Android project source files for potential bugs and errors.

It offers a convenient graphic interface that allows to perform more than a hundred

pre-defined checks with a simple mouse click, giving him the possibility to tweak

and disable them. Luckily enough, it also gives the possibility to extend the list of

checks by writing custom Java code that returns feedbacks to the user after having

visited the AST of the application.

The goal of Lintent is to make life easier for Android programmers, helping them

to develop better and safer applications, reducing bugs to a minimum. With this

idea in mind, we felt it natural to aim our attention to a so widely spread tool in the

Android community, believing that the integration of our work in a familiar interface

such as ADT Lint would encourage people in adopting and using it. Moreover, the

prospect of being able to analyze Java code without the need to write our own parser

was a tempting one indeed. At the moment in which this Thesis has been written,

work on Lintent was still in progress, but it had already reached a good stage of

development, and was available to be downloaded and tested in its core features.

The full source code for both Lintent and AFC can be found at [39].

70 6. Implementation

6.1 Lintent Architecture

Despite being an ADT Lint plug-in, the Java code written for Lintent acts only

as a front-end interface to communicate with the actual engine, which is an external

executable written in F#. We felt that such a complex project would have required

too much work and effort, if it were to be developed in an imperative language

as Java. On the other hand functional languages offer an higher-level abstraction,

lifting programmers from the burden to handle micro-management tasks typical of

imperative languages, leaving more time to spend on improving core algorithms.

Between the many functional languages available, F# has been chosen because it

offers good performances, a rich documentation and one of the best IDE on the

market. Figure 6.1 depicts the basic architecture of Lintent, which is composed of

two separate blocks that cooperate to produce the desired result.

Figure 6.1: Lintent architecture.

Every time that ADT Lint is asked to perform a full code analysis, it starts Lintent

after all pre-defined checks are completed. As soon as Lintent starts running, it

spawns a new processes for the LintentEngine and opens a socket connection with

it. For every compilation unit, it is given the root node of the corresponding AST

and then begins the visit. Instead of performing checks, though, Lintent marshals

the AST and sends it through the socket, where the engine rebuilds it with its own

data structure. The F# code is thus ready to start looking for issues, and, every

time that it has to report one, it sends a message through the socket, where the Java

module is listening. Once the type-checking is completed, the engine shuts down

himself, informing its parent process that is now free to return the control to Lint,

as soon as all the issues are reported to the programmer.

6.2. Annotations 71

6.2 Annotations

The majority of Information Flow type systems use a custom programming lan-

guage to define labels. It is clear that this is not a feasible approach, otherwise it

would not be possible to integrate a revised Java language with ADT Lint, because

it would detect several syntax errors. Nevertheless, it cannot be helped to have a

way to supply labels to the type system, otherwise it would be worthless. The strat-

egy adopted is to exploit Java annotations. Annotations are meta-data that can be

attached to class, members and variables declarations. They are meant to provide

information for the compiler and do not influence the code behaviour. A typical ex-

ample is the @Override annotation, which tells the compiler that the methods they

are attached to are meant to override one of those of the superclass. If this is not

the case, the compiler issues an error to the programmer that can immediately solve

the problem at compile-time, instead than having to spend much time in debugging

a simple, but difficult to find, error.

Java allows to define custom annotations that are ignored by the compiler, yet still

parsed in the AST and available to be used by any tool that should be interested in

them. Therefore we defined a range of Annotations to supply all the labels needed

by Lintent to perform its checks. These, amongst other utilities, are coded inside

an auxiliary library that is supplied with Lintent and that must be added to the

project of the Android application. Table 6.1 shows the correspondences between

DLM labels and the names of our custom annotations. Please notice that for every

label there are multiple naming choices: this is done because shorter names (e.g., L

for Label) are indeed faster and more elegant, however they are more likely to have

similar names with other custom Annotations, generating confusion. Additionally,

longer names allow to immediately understand which DLM label they are referring

to, requiring less memorization efforts. We decided to provide the programmer with

multiple choices so as to get the best of both worlds.

Label := DlmLabel, Label, L
Begin Label := DlmBeginLabel, DlmBegin, BeginLabel, Begin, B
Return Label := DlmReturnLabel, DlmReturn, ReturnLabel, Return, R
Principal Declaration := DlmPrincipals, Principals, P
Authority Set Declaration := DlmAuthoritySet, DlmAuthority, AuthoritySet, Authority, A
Declassify := DlmDeclassify, Declassify

Table 6.1: Names for AFC annotations.

72 6. Implementation

6.2.1 Grammar

Here it is shown the syntax for AFC programs. It defines both how annotations

should be written and where they should be placed. Notice that both terminals and

non-terminals inside square brackets are optional, thus replaced by default labels if

missing. All constructs followed by an asterisk (*) can be repeated zero or multiple

times. The uppercase terminals for labels can have any of the values defined in

Table 6.1. For the sake of simplicity the grammar for standard Java constructs is

taken for granted, as it would be meaningless for the purposes of this essay.

BRA := (

KET :=)

compilationUnit := dlmType

dlmType := dlmClass [dlmType]
| dlmInterface [dlmType]

dlmClass := [principalList] [authoritySet] [LABEL] javaClass

dlmInterface := [authoritySet] [LABEL] javaInterface

dlmMethod := [BEGIN] [RETURN] [LABEL] [authoritySet] javaMethod

dlmFieldDeclaration := [LABEL] [DECLASSIFY] javaFieldDeclaration

dlmVariableDeclaration := [LABEL] [DECLASSIFY] javaVariableDeclaration

dlmParameter := [LABEL] javaParameter

principalList := PRINCIPALS BRA principal (SEMICOLON principal)* KET

principal := ID [ACTS-FOR idList]

idList := ID (COMMA ID)*

authoritySet := AUTHORITY BRA idList KET

Table 6.2: Grammar for AFC annotations.

6.3. Programming Style 73

6.3 Programming Style

Most F# constructs and data structures have been used throughout the whole

program, spanning from active patterns to usual object oriented classes. Amongst

all adopted techniques there is one that has seen a wide usage. It is indeed one

of the most interesting features of F#, called Computation Expressions. Compu-

tation Expressions provide a convenient syntax for sequencing computations, using

imperative control flow statements to produce pure functional code. The advantages

thus enabled are numerous, such as the ability to write more readable, bug-free code

while also being a lot more productive. In Lintent they have been used to implement

Monads[26], that allow the computation to implicitly carry along the type checker

state in an automated fashion. This is achieved through the redefinition of some

special methods that are implicitly invoked by monadic code. As an example the

let binding1 has been redefined so as to take two additional arguments, that are the

state of the monad and a function.

Bind: (’s->’d*’e) -> (’d->’e->’s) -> M<’s, ’b>

Bind (e, f) =

fun s ->

let (r, s’) = e s

f r s’

As shown in the example above, the state of the monad is applied to the expression

e, which computes the value to be assigned to the given identifier. This expression

might affect the state itself, which is referred to as s’. The function used as second

additional parameter, called f, contains nothing more than the following statements;

in other words it represents rest of the computation to be performed. The method

then applies the results of the first statement to the rest of the program, thus

propagating the changes to the state performed by statements. This is particularly

convenient, as the programmer only has to write let! x = e, and the compiler will

automatically translate it in the aforementioned code. By using monads we have

been able to adopt a peculiar style of programming called Continuation Passing

Style, which is a common paradigm in functional languages, as it allows highly

maintainable code with a minimum amount of effort.

1A keyword that associates an identifier with a value, which can also be a function.

74 6. Implementation

6.4 State of the Type-Checker

Monads in Lintent are used to carry along information about the type-checking

progresses, all saved within a record that is the state. Inside this state it is possible

to find all those environments and information that constitute the type-checking

context, already shown while formalizing the type system model in Section 5.4.

There are also some additional data that do not regard the formalization but were

indeed necessary to implement the type checker in its entirety.

type [<NoComparison>] state =

{

classes : TJ.class_env

var_env : Env.t<id, var_decl>

comp_env : Env.t<fqid, componentt>

bundle : (var_decl list) * (var_decl list)

pc_label : Dlm.label

principals : Dlm.principal Set

hierarchy : (Dlm.principal * Dlm.principal) list

static_authority: Dlm.principal Set

latest_loop_lb : Dlm.label option

goto_targets : (id * Dlm.label) list

goto_statements : (J.statement * Dlm.label) list

}

• classes. An environment that contains all classes in the application;

• var env. The implementation of the Γ environment;

• comp env. The environment for Components, Ξ;

• pc label. The current program counter label;

• principals. The list of all principals that have been defined;

• hierarchy. The static hierarchy, containing all acts for relationships;

• static authority. The authority set possessed by the current method;

• latest loop lb. The pc label before the latest loop, to type-check breaks and

continues;

• goto targets. The list of all java labels paired with corresponding pc labels;

• goto statements. The list of al goto statements whose label has not been

encountered yet.

6.5. AFC Implementation 75

6.5 AFC Implementation

Android Flows Checker has been implemented with a modular approach, subdi-

viding it in several logical units, each with a different purpose, but all cooperating to

reach the common goal. Also known as divide et impera, it is a well-known approach

to attack complex problems, reducing them into many smaller tasks that are easier

to be dealt with singularly. It also offer the undeniable advantage of increasing code

maintainability, because should the need to entirely rewrite a single module arise,

it is not necessary to modify the rest of the code, as long as the module does not

change its external interface. Here it is possible to find a list of all AFC modules,

with a brief description of their task and some eventual interesting implementation

highlights.

Report. This module is responsible for reporting errors and warnings to Lintent.

It forwards error and warning messages to an instance of the IssueReporter type,

that is an object containing the API to perform bidirectional communication with

the Java extension for ADT Lint. The Java module of Lintent listens for messages

on the Socket, and whenever it receives errors and warnings it feeds them to the

error reporting API of ADT Lint.

Error. The Error module consists in a list of functions to be invoked whenever

AFC encounters a standard type error. Based on the source of the error, they require

further information on what generated the type error and which is its location on the

source code. All errors reported through this module are considered recoverable. An

error is deemed as recoverable if it does not abruptly end the type-checking, allowing

AFC to continue to look for other errors.

Warning Similar to the Error module, with the main difference being that it re-

ports Warnings and Hints to the programmers. Differently from errors, they do not

strictly compromise the security of the application, but are caused by bad program-

ming practices that could cause troubles if not kept under control.

Defaults This tiny module is a collection of default values and labels. As an

example, it contains all the default labels defined in Section 5.3.4

Utilities The Utilities module contains several miscellaneous functions that are

used throughout the implementation of the proposed type checker. They are not

strictly related to the Information Flow domain or the monadic environment, but

are still useful to keep the code simple and readable.

76 6. Implementation

Listing 6.1: Code snippets involving Active Patterns

1 let (|DlmMethod|) (m : J.method signature) =
2 let (DlmBeginLabel begin lb) = m
3 let par lbs = List.map (function (DlmParamLabel l) −> l) m.paramss
4 let (DlmReturnLabel par lbs begin lb.Value ret lb) = m
5 let (DlmAuthority auths) = m
6 in
7 DlmMethod (m, begin lb, ret lb, par lbs, auths)
8

9

10 let rec typecheck class ctx cl =
11 ...
12 for m in cl.methods do
13 do! trap (typecheck method or constructor ctx) m
14 ...
15

16

17 let rec typecheck method or constructor ctx (D.DlmMethod (m, begin lb, ret lb, par lbs, auths) =
18 ...

Detector The Detector module is indeed a keystone for the whole AFC type

checker. It contains all Active Patterns used during the entire implementation,

an awesome feature that allows to recognize and discern between multiple syn-

tactical patterns with a bunch of code lines. In the Listing 6.1 it is possible to

find an example of the expressiveness and power of these constructs, where an Ac-

tive Pattern called DlmMethod is defined in five lines of code that put together

other four Active Patterns, for a total of nineteen code lines. Then, in the type-

check method or constructor function, the DlmMethod pattern is used to automat-

ically attach DLM meta-data to the method, without the need to pass them around

as five distinct parameters. It is already an interesting feat if it is considered that

this hides a lot of work behind the scenes, such as looking for annotations for the

correct name, reporting eventual syntax errors, parsing the contents of the annota-

tions and returning default labels if any of them is not defined. All just by simply

passing a method signature object. But what truly makes this mechanism amaz-

ing is the fact that all these computations are declared as lazy, which means that

they are performed only once, and only when they are actually needed. Should be

that, for whatsoever reason, one or more of this labels is not required, then all the

aforementioned computation is not performed at all.

CustomMonad This module is used to implement all the special methods used

to define the monad, as previously explained in Section 6.3. It also declares the

state of the monad and several functions used for its manipulation.

6.5. AFC Implementation 77

TypeChecker The TypeChecker module is the earth of the AFC implementation,

and it is also by far the largest and most complex module. It is composed by twelve

monadic functions that sift through the whole program and implement all the rules

defined in the implementation. Together with the Detector module it is perhaps

the one that allows to appreciate most the elegance of functional languages, with

their strict resemblance to mathematical logic rules. All these functions heavily

rely on the Pattern Matching feature, which allows to produce code that presents

astonishing affinities with the formal rules, as in the example below.

match s with

...

| J.Decl ((ty, id, D.DlmLabel label), None) ->

let! label = parse_label label loc

do! bind in_var_env id (Some label, ty, None)

| J.Decl ((ty, id, D.DlmLabel label), Some init_expr) ->

let! label = parse_label label loc

do! bind in_var_env id (Some label, ty, Some init_expr)

do! typecheck_statement ctx (J.Assign (J.Var id), e), init_expr.location)

| J.Decl ((ty, id, _), None) ->

do! bind in_var_env id (None, ty, None)

| J.Decl ((ty, id, _), Some init_expr) ->

let! lb = check_expr init_expr

let! expr_lb = combine_with_pc_label [lb] loc

do! bind in_var_env id (Some expr_lb, ty, Some init_expr)

...

78 6. Implementation

Conclusions

Protecting data secrecy is a long-standing difficult problem. Discretionary access

control models do limit damages with data disclosure prevention, but do not solve

the problem, being unable to stop data propagation. As a matter of fact, once a

piece of information flows to an authorized entity, it exits from the grasp of these

models, thus becoming vulnerable to human carelessness and unsafe programming

practices. Information Flow control mechanisms are intended to monitor data prop-

agation, disallowing all information transfers to untrusted sinks. The first attempts

at devising Information Flow models in the literature, however, did lack the ability

to cope with many real-world situations, because they failed to properly handle all

those scenarios in which interested entities mutually distrust themselves and have

different security requirements. The Decentralized Label Model proposes to solve

the problem by allowing every entity (or principal) to express its own security re-

quirements on data. Hence, in an environment protected by the Decentralized Label

Model, only those information flows that respect all security requirements from all

principals are allowed.

Nowadays, mobile devices such as phones and tablets are spreading with astonish-

ing speed. Such is their diffusion that they have long since overtaken both desktops

and laptops in selling volumes. It was just a matter of time before the market would

see several high-quality Operating System designed ad-hoc for them. Amongst these

competitors, the most adopted one is currently Android OS, distributed by Google.

Despite a double layer of protections, that is a sandbox environment for applications

and a permission-based API to access system resources, several studies have shown

that Android applications are far from being safe, both regarding data secrecy and

integrity. Software to be deployed on the Android Operating System needs to be

written in the Java programming language. As of now, the only implementations

of the Decentralized Label Model for Java are JIF[36] (Java Information Flow) and

JLift[37], which is an extension of JIF. Until one month before the publication of

this thesis, that is several months after the work herewith described started, JIF

compliance with respect to Java was limited to version 1.4, while the Android Op-

erating System is based on a custom implementation that strictly resembles the 1.6

version. Just recently JIF has been updated so as to be used with the latest Java

Development Kit release, but it is still not compatible with Android. As if it was not

troublesome enough, there are several challenges posed by Android, as for example

a completely non-standard control flow, that need a system specifically tailored to

tackle them.

80 Conclusions

The goal of this work is to make a step forward in the security of Android appli-

cations, with the design and the implementation of a full-fledged DLM type checker

that is explicitly targeted for them. Additionally, it sets the objective of filling a

severe lacuna that has troubled all Information Flow type systems up till now, that

is their excessive restrictiveness. As a matter of fact, Information Flow has yet to

be widely accepted, because of the difficulty to program real-world applications in

languages that support it. For this reason we felt that, with some effort in conceiv-

ing a more practical system, it could be possible to develop a tool whose usefulness

is not limited only to its scientific improvements, but that can also be proposed as a

viable tool to any developer concerned about security of its applications. The prod-

uct of this work, however, did not have to be a stand-alone tool, but needed to be

designed to be part of a larger framework, called Lintent. Lintent further increases

the run-time security standards by typing Intents and preventing Privilege Escala-

tion attacks. Always with the same goal of achieving the highest usability possible,

it is designed as an ADT Lint extension. ADT Lint is an official Eclipse plug-in,

distributed and supported by Google, that is heavily suggested to all Android pro-

grammers. The reason behind this choice is that it allows Lintent to become part

of an environment that is familiar to most developers.

In Chapter 5 a formal model has been proposed, that represents a first attempt

at describing how to use Information Flow to improve data secrecy and integrity

of Android applications. The proposed type system, called Android Flows Checker

(AFC), comes with a set of typing rules that describes how to deal with most Java

constructs, supporting all Java releases up to the latest one currently available, that

is version 1.7. This allows AFC to be compatible with an eventual newer release

of the Android API without the need of further work. Only a few statements and

expressions, such as type casts, are not given a typing rule, because they do not

provide any interesting notion about Information Flow. Nevertheless, they have

been correctly handled in the actual implementation of the type checker, described

in Chapter 6, that implements the aforementioned type system. The chapter also

describes the syntax for Annotations, that are a standard Java feature used to

pass meta-data to the compiler. As such, they have been exploited as a way to

supply information to the type checker without altering the its run-time behaviour

or performances. Finally it gives an in-depth description of its modular structure

and the choices that have been taken, together with their reasons. We believe that

the final product of our work gives to the developers of Android applications a

powerful tool to greatly improve the security of their products. We also feel to have

achieved the goal of improving the usability with respect to previous Information

Flow systems, as the reduced amount of required labels, and a better error reporting

system, both allow for a smoother learning curve.

Future Work 81

C.1 Future Work

Albeit the proposed type system provides a viable way to improve the security of

Android applications, there is still much work that can be done to further improve

the model. In previous attempts at Java Information Flow systems, exceptions

are handled in a way that makes programming too much strenuous. Civitas[23]

demonstrates how much burdensome is exception handling in JIF. Developed by

the same authors of JIF, they used their language to implement a secure voting

system. In a little more than ten thousands lines of code there are 528 empty catch

statements[22]. In about the 80% of them, the caught exception is called imposs, a

clear indicator that the same authors recognized that JIF compels the programmer

to stuff code with useless try-catch statements. This is a fulgid example of why

Information Flow systems are having troubles spreading. We believe that, instead

of handling exceptions in such a clumsy way, it is much better to ignore them until

a smarter way to cope with them is found, as they only allow the creation of covert

channels that are difficult to exploit. Hence, conceiving a good strategy to prevent

implicit flows from exceptions, without unloading the encumbrance of managing

them to the developer, would surely represent a further step forward in the security

of Android applications.

Some features of the proposed type system are still in the design phase, as time was

pressing and it could not be possible to perform further studies. Chances are that,

with a deeper investigation, it would have been possible to devise smarter and more

neat mechanisms to handle dynamic labels and Generics (i.e. Type Parameters).

Moreover, implicit Intents are indeed troublesome. At the moment every statically-

undecidable case is treated as if its run-time counterpart corresponds to the worst-

case possible. Although this approach guarantees the safety and the soundness of the

system, it is likely to be considered as overly-restrictive in some situations. A further

set of Annotations would probably improve the situation, but we felt that a sound

solution would require a meticulous series of trial-and-error studies that are not

possible yet, due to the alpha state of the type checker implementation. Likewise to

Android Flows Checker , also Lintent is currently under active development. Once

completed, it will allow to perform more in-depth studies on real-world Android

applications. It is likely that this increased knowledge, gained through empirical

facts, will allow to devise new ideas to further increase security warranties and to

improve the practicality of Information Flow systems on Android applications.

82 Conclusions

Bibliography

[1] Myers, A.C. and Liskov, B., A Decentralized Model for Information Flow Con-

trol. 16th ACM Symposium on Operating Systems Principles, 1997.

[2] Bugliesi, M., Calzavara, S. and Spanò, A., Taming the Android Permissions

System, by Typing. Università Ca’ Foscari di Venezia, 2012.

[3] Myers, A.C. and Liskov, B., Protecting Privacy using the Decentralized Label

Model. ACM, 2000.

[4] Myers, A.C., Mostly-Static Decentralized Information Flow. Massachusetts In-

stitute of Technology, 1999.

[5] Spanò, A., Information Extraction by Type Analysis. Università Ca’ Foscari di

Venezia, 2013.

[6] Austin, T.H. and Flanagan, C., Efficient Purely Dynamic Information Flow

Analysis. University of California at Santa Cruz, 2009.

[7] Enck, W. et al., TaintDroid: An Information-Flow Tracking System for Real-

time Privacy Monitoring on Smartphones. 9th USENIX Symposium on Oper-

ating Systems Design, 2010.

[8] Biba, K.J., Integrity Considerations for Secure Computer Systems. MTR-3153,

The Mitre Corporation, 1977.

[9] Enck, W., Octeau, D., McDaniel, P. and Chaudhuri, S., A Study Of Android

Application Security. USENIX Security Symposium, 2011.

[10] Felt, A.P., Chin, E., Hanna, S., Song, D. and Wagner, D., Android Permissions

Demystified. University of California, Berkeley, 2011.

[11] Felt, A.P., Wang, H.J., Moshchuk, A., Hanna S. and Chin, E., Permission

re-delegation: Attacks and defenses. USENIX Security Symposium, 2011.

[12] Ongtang, M., McLaughlin, S., Enck, W. and McDaniel, P., Semantically Rich

Application-Centric Security in Android. Pennsylvania State University, 2009.

[13] Fuchs, A.P., Chaudhuri, A. and Foster, J.S., SCanDroid: Automated Security

Certification of Android Applications. University of Maryland, 2009.

84 Bibliography

[14] Armando, A., Costa, G. and Merlo, A., Formal Modeling and Verification of

the Android Security Framework. 7th International Symposium on Trustworthy

Global Computing, 2012.

[15] Mann, C. and Starostin, A., A Framework for Static Detection of Privacy Leaks

in Android Applications. 27th Symposium on Applied Computing: Computer

Security Track, 2012.

[16] Fenton, J.S., Memoryless subsystems. Computing J., 1974.

[17] Chin, E., Felt, A.P. , Greenwood, K. and Wagner, W., Analyzing inter-

application communication in Android. MobiSys ’11, 2011.

[18] Maji, A.K, Arshad, A.F., Bagchi, S. and Rellermeyer, J.S., An empirical study

of the robustness of inter-component communication in Android. DSN, 2012.

[19] Bartsch, S., Sohr, K., Bunke, M., Hofrichter, O., and Berger, B.J., The Tran-

sitivity of Trust Problem in the Interaction of Android Applications. CoRR,

2012.

[20] Syme, D., Granicz, A. and Cisternino, A., Expert F# 2.0. Apress, 2010.

[21] Cormac, H., So Long, And No Thanks for the Externalities: The Rational

Rejection of Security Advice by Users. Microsoft Research, 2010.

[22] King, D., Hicks, B., Hicks, M., Jaeger, T., Implicit Flows: Can’t Live With

’Em, Can’t Live Without ’Em.. The Pennsylvania State University, 2008.

[23] Clarkson, M.R, Chong, S., Myers, A.C., Civitas: Toward a Secure Voting Sys-

tem. Cornell University, 2007.

[24] Project Lombok, Lombok AST Repository on Git-Hub, 2013.

https://github.com/rzwitserloot/lombok.ast

[25] Lippert, E., Continuation Passing Style Revisited, 2010.

http://blogs.msdn.com/b/ericlippert/archive/2010/10/21/continuation-

passing-style-revisited-part-one.aspx

[26] HaskellWiki, Monad, 2013.

http://www.haskell.org/haskellwiki/Monad

[27] Wikipedia, Apache Harmony, 2013.

http://en.wikipedia.org/wiki/Apache Harmony#Use in Android SDK

Bibliography 85

[28] Canalys, Google’s Android becomes the world’s leading smart phone platform,

2011.

http://www.canalys.com/newsroom/googles-android-becomes-worlds-leading-

smart-phone-platform

[29] Oracle Corporation, JavaTMPlatform, Standard Edition 7, API Specification,

2013.

http://docs.oracle.com/javase/7/docs/api/

[30] Microsoft Corporation, F# Language Reference, 2013.

http://msdn.microsoft.com/en-us/library/dd233181.aspx

[31] Android Developers Guide, Keeping Your App Responsive, 2013.

http://developer.android.com/training/articles/perf-anr.html

[32] Johnson, K., The urgent need for mobile device security policies, 2011.

http://www.gsnmagazine.com/node/24983

[33] OODesign.com, Visitor Pattern.

http://www.oodesign.com/visitor-pattern.html

[34] Eclipse Foundation, Eclipse Juno 4.2 Documentation, 2013.

http://help.eclipse.org/juno/index.jsp

[35] Android Tools Project, Android SDK Tools & Eclipse plug-in (ADT), 2013.

http://tools.android.com/release

[36] Meyers, A.C., Jif Reference Manual, 2012.

http://www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html

[37] King, D., JLift, 2008.

http://siis.cse.psu.edu/jlift/jlift.html

[38] Frazza, A., Android Flows Checker source code, 2013.

https://github.com/alvisespano/Lintent/blob/master/src/LintentEngine/DlmTyping.fs

[39] Spanò, A., Frazza, A., Lintent Repository, 2013.

https://github.com/alvisespano/Lintent.

	Introduction
	Information Flow
	Dynamic Information Flow
	Static Information Flow

	Decentralized Label Model
	Motivating Example
	Principals
	Acts-For Relationship
	The Top Principal
	The Bottom Principal

	Confidentiality
	Reader Policies
	Conjunction of Reader Policies
	Disjunction of Reader Policies
	Ordering on confidentiality

	Integrity
	Writer Policies
	Conjunction of Writer Policies
	Disjunction of Writer Policies
	Ordering on Integrity

	Labels
	Ordering on Labels
	Labels Relabeling
	Declassification

	Android
	Security Overview
	Apps Structure
	Activities
	Services
	Broadcast Receivers
	Content Providers
	Intents

	Activity Lifecycle
	Peculiar Challenges
	Creating an Activity
	Returning Results
	Terminating an Activity
	Tracking Key-Value Pairs
	Handling Intents
	Supporting Generics

	Information Flow Typing
	Motivations
	Implicit Flows
	Labels
	Label Syntax
	Method Labels
	Label Inference
	Default Labels
	Dynamic Labels
	Authority

	Type System Model
	Definitions
	Types Environment

	Typing Rules
	Type-Checking Java Expressions
	Type-Checking Java Statements
	Type-Checking Classes and Methods

	Tackling Android Challenges
	Partial Evaluation
	Handling Intents
	Tracking Key-Value Pairs
	Creating an Activity
	Returning Results
	Terminating an Activity
	Supporting Generics
	Dealing with Undecidable Cases

	Implementation
	Lintent Architecture
	Annotations
	Grammar

	Programming Style
	State of the Type-Checker
	AFC Implementation

	Conclusions
	Future Work

	Bibliography

