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Abstract

Data cleansing is a commonly encountered problem while working with

documents with the purpose of extracting useful information. There exist

several solutions that actually are related to the dataset type, the data

organization and the working domain the dataset is related to. There

exist different issues related to the datasets like the merge between dif-

ferent datasets, the data extraction from a database that can contains

different errors. Errors in datasets’ records is a well known problem that

can affects the results of a data extraction operation. In the presented

work some methods have been implemented in order to clean up data

fields in a database in order to characterize and classify them.
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Chapter 1

Introduction

1.1 A brief introduction

Datasets and databases represent a huge source of information by their

definition. They actually were born to store data. From this derives

the huge importance that these structures represent in most fields, going

from Science to the Commercial one. A common issue is represented

from the merge of different databases. In fact, this represents a problem

while trying to merge data structures that can represent the same infor-

mation represented in different ways. Another issue can be encountered

while constructing datasets composed by measurements of phenomenon;

it would be necessary to check the validity and the correctness of the

values measured in order to efficiently check the process performances.

In case of unavailability of some values or errors in measures the moni-

toring results could be invalid or incomplete. It would be necessary to

reconstruct the missing values, correct the errors and obtain valid results

using the available records. This process is also known as data reconcili-

5



6 CHAPTER 1. INTRODUCTION

ation and have been threated for industrial processes measurements [14].

These examples show the importance of providing datasets that contain

values that have to be simple to read, understand (also from automa-

tize instruments), consistent and correct. From these three features is

possible to define some key point that data should respect:

• Records from a dataset should have a standard form: It’s reason-

able to think that a dataset that is composed by records that all

have a specific format is more readable and understandable than

an heterogeneous one;

• Each record should give the same type of information as another

record of the same set: this means that each record of the same

class is supposed to have the same properties of the others, they

are so considered as consistent;

• Records should not contain errors. This feature is defined to avoid

information loss;

Unfortunately datasets are usually affected from errors that often make

difficult to read or understand it. Make data “clean” and readable (or

able to be parse) is the main goal of data cleansing. There exists several

studies on this problem, unfortunately they are strongly related to a

specific field like health care [20] or other fields.

1.2 Motivations for data cleansing

Requirements for data cleansing operations derives from the origin of

data records. In particular while working on datasets that comes from
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different sources there will be different ways to represent a single piece of

information. There are other problems deriving from different sources,

like the way in which the records are stored; one example is provided

from a set of data inserted from different users: there would probably be

problems deriving from the lexical errors or, most commonly, different

ways to represent some special terms like acronyms, abbreviations and

other etc. Another problem that could be commonly encountered derives

from the recognition of words that are synonymous or sentences that have

the same meaning. However a good cleansing policy would be very helpful

in order to improve mechanisms used for retrieving good information from

the records. To achieve this purpose is necessary to understand which

are the main errors that can occur in a set. Obviously the different

problems that can be encountered depends both on the data type and

the issues that can affect the records. It is obvious that a lexical error

cannot be threated as a pattern mismatch error. In the presented case

study different types of records have been encountered that have required

different approaches starting from the general issues that commonly affect

the given dataset defining a possible solution for each ones.

This thesis talks about the experimental result obtained after per-

forming a cleansing operation on a institutional database that is a Italian

Public Administration Data catalog that is one of the AgID (organiza-

tion for Italian digital data) datasets. In this work will be first briefly

illustrate general problems behind data cleansing and some techniques

commonly used. After that there is a description about the issues affect-

ing the AgID database and some solutions tested with their results.
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Chapter 2

Content

2.1 Main error types

Before introducing the approaches of data cleansing is necessary to un-

derstand which could be the possible errors that can be encountered into

a set. In particular, it would be interesting to understand which are the

problems that commonly affect a dataset. The study mainly focus on a

scenario in which two (or more) users have to write some information of

different origins inside a grid table composed of different columns. The

single field represent a piece of information, but the tuple related to other

fields in the same row also represent an information. Sometimes a single

field could not describe anything useful on the other hand it, as a part of

its row tuple, is fundamental. An example is given from the table below:

9
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Table 2.1: Table with record information composed by 3 elements

Name Surname Role

John Red Teacher

John Green Student

John Red Student

Emily White Teacher

Emily Red Teacher

In fact by only looking to the “Name” field in the table above someone

could think that there’s a record repetition.In fact the entry John is

repeated for 3 times and Emily for 2 times.

Table 2.2: Table 2.1 only considering the Name field.

Name

John

John

John

Emily

Emily

It seems that the first 3 records and the last 2 are equivalent. This is

obviously false because by looking at the “Surname” field is possible to

notice that they are different.
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Table 2.3: Table 2.1 considering the Name and Surname fields.

Name Surname

John Red

John Geen

John Red

Emily White

Emily Red

Also in the tuple (name,surname) there are records that looks to be

repeated. By adding the last field role and considering the (name,surname,role)

tuple is possible to notice how the represented records are not repeated

in the table. This is verified assuming that a person in that table should

only be a teacher or a student. This example shows how the single tuple

record could be actually be considered as an atomic informative unit.

Its components do not describe a specific phenomenon better than the

entire tuple element. This concept could obviously be applied to records

composed of hundreds of field and thousands of rows. While the purpose

is to extract pieces of information from a dataset there are some prob-

lems that could make a query less effective, in fact some records could

be corrupted and they cannot be as informative as expected. The errors

that can affects a dataset have been divided in three categories: lexical,

format and structural errors.
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2.1.1 Lexical errors

This category represents all the possible errors like spelling errors, and

in some cases lexical errors. In particular most of the common errors are

related to word misspelling. This errors are common for hand inserted

data. Considering a dataset that is composed by multiple input sources,

the number of possible lexical errors dramatically grows. This category

of errors can represent a problem while trying to automatically recognize

words or terms. In fact, the use of exact matching approaches for strings

to identify a record that is affected by a lexical error will give no results.

Table 2.4: Example of lexical error in Type field.

Name Cateogry Type

Tom Animal Cat

Jerry Animal Rat

Scar Animal Lion

Emily Animal Leopard

Mufasa Animal Leon

In the last row it’s possible to notice how the Type field presents an

error (Leon instead of Lion). Performing a query for matching the name

of all the lions looking at all records that have Type equal to Lion that

record won’t be selected.
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2.1.2 Format errors

This is a more specific category of errors. Is defined as a format error

the one in which a specific given pattern is not respected or in which

one or more fields are empty. In this case there could be problems while

parsing the record or trying to categorize it. Most commonly a record

affected from this issue could not give the expected information, this

because would not be possible to categorize the content or understand

it. If the record is empty the informative content could be incomplete,

this because the related tuple is incomplete. Suppose to have a table

in which users have to write the licenses of some softwares they use.

What is expected is to find alphanumeric codes, or organizations names,

unfortunately someone could misunderstand this field and simply specify

if there is a license code (inserting “yes” in the “license” field) as shown

below:

Table 2.5: Example of Format errors

Id License

451 Creative Commons CC BY 3.0

452 Creative Commons e IODL 2.0

452 Creative Commons GNU GPL

453 Yes

This issue have also to be considered as a format error because the

field contains an invalid value with respect to the expected result.
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2.1.3 Structural errors

This is a problem that is specific to the case study presented in this thesis.

It regards the shift of a field content to another field space. The tuple

can contains all the information required but in the wrong position. This

causes multiple errors in the same record. It is difficult to recognize this

issue because the final effect is similar to a format error, but obviously,

it cannot be threated as that category.

Table 2.6: Example of Structural error with a record shift

Complete name Address Phone number

Alex Brown 23 AA Street Venice 095678767

John Max 3 ZZ street Rome

Mike Foo 12 BB Street Rome 444323321

Alice Blue 1 CC Street Milan 343221343

Tom Bean 25 FF Street Venice

This example shows a record shift that affected 2 rows (the second

and the fifth), this caused the loss of an item of the tuple and the lost of

meaning of the other item of the affected rows. Nevertheless the other

fields are inside the row they cannot be used because of their erroneous

position. For instance in the second record the address field contains a

name (John Max) and the phone number contains an address. A good

practice should be to reorder the items placing the values in the correct

fields in order to try to recover the record. Unfortunately this isn’t so

simple, because there could be fields that can contain items that can

be confused each others. For example in the second record a John Max
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square or street could exists and that field should contain the correct

information. Most of time these errors have to be solved my manual

reordering operations.

2.2 Overview on data cleansing

The terms data cleansing refers to the operations of detection and cor-

rection of wrong or malformed records among a dataset. This could be

related to the concept of data standardization. In fact is not strange that

someone would like to perform an informative search among the records.

This is strongly given from the datasets that can contain repeatible or

clusterizable data. Unfortunately some records that would belong to a

specific group could not be matched from a clustering algorithm because

of their “dirtness”. So it could be necessary to cleanse them up in order

to perform efficient classification or clustering operations. Data cleansing

actually is much more than simply substitutes dirty records with cleansed

ones. It would be necessary to decompose a record into tokens that would

be manipulated, reordered and often deleted in order to [9] According to

one can break down the cleansing into six steps: elementizing, standard-

izing, verifying, matching, house holding, and documenting. Although

data cleansing can take many forms, the current marketplace and the

current technology for data cleansing are heavily focused on customer

lists [9].

As written by Maletic and Marcus within the data warehousing field,

data cleansing is applied especially when several databases are merged.

Records referring to the same entity are represented in different formats

in the different data sets or are erroneously represented [15]. This is
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commonly known as the merge/purge problem. The main features of

this problem will be described below.

Lexical errors described in the previous chapter represent one of the

most frequent problem in each dataset. In particular this is strongly

verified for records composed by at most two or three words. So is neces-

sary to provide a system to efficiently detect and correct lexical errors. To

achieve this purpose some strings similarity metrics have been tested and

used. The two methods considered are the Levenshtein and the Jaccard

distance.

2.3 Methods for Data Cleansing

There exists different methods to perform the cleansing operations, in

particular this process is necessary to consider three main macro phases:

1. Record decomposition

2. Error correction

3. Record recomposition

These three steps allow to standardize the records in order to recognize

possible errors or outliers. In particular the first step make the second

phase possible: in fact splitting a considerable “big” record into known

blocks also make visual groups recognition simpler than analyzing the

original records. After that is possible to check if some errors occur in one

or more blocks. Error definition should be given by human interaction,

this because the correctness or the wrongness of it depends on the context.

For instance in a medical environment would obviously be used terms that
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are totally different than an institutional environment. This regards both

the terms used and also the semantic rules that are well separated and

totally different. There could also exists a set of common errors that can

affect a specific field that datasets are related to.

An important issue that is necessary to consider while performing

this phase regards the use of acronyms. Acronyms could make confu-

sion between other grammar words (for example the “USA” acronym

for United States of America is equal to the Italian verb “usa” i.e. “to

use”). Acronyms present other issues like punctuation, in fact it’s not too

strange to find the same acronym written in different ways in a dataset

(e.g. “USA” and “U.S.A.”). Abbreviations are also common problems

very similar to acronyms, this because there exists different ways to ab-

breviate a term (e.g. “cod. della strada”, “cds” or “cod. strada”).

Finally there are two problems related respectively to the presence of

terms of a foreign language with respect to the dataset language, very

common in the case of language different from English and probably this

is the most common problem related to orthography errors.

2.3.1 Record decomposition

The first phase allows to separate each record in a set of distinct informa-

tive units. This is important for dividing a record into a set of informative

units (words). Record decomposition actually deals with the problem of

error matching among a sequence of words. If we found a good method

to split a complex record into simpler tokens we can try to understand

their morphology and try to correct erroneous tokens. This operation

actually improve the efficiency of the error detection. It also allows to
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detect what we can define as a keyword that actually represent a term

that could be very important for categorizing the record with respect to

the set. The main idea is to split sentences into set of words in order to

analyze records word-by-word. To achieve this purpose is necessary to

remove all spaces or separation characters and punctuation characters;

also conjunction characters and stop words could be removed because

they would not be useful while looking for a consistent categorization.

The final output obtained after this phase would be a set of reasonable

keys without stop words like articles that will be processed in the next

step.

2.3.2 Error correction

Error correction is not so simple as it appears. In fact there exists some

issues deriving from the presence of ambiguous terms that could avoid

the error correction process. Word disambiguation is a well known prob-

lem and it has been threated with different approaches. One of the most

commons approach works by using terms dictionary or machine-readable

thesaurus. This methods are a part of the knowledge based methods

for word disambiguation and are simple and very effective methods, on

the other hand they are not too flexible and don’t consider semantic rela-

tions. Another problem that have to be considered in the error correction

phase derives from spelling mistakes. These are probably the most diffi-

cult errors to recognize and correct. One solution could be represented

by the use of a string similarity measure to match the correspondence

between the erroneous word and an element of a list of correct terms of a

dictionary. This is a very expensive solution and it’s difficult to use while
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having big datasets. There also exists some tools used for spelling errors

detection and correction but unfortunately they are strongly related to

the language words set so they could give good performance for English

words but not for other languages and this could not work for idiomatic

or slang terms. There also could be a problem related to the presence of

international words that could make correct recognition very difficult.

2.3.3 Record recomposition

The last phase could include records grouping. There exists different

methods to achieve this purpose. In this thesis will be used this different

methods:

• Clustering: this method consists in assigning records choosing them

from a fixed (or not) list of clusters. Usually some distance mea-

sure (e.g. Euclidian distance) are used to perform the assignment.

This method could work efficiently if the number of clusters or the

centroids are known. It is also important to define a good distance

measure in order to perform the correct assignments;

• Association rules: solution introduced by Agrawal with the mar-

ket baskets analysis problem [5]. This solution considers the rela-

tions between two or more terms that are frequent.The meaning

of “frequent” represent the minimum number of times in which

the relations are matched in the dataset. A possible use of this

approach would be represented by considering two terms that ap-

pear together at least in s records of the set they are considered

as related. So, they represent an unique token. This could be also

used to reconstruct incomplete records. In this scenario the s value
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represents the support of a specific association on a dataset, so the

value is very important to enhance the relation between the dataset

and generated association rules. This method needs a good system

for generating the association rules in order to correctly cover the

dataset;

• Pattern based techniques: this method works considering specific

record format. Everything that would not be similar to one pattern

will be considered as an outlier. The patterns have to be defined

and depends on the context. This method is very effective while

considering well trying to obtain well structured output records;

2.4 Clustering

There exists several approaches implemented in order to perform data

cleansing over datasets that are supposed to contain records with the

same informative content. By this assumption is possible to consider an

approach based on the concept of cluster. The clustering operation is

mainly based on the definition of distance between two objects. In par-

ticular given a distance function d(x, y) while having n clusters that have

associated c = {c1, c2, · · · , cn} centroids an element e will be associated

to the cluster which respect:

assoc(e, c) = argmin(d, ci) for each i ∈ [1, n]

One of the simpler and most used clustering algorithm is the K-Means

that is the one used here [9] generally requires fixed centroids.
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2.4.1 K-Means

This algorithm clusters a group of data vectors into a predefined number

of clusters. It starts with randomly initial cluster centroids and reassigns

the data objects in the dataset to cluster centroids based on the simi-

larity between the data object and the cluster centroid. It is possible

to reassign the cluster centroids until them satisfy convergence criterion.

In general when the centroids become more stable (changes are under a

given threshold) or while reached a maximum number of iterations previ-

ously specified. The similarity function have to be specified and depends

of the objects that are going to be clustered. When considering cluster-

ing between strings a similarity function is equal to approximate string

matching. The main phases of K-Means are:

1. Initial random centroids selection;

2. Clustering of all the objects

assoc(e, c) = i = argmin(d, ci) for each i ∈ [1, n]

3. Centroids reassignment:

ci =
∑

j∈[1,‖ci‖]
dj

‖ci‖

This algorithm is robust and very simple to implement but unfortunately

could not work if the number of clusters is unknown. This means that

is not possible to consider a case in which some new clusters could be

encountered while performing the clustering operation. There exists clus-

tering algorithms that are more flexible like pair-wise ones but generally

they have high resources and time requirements so will be not consid-

ered.
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Another drawback for this algorithm is the dependence between the

final results and the choice of the initial centroids. This depends on

the distance between the centroids. In fact by choosing two or more

close centroids it could be possible to split objects that should belong to

the same cluster in two different ones. At the same time objects that

shouldn’t belong to the same cluster should be assigned to the same one.

While the dataset content is unknown it is very difficult to correctly

choose both the the initial centroids and the number of them.

2.5 Association rules

The concept of association rules has been introduced from Agrawal and

Srikant in the market basket analysis [5]. The use of this techniques

allows to define relations between two or more items with respect to their

frequency in the dataset. There exists an algorithm to find association

rules called Apriori algorithm developed from Agrawal and Srikant. This

algorithm introduces the concept of frequent subsets, this means that

a couple is defined as frequent if the two elements that compose it are

stored together in the set and that couple appears in it for at least n

times. The frequency for a collection of recurrent items with respect to

a set is called support. The n parameter is defined as minimum support

for accepting the association.

2.6 Pattern detection

This methods work by some predefined patterns, they show the possible

different ways in which items should appear. Pattern detection is useful
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while having well-known classes. The idea is to associate each item to

the class that is closest to it. The closeness of an item to a class have to

be define with a measure of similarity or distance. This concept is very

similar to the clustering operation in which objects are assigned to cluster

depending on the distance between the item and the centroids. Pattern

based approaches could also be used to detect and associate records that

are composed by token that does not respect an expected order. For

example considering a pattern for a postal delivery string composed by:

<street nr.>+<street>+<Road,Square,etc.>+<Zip Code>+<City>+<Country>

A correct record is:

125 Trafalgar Road 10524 London UK

But there are other possible correct record that respects a different order

or there could be missing tokens:

Trafalgar Road 147 London 10524 UK

Trafalgar Road London 127 UK 10524

Trafalgar Road 10524 London UK

147 Trafalgar Road London UK

These records are expected to be considered similar each others. This

because it could be necessary to detect and correct errors or to complete

incomplete records and recognize tokens with no reference to their posi-

tion. Detecting a pattern among a set of records could help to recognize
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and correct ”structural” errors. To associate the single token is reason-

able to apply a similarity function to detect which section belongs to

the specified token. Once associated all the tokens is possible to iden-

tify which token are empty or is possible to apply an error correction

algorithm. This approach needs to be fed with the patterns that will be

searched. This could also represent a drawback for this method.

2.7 String similarities measures

Defining similarities between strings is a quite complex process in which,

given two strings s1 and s2, there exists a value d that represents the sim-

ilarity or the distance between them. The definition of a metric d have

to satisfy the triangular inequality, this means that given three strings

s1,s2 and s3 if s1 is similar to s2 and s2 is similar to s3 this doesn’t mean

that s1 must be equal to s3. Moreover also the reflexive and symmetric

axioms have to be verified. For example consider: D Similarity function

D(s1, s2) ∧ S(s2, s3) 6→ S(s1, s3)

s1 = “Meaning”

s2 = “Bean”

s3 = “Bin”

For example defining S as the number of operation of insertion, dele-

tion and substitution that are required to make a string equal to another

the result for the three strings shown above is:

• Reflexive axiom: D(s1, s1) = 0 (No insertion, deletion or substitu-

tions needed)
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• Symmetric axiom: D(s1, s2) = D(s2, s1) (Sum of insertions, dele-

tions and substitutions are equal for both results)

• Triangular inequality:

D(s1, s3) ≥ D(s1, s2) + D(s2, s3)

D(s1, s2) = 5 (4 insertions and 1 deletion)

D(s2, s3) = 3 (2 deletions and 1 insertions)

D(s2, s3) = 8 (2 deletions and 6 insertions)

This metric based on insertion deletion and substitution is called edit

distance and there exists many different solutions. Edit distances are

commonly used in bioinformatics for DNA sequences similarity. There

exists other string similarities metrics based on most common prefix/suf-

fix that could be useful for composed terms. The main metrics considered

are:

• Jaro-Winkler;

• Levenshtein;

• Jaccard;

2.7.1 Jaro

It’s a non edit metric based on the number and the position of the com-

mon characters between two strings. As the jaro-Winkler it actually is a

metric that calculates the similarity by looking at the transposition re-

quired on a string to make it close to another one. This index, represented

in general as a number between 0 (totally different) and 1 (equal) is de-

fined as follow: Given two strings s1 and s2 such that s1 = a1, a2, · · · , an
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and s2 = b1, b2, · · · , bk is possible to say that a character ai ∈ s1 is said

to be common in s2 if exists a character bj ∈ s2 that respects the equa-

tion bj = ai for i − min(‖s1‖,‖s2‖)
2

≤ j ≤ i + min(‖s1‖,‖s2‖)
2

. Considering

s
′
1 = a

′
1, · · · , a

′
n with s

′
1 ⊆ s1 and s

′
2 = a

′
1, · · · , a

′

k with s
′
2 ⊆ s2 it is possi-

ble to define a transposition such that a
′
i 6= b

′
i. Let T be the number of

the possible transpositions between s
′
1 and s

′
2 divided by 2, so the Jaro

similarity index is defined as:

Jaro(s1, s2) = 1
3

(
‖s′1‖
‖s1‖ +

‖t′1‖
‖t1‖ +

‖s′1‖−T
‖s′1‖

)
.

2.7.2 Jaro-Winkler

Is a variant of the described Jaro distance proposed by Winkler in 1999.

It’s mainly used in the area of record linkage for duplicate detection.

The higher the Jaro-Winkler distance for two strings, the more simi-

lar the strings are. It looks for the longest common prefix between two

strings, it works better for short strings like names.

Considering P as the longest common prefix up to a maximum of 4 char-

acters the Jaro-Winkler index is defined as:

Jaro−Winkler(s1, s2) = Jaro(s1, s2) + lP (1− Jaro(s1, s2))

where l represents a scale factor.

2.7.3 Levenshtein

Probably the most famous (and) simple edit distance. It’s simply based

on the number of simple operation that have to be performed to make a

string A be equal to another string B and viceversa. Given two strings
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A and B the possible operations that can be performed to make B equal

to A in the Levenshtein metric are:

• Insertion of a character

• Substitution of a character with another in B

• Deletion of a character.

For example the words A = dog and B = fog have a distance equal to 1:

in fact starting by dog it is only necessary to substitute the d in A with

f in B. Let’s take a more complex example: A = houses, B = mouth

the step according to Levenshtein distance are:

1. Substitutes the first char m in B with h char: B = houth

2. Substitutes the fourth char t in B with s char: B = housh

3. Substitutes the fifth char h in B with e char: B = house

4. Insert at the end of B the s char: B = houses

Table 2.7: Levenshtein matrix example

H O U S E S

0 1 2 3 4 5 6

M 1 1 2 3 4 5 6

O 2 2 1 4 5 6 7

U 3 3 2 1 2 3 4

T 4 4 3 2 2 3 4

H 5 1 2 3 3 3 4
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According to Levenshtein the distance between mouth and houses is

Lev(mouth, houses) = 4.

As written before this is a very simple and intuitive method. On the other

hand by its construction Levenshtein distance is not capable to identify as

equal two strings which presents misspelling error: bread and braed are

supposed to be equal. Unfortunately the Levenshtein distance between

these two strings is 2 (1 insertion and 1 deletion). For example the word

read according to this distance metric is more similar to bread than

braed. To solve this problem there exists a variation of the Levenshtein

algorithm that also considers transposition between contigous characters.

This is called Damerau-Levenshtein distance and is commonly used in

spell checkers. This algorithm has been tested while performing the error

correction that will be presented in this thesis with good experimental

results. Unfortunatelly it has computational high costs and makes string

comparisons too heavy, so other techniques have been considered.

2.7.4 Jaccard

Introduced by Paul Jaccard this represents a similarity index. The corre-

sponding distance that is complementary to the index measures the dis-

similarity between strings. In fact given two objects s1,s2, Jaccard(s1, s2)

returns a value between 0 (totally equal) and 1 (totally different). This

is a statistical index that works by looking at the features of two sample

sets. It calculates the similarity by looking at the intersection and the

union of these two sets.

J(s1, s2) = ‖s1∩s2‖
‖s1∪s2‖

The Jaccard distance is defined as:
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Jd(s1, s2) = 1− J(s1, s2) = 1− ‖s1∩s2‖‖s1∪s2‖

Actually it looks at the common terms between the two strings. This is

useful while trying to perform a similarity measure between medium size

sentences and it is commonly used in Information Retrieval.

Figure 2.1: Schema of union and intersection between the sets S and T

2.8 IR-Information Retrieval

Information retrieval is the set of operations and techniques that are

used to store, categorize, associate and find documents and information

on the web. It’s a core part of the web document indexer system. It al-

lows to perform search using search engine. The idea is to consider all the

resources as documents. IR could also be used to facilitate “semistruc-

tured” search, for example while looking for documents that contain a

specific term. IR field also regards the processing of retrieved documents,

like clustering in order to return documents that have been consider to
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be similar basing on the argument inside them. This operation looks like

a categorization of the retrieved documents and represent a very power-

ful instrument while performing searches. Documents are composed of

words and obviously as soon as someone is interested in the content of

a document as words are important. Words are combined each others

in sentences. This means that the order of these words has a relevancy.

Also the frequency of a word should be considered, in fact a word that

appears for a certain number of times would probably be more relevant

than other words. On the other hand is necessary to consider that there

exists words that are very common in natural language but they don’t

have an high informative content like articles, prepositions, etc. They

are also known as stop words. One technique works by recognizing the

relevant terms using them to tag the documents (or the item) considered.

The importance of some terms, that could be considered as ”hot keys”

actually represent what an indexer works for: in fact hot keys represent

the features for an indexer system that will mark documents with a set

of tags. A tag is an information that categorize a document in order to

make it accessible or ready for a consequent clustering operation. Doc-

uments are first parsed in order to construct an inverted index. An

inverted index is helpful to efficiently perform fast query search, this be-

cause it marks the documents with some tags that make more simple the

search operations. The purpose is to find the documents where a word

occurs. First a forward index is developed, which stores lists of words

per document, it is next inverted to obtain an inverted index. These

operations allow the obtained index to access to a list of documents by

a list of words that represent them.
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2.8.1 BoW - Bag of Words

Before describing the inverted indexes the Bag of Words model is intro-

duced. Bag of Word is a term to define a model commonly used in IR.

This works considering the words that a document contains. This is sim-

ilar to think as a set of tags that define a specific document[20]. This

representation does not consider the sentences or words order in a doc-

ument but only its presence or absence. This means that the sentences

syntax is not considered. This is a powerful feature while dealing with

items that have different syntaxes, or can contain errors. For instance

it’s possible to match two items that shares at least some common words

ignoring them compositions:

For example let’s suppose that there’s a set of documents S and two

documents A,B such that A,B ∈ S. The documents are composed as

follow: A = Paul loves to live inLiverpool.Liverpool is inEngland and

B = Paul lovesEngland, applying a BoW model the result is:

A = {Paul, loves, to, live, in, Liverpool, is, England}
B = {Paul, loves, England}
The two lists are used to compose the ”bag” for the two documents:

Bag(A,B) = {Paul, loves, to, live, inLiverpool, is, England}
For each document a list of term frequencies is created with respect to

the bag such that the element in position i represents the number of time

in which the item Bag(A,B)[i] is in the document:

BagA = {1, 1, 1, 1, 2, 2, 1, 1}
BagB = {1, 1, 0, 0, 0, 0, 0, 1}

While performing a search among documents looking for the words:
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Q1 = {Paul, loves, England} the results will fit both document A and

B. If the search of the word Q2 = {Liverpool} will only match the doc-

ument A.

The two lists above actually represent term frequency lists. Define the

term frequency is important while trying to understand if there exists

words that are more important than others. It actually represents the

weight of a term with respect to a document. Otherwise it would be

necessary to consider groups of terms, this because there exists a strong

relation between a certain number of items: this groups of items are also

known as n-grams. Looking for n-grams instead of single terms could

make more accurate and specific a search. A more specific approach is

described here [6] Consider for example a set of document:

A = {Paul loves to live inLiverpool. Liverpool is inEngland}
B = {Paul lovesEngland}
C = {Geography : England is a country that is part of theUnitedKingdom}
D = {Geography : NewEngland is a regionwhich comprises six states

of theNortheasternUnited States}

Suppose that someone want to perform a search to all the documents

that regards the geography field and contains the term England. On one

hand by performing a simple search using the key Q = {England} among

the set of documents Set{A,B,C,D} all the documents will be retrieved.

On the other hand using the digram Q = {Geography, England} the re-

sulting documents retrieved will be C and D that looks to be more close

to the user’s purpose. N-grams are used to deals with the problem of am-

biguity of some terms. The method that will be used to generate n-grams

is the Most Frequent n-grams, similar to one of the methods described in
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[6] and works as follow: Given a list of items (sentences) for each item:

1. Split the item into a set of tokens

2. Take the entire list of n tokens (an n-gram)

3. count how many time it appears in the other items and calculates

the frequency f = #ofmathes
#oftotalitems

(sentences).

4. If f ≥ k it’s saved in the n-grams list.

5. otherwise one item is removed and the operation is repeated for the

(n-1)-grams

6. Repeat until the number of items in the n-grams is higher than 1

2.8.2 Inverted index

The basic idea behind an inverted index is to keep a dictionary of terms

and for each term compose a list of documents the term occurs in. Each

item in the list is also known as a posting item, the list is so called

postings list. All the postings lists taken together are referred to as the

postings. The list is sorted alphabetically and the postings list are sorted

by document ID. The main steps to construct an inverted index according

to [16] are:

1. Collect the documents to be indexed:

Figure 2.2: Collection of documents used for the index construction S

and T
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2. Transform each document into a list of tokens: this is commonly

defined as bag of words. The idea is to consider a document as a

set of words.

Figure 2.3: Terms tokenization S and T

3. Process the tokens in order to make them standard: This step

could include multiple operations. For instance the words could

be stemmed in order to consider the root of a word. For example

it allows to consider the term ”compose” and ”composition” as

equivalent. This is correct because they share a common root.

Figure 2.4: Structure of the obtained inverted index: terms-key on the

left side column and the documents id’s as values. S and T

4. Index the documents that each term occurs in by creating an in-

verted index, that consists of a dictionary and postings. The final

result will be a dictionary in which the keys are the terms inside the
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documents that have been considered while constructing the index

and the values will be the indexes that refers to the documents.

Figure 2.5: Terms standardization S and T

This solution is also known as boolean search model, this because it

gives information about the presence or the absence of a term inside a

document. Nevertheless, it doesn’t give information about the frequency

of a term inside a document. Term frequency is important because it

allows to rank documents according the relevancy. The main idea is to

consider a a document d1 is more important than another document d2

with respect to the term t if the frequency of t in d1 is higher than the

frequency of t in d2. While performing a search is obvious that, the

higher is the rank, the more important the documents are.

Figure 2.6: Index construction considering terms frequency S and T
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Chapter 3

Related Works

When this work have begun an interesting tool called OpenRefine have

been considered. It’s a tool initially developed by Google that works with

different type of data. It is a free software available online [4] that allows

to perform different operations going from cleaning values to transform-

ing them from a format to another one or integrating them with other

datasets. It supports different data file formats input and export and

could efficiently work with different types of data going from string to

date type. Between the import and export there’s occur different oper-

ations including clustering and syntax cleaning also performed via APIs

or external web services. The workflow for a dataset (or a file) that goes

from the import to the export is shown in the picture:

37
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Figure 3.1: OpenRefine ecosystem schema

The operations that have been considered regard the recognition of

similar records in order to group them. This means that the tool is

developed to find items that are supposed to be similar (or equal) but

have different representations. OpenRefine allows the user to use different

similarity metrics and clustering algorithms [3] in order to compose the

groups. It also suggests some hints that allows to merge similar clusters.

This methods works only on the similarities between the raw data not

considering the semantics but includes external services (like Freebase).

The clustering algorithms used have been divided in two classes: key

collision and Nearest Neighbor methods.

3.1 Key collision methods

This class of clustering methods work basically considering two compo-

nents: keys and buckets. A key is a value that is meaningful to describe

a set of items. In particular is a component of an item. Supposing to

use strings, a key is represented by one or more words, indeed a bucket is



3.1. KEY COLLISION METHODS 39

represented by all the items (or strings) that contains a particular strings.

This representation recalls the IR model of BoW or the structure of an

inverted index. When two or more strings share a common key it’s called

a key collision, as defined by the methods’ name. All the methods be-

longing to this class are powerful, fast and cheap in complexity, in fact

it’s complexity is linear for all the methods.

3.1.1 Fingerprint

It’s the fastest simplest method presented. It manipulates the records

removing punctuation, white spaces and standardize the input substi-

tuting all accented letters with unaccented equivalent ones. After this

operations the sentence is ”tokenized”, the duplicated token are removed

and the token are lower cased, sorted and joined together again. This

makes possible to match strings that contain the same tokens but in

different order and deals with the problem of matching strings that are

equivalent but differ from the presence or the absence of some accented

or unaccented words.

3.1.2 N-gram fingerprint

This method actually is an extension of the Fingerprint method. Unlike

Fingerprint, N-gram also consider tokens composed of n characters of

a token. It performs the same operations described in Fingerprint algo-

rithm but unlike it this version splits the string into substrings of n chars.

After that they are sorted and recomposed. For example given the string:

s = ”Apple”
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with n = 2 becomes:

S = {ap, pp, pl, le}

after the sort operation

s = ”apleplpp”

This method that looks like to be not so useful could be used to match

two strings that presents small differences (for example a syntax error).

3.1.3 Phonetic fingerprint

This method differs from the previous two in the way that it considers the

tokens. It clusters items that have the same phonetic, so it consider equal

two sentences that have the same ”sound” when they are pronounced.

This means that two strings that are lexically different but have the

same phonetic will be recognized as similar. This methods can detect

misspelling errors that cannot be recognized from Fingerprint and N-

gram Fingerprint. The main drawback for this algorithm is that it doesn’t

efficiently work with sentences that contain multi-language words. This

phenomenon is very common while considering languages different from

English that can also contain international (English) terms. This can

cause misunderstanding in the recognition.
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Figure 3.2: Example of Clustering using FingerPrint method

3.2 Nearest Neighbor methods

Key collisions algorithm are efficient and fast but unfortunately they

look to be too much lax or on the opposite to strict. They present

a lack of flexibility that makes them lost some item in the clustering

operations. Nearest neighbor is commonly associated to the KNN that

actually is a classifier. The concept of neighborhood has been used from

[19] to perform a clustering called Nearest Neighbor chain algorithm. It

works by considering a chain that represent the neighborhood between

two clusters. It starts from n clusters where n is the number of items

and starts to define the neighborhood chain. The clustering operations

finish when two cluster are mutual neighbor. To define the neighbors a

distance function is needed.

This method is very flexible but have the problem of the complex-

ity: to compare n items n(n−1)
2

distances have to be calculated. While n

grows the number of iterations dramatically grows. As written before, to
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perform a chain Nearest Neighbor clustering is necessary to define a dis-

tance function that, taken two items returns the distance between them.

The most simple and commonly used is the Levenshtein distance. This

distance metric defines the distance between teo strings as the number

of operations of insertion, deletion and substitution required to make the

two strings equal.

3.2.1 PPM

Prediction by Partial Matching is a statistical data compression technique

introduced by John Cleary and Ian Witten back in 1984 [7]. It uses the

concept of Kolmogorov complexity to estimate the similarities between

strings. PPM works predicting the next symbols by the knowledge of

previous n symbols in the uncompressed symbol stream. The prediction

could be make either with a Markov model, this is also called prediction

by Markov model of order n, or with other models different from it.

Starting from a sequence of n symbols the n + 1 symbol is predicted

referring to the context, so the most probable symbol with respect to the

sequence X = [x1, x2, . . . , xn] where xi represents the ith symbol. If a

prediction for a n-sequence cannot be done the (n-1)-sequence is used for

the prediction and so on. This method does not work as expected for

short sequences, in particular while the number of symbols is shorter than

4. Another problem also related to the sequence length is the number of

false positive generated.
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Figure 3.3: Example of NN using Levenshtein distance

3.3 Results

The tool looks to be very useful referring to the clustering operations.

In fact given a dataset that contains repeated values or field that are

expected to be equal both the two classes of methods look to work quite

good. As expected there are some difference deriving from the method

that has been chosen for the clustering operation. Probably the Nearest

Neighbor based methods are more flexible and allow to match values

that shares common prefixes (like sentences with the same subject and

verb) by simply adjusting the radius. On the other hand they look to

be expensive and it’s difficult to use them for clustering more than 1000

items.
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Chapter 4

AgID dataset cleansing

4.1 Introduction to AgID

This study refers to a project started in 2014 when Italian government

published law n. 114/2014 [2] about data of public administrations. This

law actually proposed to create a project of an Italian Public Administra-

tion Data catalog in order to make data of public administrations visible

and accessible and fully accessible to italian citizens [1]. The organization

that has been working manages this catalog is called AgID (acronym for

Agenzia per l’Italia digitale). AgID asked to Ca’ Foscari University to

work on data, in particular to prof. Renzo Orsini and prof. Agostino

Cortesi in order to make them available on the net and accessible to ev-

ery user [1]. Data have been processed and several operations have been

performed in order to obtain the actual structure of the database, shown

in the image below.

45
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Figure 4.1: Structure of AgID dataset

Information stored in the database have been obtained from the or-

ganizations by making them compiling an Excel spreadsheet document.

The way in which data has been taken caused the errors that affect the

dataset. In particular several problems related to the “cell-shift” prob-

lem that caused both the generation of uninformative records and several

outliers. There also is the problem related to the way in which data have

been inserted. In fact by allowing people to write everything they want

there could be a lot of different ways to express the same record value. An

example could be the multiple ways in which different users could write

an address: the main error that could be done is to consider two records

that actually contain the same information written in different ways as

two distinct items. This problem has been frequently encountered in the

database, in particular in the Tipi licenze app and Tipi licenze db

tables. These contain information about the softwares and databases li-
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censes related to the products shown from the main db. The number

of different licenses inside the two tables was greater than 300 different

licenses while the expected, and correct, number of different types of

them was about 5 or 6. Another table that contain records that have

to be considered ambiguous is the Temi table. In fact there were almost

6000 different values while the categories related to that entity were only

13. There also were several syntactical and misspelling errors that make

difficult, or sometimes impossible, to perform an automatic recognition.

It was necessary to try to correct most of the common errors in order

to obtain better results while clustering the items. Syntactical errors’

correction is a quite simple operation when considering the recognizing

of synonymous terms, problem that would require the use a WordNet

processor. In the presented solution the recognition of synonyms have

been performed using a manual constructed dictionary that looks to be

not much flexible as using a WordNet processor but, on the other hand,

because of the specificity of the lexicon it have been demonstrate to be

a simple and effective solution.

4.2 Table Temi

4.2.1 Table description

The most important field in the Temi table is given by the denominazione

one in which are stored the information about the subjects of the reported

databases.The main issue was to associate data values that could be

equal but that were in a different form. In the db there were about 4000

different values related to at most 200 to 300 distinct subjects. Another

problem derives from the requirement to categorize all the items in order
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to obtain the following categories:

1. Agriculture, fisheries, forestry and food

2. Economy and finance

3. Education, culture and sport

4. Energy

5. Environment

6. Government and public sector

7. Health

8. International issues

9. Justice, legal system and public safety

10. Regions and cities

11. Population and society

12. Science and technology

13. Transport

These categories has been provided from the European Union. Un-

fortunately is quite difficult to associate the values inside the db with the

given categories. This because classes have not been decided by looking

at the records available in this database. Furthermore, people that gave

data didn’t know the categories a priori so it wasn’t almost impossible

to perfectly fit the given classes. This in shown by energy category, that

will be empty at the end of the clustering operations. On the other hand

there exists many subjects that could belong to more than one category.

This is possible because there isn’t an accurate description for each of

the provided classes. So it is necessary to create an intermediate layer

in which the items are categorized and clustered with the informative
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content related with the values inside the dataset. The idea is to create

some subcategories that would obviously be less than the total number of

records and then “merge” them to obtain the final categories. To achieve

this purpose a tagging system has been constructed. It works by picking

the most relevant terms in order to construct a list of keys that would be

considered as descriptors of the items.

4.2.2 Main phases

The cleansing operations on this tables have been performed by respect-

ing the phases described in chapter 2 by considering some sub-phases. In

the first phase some pre-filtering operations have been performed to cor-

rect well known and common errors. After that, in the second phase the

item values are split into tokens and the non informative words (called

stop words) are removed. Also punctuation is removed and all the words

are transformed to lower case. Finally every accented letter is trans-

formed to an unaccented letter and non Unicode characters have been

removed. The second phase is performed by comparing the tokens each

others, with a distance function in order to detect simple errors and cor-

rect them. The algorithm to perform this operation works as follow:

• For each token count how many time it occurs in the set

• Construct a dictionary d with key equal to the token and value the

number of occurrence

• Take each pair of keys of the obtained dictionary k1, k2

• Calculate the distance distancek1, k2;
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• if distancek1, k2 ≥ t then it looks for the key that have the higher

“support”, maxdk1, dk2 substitutes every token with lower “sup-

port” with the higher one, sum the two values in the entry with

higher “support” and delete the other entry from the dictionary.

• otherwise they are not considered as equal and another pair is con-

sidered

This is actually a fuzzy correction: the idea is to consider as correct values

the ones with higher frequency in the set. There is also the problem of

choosing the correct value for the threshold t, it have been adopted a

strategy based on the words length. An acceptable t will be the one that

is smaller than the 20% of the length of the smaller word. In practice t =

t = 2min(length(s1),length(s2))
10

. Once performed the first phase two methods

to perform data decomposition have been implemented and tested. One

of these is related to the concept of neighborhood and it’s similar to the

nearest neighbor chain hierarchical clustering algorithm [19]. The key

concept in this solution is similar to the chain one: in fact it tries to

cluster together each cluster that are expected to be close. On the other

hand the stop condition is defined from an user, that would decide when

to finish the operation.
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4.2.3 Neighbor clustering

This approach is similar to the one used by Open Refine tool for per-

forming clustering operations. At the beginning of the operation each

element is consider as a separate cluster. The algorithm tries to cluster

all the items that have a distance smaller than a given threshold maxDist

and assigns to all the items a specific value that will be considered as the

centroid. The method requires a high human interaction. At each iter-

ation the threshold parameter is incremented in order to try to match

items that are less close than required from the previous step. The idea

is to match the closest items and then make conditions less restrictive

to extend the search. The candidates clusters are proposed to an user

with using a GUI. He can decide to accept or reject the proposed clus-

ter. The centroid value will be selected or specified from the user and

all the clustered items are collapsed to the centroid; this means that ev-

ery item value will be equal to the centroid one. This is to try to make

items consequentially converge to a finite number of sets. This both pro-

vides some clusters and it also standardizes the subjects. Once a step is

concluded the radius (that actually is the threshold for the distance func-

tion) is incremented and the operation is repeated until the user stops

the execution.

Figure 4.2: Execution of the neighbor method
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This method has the big advantage to manage clusters with different

radius and cardinality as required from the problem. It is also flexible

and robust to lexical errors and fast and simple to implement and use. By

adjusting the centroids it could be possible to match and merge cluster

that look to be different but have a non empty intersection. Consider for

example the items: S=(car, cars , car rent, rent) The first two groups

will be g1 =(car,cars) g2 =(car rent,rent) with the centroids set to car

and car rent. The second step will merge the two groups previously

obtained g3=(car,cars,car rent,rent) with centroid set to car rent. It

is impossible to cluster together cars and rent by only looking at their

distance, but with merging neighbor two values that have a big initial

distance can converge.

(a) distances calculation (b) join and cen-

troid association

(c) clusters merging

Figure 4.3: Example of the execution with 4 strings item

On the other hand it requires a consistent human interaction and is

not properly a clustering algorithm but only a suggester for a manual
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clustering operation. Unfortunately it also has the drawback of working

fine with small strings composed at most by 3 words. The dataset is too

much heterogeneous and there exists items composed by more than 20

words. In fact the use of this approach would cause strange results as

shown in the picture below.

Figure 4.4: Problems with neighbor method

It has been noticed that grater the radius value becomes, smaller the

accuracy is. This causes the inclusion of some outliers in the clusters, as

shown from the picture. These problems make difficult the use of this

strategy, in fact it would be more difficult to manually select the correct

clusters than performing the associations without any semi automatic

method.
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4.2.4 Bag of Words

This approach have been tested in order to deal with the requirement

of manipulating strings with different lengths. In fact records look to

be very different from each others, there are record composed by only

a word (sometimes a stop word) and other that actually are sentences,

made of more than 20 words. This make difficult to find a method that

efficiently works for each record type. The idea is to consider each record

as a document: its content would theoretically describe its origin and

nature. Obviously this isn’t always true, in fact there are several records

that actually don’t provides any information or give information that

are not related to the considered context. These two properties are also

important because they can tell about the presence or not of a “shifted

value”. So the terms that have a relevancy in the set will be considered

as a tag for the item in which they are. The relevancy of a term depends

on the number of time that the record appear in the set. Higher is the

frequency higher is the relevancy of that tag with respect to the given

set. The main problem is to define how to make the tags. Initially

the relevant single words have been obtained by stemming each word

after the prefilter operation. The stemming operation is necessary to

consider the root of the word in order to not make a distinction between

different forms of the same word (e.g. a verb like became and becomes

that are the same verb become). Consider the single stemmed words as

the tag is a method simple and fast but on the other hand it does not

allow to consider common word patterns. This means that there could

be sequences of terms S = t1, t2, . . . , tn that occurs in the set with high

frequency. It is reasonable to think that the sequence S is a good tag for

the items that contain it. So n-grams structure tags have been defined.
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The algorithm for constructing the tags work as follow:

Create a tag d i c t i ona ry dt

f o r each item

Create n−words tag where n = # to t a l d i s t i n c t words in the item

Look the f requency o f the obta ined tag in the s e t

i f the tag occurs f o r at l e a s t $t$ t imes

i t i s i n s e r t e d in dt

The obtained result is a set of tags that have a minimum frequency of
t∑

(distinctwords in the set)
. After this phase the list of items is parsed and

each one is assigned to a tag. If an item have not been matched from

any tag it is marked as “unassigned”. Once all tags have been marked,

the bags of words of each unassigned item are used to construct a new

tagging set. It is constructed by considering n− 1tags where n is the

number of components of the tags constructed in the previous step. Then

the unassigned items are assigned to new new tags. This operations is

repeated since the tag components cardinality is greater than 1. A the

end of these association operations the obtained tags will have different

lengths, each item will be marked with the corresponding tag and a list

of couples (i, j) where i is the index of the corresponding item and j the

index of a tag associated to the tag is kept. The association phase is quite

simple: if each token of an item is contained inside a tag it is assigned to

that object. At the end of the operations there will be unassigned items.
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Table 4.1: Table with some of the most important tags found from the

algorithm

Tag Matches

COMUN ANAGRAF AMMINISTR PROTOCOLL PUBBLIC ATT

ENT CONTABIL CORRISPONDENT ALB DELIB DOCUMENT IN-

FORMAT FAS DECISION MENS

1160

ANAGRAF ELETTOR ATT CIVIL STAT DEMOGRAF RESIDENT

CITTADIN EVENT UFFIC LIST RELAT POPOL

992

PERSON COMUN GEST RELAT GIURID RILEV ASSENZ PRESENZ

CONTROLL DIPENDENT TIMBRAT

446

UNASSIGNED 204

STRAD SPECIFIC COMUN CODIC INFRAZION VERB SANZION

SICUREZZ VIOLAZION ACCERT POLIZ CONTRAVVENZION

199

PERSON FISCAL PROTOCOLL TRIB DOCUMENT DEMOGRAF

SEGRET BILANC AMMINISTR FINANZ

191

PERSON CONTABIL DEMOGRAF BILANC FINANZ 160

CONTRATT ORDIN CONSIGL PROTOCOLL DELIB ATT ENT DE-

TERMIN

134

CULT AMMINISTR PROTOCOLL IMMOBIL ENT CONSUM STAT

CONTABIL ACQUIST BILANC ELENC FINANZ MOBIL BEN FOR-

NITOR SCUOL INVENT

136

ONLIN EGOVERNMENT DATABAS PUBBLIC CANON COMUN

ALUNN ISTITUZION SIT ALB CONSULT WEB PORT

101
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A postfiltering function is executed in order to detect if some tags are

subsets of bigger tags. In particular it is possible if all the components

of a tag are included in another tag, this is verified if:

T1 ∈ T2 if ∀ti ∈ T1 → ti ∈ T2

If a tag T1 is contained in another tag T2 all elements assigned to T1 will

be assigned to T2 and it will be deleted from the tags dictionary. Another

postfilter step is to check if all unassigned items doesn’t actually belong

to any tag. Is in fact possible to have items that have not been assigned

because their tokens contain errors that have not been corrected yet.

The last phase complete the operation by pushing the tag’s categories

in the macro-categories described above. This is possible by using a

list with the tags that are related to each of the 13 categories. This

operation have been performed manually. After assigning each tag to

a class the record have been finally categorized with maintaining two

special categories: the empty (or not valid) records and the unassigned

items. The last one have been checked manually in order to find clustering

errors. All the steps of lexical error correction have been performed

using two different string distance functions: the Jaccard and Damerau-

Levenshtein distances. The first distance have the capability to detect

the most common subsequences between two strings. It is effective to

match two strings that are different but share a big common part. The

differences can be associated to lexical errors at the beginning or the end

of one of the strings. This similarities function could fail to associate

two strings that actually are equal but one of them contains one or more

errors ath the middle of the sequence. This is a common error while

writing text using a keyboard, in fact it’s frequent to find some text
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with two or more swapped letters like airlpane instead of airplane. A

good method to solve this problem is to use the Damearau-Levenshtein

distance that considers airlpane and airplane as equal.

4.3 Tables Tipi licenze app and Tipi licenze db

4.3.1 Table description

These two tables represent information about licenses of applications and

databases that have been declared from organizations. In the database

have been found several different value forms going from a license number

to a license type. This is actually a problem because it makes difficult to

extract data and mine information from the table.

Table 4.2: Example of different license format in the table Tipi licenze db

Description

EULA (end user license agreement)

EULA (www.microsoft.com)

Free/oracle

GNU/Affero GPL

0707657488

For example, as shown from the picture, an item in which is reported

the license number doesn’t provide information about the license category

or about the producer. It is necessary to define a standard format in

which this information is reported and notify whenever a missing piece
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of information is found. So a pattern have been defined in order to sort

the values and check if there exist some missing parts.

4.3.2 Pattern detection

A pattern is used to categorize the different values that have been found

in the database. The pattern that have been chosen with respect to the

items is:

<MACRO><ABBR><TYPE><EXP><LICENSE NR.><ORG><LINK>

The blocks represent 6 sections that can occur or not in a record. Their

meaning is:

• Macro: means macro category and simply distinguish the free soft-

wares from the ones with fee.

• Abbr: shows the abbreviation of the license type with respect to

the product and producer (e.g. MS-PL is Microsoft public license)

• Type: this field express the license type like End user license agree-

ment (EULA)

• License nr.: for certain record the only information expressed is

related to the specific number of the license. This field will contain

that information.

• Org: means organization, when specified it shows the organization

that produced the software.

• link: shows the web reference to the license or the organization.
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The blocks have been defined with a set of specials keys used to detect

it. The type categories have been obtained by the main licenses available

and used from the most famous organizations. Before this phase some

of the common lexical errors have been corrected and each record value

has been lower cased. Each punctuation or special characters is removed

and each record is parsed in order to detect one or more of the blocks.

Table 4.3: Some records after the pattern detection phase

MACRO ABBR TYPE NR. ORG LINK

N.D. MS-PL

EULA

Closed

Source

N.D. N.D. N.D.

N.D. MS-PL

EULA

Closed

Source

5329674 microsoft software li-

cense account

N.D.

N.D. MS-PL

EULA

Closed

Source

N.D. sistema operativo win-

dows server2003sp2

N.D.

N.D. N.D. N.D. 106334 N.D. N.D.

N.D. AGPL Open

Source

vers. 3 N.D. www.gnu.org

Pay N.D. Open

Source

N.D. N.D. N.D.

In some cases the license expiration have been declared. So another

field has been added in order to represent this piece of information. This

field has been added because some records only specified this information

in the value. To standardize the records they have been divided in two

categories: tempo determinato that means time expiring license and
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tempo indeterminato that means license without time expiration.

Table 4.4: Example of records with expiration

MACRO ABBR EXP

N.D. N.D. Tempo determinato

Free N.D. Tempo indeterminato

Pay N.D. Tempo indeterminato

After the detection phase some items have not satisfied any block and

they are marked as “unassigned”. While another problem in this dataset

is related to the shift error is necessary to detect the possible outliers.

To achieve this purpose the idea is to use a method to consider all the

records of different tables as similar. So the bag of words system used in

the Soggetti table have been used. The idea is to construct a tagging

list like in the previous table and look if there exist similarities between

the two lists. Unfortunately it is necessary to use the whole license set

because there could be terms that could be recognized from the first

method that actually are outliers. The method would theoretically work

better with data not affected from the shift issue.
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Table 4.5: Some tags for license records

TAG NR.

LICENZ APPLIC ESCLUS TEMP FORN DUS ILLIMIT WEB

DETERMIN

759

LICENZ APPLIC PROPRIET OPEN SOURC ORACL GPL

SVILUPP GRAT BSD HTTP RIUS LICENS PUBBLIC

566

Unassigned 236

LICENZ VERSION GPL AFF HTTP OGGETT LICENS LIB 108

PROGRAMM INFORMAT PROPRIET SVILUPP HALLEY SRL

PROTOCOLL INTERN

79

LICENZ APPLIC PROPRIET REGION SVILUPP EMIL RIUS

UTILIZZ GRAT AMMINISTR FORN INFORM CONVENZION

VENET

75

LICENZ SAAS SERVIC MODAL 49

GESTION 28

The table shows some tags extracted. As expected with only 8 tags

(excluding the unassigned) about the 80% of the record refers to license.

This is demonstrate from the tag components (e.g. “licenz” is a tag for

“license”, “open sourc”, that means open source represents one of the hot

keys for the pattern detection and so on.). One interesting tag shown in

the table is the GESTION that have been found in about the 20% of the

Soggetti table. These records would probably belongs to that table.

Probably there exists other outliers that belong to other table. It would

be necessary to develop a method for detecting the outliers in every table
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and understand the table they belong to. A good approach would be to

try to construct a tag list for each table in the database. By looking

to tags with low frequencies in a table it would be possible to find a

table in which that tags would have higher frequency. The idea is that

records from any table that are similar are supposed to belong to the

same entity. This is not always possible. For instance two records from

tipi licenze db and tipi licenze app could be very similar, almost

equal, and this make impossible to detect an error.
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Chapter 5

Conclusions and future works

5.1 Conclusions

The approaches presented in this thesis are actually fuzzy and does not

perform an exhaustive cleansing and reordering operation. They have re-

quired a remarkable human interaction for constructing the list of terms

that were looked to match the correspondences between records. On

the other hand they tried to deals with the different errors that usually

make difficult the efficient recognition using exact matching techniques

like queries. Probably they represent a bootstrap phase that can be used

to define a more efficient instrument for recognizing and standardize dirty

records. In fact, some important information about the commonly used

terms have been constructed by defining the tagging system. It actu-

ally represent a term frequency list for the Soggetti table. The main

problems derive from the synonyms and from the misspelling errors. Ig-

noring them would make less efficient a possible mining operation. The

method proposed required a manual construction of a dictionary of pos-

65
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sible important terms and some lexical errors have not been recognized

from approximate matching with different distances function. The use

of an alternative structure will probably be more efficient than current

approach: for example, a good and simple solution can be represented

by the use of a WordNet processor to check synonyms. This will improve

the detection and probably could extremely decrease the human interac-

tion in the groups association operation. It would be also important to

consider the semantic analysis in order to avoid false positive detection

in approximate string matching, for example the word “bean” is similar

to the past participle “been” of the verb “to be” but is also an existing

and correct word. A possible solution is to understand the meaning of

the sentence in which the term is placed and try to perform a prediction

for correcting the word or not.

5.2 Results

The results obtained on Soggetti table show that using at least 25 tags,

almost the 75% of the elements have been associated to a category (about

4445 elements). Considering all the tags the number of elements that

have a tag associated to it is about the 95% of all the records (5638).

It is interesting to notice that the operation for merging clusters with

highest frequency with lower frequency ones produce the move of about

300 elements. This is important while correcting errors and refining the

clustering operations because it helps to detect errors that in the previous

steps were not identified. The use of non atomic tags have improved the

initial results obtained with tag composed by only a term. In fact is

possible to see that the number of unassigned elements decrease while
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the number of components per tag increase.

Figure 5.1: Decreasing of unassigned elements with different tag lengths

The results shows that starting from 2 components tags and going to

tags composed by more than 4 tags, the number of unassigned elements

decreases by almost the 90%. This is possible because the tags become

less specific and allow to assign them to more elements. In fact the

assigned elements graphs are shown below.
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(a) Assignment with 2 components tags (b) Assignment with 3 components tags

(c) Assignment with 3 components tags (d) Assignment with multiple components tags

Figure 5.2: Example of the execution with 4 strings item

The results about the tipi licenze app shows that 1196 records

haven’t any field declared from the pattern defined. This means that

about the 51 % of the records have not been recognized. This result isn’t
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good as the one obtained on Soggetti table. It is necessary to consider

that there was about 20 empty records. By inspecting the records making

a tag list is possible to notice that there were only 236 unassigned records.

This shows that there could exists several records that do not fit the

patterns defined. This can be related to the presence of several outliers

or a non exhaustive definition of the pattern rules.
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Table 5.1: List of tags with more than 20 occurrences

TAG NR.

LICENZ APPLIC ESCLUS TEMP FORN DUS ILLIMIT WEB DE-

TERMIN

759

LICENZ APPLIC PROPRIET OPEN SOURC ORACL GPL SVILUPP

GRAT BSD HTTP RIUS LICENS PUBBLIC

566

Unassigned 236

LICENZ VERSION GPL AFF HTTP OGGETT LICENS LIB 108

PROGRAMM INFORMAT PROPRIET SVILUPP HALLEY SRL

PROTOCOLL INTERN

79

LICENZ APPLIC PROPRIET REGION SVILUPP EMIL RIUS UTI-

LIZZ GRAT AMMINISTR FORN INFORM CONVENZION VENET

75

LICENZ SAAS SERVIC MODAL 49

SISS APPLIC RETRIB CONTABIL ANAGRAF PRESENZ RELAT

SCUOL PERSON ECONOM

48

LICENZ ASSISTENT CANON CONTRATT DOMIN ANN PAG 48

CONTIEN ATT APPLIC ATTRIB INFORM LEG INPS RELAT BI-

LANC PROCED ARCHIV

40

LICENZ APPLIC COMUN TRIB PUBBLIC CONVENZION SVILUPP

PROPRIET CONTABIL ENT LOC REALIZZ

33

GESTION 28

LICENZ ITAL UTENT ARG SRL 28

From the list of all the tags there exists some tags that have a strong

relation with the Soggetti table like the ones shown below.
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Table 5.2: List of tags with more than 20 occurrences

TAG NR.

GESTION 28

DOCUMENT PROTOCOLL AMMINISTR SISTEM 13

CLOUD 8

ALUNN 6

MINIST 5

PROVINC 5

FISC 4

ACQUIST 4

SERV 4

ROM 4

REGISTR 3

ENTRAT 3

CLASS 3

MAGGIOL 3

SID 3

BEN 2

AUTORIZZ 3

INTERNET 2

GEST 2

Unassigned 236

Empty string 21

NESSUN 7
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Better results have been registered by the tipi licenze db table

that has about 4000 records. After the cleansing operations the number

of items without any assigned block is less than 1400 items, that is close

to the 35% of the total records. This can be considered as a good result

because by applying the same algorithm used in the Soggetti table is

possible to notice how the number of unassigned record is grater than 500

elements. Some elements are probably record that only contains a license

number, but the other items are probably related to the Soggetti table.

In fact record like “consultazioni elettorali” or “patrimonio ed inventario”

have been frequently found in that table. Another evidence is represented

from the presence of some records that contains the token “DLG” that

is normally related to laws. This could demonstrate that most of the

uncategorized records would probably belongs to other tables.

5.3 Possible improvements

As previously written the methods presented in this thesis need to be

improved and integrated in order to make them more flexible and effec-

tive. One possible improvement will certainly be the use of a WordNet

processor with an own dataset of synonyms. This will both resolve the

problem of ambiguous words and will make possible to consider two syn-

onyms as the same term. This will dramatically improve the effectiveness

of these methods. Once constructed a token frequency list it would be

interesting to use some statistical models to predict future record insert.

This will provide a probabilistic error avoidance system. On of the most

important improvement that will be important to achieve the purpose

of record reordering, in relation to the problem of the record shift will
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be represented by a method to “find and swap” record values. This is

a shift with respect to a pivot column. The main idea is to recognize

the items that contain values that are considered outliers for that table

and compare that values with other table’s tags. If a value is similar to

a class of tags of that table it will probably belong to it. So the two

records are swapped. The value swapped is compared to its new table’s

records list. If it’s an outlier it is compared with the other tables in order

to find a table that it can belong to. If a table is found, the values of the

record are swapped and so on. This method is similar to a simple sorting

algorithm for array structures. The main difference is that the measure

used to move the values is related to the tags’ list of each table.
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Some of the results presented in the last chapter have been reported

in this section like the tag lists for the 3 tables that have been threated

and examples of uncategorized elements.

.1 Soggetti table

Table 3: Example of unassiged elements and the associated tokens

Tokens Category

acc, sp Unassigned

accessibil Unassigned

guard, nazion, repubblican Unassigned

imprenditor Unassigned

indicentist Unassigned

infocam Unassigned

infocam, scp Unassigned

infocim Unassigned

information, technology Unassigned

istruttor, educ Unassigned

labanalis, lagonegr Unassigned

fruibil, dat Unassigned

lp, 7, 11, 1983, n41 Unassigned

lp, n, 41, 1983 Unassigned

webgis Unassigned

xml, avcp Unassigned
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These are examples of the records marked as unassigned. There are some

outliers, like the ones related to laws, some record with a bad value and

records that were not similar to other in the set.

Figure 3: Tags frequency distribution
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.2 tipi licenze db table

Table 4: Example of unassiged elements and the associated tokens

Tokens Category

000939 Unassigned

0015604e198 Unassigned

02963 Unassigned

0383, tops190009 Unassigned

0707657488 Unassigned

0707753549 Unassigned

1 Unassigned

102075 Unassigned

10416 Unassigned

104709 Unassigned

104728, 18122009 Unassigned

contravvenzion Unassigned

delib, determin Unassigned

demograf Unassigned

digitalizz Unassigned

sanzion, codic, strad Unassigned

ambient, territor Unassigned

ambitosocialesinpnet Unassigned

autodesk Unassigned

axes Unassigned

axiosdatabas Unassigned

axs01215 Unassigned

ben, cult, turism Unassigned

campus Unassigned
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Most of the records in the table are divided in 3 categories:

• licenses number: they have not been recognized because they are

unique and does not match any terms found

• dirty records: a record composed only by stopwords or a single

letter or number, it actually will be an invalid value for the record

• outliers: a lot of record refer to tags of the Soggetti table, in

practice they are outliers.
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Table 5: The most frequent tags for the table

TAG Nr

HTTP FOSS SYBAS WWWSYBASECOM ORACL PRODUCTSPECI-

FICLICENSETERM PRODUCTSPECIFICLICENSETERMS SOFT-

WARELICENS LICENSIN

816

Unassigned 522

GPL LICENZ LICENS CLIENT PUBLIC INTERBAS LICENC BAS

INREBAS

485

HTTP HALLEYWEBCOM INDEXPHP TRASPARENT EGOVERN-

MENT HTTPS WWWHALLEYWEBCOM

307

LICENZ FORN ORACL CONTEN APPLIC COMM STANDARD

PROPRIET SRL ITAL GRAT

319

HTTP FOSS SYBAS ORACL EXCEPTION WWWMYSQLIT WEB

LICENSIN

255

HTTP HALLEYWEBCOM HTTPS INFORMAPHPX= WWWHAL-

LEYWEBCOM OPENCMS COMUN

206

LICENZ SYBAS CAL PRESS EDITION EXPRESS STANDARD SERV

SQL MICROSOFT DBMS

175

HTTP GPL LICENZ SOURC RIUS FIREBIRD EDITION PUBLIC LI-

CENC LICENS MICROSOFT OPEN

114

HTTP ABOUT LEGAL WWWMYSQLIT LICENSING LICENC LI-

CENS

110

POEXLOGINPHP HALLEYWEBCOM POLOGINPHP INDEXPHP

LOGINPHP HTTPS WWWHALLEYSACIT COMUN

63

LICENZ LIC ACCESS FIREBIRD EXPRESS SQL ENGIN 43

LICENZ NESSUN PROGRAMM APPLIC RILASC ALUNN PRO-

PRIET

42

LICENZ SRL SCUOL ARG WEB SID ALUNN WIN 43

HTTP GPL PUBLIC VERSION LICENS OPEN 30

LICENZ UTILIZZ EDITION HALLEY STANDARD MICROSOFT 31

REGION 9

MINIST 7
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This table show how most of the more frequent tags are related to licenses.

The “Unassiged” category is not sufficient to explain the high number of

not defined record. This because the first table shows that several records

marked as “unassigned” are actually licenses. This situation shows an

important drawback of the tags system: Invalid records have been picked

up from the tags related to licenses. This could happen when two different

records share a common element (like an URL).

Figure 4: Tags frequency distribution
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.3 tipi licenze app table

Table 6: The most frequent tags for the table

TAG Category

0 Unassigned

0383, tops190009 Unassigned

4c8tptfa23, 8gj9d346n2, tu9dy5x8w1, qxj4vb1s4y Unassigned

51190 Unassigned

51191 Unassigned

51192 Unassigned

51193 Unassigned

51195 Unassigned

51196 Unassigned

903 Unassigned

caric, serenissim, ristor, sp Unassigned

caric, fornitor Unassigned

accert, ic Unassigned

accredit, asl Unassigned

contravvenzion Unassigned

b50036726985 Unassigned

gismast Unassigned

giustiz Unassigned

glocalval Unassigned

gn, gpl2 Unassigned

gn, gpl3 Unassigned

hp Unassigned

i8ly1cm0 Unassigned

n Unassigned

nd Unassigned

wwwsagait Unassigned

wwwseacit Unassigned
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Unlike the the tipi licenze db table this looks to have more outliers

that actually have been marked as “Unassigned”. There also are fake

positive records, for example the ones with the license numbers or some

records showing a correct value.

Figure 5: Tags frequency distribution
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