
Department of

Environmental Sciences, Informatics and Statistics

Master’s Degree Programme in

COMPUTER SCIENCE

An Implicit Neural Representation
for Reflectance Transformation

Imaging (RTI)

Supervisors:

Prof. Filippo Bergamasco

Dr. Mara Pistellato

Candidate:

Sandro Baccega

ID. 865024

Academic Year 2023-2024

Contents

Abstract 4

1 Introduction 5

1.1 How RTI works . 6

1.2 Applications of RTI . 7

1.3 Implicit Neural Representations . 12

2 Related Work 14

2.1 Capturing RTI data . 14

2.2 Encoding reflectance data . 19

2.2.1 Polynomial Texture Maps file format 20

2.2.2 Reflectance Transformation Imaging file format 20

2.3 Interpolation methods . 20

2.3.1 Polynomial Texture Maps . 21

2.3.2 Hemispherical harmonics . 21

2.3.3 Radial Basis Functions . 22

2.4 Neural networks based methods . 23

2.4.1 Neural RTI . 23

2.4.2 PCA model . 26

1

3 Proposed Methodology 30

3.1 Data Extraction . 30

3.1.1 Video Creation . 30

3.1.2 Video Syncing . 31

3.1.3 Camera Calibration . 33

3.1.4 Finding the camera intrinsic matrix 33

3.1.5 Marker Detection . 35

3.1.6 Camera Pose Estimation . 37

3.2 Data Interpolation . 38

3.2.1 LinearRBF . 38

3.2.2 Polynomial Texture Maps . 38

3.2.3 PCA Model . 39

3.2.4 Implicit Neural Model . 39

3.3 Data Analysis . 42

3.3.1 L1 (Mean Absolute Error) . 43

3.3.2 PSNR . 43

3.3.3 SSIM . 44

3.4 Interactive Relighting . 45

3.4.1 Obtaining the light direction 45

4 Experimental Results 47

4.1 SynthRTI dataset . 47

4.2 Tuning the model . 48

4.2.1 Finding σl value . 49

4.2.2 Finding σp value . 49

4.3 Methods Comparison . 52

4.3.1 Training the model with fewer images 56

5 Conclusions 60

Bibliography 61

Glossary 68

Credits 70

Abstract

Reflectance Transformation Imaging (RTI) is a widely used method for obtaining

detailed per-pixel reflectance data by photographing an object under varying lighting

conditions. The gathered information can then be utilized to re-light the subject

interactively and reveal surface details that would be impossible to see with a single

photo. In this thesis, we propose a data-driven approach based on an Implicit Neural

Representations (INR) of the light transport function to interactively relight the

scene in a photorealistic way. Comparisons with existing state-of-the-art methods

demonstrate the feasibility of the approach and suggest further investigation of INRs

for RTI applications.

4

Chapter 1

Introduction

Reflectance Transformation Imaging (RTI) is a popular Computational photography

technique which allows to detect the details of the object’s surface starting from

a set of images. The technique, in fact, can reveal information about the rich

representations of surfaces including geometric details and reflective behavior of

materials using an algorithmic rendering that uses multiple known images of the

object [3]. In order to retrieve such information, the set of images should be captured

from a fixed point of view with varying light direction. This technique was first

conceived in 2001 at Hewlett Packard Labs and, was originally called Polynomial

Texture Maps (PTM) [36].

Reflectance Transformation Imaging is widely used in the cultural heritage sector

due to its practical applications, such as material quality analysis of the surface,

enhancement of visualization and consequently the production of relightable images.

It is also useful for documentation and preservation, since it is possible to reconstruct

the surface of damaged objects. In fact, the resulting images can reveal information

that would otherwise be difficult to see with naked eyes, such as manufacturing

techniques, surface conditions or conservation treatments. Regarding this benefit, it

is necessary to underline the non-invasive characteristic of RTI. During the process

5

CHAPTER 1

of acquisition, in fact, materials and objects do not require to be touched and are

not exposed to any harmful radiation.

Moreover, RTI is a flexible technique, so it can be applied to several materials

and sizes, and it can be used in different environments, not only in a laboratory

but also in open space. Because of its advantages, it can be complementary to or

beneficial to other 3D models techniques such as photogrammetry or multispectral

imaging. The main difference with Photogrammetry is that in the photogrammetry

process, light and object are static while it is the camera that rotates; instead, the

RTI process requires that the object and camera are static and the light source

rotates. Moreover, RTI does not produce quantitative metric data, like photogram-

metry, and, however it produces qualitative surface data, RTI is not able to show

what lies beneath the surface. Beyond these differences, photogrammetry and RTI

share some characteristics, because both are computational photographic image-

based techniques and both involve passive image acquisition. However, RTI is not

a 3D technology because it does not produce 3D models, like photogrammetry; in-

stead, it generates a 2D detailed mathematical map of the surface texture, based on

the normal vectors [3].

1.1 How RTI works

The way RTI works is rather simple: the object and the camera are at a fixed

position, the only thing that changes between the photographs is the position of

light. The light sources are fixed at a constant radius from the object and they

surround it at incremental angles, forming a dome or hemisphere of light positions.

The user may also add some real-time changes during the process, such as zoom in

and out, increase or decrease sharpness, contrast and other lights or filters [11]. After

the acquisition of all the images, the software processes all of them and produces one

6

CHAPTER 1

composite image, which is possible to manipulate in order to reveal surface details.

The final image, in fact, initially looks like a flat, normal photograph, but then, if

it is viewed with an RTI viewer, the user can freely move the virtual light source

around the image, for example, using a mouse. In simple words, when the users drag

their mouse through the image, which contains light information, they are dragging

their mouse over a hemispheric volume. As a consequence, when the mouse cursor

is in the center of the light space area, the illumination is analogous to the sun at

’high noon’, and when the mouse cursor is dragged toward the edge of the light

space area, the sun approaches the ’horizon’ [5], [Figure: 1.1] shows the same RTI

scan under three different light directions.

Figure 1.1: Silver Athenian Tetradrachma, 449 BCE [5]

1.2 Applications of RTI

Reflectance Transformation Imaging it has been widely adopted in the cultural her-

itage sector, primarily because it requires only regular photographic hardware and

some freely available software. In fact, the necessary equipment usually consists

of only a hemispherical light dome with digital cameras on the top and lights in

different positions to capture and enhance sample surface details, but, as the paper

”On-the-go Reflectance Transformation Imaging with Ordinary Smartphones” [1]

7

CHAPTER 1

demonstrates, it is possible to use RTI with as little equipment as two smartphones

and a printed marker, making it a very inexpensive method to capture this type of

details.

An example of application can be the Neolithic Figurines from Koutroulou

Magoula in Greece [4]. In this project, RTI was capable of capturing the surface’s

marks, including fingerprints created unintentionally during the process of molding

the figurines [Figure: 1.2], [Figure: 1.3].

Figure 1.2: Figurine 2012/640-07. Snapshot of the visualization through the RTI Viewer
of the fingerprint identified onthe head of the figurine. Enhancement with computational
algorithms in the following modes (from upper left to bottomright): Default, Diffuse

Gain, Specular Enhancement, and Normals Visualization. [4]

Another example could be the analysis of the Folkton ”Drums” [10] [Figure: 1.4],

which are the most remarkable decorated artefacts from Neolithic Britain. The use

8

CHAPTER 1

Figure 1.3: Figurine 2009/TH1-19. Snapshot of the visualization through the RTI
Viewer of the partial fingerprintidentified on the right eye of the figurine and brush

strokes on the hairdo, to the left of the eye. Enhancement withcomputational algorithms
in the following modes (from upper left to bottom right): Default, Diffuse Gain,

SpecularEnhancement, and Normals Visualization. [4]

of RTI has revealed evidence of the substantial erasure and consequent reworking of

motifs on these objects. The decorations on these chalk drums, in fact, were carved

and re-carved over time. There is no pre-ordained scheme, and this way of making

artefacts and their decorations may have been very common in Neolithic Britain.

In another case RTI was used to study bone surface details, including cut marks,

striations, etching and polishing [7]. The collection of manufactured bone arti-

facts, in this case study, derive from the ancient Maya site of El Zotz, Guatemala.

Reflectance Transformation Imaging has proven to be effective for analyzing tech-

9

CHAPTER 1

Figure 1.4: Reworking and erasure on the bottom blank space of the side panel, drum 1;
erased motifs indicated in yellow;viewed under Reflectance Transformation Imaging

Specular enhancement. [10]

nologies involved in the production of worked bones and investigating use-wear, also

for examining post-depositional processes and conditions. Alterations found on the

surfaces of archaeological bone specimens provide useful insights into past human

behaviors and the natural processes that contribute to the formation of assemblages

and archaeological sites. The physical marks resulting from manufacturing tech-

niques and patterns of use-wear are useful in determining the technologies used to

create bone tools and deducing their intended uses. Moreover, observable changes

on bone surfaces can disclose taphonomic activities, including weathering, the effects

of plant roots, damage from trampling, and the impact of gnawing by rodents or

carnivores [7].

RTI has also been applied to objects of considerable dimension, like a statue

that stands around 2.5m high on top of a 1.3m-high plinth. The statue in question

was Hoa Hakananai’a, a fine Easter Island statue, which is displayed in the British

Museum. Due to the dimensions of the statue, the team decided to split the back

10

CHAPTER 1

area into key sections, in order to have a better image resolution, otherwise the small

details would not have been clear enough if the whole of the back was contained

within a single image set. Moreover, there was the issue of the acquisition of the

images. Since in RTI acquisition, the light source needs to be at the same distance

from the object, scaffolding was required. It was necessary also to achieve a flat

horizontal alignment, so to elevate the camera to the same height as the back of

the head. This setup presented a challenge because the scaffolding offered limited

positions for placing a camera tripod. Consequently, this adjustment introduced an

additional RTI issue: camera focus. With the camera mounted on the scaffolding,

focusing required a team member having to climb up and down between datasets.

This activity occasionally resulted in minor camera movements, causing a sequence

of out-of-focus shots [8]. [Figure: 1.5] shows an image of the capturing process.

Figure 1.5: RTI capture, with the camera fixed on scaffolding just out of shot to left;
light is delivered by moveable remote flash, set at a constant distance from the statue

determined by a length of string. [8]

11

CHAPTER 1

After this process, it was possible to discover that the statue was made from the

start with a tapering base, thanks to the study of the details of surface topography

and condition at the lower extremity of the visible statue. In the past, it was

suggested that the statue was meant to stand on a platform before it was moved to

the site where it was found in 1868. [Figure: 1.6] shows an example of the results

obtained by the research team.

Figure 1.6: Examples of an analysed RTI dataset of Hoa Hakananai’a (lower back),
rendered in natural colours and with specular enhancement [8]

The need for high-resolution documentation of cultural heritage located beneath

the water’s surface is growing. For instance, Underwater RTI (URTI) has been

used to capture details from historical shipwrecks in the Solent and the western

Mediterranean [9]. This was the first adaptation of RTI protocols to the subaquatic

environment, employing a scuba-deployable technique. The outcomes demonstrate

that URTI is capable of revealing qualitative diagnostic details down to submillime-

ter precision on archaeological materials in their underwater settings [9]. [Figure:

1.7] shows the process in action.

1.3 Implicit Neural Representations

Implicit Neural Representations (INR) are types of neural networks that aim to

approximate a continuous function by training on discrete examples. Since INRs

12

CHAPTER 1

provide continuous functions; they can, in theory, represent data at an infinitely

fine resolution, making them a powerful tool in a wide range of applications, from

image compression to audio processing.

An example of INR are SIRENs [24], neural networks that use periodic activation

functions capable of representing complex natural signals and their derivatives.

In our case, we are to approximate the interpolation function f(x, y, l⃗) → a by

training a neural network Z with discrete examples (our training set), making our

neural network with an INR.

To increase the accuracy of the model, since the input of our model are pixel

coordinates and light directions, it is possible to use positional encoding [30]. This

technique, that uses random Fourier features, maps the input coordinates to higher

dimensional Fourier space γ : RD → R2D instead of giving them to the model

directly. The mapping can be defined as [Eq: 1.1] where w is a randomly sampled

gaussian matrix N = (0, σ2) of size D.

γ(v) ∈ R2D =
[︁
cos(2πwT

1 v), sin(2πw
T
1 v), . . . , cos(2πw

T
Dv), sin(2πw

T
Dv)

]︁T
(1.1)

Figure 1.7: Selmo performing URTI on the Cap del Vol, first century BC, Roman
shipwreck. Photo credit: Dr. Gustau Vivar. [9]

13

Chapter 2

Related Work

This chapter will describe methods to capture, encode and process RTI reflectance

data similar to the one we are proposing in this thesis, described in detail in [Chapter:

3.2.4].

2.1 Capturing RTI data

This section will elaborate some of the most common RTI acquisition methods. In

[Chapter: 3.1] we replicate the methodology from [1] to acquire and extract the data

necessary for RTI that is going to be discussed in [Chapter: 2.4.2].

Fixed Light Dome

The most common way to acquire RTI data is to use a fixed light dome [Figure: 2.1].

This method has the fixed light sources (from 40 to 100 LEDs) as well as the camera

attached to the dome structure, and since there is no moving part, this method is

quite fast. As a disadvantage, fixed light dome is much more restrictive in terms of

light position, since any changes requires a reconstruction of it [48].

A lot of projects have been developed by creating an acrylic hemispherical dome

14

CHAPTER 2

of diameter 1030 mm, which is fitted with 64 flash lights and arranged in five tiers

[Figure: 2.3]. During the acquisition the camera is mounted at the ‘north pole’ (at

the highest point of the dome) and the object is placed on the horizontal baseboard

[Figure: 2.2]. Thanks to the control electronics, it is possible to select or combine

the desired lights and synchronised them with a digital camera. In this way, a

sequence of multiple pictures of the object may be captured, each illuminated from

a different direction. A geometric calibration procedure (using data of the length

and orientation of shadows produced by a centrally positioned vertical pin in the

baseboard) can be used in order to determine the exact coordinates of the lights

[49,50].

Figure 2.1: RTI Fixed Light Dome by Tim Zaman [35]

H-RTI

Another method is Highlight Reflectance Transformation Imaging (H-RTI), which

differs from the traditional RTI acquisition approaches, because at the time of

recording the photographic images, it is not required to know the locations of the

lights used to construct the reflectance data [6]. The light source position is regis-

tered on each photograph and then calculated afterwards. [51]

15

CHAPTER 2

In this method, developed by CHI around 2006, the direction of the light is

figured out by spotting its specular reflection on two shiny black spheres included in

the scene (using RTIBuilder). However, this approach relies on certain assumptions

like constant light intensity and orthographic camera model, which can make the

method unreliable in real-world situations. During the acquisition of the images,

the camera is mounted on a tripod and the light source (a flash or a lamp) is

manually held in position by a person moving around the object [Figure: 2.4]. For

each photograph, the light source is moved to a different position and angle, always

maintaining the same distance from the target, in order to create an imaginary dome

around it. [48, 51]

HRTI is a flexible technique because the light source can be placed in any conve-

nient position, but handheld acquisition is a painstaking and tedious task. In order

to achieve efficiency and precision during the acquisition process, different machine

setups have been developed in recent times, such as the techniques that will be

presented in the following section. [48,49]

Figure 2.2: Schematic layout of 64 lamps (white circles) on the surface of hemispherical
dome, showing camera at ‘north pole’, the object (yellow) in the equatorial plane, and a
triangular section (red) of a plane intersecting the coordinates of three lamps in Tiers 2,

3 and 5 [49]

16

CHAPTER 2

Figure 2.3: Hemispherical acrylic dome with 64 flash lamps [49]

Figure 2.4: Conservators during data capture using the RTI Highlight method, where a
light source is moved around the object and a new image is taken for each light

angle [51]

Mechanized Dome System

An alternative method for capturing RTI data involves a Mechanized Dome System,

which features a servo motor that positions the light source within the dome. This

setup allows users to easily select various lighting directions based on the current

object without having to reconstruct the dome for each use, but at the expense of

a more complex and expensive setup [48].

17

CHAPTER 2

Recently, in order to capture large or translucent surfaces, robotic arm-based for

RTI systems have been developed by the Norwegian Color and Visual Computing

Laboratory [54]. They created a multispectral RTI system, which uses a robotic arm

for positioning the light source during the acquisition. The team recognized there

was a lack of RTI capture set ups of relighting models on translucent materials, so

they developed this system in order to be able to acquire images of materials with

different translucency. In this system, the robotic arm holds the light source and

move it along a virtual half hemisphere around the object. The mechanized arm

covers only half of a hemisphere, because the other half is covered by rotating the

table base. The object is rotated for 180° in the horizontal plane and around the

center of the virtual hemisphere. In this way, the entire azimuth range for the light

source positioning is achieved [Figure: 2.5] [54].

Figure 2.5: Our RTI system consisted of a robotic arm that holds a light source, a
turntable the holds the object, and a multispectral camera angle. [54]

Another impressive example is the robotic arm-based system design, which is

called LightBot [53]. This system overcomes the disadvantages of the other method-

ologies, such as the issue of reproducibility, the limitations on the size of target’s

objects and difficulties on portability and speed. As it is stated in the paper, these

limitations are observed in the case of free-form or dome-based systems. LightBot

[Figure: 2.6] was designed to address some of these issues and, according to their

18

CHAPTER 2

knowledge, it was the first approach towards the automation of the RTI acquisi-

tion process for medium and large surfaces, which are difficult to acquire with the

conventional dome systems [53].

Figure 2.6: Proposed system—LightBot [53]

2.2 Encoding reflectance data

After capturing the required images, it is necessary to encode them to be able to

perform relighting in a later stage. This means that there should be a way to encode

the reflectance data into a standard format. There are two commonly used software

to encode (and relight) reflectance data: RTI Builder & RTI Viewer [55], that

supports PTM and HSH, and Relight [56], that supports PTM, HSH and PCA/RBF,

but there is no widely available software that supports methods like: Discrete Modal

Decomposition (DMD) [19,20], Neural RTI [2] or On-The-Go RTI [1].

19

CHAPTER 2

2.2.1 Polynomial Texture Maps file format

The first way to encode the reflectance data, proposed in [36] to compress PTMs,

involves the creating of a color lookup table and generates a .ptm file. In the case

of LRGB PTMs, a 256-entry lookup table, with 6 polynomial coefficients per entry,

achieves quality that is close to the original PTMs without any notable increase

in size. For RGB PTMs, a similar technique with a lookup table containing 18-

byte entries with 12-bit indices, produces results that cannot be distinguished from

the original PTMs. This method enables random access, allowing each PTM to be

evaluated independently. We can also spread the polynomial coefficients into plains

and use the JPEG or JPEG-LS compression algorithms to achieve better results.

2.2.2 Reflectance Transformation Imaging file format

The .rti file format was developed under an IMLS National Leadership grant (LG-

25-06-0107-06) to the University of Southern California (USC) and Cultural Heritage

Imaging (CHI) with the objective of creating a standard format that supports mul-

tiples fitting methods, like Spherical Harmonics (SH) and Hemispherical Harmonics

(HSH).

2.3 Interpolation methods

After encoding the acquired images, the next step in the RTI pipeline is to use a

function f to interpolate the data, that commonly takes any normalized light vector

l⃗ and the encoded reflectance data p: f(p, l⃗) → y. The following sections describe a

few of the most widely used methods.

20

CHAPTER 2

2.3.1 Polynomial Texture Maps

”Polynomial Texture Maps” [36] is the first paper that presents Reflectance Trans-

formation Imaging.

In PTM, the core idea is to construct a polynomial regression that uses six

coefficients (a0 to a5) to approximate the surface’s reflectance behavior as a function

of the angle of incident light. These coefficients are determined on a per-pixel basis

and are fit to a second-degree polynomial. This polynomial equation [Eq: 2.1]

incorporates the projections (lu, lv) of the normalized incident light vector relative

to the coordinates (u,v), allowing for the detailed mapping of light across the object’s

surface. That formula is then used in [Eq: 2.2] and can be solved using Singular

Value Decomposition (SVD) [21]. PTM provides a estimation of the overall shape

and tends to smooth out fine details compared to other interpolation techniques.

L(lu, lv) = a0 + a1lu + a2lv + a3lulv + a4l
2
u + a5l

2
v (2.1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l2u0 l2v0 lu0lv0 lu0 lv0 1

l2u1 l2v1 lu1lv1 lu1 lv1 1

...
...

...
...

...
...

l2uN l2vN luN lvN luN lvN 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a5

a4

...

a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0

L1

...

LN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2)

2.3.2 Hemispherical harmonics

Hemispherical Harmonics (HSH) [17, 18], derived from Spherical Harmonics (SH)

functions, represent an evolution of PTMs. The core concept behind HSH is to

project the data onto a more appropriate set of hemispherical harmonics basis func-

21

CHAPTER 2

tions, which more closely resemble the shape of the reflectance field. The HSH

functions, denoted as Hm
l , are derived from Legendre Polynomials [Eq: 2.3] and are

only defined for the upper hemisphere [Eq: 2.4], where Km
l are the hemispherical

normalization factors [Eq: 2.5]. Now, the surface reflection function can be broken

down into a series of Hemispherical Harmonics (HSH) of varying order 1 and degree

m [Eq: 2.6].

P̃
m

l (cos θ) = Pm
l (2 cos θ − 1) and θ ∈

[︂
0,
π

2

]︂
(2.3)

Hm
l (θ, ϕ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√︁
2Km

l cos(mϕ)P̂
m

l (cos θ) if m > 0√︁
2Km

l sin(−mϕ)P̂
−m

l (cos θ) if m < 0

K0
l P̂

0

l (cos θ) if m = 0

(2.4)

Km
l =

√︄
(2l + 1)(l − |m|)

2π(l + |m|)
(2.5)

Cm
l (θv, ϕv) =

∫︂ 2π

0

∫︂ π
2

0

f(θv, ϕv, θi, ϕi)H
m
l (θi, ϕi) sin θidθidϕi (2.6)

2.3.3 Radial Basis Functions

Another popular method for interpolating the RTI data is using Radial Basis Func-

tion (RBF) [14]. RBF, originally introduced by [13] for solving partial differential

equations, is a general mathematical technique applicable in various fields beyond

RTI, such as neural networks [15] [16], pattern recognition, data visualization, med-

ical applications, surface reconstruction, etc.

RBFs can be used for function interpolation. Given a set of points, they can

create a function that fits the points at their locations. RBF interpolation is a

22

CHAPTER 2

mesh-free method, meaning it does not require a grid to be defined. This makes it

very flexible for multi-dimensional data interpolation. A commonly used form for

RBF interpolation is:

s(x) =
N∑︂
i=1

λiϕ(∥x− xi∥)

Where:

• s(x) is the interpolant.

• ϕ is the radial basis function.

• λi are coefficients to be determined.

• xi are the centers (the given points).

• N is the number of centers.

2.4 Neural networks based methods

These approaches utilize neural networks to facilitate RTI by, for example, lever-

aging an encoder/decoder architecture. They can efficiently compress reflectance

data [23] while preserving high-quality details. Additionally, they are capable of

accurately approximating the light transport function, essential for the relighting.

Two methods will be presented.

2.4.1 Neural RTI

In ”Neural reflectance transformation imaging” [2] the authors propose to use a sim-

ple Neural network with an autoencoder architecture [Figure: 2.7] to compress the

huge amount of information, which RTI requires into a much smaller format that

23

CHAPTER 2

better preserve the original information compared to traditional methods. Autoen-

coders [25] are neural networks capable of learning to compress the input and later

to decompress it as close as possible to the original, this type of neural network has

been proven useful for tasks like image compression [26] and denoising [27].

Figure 2.7: Neural RTI model architecture

The described model is trained using a collection of multi-light images, with the

pixel data of these images and their corresponding light directions as input. The

training aims to minimize the difference between the network’s predicted pixel values

and the ground truth pixel values for a set of known light directions.

The network is designed to create a storable relightable image composed of a

compact pixel code along with the coefficients of the decoder network, which are

unique for each pixel location, and then, given any light direction, it generates

relighted images.

The main metrics used to evaluate the model were Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity index (SSIM), both metrics will be discussed in

[Chapter: 3.3.2] and [Chapter: 3.3.3] respectively.

Neural RTI has proven to be able to provide better results than current state-of-

the-art methods [Figure: 2.8] because it requires less space to store the data, making

it even possible to run it on the web using tensorflow.js [39]. In the same paper the

authors presented the SynthRTI dataset discussed in [Chapter: 4.1].

24

CHAPTER 2

Figure 2.8: Neural RTI average SSIM and PSNR on SynthRTI

25

CHAPTER 2

2.4.2 PCA model

In the work titled ”On-the-go Reflectance Transformation Imaging” [1] the authors

introduce a novel approach for capturing reflectance data using two smartphones.

Additionally, they present a new neural relighting model capable of reconstructing

the appearance of objects under any lighting direction. This model efficiently recon-

structs object appearance from reflectance distribution data compressed utilizing

Principal Components Analysis (PCA).

In this thesis, we replicated the methodology outlined in the referenced paper,

starting with data extraction from smartphone videos, as detailed in [Chapter: 3.1],

through the compression and interpolation of reflectance data utilizing PCA and

their neural model.

Figure 2.9: RTI acquisition and relighting pipeline [1]

The entire pipeline described in the paper, that can be visualized in [Figure:

2.9], is divided in several steps, from the video acquisition and data extraction

(using audio synchronization and marker detection) to the creation of the Multi-

Light Image Collection, then to the PCA light vector compression, model training

and finally relighting.

The initial steps of the pipeline are dedicated to the reflectance data extractions

for creating the MLIC. It starts with the video acquisition shown in [Figure: 2.10].

The video is captured using two ordinary smartphones, by placing one, denoted

26

CHAPTER 2

static, above the object with the camera towards it and the other one, denoted

moving, that will record the video with the flashlight turned on while moving around

the object. The purpose of this method is to use the moving smartphone flashlight

instead of the fixed light domes LEDs and uses the frames from the static smartphone

as the captured images. The two videos from the smartphones are then synchronized

using the audio track and the marker (with the object placed inside it) serves a

different purpose for each camera. For the static camera the marker it’s used to

detect the corners to crop the images (W × H pixels) that will compose the final

MLIC. It’s worth noting that the images are captured in greyscale first and then

re-colored later on, but in this thesis we only reproduced the greyscale version. For

the moving camera the marker is used to compute the Homography H, factorising

it as [Eq: 2.7] and then compute the light direction L [Eq: 2.8]

Figure 2.10: Left: RTI acquisition methodology, Right: example of images obtained with
the two smartphones [1]

27

CHAPTER 2

K−1H = α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

| | |

r1 r2 t

| | |

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
α ≈ 2/(||r1||+ ||r2||)

(2.7)

L = t/||t|| (2.8)

Where:

• K is the intrinsic camera matrix

• r1, r2 are the first two columns of the rotation matrix R

• α is a non-zero unknown scale factor that can be approximated since R must

be orthonormal

• t is a vector that represents the light position

• L is final light direction

After the initial steps a MLIC with the corresponding light directions is obtained

and it’s possible to compress the light direction vector via Principal Components

Analysis. To do that they defined B (in their case 8) orthogonal bases for a total

compressed light vector K of W ×H ×B values.

The next step in the pipeline is training the network Z. The proposed model

is a small Multilayer Perceptron (MLP) [Figure: 2.11] that takes in input the light

compressed vector k for the desired pixel coordinates and the light vector l⃗ = (lu, lv)

of size B. The model uses positional encoding [30] on the light vector to increase

28

CHAPTER 2

performances, this means that the vector is projected into a H dimensional Fourier

space as explained in [Chapter: 1.3], making the input of the model B + 2H in size

that looks like [Eq: 2.9].

I = (k0, . . . , kB, cos(s0), . . . , cos(sH), sin(s0), . . . , sin(sH)) (2.9)

Where S = B ∗ l⃗, and B is a randomly sampled Gaussian distribution N(0, σ2).

Figure 2.11: PCA model architecture [1]

The last step, the relighting, can be carried out with [Eq: 2.10]

f(p, l⃗) = (Z(kp, l⃗), Ū(p), V̄ (p)) (2.10)

29

Chapter 3

Proposed Methodology

This chapter will describe our methodology to obtain the results available in [Chap-

ter: 4] and to reproduce the results from [1]. We started by extracting the data

using smartphone videos [Chapter: 3.1] and then proceed by interpolating the data

with several methods [3.2]. After reproducing the results, we started implementing

a new interpolation method using our own neural network with an INR [Chapter:

3.2.4].

3.1 Data Extraction

This section will explain how the data of the coins dataset was extracted, from how

the images were captured to our methodology for calculating the light direction from

them.

3.1.1 Video Creation

For each coin, two videos were created:

• A video from a static camera above the object

30

CHAPTER 3

• A video from a camera that was moving around the object with the flashlight

turned on

Those videos were recorded at the same time. For reproducing the acquisition

process, it is necessary to follow these steps:

• Place a known planar square marker on a flat surface, and place the target

object on top of the marker.

• Place the first smartphone above the object with the flashlight turned off, and

start the camera to record a video sequence.

• Set the second smartphone to have both the camera and flashlight turned on,

and move it around the object to shine light on it from different angles. Be

sure to keep the marker visible in the frames.

3.1.2 Video Syncing

As stated earlier, each coin corresponds to two videos, but synchronization does not

occur inherently between them. This causes a problem because the frames from the

moving camera and the static camera needs to be aligned in order for the algorithm

to be able to correctly extract the light direction of each frame.

To address this issue, we have to solve the following problems:

• There is a delay between the start of the first and the second video.

• The two videos have two different FPS values.

Solving the video delay

The best way to find the delay between the two videos is to look at the audio

track of the videos directly and align it. This is possible because the two videos

31

CHAPTER 3

were recorded at the same time, so the audio track between the two should be very

similar. Since we could control the video creation, we intentionally snapped our

fingers during each recording session to make the audio alignment easier. To align

the audio tracks we used an open source tool called Audacity [37], a popular audio

editing software, to find the timestamp of the snapping fingers in both videos, and

easily calculate the delay (d) between the twos, using [Eq: 3.1]

d = ts − tm (3.1)

Where:

• d is the total delay.

• ts is the timestamp of the static video.

• tm is the timestamp of the moving video.

After calculating d we used another open source tool for video editing called

FFmpeg [38] to create a new video of the moving camera that had a blank offset at

the start using the input function by setting the itsoffset attribute equals to d.

Now we have two new videos that have the exact same starting point.

Solving the fps difference

If the two videos have different fps values, the videos will get little by little out of

sync during the analysis. The reason for this is that our code analyzes every frame

of each video, so if one of the two has more frames than the other one, the twos will

not be synced anymore. To solve this we can, once again use FFmpeg [38] to bridge

the gap and generate two new videos with the same fps values, using the filter

function with an equal fps attribute value. Now we have 2 new videos that have

the exact same fps value.

32

CHAPTER 3

3.1.3 Camera Calibration

Pinhole cameras can often cause considerable image distortions, typically in two

primary forms: radial and tangential distortion.

Radial distortion results in straight lines appearing curved in the image. This

distortion effect amplifies as the distance from the image center increases. For

instance, consider the image shown below [Figure: 3.1], where a chess board’s two

edges are highlighted with red lines. It becomes evident that the chess board’s border

deviates from a straight path and does not align with the red line. All anticipated

straight lines are visibly distorted, curving outward.

Figure 3.1: Image distortion problem

3.1.4 Finding the camera intrinsic matrix

In order to solve the distortion problem we first need to find the intrinsic matrix

of the camera. To do that we used the findChessboardCorners function and the

calibrateCamera function from OpenCV [40]. In order to use this functions we

need to have some pictures of a standard chessboard that can be generated with a

dedicated script [43]. Since we are using two smartphones, the camera properties

33

CHAPTER 3

while recording a video were different than while taking pictures, in order to have

the correct ones we had to obtain the images of the chessboard directly from a video

of the chessboard. Another point to consider is that only a few frames are required

for effective camera calibration, so if we took a short video of the chessboard, we

can skip most of the images by setting the current frame of the video to fc + fs,

where each iteration and making sure that [Eq: 3.2] is always respected to prevent

overflowing. All of this translates to roughly the following code:

fc + fs ≤ n (3.2)

Where:

• fc is the current frame

• fs is the number of frames to skip

• n is the total number of frames in the video

Now that we saw how to get frames from the calibration video, we can use the

findChessboardCorners and calibrateCamera functions to find:

• r, the RMS of the process

• K, the intrinsic parameters matrix of the camera

• d, the distortion parameter

• r⃗, the rotation vectors

• t⃗, the translation vectors

Of these parameters we mostly care about r that, for a good calibration result,

should be between 0 and 1 (ours was ≈ 0.6 for the static camera and ≈ 0.7 for the

moving camera), K and d, that are used in the undistort function later on.

34

CHAPTER 3

In order to visually see if the calibration is finding corners during the process,

we can use the drawChessboardCorners function from OpenCV [40] [Figure 3.2].

Figure 3.2: Camera calibration process

Since the camera intrinsic matrix do not change unless you use a different camera,

the camera calibration is a step that can be performed once for each camera. This

means that we need to be able to save the resulting values in a file. Thankfully

OpenCV [40] provides a dedicated class to do this called FileStorage where we

can save: r, K and d.

Un-distorting the image

Now that we have the camera intrinsic matrix we can use them to un-distort the

image of the videos. To do that we used the undistort function from OpenCV [40],

with the distorted frame, d and K.

3.1.5 Marker Detection

For each frame of the videos that we extract we need to find the black rectangular

marker in it [Figure: 3.3].

35

CHAPTER 3

Figure 3.3: Image of a coin inside the marker

There are different ways of doing this, for example you could use a combination

of image processing techniques, like blur, erosion and dilation with the Canny edge

detector [45], or any thresholding algorithm like Otsu [46] and Adaptive thresholding

[47](we chose this one). After processing the image we can use the findContours

and filter only polygons with four edges (rectangles).

Now that we have our four points of the rectangles we need to sort the corners

in order to have consistency (the first point must be the top-left, the second the

top-right, . . .). We can do this by calculating for each corner the point rotation

angle [Eq: 3.3] and sorting them using it.

α = arctan(
px − cx
py − cy

) (3.3)

Now we have a problem: the findContours function should find two big rect-

angles, the outer one and the inner one, but the camera rotates during the video,

changing the corners order. To maintain the same order of corners we need to look

for the white dot in one of the corners of the marker. After finding it we can set that

corner as the first one, and the rest will stay consistent throughout the analysis.

In order to simply find the white dot we can first find the homography of the

36

CHAPTER 3

marker, with that we can check the pixel area where the white dot should be and

rotate the corners until we find it.

3.1.6 Camera Pose Estimation

Since we can approximate the light direction from the point of view of the static

camera as the position of the moving camera itself, we need to find a way to estimate

the moving camera position in the space.

We can calculate the moving camera position using the formula [Eq: 3.4].

cp = −RT ∗ t⃗ (3.4)

Where:

• cp is the camera position

• R is the rotation matrix in the marker’s coordinate system

• t⃗ is the translation vector in the marker’s coordinate system

We obtained the R and t⃗ values with the solvePnP function from OpenCV [40].

Now we can normalize it so that the l⃗ has a magnitude of 1 [Eq: 3.5]

l⃗ =
cp − a

||cp − a||
(3.5)

Where:

• l⃗ is the light vector

• cp is the camera position

• a is the center position of the marker

37

CHAPTER 3

l⃗ will now contain normalized x and y values between -1 and +1, and we can

display it in a 2D plot.

3.2 Data Interpolation

Data interpolation refers to the method of generating an image based on the light

outputs captured during data extraction and any light direction. We implemented

two distinct approaches to interpolation. The first is precomputed interpolation,

where we store the resulting image for every potential light direction within a pre-

defined confined dome. This approach facilitates quick and efficient interactive re-

lighting [Chapter: 3.4]. The second approach is real-time interpolation, where each

image is calculated on-the-fly during the relighting process. This method avoids the

need for pre-storing images, thus saving both space and time. The interpolation

functions we have developed include:

3.2.1 LinearRBF

We implemented a Linear Radial Basis Function described in [Chapter: 2.3.3] using

the SciPy library [41].

3.2.2 Polynomial Texture Maps

The second function we implemented is Polynomial Texture Maps (PTM), the first

RTI method outlined in [Chapter: 2.3.1], without using any external libraries except

NumPy [42], that provided useful functions to handle matrices and Singular Value

Decomposition (SVD).

38

CHAPTER 3

3.2.3 PCA Model

We replicated the model described in the research paper titled ’On-the-go Re-

flectance Transformation Imaging with Ordinary Smartphones’ [1], described in

[Chapter: 2.4.2], that uses as relighting function a machine learning model that

takes in input a extremely compact reflectance data compressed via Principal Com-

ponents Analysis (PCA).

3.2.4 Implicit Neural Model

The final interpolation method we are going to cover is the Implicit Neural Model

interpolation. This approach uses a machine learning model that we are now propos-

ing, denoted as Z(x, y, l⃗) → a, which utilizes an implicit neural representation [Chap-

ter: 1.3]. The model interpolates the intensity a of a pixel at coordinates p = (x, y)

for any specified light vector l⃗ = (lu, lv), where lu, lv ∈ [−1, . . . ,+1].

The underlying model is a Multilayer Perceptron (MLP) consisting of seven

linear layers interlaced with seven ReLU activation functions [Figure: 3.4]. The

input of the model can be represented as I = [x, y, u, v], where (x, y) are the pixel

coordinates of p and (u, v) are the light direction components of l⃗. Both sets of inputs

are independently projected into a higher-dimensional Fourier space with random

frequencies, to enhance the network’s performance [Chapter: 3.2.4], this method is

inspired by [30]. This means that the model Z initial layer is non-trainable and the

pixel coordinates and light direction are projected into it [Chapter: 3.2.4].

Projecting the model input into Fourier spaces

As previously said, the first layer of the network Z is a non-trainable projection of

the pixel coordinates (x, y) and light direction l⃗ = (lu, lv) into two distinct higher-

dimensional Fourier space with random frequencies. More specifically we want to

39

CHAPTER 3

Figure 3.4: MLP network architecture composed by 7 fully-connected layers with ReLU
activation

map both our pixel coordinates and light direction to [Eq: 3.6], and concatenating

the results [Eq: 3.7]

γ(A) = [cos(2πbT1A), . . . , cos(2πb
T
HA), sin(2πb

T
1A), . . . , sin(2πb

T
HA)]

T (3.6)

γ(I) = γ(p)⌒ γ(l⃗) (3.7)

Where b is a randomly sampled gaussian matrix N = (0, σ2) of size H (in our

case 12). The resulting network input I is a 4 ∗ H dimensional vector created

by concatenating the projection of the coordinates and the projection of the light

direction.

40

CHAPTER 3

To create the gaussian matrices in Python we can use the torch.normal() func-

tion from PyTorch [44].

We used 0 as mean value, and turned the standard deviation into a hyperpa-

rameter of the model Z, giving a final value of 3.0 for the gaussian matrix of the

coordinates and 0.6 for the gaussian matrix of the light directions.

Network training

Our model was trained with a dataset that mapped every input I to the resulting

reflectance intensity for that pixel. This means that for every pixel of every image

in the train set we created a record [x, y, u, v] → a and added it to our dataset.

The total number of data sample in the dataset is equal to W ∗ H ∗ N , with W

and H representing the width and height of the images, and N represents the total

number of light directions available in the train set. After acquiring the data we

shuffled it randomly to prevent any order bias on the model and improve the overall

performance on unseen data. We trained the model using the Adam optimizer [28]

with a learning rate α = 0.01 and a StepLR scheduler from PyTorch [44] with

γ = 0.1 and step size = 15. Regarding the loss function we used an L1Loss that

implements the Mean Absolute Error (MAE) loss [Chapter: 3.3.1]

Using a perceptual loss

While we were trying to implement the Implicit Neural Model, our model was very

accurate in datapoints that were part of the dataset, but very inaccurate everywhere

else. Out hypothesis to fix this, was to use a perceptual loss [29] instead of the L1Loss

directly. To obtain the perceptual loss between two images you must use a model

like Vgg16, that is implemented in PyTorch [44], on both images to create a set of

features that can now be inserted in the L1Loss instead of the two images. To test

that our hypothesis was correct, we wrote a function to obtain N points between

41

CHAPTER 3

Figure 3.5: Linear growth
Figure 3.6: Gaussian distribution

two other, and calculated the perceptual loss between the image interpolated by our

model in the first point and every image interpolated in the other N points. By

generating a graph of the resulting losses, we were able to determine the effectiveness

of utilizing perceptual loss. Specifically, if the graph resembled a normal distribution,

similar to [Figure: 3.6], the loss would be ideal. However, the actual graph showed

a linear growth pattern, like the one in [Figure: 3.5], indicating that our hypothesis

was incorrect.

3.3 Data Analysis

We implemented several standard algorithm to calculate some analytical values to

confront our different interpolation methods in a scientifically accurate way, the main

problem is that confronting images analytically is not an easy problem to solve, so

no one algorithm is better than others, in this chapter we’ll expand a bit on each

algorithm.

42

CHAPTER 3

3.3.1 L1 (Mean Absolute Error)

L1 loss, also known as mean absolute error (MAE), is a popular loss function used in

machine learning for regression problems that is available out-of-the-box using Py-

Torch [44]. It generally measures the absolute differences between predicted values

and actual values, providing an assessment of prediction accuracy. It can be defined

mathematically with [Eq: 3.8], where x is the input, y is the target, N is the batch

size and µ is the mean function (in our case).

ℓ(x, y) = µ(L) = {l1, . . . , lN}T , ln = |xn − yn| (3.8)

3.3.2 PSNR

Peak Signal-to-Noise Ratio (PSNR) (here denoted with ψ) is a measure of the quality

of reconstruction of lossy transformation processes, so it’s a value suited to be used

in benchmarks for signals or images. It can be defined using the Mean Square Error

(MSE) (here denoted with γ) [Eq: 3.9], with [Eq: 3.10].

γ =
1

MN

M−1∑︂
i=0

N−1∑︂
j=0

||I(i, j)−K(i, j)||2 (3.9)

ψ = 20 · log10
(︃
MI√
γ

)︃
(3.10)

Where:

• M and N are the dimensions of the image

• I is the original image

• MI is the maximum possible pixel value of the image, for example 255

• K is the altered image that we want to evaluate

43

CHAPTER 3

The MSE measures the average of the squares of the errors between the original

and altered images. A higher PSNR generally indicates that the reconstruction is

of higher quality. It’s worth noting that in some contexts an image with a higher

PSNR may not actually look better to human observers than one with a lower PSNR.

Nevertheless, it remains a commonly used standard for objective measurement of

image quality.

3.3.3 SSIM

Structural Similarity index (SSIM) is a method for measuring the similarity between

two images designed to improve on traditional methods like PSNR that are some-

times inconsistent with human eye perception. The SSIM index provides a value

between -1 and 1, where 1 is only reachable in the case of two identical sets of

data and therefore indicates perfect structural similarity and value of 0 indicates no

structural similarity.

The basic SSIM index (here denoted by ϕ) is calculated on various windows of

an image of measure x and y of common size N ×N like [Eq: 3.11].

ϕ(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.11)

Where:

• µx is the pixel sample mean of x

• µy is the pixel sample mean of y

• σ2
x is the variance of x

• σ2
y is the variance of y

• σxy is the covariance of x and y

44

CHAPTER 3

• c1 = (0.01∗L)2, c2 = (0.03∗L)2 are constants to stabilize the division obtained

with the dynamic range of the pixel values L

3.4 Interactive Relighting

In order to view the output of the interpolated data, we need a program that allows

us to do Interactive relighting, meaning a program that for any light direction

in input, displays the interpolated output image.

Our solution supports two different versions of interactive relighting: Real-time

relighting and Pre-computed relighting. Our Real-time solution computes the out-

put of the interpolation function on the fly, not needing any additional steps after

extracting the data. The downside of the Real-time approach is that some interpo-

lation functions in particular can be computationally expensive, meaning that from

an average device it’s practically impossible to have a nice user experience. Pre-

computed relighting on the other hand, alleviate the computation needed during

relighting by adding an additional pre-computational step after analysis. This step

will generate every possible image for every possible light direction and store it in

an archive. The archive can be pretty large depending on the size of the images and

on how many possible light direction the interactive relighting programs supports.

This means that during the relighting, no interpolation function is running because

it will just display the images from the pre-computed archive.

3.4.1 Obtaining the light direction

In our implementation the light direction is inputted through a Graphical User

Interface (GUI). This allows us to input the light direction in a fast and intuitive

way. Our implementation leverages OpenCV [40] to create an empty frame that will

create a line between the selected point in the frame. The line is created from the

45

CHAPTER 3

center to the selected point [Eq: 3.12].

⎡⎢⎢⎢⎣x1 =
1
2
· ws · ρ

y1 =
1
2
· ws · ρ

⎤⎥⎥⎥⎦ →

⎡⎢⎢⎢⎣x2 = lx · ρ

y2 = ly · ρ

⎤⎥⎥⎥⎦ (3.12)

Where:

• ws is the window size

• ρ is the scaling factor

After creating the frame we used OpenCV’s setMouseCallback() to attach a

event handler to the frame interactive on click. The function changed the current

light direction to a new one based on the mouse location and constrained the possible

coordinates to a circle of radius 1 from the center.

46

Chapter 4

Experimental Results

In this chapter, we conducted experiments with our model on the SynthRTI dataset

[Chapter: 4.1] as well as an internal dataset that has not been made public yet.

The process of tuning our hyperparameters will be detailed in [Chapter: 4.2], and

in [Chapter: 4.3] we are going to compare our solution with other state-of-the-art

solutions.

4.1 SynthRTI dataset

To test our model we used the Synthetic dataset created by Dulecha, T.G., Fanni,

F.A., Ponchio, F. et al [2]. This dataset provides multi light images collection

of an object created with Blender Cycles rendering engine [32] and it provides a

benchmark that better represents real-world data from RTI applications than other

dataset that could be used for testing relighting quality, like DiLiGent [12]. The

dataset is divided into two subsets:

• SingleMaterial: three different objects with eight different materials each (8 ∗

3 ∗ nl total images)

47

CHAPTER 4

• MultiMaterial: three different objects with nine different materials combined

each (9 ∗ 3 ∗ nl total images)

In this context, nl represents the number of lights available in the dataset. This

number varies depending on the lighting setup: the classical dome light set (which

includes 49 lights) or the test light set (comprising of 20 lights). The purpose of this

division is to train the model using the classical dome light set and then assessing

the model’s performance using the test light set.

The three objects present in the dataset are:

• 3D scan of an oil on canvas painting by W. Turner, performed by R.M. Navarro

and found on SketchFab [33] (a nearly flat surface)

• Scan of a cuneiform tablet from Colgate University

• Scan of relief in marble “The dance of the Muses on Helicon” by G. C. Freund,

digitized by G. Marchal.

The dome’s lighting arrangement consists of 49 lights placed in concentric circles

at five different elevation levels: 10, 30, 50, 70, and 90 degrees. In [Figure: 4.1], this

setup is depicted on a 2D plane, where the main set of 49 dome lights are represented

as blue dots, and an additional set of 20 test lights are shown as red dots.

In our scenario, our primary focus is on utilizing the dataset for Reflectance

Transformation Imaging (RTI). However, it’s worth noting that the dataset could

also be effectively applied in Photometric Stereo methods [34].

The dataset is publicly available on Github [31].

4.2 Tuning the model

In this section we’ll show how we have chosen our hyperparamentes for the Implicit

Neural model.

48

CHAPTER 4

Figure 4.1: Blender viewport and light direction dome [2]

4.2.1 Finding σl value

In [Table: 4.2][Graphs: 4.2] we can see the analytical results we obtained while vary-

ing the σl in our implicit model. And in [Figure: 4.4] we can see the corresponding

model outputs, where each row represents a different σl (from 0.45 to 0.8) with 3 dif-

ferent output. The chosen l⃗ for the output images are: (0.157, 0.484), (0.161, 0.884)

and (0.726, 0.615), knowing that (lu, lv) ∈ [−1, . . . ,+1].

As you can see the values we got are very similar, but we can see that we are

getting better looking images around σl = 0.55, so that’s what we have chosen.

4.2.2 Finding σp value

We applied the same methodology as [Chapter: 4.2.1] to find the right σp value.

We can see the analytical results in [Table: 4.1][Graphs: 4.3] and output images in

[Figure: 4.5].

49

CHAPTER 4

σp SSIM PSNR L1

1.0 0.8692 26.3127 5.5796

1.5 0.8875 27.4911 4.8785

2.0 0.9347 30.8701 3.3406

2.5 0.8842 28.2619 4.8491

3.0 0.9432 32.0739 3.0084

3.5 0.7812 25.3905 7.2371

4.0 0.9239 31.1403 3.5118

4.5 0.8524 27.7357 5.3937

5.0 0.9028 30.1158 4.0419

5.5 0.8290 27.4266 5.7920

Table 4.1: Metric values for different σp
values

σl SSIM PSNR L1

0.35 0.8713 28.0377 5.0719

0.4 0.8697 27.9668 5.1482

0.45 0.8945 28.8153 4.4759

0.5 0.9311 31.0283 3.4131

0.55 0.9432 32.0739 3.0084

0.6 0.8563 26.9683 5.5924

0.65 0.8668 27.8119 5.2548

0.7 0.8696 27.6481 5.2379

0.75 0.8646 27.7329 5.2793

0.8 0.9296 30.6438 3.4950

Table 4.2: Metric values for different σ
l⃗

values

Figure 4.2: Graphs of the metric values for different σ
l⃗
values

50

CHAPTER 4

Figure 4.3: Graphs of metric values for different σp values

Figure 4.4: Images obtained while varying σl

51

CHAPTER 4

Figure 4.5: Images obtained while varying σp

4.3 Methods Comparison

Our model was compared with the PCA model described in [Chapter: 2.4.2] using

a series of validation light directions, the outcome is presented in [Figure: 4.6] for

our internal dataset and [Figure: 4.7] for the SynthRTI dataset. Although the

images produced by both models are very similar to the ground truth, a side-by-

side comparison in both comparisons reveals that our model’s images are slightly

blurred than those generated by the PCA model. However, it’s worth noting that

the shadows in our images more accurately reflect the ground truth than those in

the PCA model’s images, this is especially visible in the last three light directions of

52

CHAPTER 4

[Figure: 4.6], where shadows are more visible. The final size of our model, ≈ 3MB,

is comparable with the PCA-compressed data from the PCA model, ≈ 2.5MB plus

the model dimensions. This indicates that our solution is also viable for practical

applications.

53

CHAPTER 4

Figure 4.6: Comparision between our neural model and the PCA model [1]

54

CHAPTER 4

Figure 4.7: Comparision between our neural model and the PCA model [1] on the
SynthRTI dataset

55

CHAPTER 4

4.3.1 Training the model with fewer images

We tested how our model would perform if we removed an increasing number of im-

ages ni from the dataset, the results are available in [Table: 4.3][Graphs: 4.8][Figure:

4.10], where ni is the number of images in the dataset. [Table: 4.4][Graphs: 4.9]

and [Figure: 4.11] show the same experiment on the SynthRTI [2] dataset (Single,

Object 2, Material 3). This is a useful test to see how well the model performs with

fewer images in the test set. As you can see from the images and the data, the model

performance is stable and produces good results until ≈ 70% of the images remain

in our internal dataset and ≈ 50% of the images remain in the SynthRTI dataset,

afterwards the results starts to drop in quality drammatically. Consequently we

can say that the model should perform well starting from roughly 60 images in our

internal dataset and around 35 images for the SynthRTI dataset. Using more than

that amount of images in the train set does not seem to improve the final output by

a noticeable margin. It’s important to note that the removal of the images from the

dataset should done as fairly as possible, meaning that we should remove light direc-

tion randomly, and not sequentially, otherwise the model could be biased towards

some light directions and hostile towards others.

Figure 4.8: Graphs for the metric values for training the model on fewer images

56

CHAPTER 4

ni SSIM PSNR L1

180 0.9432 32.0739 3.0084

161 0.9276 31.0415 3.4642

146 0.9299 30.8555 3.4752

129 0.8648 27.7368 5.1725

105 0.8652 27.0980 5.6514

97 0.8328 26.3895 6.5498

68 0.9149 31.2575 3.4917

52 0.7209 22.0733 12.4447

30 0.9284 29.9431 3.6158

22 0.5187 18.4719 22.2322

Table 4.3: Metric values for training the
model on fewer images

ni SSIM PSNR L1

49 0.8225 27.2412 7.9401

47 0.8206 27.2523 8.0411

38 0.7980 26.1335 9.8490

32 0.7873 25.8050 9.9068

29 0.7244 22.1656 14.9095

24 0.7402 24.3924 13.9419

Table 4.4: Metric values for training the
model on fewer images of SynthRTI

Figure 4.9: Graphs for the metric values for training the model on fewer images of
SynthRTI

57

CHAPTER 4

Figure 4.10: Images obtained while training the model on fewer images from the dataset

58

CHAPTER 4

Figure 4.11: Images obtained while training the model on fewer images from the
SynthRTI dataset

59

Chapter 5

Conclusions

In this thesis, we have proposed a new neural network with an Implicit Neural

Representations to estimate the light transport function and interactively relight the

scene in a photorealistic way [Chapter: 3.2.4] without requiring any additional data

to relight the final scene. We have compared our results with existing state-of-the-art

methods and demonstrated the feasibility of the approach [Chapter: 4.3]. Overall

our results suggest that further investigation of INRs, in RTI applications, could

prove successful. Our work could be expanded in many different ways, from using

our model to do supersampling of the images by passing non-integers coordinates to

overcome the camera limits, to using other functions like Discrete Cosine Transform

(DCT) instead of the Fourier expansion on the model’s input [Chapter: 3.2.4].

60

Bibliography

[1] On-the-Go Reflectance Transformation Imaging with Ordinary
Smartphones
Pistellato, M., Bergamasco, F. (2023)
In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV
2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801.
Springer, Cham.
https://doi.org/10.1007/978-3-031-25056-9 17

[2] Neural reflectance transformation imaging
Tinsae G. Dulecha, Filippo A. Fanni, Federico Ponchio, Fabio Pellacini &
Andrea Giachetti
Vis Comput 36, 2161–2174 (2020),
https://link.springer.com/article/10.1007/s00371-020-01910-9

[3] Low Cost Heritage Imaging Techniques Compared
Caine, M. & Maggen, M.
(2017,7)

[4] Digital Sensoriality: The Neolithic Figurines from Koutroulou
Magoula
Papadopoulos, C., Hamilakis, Y., Kyparissi, N. & Diaz-Guardamino, M.
Cambridge Archaeological Journal.
(2019,3)

[5] Reflection Transformation Imaging and Virtual Representations of
Coins from the Hospice of the Grand St. Bernard
Mudge, M., Voutaz, J., Schroer, C. & Lum, M.
Proc. VAST. pp. 29-39 (2005,1)

[6] New Reflection Transformation Imaging Methods for Rock Art and
Multiple-Viewpoint Display
Mudge, M., Malzbender, T., Schroer, C. & Lum, M.
Proceedings Of The7th International Symposium On Virtual Reality, Archae-
ology And Cultural Heritage (VAST2006). pp. 195-202 (2006,1)

61

BIBLIOGRAPHY

[7] Applications of Reflectance Transformation Imaging (RTI) to the
study of bone surface modifications
Newman, S.
Journal Of Archaeological Science. 53 pp. 536-549 (2015),
https://www.sciencedirect.com/science/article/pii/S0305440314004269

[8] New applications of photogrammetry and reflectance transformation
imaging to an Easter Island statue
Miles, J., Pitts, M., Pagi, H. & Earl, G.
Antiquity. 88 pp. 596-605 (2014,6)

[9] Underwater reflectance transformation imaging: A technology for
in situ underwater cultural heritage object-level recording
Selmo, D., Sturt, F., Miles, J., Basford, P., Malzbender, T., Martinez, K.,
Thompson, C., Earl, G. & Bevan, G. .
Journal Of Electronic Imaging. 26 pp. 011029 (2017,2)

[10] Digital imaging and prehistoric imagery: A new analysis of the Folk-
ton Drums
Jones, A., Cochrane, A., Carter, C., Dawson, I., Diaz-Guardamino, M., Ko-
toula, E. & Minkin, L.
Antiquity. 89 pp. 1083-1095 (2015,10)

[11] Combining RTI & SFM. A Multi-Faceted approach to Inscription
Analysis
Altaratz, D., Caine, M. & Maggen, M.
(2019,5)

[12] A Benchmark Dataset and Evaluation for Non-Lambertian and Un-
calibrated Photometric Stereo
Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S. & Tan, P.
IEEE Transactions On Pattern Analysis And Machine Intelligence. 41, 271-
284 (2019)

[13] Multiquadric equations of topography and other irregular surfaces
Hardy, R.
Journal Of Geophysical Research. 76, 1905-1915 (1971)

[14] Robust estimation of surface properties and interpolation of shad-
ow/specularity components
Drew, M., Hel-Or, Y., Malzbender, T. & Hajari, N.
Image And Vision Computing. 30, 317-331 (2012),
https://www.sciencedirect.com/science/article/pii/S0262885612000273

62

BIBLIOGRAPHY

[15] Introduction to radial basis function networks
Orr, M. & Others
Technical Report, center for cognitive science, University of Edinburgh
. . . ,1996

[16] Using Radial Basis Function Networks for Function Approximation
and Classification
Yue Wu, Hui Wang, Biaobiao Zhang, K.-L. Du
International Scholarly Research Notices, vol. 2012, Article ID 324194, 34
pages, 2012.
https://doi.org/10.5402/2012/324194

[17] Image-Based Empirical Information Acquisition, Scientific Reliabil-
ity, and Long-Term Digital Preservation for the Natural Sciences
and Cultural Heritage
Mudge, M., Malzbender, T., Chalmers, A., Scopigno, R., Davis, J., Wang, O.,
Gunawardane, P., Ashley, M., Doerr, M., Proenca, A. & Barbosa, J.
Eurographics 2008 - Tutorials. (2008)

[18] A Novel Hemispherical Basis for Accurate and Efficient Rendering
Gautron, P., Krivanek, J., Pattanaik, S. & Bouatouch, K.
Eurographics Workshop On Rendering. (2004)

[19] Discrete modal decomposition: a new approach for the reflectance
modeling and rendering of real surfaces
Pitard, G., Le Göıc, G., Mansouri, A., Favrelière, H., Desage, S., Samper, S.
& Pillet, M.
Machine Vision And Applications. 28 pp. 607-621 (2017)

[20] Discrete Modal Decomposition for surface appearance modelling
and rendering
Pitard, G., Le Göıc, G., Favreliere, H., Samper, S., Désage, S. & Pillet, M.
(2015,6)

[21] Matrix Computations
Golub, G., van Loan, C.
Johns Hopkins University Press, Baltimore, 1989

[22] Image based relighting using neural networks
Ren, P., Dong, Y., Lin, S., Tong, X. & Guo, B.
ACM Trans. Graph.. 34 (2015,7),
https://doi.org/10.1145/2766899

[23] Neural BTF Compression and Interpolation
Rainer, G., Jakob, W., Ghosh, A. & Weyrich, T.
Computer Graphics Forum (Proceedings Of Eurographics). 38 (2019,3)

63

BIBLIOGRAPHY

[24] Implicit Neural Representations with Periodic Activation Functions
Sitzmann, V., Martel, J., Bergman, A., Lindell, D. & Wetzstein, G.
Advances In Neural Information Processing Systems. 33 pp. 7462-7473 (2020),
https://proceedings.neurips.cc/paper files/paper/2020/file/
53c04118df112c13a8c34b38343b9c10-Paper.pdf

[25] Learning Deep Architectures for AI
Bengio, Y.
Foundations And Trends® In Machine Learning. 2, 1-127 (2009)
http://dx.doi.org/10.1561/2200000006

[26] Deep Convolutional AutoEncoder-based Lossy Image Compression
Cheng, Z., Sun, H., Takeuchi, M. & Katto, J.
2018 Picture Coding Symposium (PCS). pp. 253-257 (2018)

[27] Extracting and composing robust features with denoising autoen-
coders.
Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.
Proceedings Of The 25th International Conference On Machine Learning. pp.
1096-1103 (2008)
https://doi.org/10.1145/1390156.1390294

[28] Adam: A Method for Stochastic Optimization
Kingma, D. & Ba, J.
(2017)

[29] Perceptual Losses for Real-Time Style Transfer and Super-
Resolution
Johnson, J., Alahi, A. & Fei-Fei, L.
(2016)

[30] Fourier Features Let Networks Learn High Frequency Functions in
Low Dimensional Domains
Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N.,
Singhal, U., Ramamoorthi, R., Barron, J. & Ng, R.
(2020)
https://arxiv.org/abs/2006.10739

[31] SynthRTI Github repository
https://github.com/Univr-RTI/SynthRTI

[32] Blender
https://www.blender.org/

[33] SketchFab
https://sketchfab.com/

64

BIBLIOGRAPHY

[34] Photometric Method for Determining Surface Orientation from
Multiple Images
Woodham, R.J. 1980
Optical Engineerings 19, I, 139-144.

[35] RTI Fixed Light Dome
http://www.timzaman.nl/rti-dome

[36] Polynomial texture maps
Malzbender, T., Gelb, D. & Wolters, H.
Proceedings Of The ACM SIGGRAPH Conference On Computer Graphics.
2001 pp. 519-528 (2001,8)

[37] Audacity
https://www.audacityteam.org/

[38] FFmpeg
https://ffmpeg.org/

[39] Tensorflow.js
https://www.tensorflow.org/js

[40] OpenCV
https://opencv.org/

[41] SciPy
https://scipy.org/

[42] NumPy
https://numpy.org/

[43] OpenCV - Create Calibration Pattern
https://docs.opencv.org/4.x/da/d0d/ tutorial camera calibration pat-
tern.html

[44] PyTorch
https://pytorch.org

[45] Canny Edge Detector
Canny, J. A computational approach to edge detection.
IEEE Transactions On Pattern Analysis And Machine Intelligence., 679-698
(1986)

[46] Otsu Thresholding
Otsu, N. A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions On Systems, Man, And Cybernetics. 9, 62-66 (1979)

65

BIBLIOGRAPHY

[47] Adaptive Thresholding Methods for Documents Image Binarization
Bataineh, B., Abdullah, S., Omar, K. & Faidzul, M. Pattern Recognition. pp.
230-239 (2011)

[48] An Interactive Method for Adaptive Acquisition in Reflectance
Transformation Imaging for Cultural Heritage
Khawaja, A., George, S., Marzani, F., Hardeberg, J. & Mansouri, A.
(2023,10)

[49] Visualising an Egyptian Artefact in 3D: Comparing RTI with Laser
Scanning
Macdonald, L.
EVA’11 Proceedings Of The 2011 International Conference On Electronic Vi-
sualisation And The Arts, London, UK. (2011,1)

[50] Polynomial texture mapping and 3D representations
Macdonald, L. & Robson, S.
International Archives Of The Photogrammetry, Remote Sensing And Spatial
Information Sciences - ISPRS Archives.
38 pp. 422-427 (2010,1)

[51] Applications of reflectance transformation imaging for documenta-
tion and surface analysis in conservation
Tamayo, S., Andrés, J. & Pons, J.
International Journal Of Conservation Science.
4 pp. 535-548 (2013,1)

[52] Improved Positional Encoding for Implicit Neural Representation
based Compact Data Representation
Damodaran, B., Schnitzler, F., Lambert, A. & Hellier, P.
(2023)

[53] LightBot: A Multi-Light Position Robotic Acquisition System for
Adaptive Capturing of Cultural Heritage Surfaces
Luxman, R., Castro, Y., Chatoux, H., Nurit, M., Siatou, A., Le Göıc, G.,
Brambilla, L., Degrigny, C., Marzani, F. & Mansouri, A.
Journal Of Imaging. 8 (2022)
https://www.mdpi.com/2313-433X/8/5/134

[54] Objective evaluation of relighting models on translucent materials
from multispectral RTI images
Kitanovski, V. & Hardeberg, J.
Electronic Imaging. 33, 133-1-133-1 (2021),
https://library.imaging.org/ei/articles/33/5/art00004

66

BIBLIOGRAPHY

[55] CHI. Cultural heritage imaging website
2019. [Online; accessed-March-2019]

[56] RELIGHT: A compact and accurate RTI representation for the web
Ponchio, F., Corsini, M. & Scopigno, R.
Graph. Models. 105 (2019,9),
https://doi.org/10.1016/j.gmod.2019.101040

67

Glossary

DMD Discrete Modal Decomposition. 19

FPS Frames Per Second. 31

GUI Graphical User Interface. 45

H-RTI Highlight Reflectance Transformation Imaging. 15

HSH Hemispherical Harmonics. 20, 21

INR Implicit Neural Representations. 4, 12, 13, 30, 60

MAE Mean Absolute Error. 41

MLIC Multi-Light Image Collection. 26–28

MLP Multilayer Perceptron. 28, 39

MSE Mean Square Error. 43

PCA Principal Components Analysis. 26, 28, 39

PSNR Peak Signal-to-Noise Ratio. 24, 25, 43

PTM Polynomial Texture Maps. 5, 38

68

Glossary

RBF Radial Basis Function. 22, 38

ReLU Rectified Linear Unit. 39

RMS Root mean square error. 34

RTI Reflectance Transformation Imaging. 4–8, 14, 21–23, 38, 47, 48

SH Spherical Harmonics. 20

SSIM Structural Similarity index. 24, 25, 44

SVD Singular Value Decomposition. 38

69

Credits

I would like to thank all the people that helped me in this in my university jour-

ney like my supervisors Filippo and Mara; my colleagues that studied with me

Giulio, Giovanni, Dario and Francesco and all others friends outside of university

that cheered me on (sometimes by mocking me) and waited patiently until the end.

I would also like to thank my family for supporting me and my choices throughout

my whole education. A special thank goes to Pamela for being my life’s lighthouse

these past few years.

70

	Abstract
	Introduction
	How RTI works
	Applications of RTI
	Implicit Neural Representations

	Related Work
	Capturing RTI data
	Encoding reflectance data
	Polynomial Texture Maps file format
	Reflectance Transformation Imaging file format

	Interpolation methods
	Polynomial Texture Maps
	Hemispherical harmonics
	Radial Basis Functions

	Neural networks based methods
	Neural RTI
	PCA model

	Proposed Methodology
	Data Extraction
	Video Creation
	Video Syncing
	Camera Calibration
	Finding the camera intrinsic matrix
	Marker Detection
	Camera Pose Estimation

	Data Interpolation
	LinearRBF
	Polynomial Texture Maps
	PCA Model
	Implicit Neural Model

	Data Analysis
	L1 (Mean Absolute Error)
	PSNR
	SSIM

	Interactive Relighting
	Obtaining the light direction

	Experimental Results
	SynthRTI dataset
	Tuning the model
	Finding σl value
	Finding σp value

	Methods Comparison
	Training the model with fewer images

	Conclusions
	Bibliography
	Glossary
	Credits

