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Abstract

After decades of research applying the gravity model to study international tourism flows,
some works are now are being conducted at a national scope. This work aims to contribute to
this more recent trend by analysing the tourism flows among Italian regions for over a decade.
The specification includes some classic determinants such as distance, population, income
and prices; and others such as cultural institutions, crime rates and a measure of economic
distance accounting for Linder’s Hypothesis. The model uses a Pseudo-Poisson Maximum
Likelihood estimation with time effects, due to being consistent with zero-valued flows, and
following the recommendations in the current literature on Gravity Models. Some guidance
on the treatment required by models based on pseudo-distributions is presented. The results
are compared with those obtained from a classic Ordinary Least Squares after zero-valued
flows are transformed adding 1 to them. They are in the greatest part in accordance to
predictions and close to the results obtained by other authors, although the variables based
on price and some others such as economic distance yield contradictory or ambiguous results.
In order to obtain some clarification and as a robustness test, the Bayesian Model Averaging
method is introduced and then applied to the data, reassuring the role of the classic gravity
determinants and confirming Linder’s Hypothesis.
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Chapter 1

Introduction

Tourism is a key industry in Italy. In 2018 it was directly responsible for 5% of the national
GDP in and 6% of jobs, while estimations of their indirect effect raise the figures to 13%
of GDP and 15% of the jobs. These figures are only comparable with Spain out of all
the big European economies, and figures of the previous decade showed a growth of tourism
expenditure of around 9% a year. This growth has been mainly due to the increasing interest
of non-European countries in Italy compared to other European destinations, performing
especially well with Chinese tourists, thanks to the cultural and recreational offer of the
country. Indeed, with 55 world heritage sites as of 2021, leading the global ranking of
countries, and more hosting places than any other European country, Italian tourism had
everything to boom in an otherwise modest economic panorama (see Petrella et al. (2019)).

The Covid-19 pandemic was a devastating hit to the tourism industry. With one of the
earliest lock-downs in the globe, many businesses previously sustained by tourism seemed to
be destined to close. Even when lock-downs were relieved, restrictions to international travels
made it impossible for the tourism industry to recover. It is in this context that domestic
tourism became the center of attention of public authorities as the best remedy to the
otherwise gloom prospects and a lot of resources, economic but also mediatic, were destined to
its promotion. The zenith of this new focus on national tourism was the endowment of 500€
to the Italian families with earnings under 40.000€ to spend on hotels and accommodations
of the country. Before the pandemic, it would have been unthinkable that an industry with
such a previously diversified clientele would depend on the nationals for its survival.

Thus, it could be safely stated that the necessity to model and understand domestic
tourism is more imperious than ever. In this work I will analyse Italian domestic tourism
flows, trying to identify which are the main determinants that influence them. In order
to do so, I will follow the most common approach in current literature and use a panel-
data gravity model specification. I will study the flows among Italian regions from 2008
until 2019, finishing right before the pandemic started. In order to account for zeros travel
flows and problems arising from heterokedasticity I will use a Pseudo-Maximum Likelihood
Poisson (PPML) estimator with time effects, although I also present the results of an Ordi-
nary Least Squares (OLS) estimation for contrast. To obtain a comprehensive view on the



CHAPTER 1. INTRODUCTION 2

tourism determinants I will include a wide set of explanatory variables, ranging from classic
determinants as distance, population, GDP per capita and prices, to crime rate, cultural
institutions or economic distance a la Linder. To respond to possible concerns derived from
the inclusion of a relatively high number of variables I have run a Bayesian Model Averaging
as a robustness test.

Although domestic tourism has received much less attention than international tourism
in the literature, there already exists a paper, Massidda and Etzo (2012), where Italian
domestic is studied and I will be often reference it and use it to compare my results. Still,
my approach is innovative in a series of points. First, it is one of the minority of works which
mainly base on a economic theory derivations of the gravity model for tourism to select the
explanatory variables. Furthermore, I also study Linder’s hypothesis in the case of domestic
tourism, being able to compare both approaches and draw conclusions on their validity.
Second, I show how to empirically work with a PPML specification. As all models based on
pseudo-distributions, the PPML does not really assume an underlying distribution for the
data, so the goodness-of-fit tests and the diagnostics of the model need to be interpreted with
caution and not all usual procedures can be validly performed. Although there are strong
cases from papers supporting the use of this pseudo-model in the particular case of the
gravity model, there is still a certain degree of confusion in the literature regarding this and
other pseudo-models and their differences with the regular generalised linear models. I hope
that my work will offer some guidance on the use of (at least Poisson) pseudo distribution
estimations for the gravity model. Finally, I propose a Bayesian Model Averaging as a
robustness test that is compatible with the PPML. This relatively new technique allows to
an alternative interpretation of significance of the variables that can be more intuitive for the
reader, as well as being inherently less limited than the classic frequentist approach to model
estimation. Its use is particularly useful for research where the effect of several determinants
is to be studied and researchers want to take an agnostic approach to the question of the
correct specification, as it is the case of this work.

The results are generally in accordance to previous conclusions of papers working on
tourism and domestic tourism in particular. The classic variables: distance, population and
GDP per capita, show to be strong determinants of domestic tourism flows in Italy. In par-
ticular, distance seems to be a stronger determinant than in the case of international tourism,
showing that the gravity model is more useful to model national than international flows, as
some other researchers have claimed. Despite the success of the gravity variables, Linder’s
effect seems to be also an important factor, suggesting that both approaches can actually be
complementary, challenging the common perception of their incompatibility. Besides, some
room of action is left for public authorities: results point towards a robust positive effect
of cultural attractions, whose development can be a tool to increase the attractiveness of a
regions, while reducing criminality should also have a positive effect in the incoming tourism.
Prices in the other case do not seem to deter tourism according to the model, but actually
high prices may be positively correlated to tourism appeal.

Regarding the structure of the work, it is formed by five chapters. The remaining part
of this chapter will be dedicated to reviewing the most important literature on which I
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have based. I introduce the reader to the founding works of the gravity model, its current
state of the art and its application in the field of tourism. Chapter 2 will correspond to
the presentation of my model, I explain the theory behind the PPML but I also present
the OLS specification that I include for comparison, and I motivate the determinants that I
use. In Chapter 3 I present the data and the results of the model, along with a discussion
of them. In Chapter 4 I quickly introduce the reader to the most important concepts of
Bayesian statistics, I present the theoretical framework of the BMA and show the results of
its implementation. Finally, Chapter 5 will collect the conclusions.

1.1 Literature review

Gravity models were first conceived in the first half of the 20th century during a wave of
economic modeling based on contributions by other disciplines, namely physics. Some other
remarkable examples include the application of Zipf’s law to demographics or Reilly’s law
of retail gravitation. However, the main work of interest for this work was developed by
astrophysicist John Quincy Stewart (see Stewart (1948)). Stewart used Newton’s formula of
universal gravitation to model migration flows among cities by substituting physical mass
with population! . Thus, the ”demographic force” would be given by:

GN, N,
F= d12 2 (1.1)

where N7 and N, are the populations of the localities of study, d is the distance between
them and G is the equivalent of the gravitational constant whose value has to be estimated.
Stewart did not stop there, going beyond with the physical analogies and also translated to
the demographic context other related concepts such us energy or potential.

Further contributions were made by the American economist Walter Isard. Basing on
previous works, including Stewart (1948), in Isard (1954) he proposed that a gravity model
be applied to international flows of commodities, which started the popular practice of
applying the gravity model to international trade. The formulation that is used today is
essentially similar to the one proposed by Dutch economist Jan Tinbergen. In Tinbergen
(1962) he proposed a model where trade from country ¢ to country j, X;;, was proportional
to the economic masses of the countries, M; and M;, and inversely proportional to the
distance between them, d;;. Allowing for more generality, distance did not necessarily enter
the equation squared, but with an unknown exponent that had to be determined, and it is
joined by a dummy variable, N;;, a dummy showing if the pair of countries shared a border.
Finally, he added other variables accounting for trade preference, in particular two other
dummy variables, P and Pg, indicating if the countries belonged to a supranational union,
namely the Commonwealth of Nations or Benelux respectively. The specification is then the

! Actually Stewart referred to ”molecular mass”. This was a modified population variable, since simple
population could not explain the big differences among countries of equal size.
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following:

ij d-a 77

(1.2)

where );; is an error term with a log-normal distribution. Applying logarithms to both
inequalities leads to the equivalent linear formulation:

lnXZ-j = lnG—l—allnd—l—annMi —i—aglnMj +Nz] +PCU +PBU +6ij> (13)

where ¢€;; = In \;; is now assumed to be normally distributed. Applying logarithms to the
variables the coefficients gained a new interpretation as the elasticities of trade with respect
to each explanatory variable. The elasticities, which were assumed to be constant, were
estimated by means of a regular OLS cross-country regression, and only non-zero trade flows
were included in the analysis since the log-log specification cannot account for zero-flows.
Note that allowing for different elasticities depending on the role of the country (origin or
destination) allows for different estimated values depending on the direction of the flow,
which is something desired as empirically inflows and outflows are usually fairly different in
magnitude.

Tinbergen obtained coefficient estimates for GNP and distance with the expected sign
and that were statistically significant. Although there were several specification issues with
this simple model, it was promising enough to foster a great amount of interest in what was
named the Trade Gravity model, which became the most common application of the gravity
models and whose popularity continues until today. Subsequent research focused on trying
to better explain differences in preferences among countries. The parameter of gravitational
attraction, GG, actually variables from pair to pair of countries and since preferences are
not exogenous, models that do not account for it yield biased estimations. For example,
estimating the effect of entering in a supranational organisation such as the Commonwealth
(taking Tinbergen’s specification) can be challenging as this variable can correlate with others
that he did not include, but that may also have an effect such as speaking the same language
or sharing the same principal religion. The application of different methods to sort this
bias out range from trying to include as many explanatory variables as possible, to giving
preference to panel-data analysis over cross-sectional ones.

While one of the main appeals of the gravity model is that, contrary to competing
models, its application does not require modelling demand and supply, nor dynamics are
usually involved, the initial lack of a theoretical foundation made some authors wary of its
application. Indeed, after the boom of the gravity model, most authors focused on its use for
empirical research, shutting eyes to the lack of theoretical justification. At the same time,
some other competing and better theoretically founded models appeared. Perhaps the most
influential one is the one developed by Swedish economist and minister of trade H. M. S.
Linder, who modeled trade flows basing on a demand-supplied approach in his paper Linder
(1961). The main consequence of Linder’s work is that trade between two countries should
increase as their income per capita gets closer. This would happen as factors’ prices are
more similar among the groups of developed and developing countries than between them,
fostering the production of more similar items in each group and therefore specialising in
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products of a shared appreciation among them. In particular, rich countries have a more
capital-intensive industry, producing products of higher quality that are consumed mainly
by them or by other developed countries. This theorised phenomenon is currently known as
Linder’s Hypothesis, and it has been tested in several occasions in the case of trade and also
in the particular case of tourism. Results are not determinant, for example, Keum (2010)
found that including a variable measuring the absolute distance between GDP per capita
to test its influence on trade flows with Korea yielded a negative coefficient estimate if the
dependent variable was exports (as it would be expected), but it became positive when the
dependent variable was imports.

It would be necessary to wait until in the 1980’s some authors that noticeable contribu-
tions developing micro-economic models that could sustain the gravity equation. One of the
first and most notorious attempts in this regard comes from Anderson (1979), who was able
to derive the multiplicative formulation of the gravity model from a theoretical framework,
under some economic assumptions such as product differentiation by place of origin and Con-
stant Elasticity of Substitution expenditures. Since then, several decades of theoretical work
have led to an abundance of models that provide the much needed backing that Tingenberg’s
formulation wanted. For a discussion on the main different approaches see Anderson (2011).
Note that these derivations arrive to the multiplicative equation of the gravity model, which
since Tinbergen (1962) takes a stochastic approach when applied to trade, being too complex
a phenomenon to attempt to explain it with a deterministic equation. Therefore, the gravity
model formulation should be understood as the conditional average of flows given the certain
characteristics depending on the country of origin, destination or on both at the same time.

The focus today has moved towards finding the right specification as to avoid all the
possible sources of bias from which the gravity model can be affected. One of the main
concerns that have been pointed out and that has led to much concern on past gravity
model specifications refers to the Multilateral Resistance bias. This bias arises when to
explain flow from country ¢ to country j, specifications only count on variables depending
on i and j alone (e.g. GDP of each country), and on both ¢ and j at the same time (e.g.
distance between countries), but not on the characteristics of the other countries. In other
words, all variables are either unilateral or bilateral in nature. However, in a very influential
paper, Anderson and Van Wincoop (2003), and building on the previously mentioned paper
by Anderson, the authors pointed out the necessity of including a multilateral resistance
term. This term would reflect the influence on country ¢ of the obstacles for trade with other
countries on trade with country j. If a different country suddenly becomes more attractive
for country i, trade with country 5 may be negatively affected, even if all bilateral and
unilateral variables remained the same. The different methods that authors have followed to
reduce this bias depend on the variables used. First, some do not address this issue at all,
or if they do, they admit their lack of empirical strategy to overcome it. Another group of
authors use origin and destination region fixed effects to account for it, although very rarely
they are time-varying as it was indicated in Anderson and Van Wincoop (2003). Finally, the
last group includes a separate variable that tries to represent the relative resistance of trade
from seller ¢ to buyer 5 compared to every other possible destination, usually using price,
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distance, GDP or a combination of them.

Also to avoid miss-specification, some more other estimation techniques have been com-
peting with the OLS specification, mainly Generalised Linear Models. In particular, models
based on the Poisson or in the Negative Binomial distribution have been increasingly pop-
ular as previous works based in normal errors have been more contested. One strong case
against the OLS specification came from Silva and Tenreyro (2006), who affirmed that the
OLS specification suffered from bias under heterokedasticity of the errors, and proposed a
Poisson-Maximum Likelihood estimator instead. In a very recent paper, Tyazhelnikov and
Zhou (2020) added that, leaving this bias aside, in the case that elasticities are not constant
across regions, the interpretation of an OLS specification is different from that of a Pois-
son. In any case, some other interesting properties of the mentioned generalised estimators,
namely the ability to handle zero-valued flows, have made them the preferred specification
in a multitude of works.

Parallel to these debates, the use of the gravity model grew more and more prevalent in
a diversity of fields. In this work it will be applied to model tourism, which can considered
as a specific type of trade of a service among regions. Today, gravity models for tourism
benefit from a number of empirical works corroborating its adequacy and a few theoretical
derivations of their own that can serve as a basis for researchers. In this work this role will
be played by Morley et al. (2014), who derived a gravity model for tourism from demand
theory in a particularly concise way, but also note Cochrane (1975) contribution to the more
general case of trips. Furthermore, after applying the gravity model to a data set that
differentiates services trade from goods trade, Kimura and Lee (2006) showed that trade of
services is better predicted by the gravity model than trade of goods, in the sense that it
shows stronger and more significant effects of GDP and distance on trade. This explains
the ever stronger preeminence of the gravity in tourism studies, which has also permeated
institutional research of tourism determinants (e.g. Culiuc (2014) for the IMF). Yet, Mayo
et al. (1988) contested the use of the gravity model to model international tourism, since
the relation between tourism and distance might be less straightforward than in the case of
trade, as exotic destinations can be more attractive than nearby ones.

In particular, this work is concerned with the study of domestic tourism flows, where
exostism is likely to play a much smaller role than in the international case. Still, in the
already existent paper studying domestic tourism flows in Italy, Massidda and Etzo (2012),
it is found that distance plays a lesser role than usual estimates for the international case.
This result was not corroborated by Priego et al. (2015), where Spanish domestic tourism
flows were studied, who obtained an elasticity for distance around ten times more negative
than Massidda and Etzo, 2012. Whether distance plays a bigger or a smaller role when flows
are among closer regions is a question to which there is still no clear answer and to which
this project will try to contribute.

With the maturity of the gravity model and the diversification of its applications, many
contemporary approaches mix the classic specification with new techniques. Indeed, the
proven strength of the gravity formulation along with its simplicity makes it especially at-
tractive for its implementation with the most modern statistical trends. One example of
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a especial pertinence for this work is the rise of the application of Bayesian tools to the
models. Most works incorporate them in the model specification such as Ranjan and Tobias
(2007), who centred on the role of institutions on trade by specifying a tobit model with a
bayesian approach, or Congdon (2000), who based on bayesian statistics to allow for struc-
tural variation in the distance coefficient. However, other works have applied it to reflect
model uncertainty, following a Bayesian Model Averaging procedure (see Beck et al. (2017a)
and Chen et al. (2018)).

Thus, the popularity of the gravity model is explained by its good performance after
decades of applications to model first trade, and then any possible flow where distance could
play a factor. But also due to its simplicity and the versatility of its formulation, which
allows for influences from the most modern techniques. For a deeper review of the history
of the gravity model and the current discussions on its use see De Benedictis and Taglioni
(2011) and Shahriar et al. (2019).



Chapter 2

The model

2.1 The Ordinary Least Squares model

Current analysis on tourism flows applying the gravity model does not discriminate between
leisure and professional travel, encompassing everything in the same category: a service that
is consumed by individuals since they benefit from it. As such, the specifications that the
gravity model take when applied to tourism are the same as the ones when it is applied to
trade, and a general linear formulation can be expressed in the same way that Tinbergen
did (equation 1.3), but substituting trade volume by arrivals.!. For a panel-data model, the
specification would be as follows:

(Xil2) =G H ZOS, H ZD}, H ZODim, (2.1)

where Z is the set of all explanatory variables and where every characteristic k of country 7 at
time ¢ as a supplier is stacked in vector ZOy (e.g. GDP of the exporter), every characteristic
[ of country j at time ¢ as a consumer is stacked in ZOj, (e.g. GDP of the importer) and every
bilateral variable m accounting for the accessibility of country i to j is stacked in ZOD;;;
(e.g. distance between countries). Adding a log-normal error term, \;;;, as a factor as in
equation 1.2 and applying logarithms to both sides results in the linear OLS specification:

X =0+ InZO0uw+ Y mWZDy+ Y 0mIn ZODpii + €1, (2.2)
k l m

In the linear expression the error term, €;;; = In \;j¢, is normally distributed and oo = In G is
the constant.

!The flow value can be defined as the actual flow of travellers from one region to another when the time
spent abroad does not matter, in which case it is referred to as arrivals. If instead the flow is equal to the
number of days spent by people from region 7 in region j it is referred to as stays. The first variable is the
most commonly used since theoretical derivations do not usually consider different travel durations and their
determinants are less clearly established
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Note that in this equation the origin country of the trade flow, 7, was the supplier of the
trade, and the destination country, j, the consumer. In the case of tourism we call flow the
number of people visiting country j from country ¢, implying that now the destination is the
supplier (of the tourism service) and the origin the consumer. Since referring to a flow as
X;; with 7 and j noting ”origin” and ”destination” instead of "supplier” and ”consumer” is
more intuitive it will be kept like this, and the general structural symmetry of the gravity
equation still allows for an equivalent formulation to that of equation 1.3.

There are some problems with this specification. First, in the case that there are flows
with a value equal to zero, it is clear that the log-log specification cannot hold. However, the
zero flows can neither be eliminated as its appearance is not random, but reflect too strong
barriers for trade to occur. A possibility is to simply add one to every flow, so that it the
log-log specification can be applied. I have used this as one of the possible specifications.
As a more consistent solution (the arbitrarity of adding one to each flow does not make this
option very trustworthy) there have been different non-linear models that have been applied
substituting the naif Ordinary Least Squares. The most common models include the Poisson
Pseudo-Maximum Likelihood (PPML), the Negative Binomial Pseudo-Maximum Likelihood
(BNPML) or the Tobit model. If the occurrence of zeros is too frequent, the first two can
be modified to the Zero-Inflated Poisson Pseudo-Maximum Likelihood (ZIPPML) or the
Zero-Inflated Negative Binomial Pseudo-Maximum Likelihood (ZINBPML). A lot has been
written on the adequacy of each model and its performance, but there is still no consensus
on the best choice, which also should attend the characteristics of the data involved.

A related issue associated with the assumption of a log-normal model and an OLS esti-
mation originates when heterokedasticity? is present in the model, which is very often the
case. Even if we assume that the error term in the multiplicative formulation is uncorre-
lated with the explanatory variables, this does not imply that it continues to be so after
applying a logarithm in the linear specification. From Jensen’s inequality we know that
E(InX\ji|Z) # In E(XNij|Z), where A, is the error term in the multiplicative expression and
Z represents the set of explanatory variables. And the difference is a function of the higher
moments of \;;;|Z. Thus the presence of heterokedasticity of the log-normal terms, the error
terms in the linear equation will be correlated with the explanatory variables and the spec-
ification will not yield consistent estimators. Silva and Tenreyro (2006) address this issue
and propose the Poisson Pseudo-Maximum Likelihood specification as a solution. Although
the PPML uses a Poisson likelihood function and the Poisson distribution assumes equi-
dispersion (the conditional variance is equal to the conditional mean), the authors show that
the estimation is still consistent in the case of over dispersion. It is even consistent for more
general cases in which data is not count, and when zeros are more common than predicted
by a Poisson model. Basing on this, I have also included a PPML specification to the model,

2A vector of random variables is said to present heterokedasticity when the variance is not constant
across the elements of the vector. In a regression model, the error terms are said to be homokedastic when
they present the same variance regardless of the value of the explanatory variables, if not they are said
to be homokedastic. Using the notation of equation 2.1, a sufficient condition for homokedasticity is that
V(Nijt|Zije) = o2, with o2 constant.
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which will be the preferred specification in case of discordance with the OLS.

A final issue that is shared with most panel-data econometric regression models is the
inclusion of individual effects on the specification. Again, much has been written and argued
on this regard. As it was explained before when discussing Tingenberg’s paper, the omitted
variable bias is a serious issue that concerns most studies based on the gravity model, and
the inclusion of individual effects under a panel-data framework is one of the most effective
ways to account for it. Individual effects specifications can assume independence of the
effects with the error term, in which case they are referred as random effects as they behave
as an independent random variable, or fixed effects, when that assumption cannot be made
since otherwise it would yield biased estimates. The currently most common specification
includes a set of fixed effects for the origins and another for the destinations, as in the
following formulation:

In X =a+ Y GInZOw + > mInZDy+ Y 0pIn ZODpijs + 7 + 05 + €50 (2.3)
k l m

This specification allows to consistently estimate the elasticities of interest with a simple
OLS (although not in the case of heterokedasticity) and does not require assuming their
uncorrelation with the omitted variables, which do not need to be proxied by including more
variables than the one of interest making data requirements diminish. Furthermore, Ander-
son and Van Wincoop (2003) show that the inclusion of origin and destination unilateral
fixed effects can account for the multilateral resistance term, although its changing nature
requires the effects to be time varying. Despite their benefits, their inclusion can originate
several incompatibilities with the estimation of the variables of study. If for example a
variable is only origin-dependent and does not vary over time, perfect collinearity prevents
the estimation of its elasticity. Even when variables are time-varying, if changes over time
are not significant enough estimations can be seriously affected. Only when the study re-
volves over a variable dependent on both the origin and destination this specification can
be safely performed. On the other hand, the inclusion of pair fixed effects is not common,
as it precludes the study of the role of distance due to perfect collinearity and of any other
variable of interest that is not time-varying. On top of that, if the data is too massive the
estimation of whichever specification of fixed effects can be computationally impossible, and
most common methods for estimation in this case such us the Within or the First-difference
estimations do not allow for the study of any time-constant explanatory variable. Although
in this case the Hausman and Taylor estimator can be used, as it is not consistent with
the PPML estimation, I have opted for not including origin and destination fixed effects in
neither specification, and take advantage of it to include variables time-constant unilateral
variables instead.

2.2 The Poisson-Pseudo Maximum Likelihood model

As advanced before, I will follow a PPML specification in order to be allowed to include
the flos equal to zero and to avoid the log-normal inconsistency under heterokedasticity. A
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Poisson regression for count data is defined by the conditional density:

exp{ —tije iy
PT(Xz]t‘szt) = X I R (24)
ijt:
with:
Wije = eXp{Zith}' (2-5)

The equi-dispertion characteristic of the Poisson model refers to the fact that: p, = FE(zx|2x) =
V(zk|zr). The estimate of the vector of coefficients comes from the maximisation of the log-
likelihood function:
InL(B) = —pij + Xije(ZijeB) — In X! (2.6)
it
In order to find these estimates we set the score vector (the gradient of the log-likelihood)
equal to zero and obtain the first-order conditions:

s(B) = _[Xijt — exp{Z;ju3}] Zije = 0. (2.7)

it

The Poisson estimator is the solution of this equation. The Hessian matrix of the log-

likelihood is:
oln L

9B0p

The Poisson estimator is well behaved and it is well defined since the Hessian matrix of the
log-likelihood is negative definite, therefore no more than one solution to 2.7 can exist. This
also helps facilitate its numerical computation.

From the form of the first-order condition it is clear that § will be consistently estimated
as long as F(zg|zx) = exp{zx8}. Thus, the data does not need to be Poisson distributed
to use this method; in fact, it does not even need to be integer. If this is the case, the
coefficients can still be estimated in the same manner as if it were Poisson-distributed, and the
robust co-variance matrix of the residuals can be estimated regardless of the equi-dispersion
restriction. This procedure is known as the Poisson Pseudo-Maximum Likelihood estimation,
which in fact leads to the same coefficient estimates than the Poisson regression, but allows
for heterokedasticity in a more general way. Instead of setting the conditional variance to be
equal to the conditional mean, the covariance matrix of the residuals is directly computed
using some robust estimator. More generally, a model based on a pseudo-distribution does
not actually assume an underlying distribution of the data. It simply appropriates the first
order condition derived from the density of a known distribution and uses it to model the
data, hoping that the resulting estimates will be adequate enough. Thus, since they are not
really based on a distribution, these models lack a density function that could permit the
use of likelihood-based techniques, at least a priori. In particular, the PPML model does not
have a likelihood function to compute goodness-of-fit measures such as Akaike’s Information

= Z exp{ ZijiBY 21 Zije, (2.8)

i7j7t
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Criterion® (AIC) or Bayes Information Criterion (BIC)*. These measures are commonly used
in statistical research to make decisions over the set of variables that are included in a model.
5

Still, models based on pseudo-distributions are very often analysed using the likelihood
function of the origin distribution but in a slightly different way, in particular computing
their deviance. In statistics, deviance is a fairly general concept that refers to a goodness-of-
fit statistic applied to a model. In the context of a pseudo-maximum likelihood regression,
there are two main “deviances” of interest: the null deviance and the residual deviance. Each
of these statistics compare the likelihood of a different model with the one of the saturated
model (where every observation has a separate parameter). The null deviance compares the
likelihood of the model that only includes an intercept with the the saturated one, while
the residual deviance studies the model with the specification of interest (often called the
“proposed model”). Thus, the statistic in each case takes the form:

D(y; ) = =2[L(x) — L(f1)] (2.9)
D(y;x) = =2[L(x) — L(7)] (2.10)

>

Here L(y) is the likelihood of the saturated model, £(j1) that of the proposed model and
L(z) that of the intercept-only model. To see a more formal definition of the deviance in
the context of the Poisson regression see Liu (2019).

Since the saturated model will have the highest likelihood, the deviance is always positive,
and the closer the deviance of a model is to zero the better the data is explained. On the
other hand, the informative value of a model can be studied by comparing its deviance with
the null one. In fact, under some conditions, the residual deviance derived from a Poisson
model follows a x? distribution provided that the model is well specified, so a goodness-of-fit
test arises quite naturally (see Dunn and Smyth (2018) for a derivation and discussion on
this test). However, if, like in this work, the model does not assume an underlying Poisson

3 Akaike’s information criteria is a measure of the quality of a model for a given data. Be k the num-
ber of the estimated parameters and L£(ji) the maximum of the likelihood function of the model, Akaike’s
information criterion (AIC) is defined as:

2k —2In L(f1)

The lower the value the better the model fits the data, and overparametrisation is penalised by the inclusion
of the term 2k.

4An alternative to AIC, Bayes information criterion of a model with n observations, k variables and
maximum likelihood of the mode L(j1) for the likelihood function, is defined as:

BIC =klnn —2InL(jx)

BIC is a more restrictive criterion than AIC, penalising more the inclusion of variables as the observations
grow. Thus, the use of BIC leads to more parsimonious models than the use of AIC.

5A way of proceeding only basing on one of this criteria would consist in starting with a model including
all potential variables of interest, and remove variables one by one trying to minimise the value of the chosen
criterion. In an economic research this practice is usually not recommended as specifications should ideally be
backed by theory, but these criteria are still useful to compare competing models when there is uncertainty.
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distribution for the data, this otherwise very commonly used test cannot be performed. Still,
with these statistics it is possible to compute what is known as the pseudo-R? of the model.
This value is defined as follows:
2 D(x; 1)

R, =1 D(x:7) (2.11)
The pseudo-R? shows the relative reduction in deviance when the covariates are included
in the model. Due to its definition as a rate, it can be used even when the data does
not follow the likelihood used in the definition. Its name is due to the fact that it shares
several characteristics with the linear R?: its value is comprised between 0 and 1 and it can
only increase as the number of covariates increases. It shares the same drawback than the
linear R? as including random variables might increase its value and entice over-parametrised
specifications. However, in this work I will not do a model selection based on any of this
measures, so there is no risk of incurring in this bad praxis. Furthermore, in the paper
Heinzl and Mittlbock (2003), the authors carry a MonteCarlo simulation study measuring
the performance of this and some adjusted pseudo-R? coefficients when working with Poisson
models in the case of over or underdispersion, and find that although some modified versions
of the R? perform generally better, the regular R? works well when the number of observations
is high, as in this work.

It could be argued that in the same manner that the use of the information criteria is
deemed to be inadequate for models based of pseudo-distributions, so should be the use of
the deviance, which are also based on the likelihood function and this is not in consonance
with the pseudo-models philosophy. This is a natural concern, and the selection of one origin
distribution or another, which can be seen as too arbitrary, will certainly lead to different
deviances in each case. Still, it is preferred to work with deviances in these cases as informa-
tion criteria are absolute measures which inform on how likely a model is given an underlying
distribution, which is meaningless in this case, while deviances are relative measures that
explain how much less informative a model is compared to the most parametrised model.
Although this latter comparison depends on the underlying distribution that is chosen, it
should change more smoothly when other distributions are considered, and in any case it
is possible to attain a deviance equal to zero when the model perfectly predicts the data.
Besides, the pseudo R? based on the deviances is a relative measure of goodness-of-fit that
has quite useful characteristics. The only important point that should be made is that all
these measures should be read from what they are: arbitrary statistics that depend on the
underlying distribution that has been chosen and which can be more or less robust across
changes in the underlying distribution chosen. Still, the coefficients obtained from models
based on pseudo-distributions are consistent in many cases where certain conditions are met
(see White (1982)). And that once that the researcher decides not to assume any underly-
ing distribution, inertia from common practice should not lead to the use of (in this case)
meaningless goodness-of-fit tests such as the deviance x? test.

Once that the specification of the Poisson Pseudo-Maximum Likelihood model has been
presented and the correct practice to work with it has been clarified the specification should
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be clear. Assuming that the average conditional tourism flow is always positive and so are
the explanatory variables, equation 2.1 can also be expressed applying both logarithms and
an exponential as:

(Xl 2) = exp{ 25598} (2.12)

where ijo-f is the vector of values of all chosen explanatory variables after applying logarithm
to them. Note that this specification is well defined even when X,;; includes zeros, so it can
be uses even in that case by extension. This is exactly the structure of equation 2.5 and
the one that is required for the PPML estimator to be consistent. Also note that now the
dependent variable is the untransformed number of travels, so the bias resulting from taking
logarithm as identified by Silva and Tenreyro (2006) in the OLS specification disappears.

Equation 2.12 is also useful to understand the interpretation of the coefficients resulting
from a PPML regression. Although the dependent variable of the regression is not trans-
formed unlike in the case of the log-log specification, the interpretation of the coefficients can
still be very similar to the normal case. Applying logarithms to both sides of the equation it
is possible to see that the coefficients represent elasticities of the conditional expectation of
travels on the the explanatory variables if a logarithm has been previously applied to them,
or the semi-elasticities in the case that it has not®. Note, however, that the interpretation
does somewhat change when elasticities are not equal across regions: an OLS regression
estimates the average elasticity of a variable, while the PPML regression estimates the elas-
ticity of the average coefficient. This subject is treated in depth in Tyazhelnikov and Zhou
(2020)). Still, saving the nuance in the meaning of the coefficients, both methods are easily
comparable, and I follow Silva and Tenreyro (2006) in assuming that the differences between
them are due to the bias of the OLS specification.

2.3 The determinants

In this work I will base on Morley et al. (2014) to include some explanatory variables backed
by the theory. Following the paper, where a gravity-model formulation is derived from
consumer theory, people travel so as to benefit from the site qualities of their destination,
proxied by a vector of variables ZDj;, which compete against a vector of other goods, Q,
from the perspective of the region of origin. The authors also allow for some influence of
the origin characteristics, proxied by some variables Z0O;,. Assuming individual’s rationality,
the number of travels by each individual to each location can be computed by solving their
maximisation program:

max Uiy = f(Nije, Qit, ZOit, ZDjy) (2.13)
subject to: ;i Nijt + pitQit = Mir, Nig >0, Qi >0

6The semielasticity of a function f(z1,...,x,) with respect to a variable x; is defined as the marginal
percentage change of f derived from a unit change in x;. Algebraically: S;f(%) = (0f(%)/0x;) f(¥)~! =

dln f(Z)/0x;.



CHAPTER 2. THE MODEL 15

Overlooking concerns about aggregating demand, we obtain that tourism demand is
a function of the price of the competing goods in the region of origin, p;, the price of
traveling, m;;;, the income in region of origin 7, and an origin and destination set of unilateral
variables. The multiplicative formulation results from assuming a power model modeling
tourism demand and computing the solution of the maximisation program.

This short derivation makes clear the theoretical motivation for the inclusion of some
specific variables in the model. These are:

e The price vector of the consumption goods in the region of origin, p;. In this work
this variable will be proxied by origin region CPI. It is surprising how very rarely this
variable is included in models, although its motivation from the theoretical derivation
is clear.

e The income level in region 7. The necessity of this variable would explain the inclusion
of origin GDP per capita, which could be included in vector ZO;,.

e The average cost of visiting destination j from i. Here are involved three main types of
variables. The first one would be transportation costs, ideally flight or train fares or an
estimation of road-trips costs. Since this data is hard to find, distance between regions,
in one of its several possible definitions, is used. The second one is price of goods of
the destination. The higher prices in the destination, the more costly the travel and
benefits from it will be. Again, this can be proxied by CPI in the destination. Finally,
Morley et al. also include here other ”psycho-geographical” variables such us speaking
the same language or religion, having been in a colonial relationship, sharing the same
border, etc. Out of them, the variables that could have an effect in the case of the
Italian regions is sharing the same border and travelling from or to an island, whose
effects will be studied.

e The authors also specifically suggest the inclusion of destination’s GDP per capita as
it can be interpreted as a destination quality indicator, proxying other factors such as
security and health at the destination.

e Finally, as these are factors explaining average individual’s demand to travel, popula-
tion of origin has to enter the equation when the dependent variable is absolute travel.
The aggregation concerns can, at least to some extent, be appeased by the fact that it
is allowed to enter with an elasticity different to one.

Focusing on the theoretical derivation of the gravity equation has already allowed for
the choice of some explanatory variables. Still, the origin and destination qualities vectors,
Z0Oy; and Z Dy, are far from being strictly defined. Similarly to Massidda and Etzo (2012),
I have been interested in measuring the impact of the culture offer and the crime rate as
an attraction and repulsion respectively for traveling to a specific region. Another variable
of interest that they include is the number of international trips made by the residents of
the region of origin. From the consumer-theory derivation it is clear that not accounting
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for the role of other non-Italian destinations can be a source of bias, as they are directly
competing with national destinations. For example, the fact that international travels are
likely to be more common from northern regions which share a border with other European
countries, can lead to a downwards bias in the estimation of the elasticity of GDP per capita’.
Since I could not find data on international travels I have accounted for this possible bias
including a dummy variable equal to one if the region shares a border with an European
country and equal to zero in the opposite case. Finally, I also include population of the
destination since it can proxy tourism offer and does not suffer from reverse causality like
number of accommodations. It also correlates with other characteristics such as resistance
to over-touristification and number of attractions not included in the “culture” variable.

To test Linder’s hypothesis I include a variable that proxies the economic distance be-
tween every pair of regions, having for a given flow a value equal to the absolute value of
the difference of the origin and destination region’s GPD per capita. Linder’s hypothesis is
relevant for the case of trade off services and in particular for tourism. A reformulation for
the latter would be that, as regions with similar incomes per capita share similar factors’s
prices, they specialise in similar services for consumers, and rich regions would have more
high-quality services that attract mainly tourists from other rich regions. Therefore, as the
economic distance increases, Linder’s hypothesis would predict that flows between regions
decreases, implying a negative coefficient.

Once that the specification includes all bilateral variables of interest and accounts for the
role of international destinations as competitors, there remains the effect of competition of
every region against each other to fully include the multilateral resistance effect. Note that
this issue, which I have briefly described in the general framework of the trade gravity model,
has the same importance when addressing tourism flows. The different approaches taken by
the authors working on tourism differ in the same way that they do on general trade. I will
base on Durbarry (2008) and use price to construct this variable in the following manner:

thRijt =1In PCIJ

(2.14)

where x;;; is a weight and is computed the fraction of the number of travels from origin
1 to every possible destination k£ excluding j over the total travels from 7 at time ¢. The
higher the multilateral resistance term, the more attractive destination j is compared to the
competition. Therefore, a positive coefficient

7Out of the 21 Italian regions, taking Trentino and South Tyrol as separate entities, those which share
a border with another European country are also in the top eleven regions ordered by GDP per capita. Or
with a different perspective, only Trentino, Lazio and Toscany have a higher GDP per capita than the Italian
average and do not share a border with another European country
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Data and empirical results

3.1 The data

The empirical study will use the annual flows among all Italian regions for the time span
between 2009 and 2019, with both years comprised. It was obtained from South Tyrol and
the Autonomous Province of Trento are both included as separate regions summing up to
21 possible entities. Our dependant variable is the number of arrivals to every one of the 21
regions from the 20 possible origins (intra-region tourism is discarded) during all considered
years, therefore summing up to 5040 flows (the panel dimensions are N = 420 and 7' = 12).
It was obtained from the census ”Movimento dei clienti negli esercizi ricettivi” conducted
by the ISTAT (the Italian National Institute of Statistics). There is a flow value equal
to zero corresponding to the number of tourists going from Bolzano - Bozen to Marche in
2010. Whether this is the true value of the flow or it is the result of the limitations of the
recollection of the data is out of the concern of this work, which takes the data provided
by ISTAT without further considerations. Although it is unlikely that removing this single
value from the set of 5040 flows will change the results, the already explained appeals of the
PPML model are compelling enough as to implement it, allowing for the inclusion of the
null flow in the specification. In appendix 5.1 I show an image of the graph of aggregated
travels by pair of regions in 2019.

The explanatory variables can be divided in nature into quantitative and qualitative
variables, and also among the classes of variables defined at the origin, at the destination
and linking both origin and destination.

The class of variables defined at origin of the flow include population (population_or;)
and GDP per capita of the region of origin (GDP _or;;), defined as nominal GDP divided by
total population. The necessity of using nominal GDP is clear from the theoretical derivation
and the inclusion of of origin CPI (C'PI ory). The rest of the variables that characterise
the region of origin are time-invariant dummies: sharing a border with another European
country (eu_border;) and being an island (island_or;). These two dummies are expected to
have a negative sign. Sharing a border with an European country should diverge part of
the domestic tourism flow versus other European countries that become comparatively more

17
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attractive compared to domestic tourism than for the rest of the regions. Regarding the
islands, the associated isolation results in comparatively higher transport costs for domestic
tourism, whose attraction compared to international tourism should become lower than for
the continental countries.

The next groups includes the variables characterising the destination. Population, GDP
per capita and price levels of the destination are defined equivalently as in the case of origin.
Besides, the effects of culture offer (culture;) as an attraction and crime rates (crimej;)
as a repulsion are also studied. While the crime variable is time-variant, I could not find
consistent data on culture sites at a region level for all the years studied. Thus, culture
is a time-invariant variable that reflects the number of cultural attractions of the region
of destination in 2015. This variable is unlikely to suffer steep changes in the time span
considered so the lack of information should not be too significant. Finally, the only dummy
of importance regarding the destination is being an island: ¢sland_dest;. Although the
associated travel costs should disincentivise travels to the islands, the specific attractions
of and island might compensate this drawback making them more competitive compared to
other destinations, so making a prediction in this case may not be so easy.

The last class refers to the bilateral variables mainly includes distance;;, which is defined
as the road kilometers that separates the capitals! of regions?. i and j. The decision to
use this definition and not simple cartographic distance comes from the fact that a great
majority of Italian tourists use some sort of road transport to travel through Italy®, and
road distances can also proxy rail distances better than cartographic distance. The use of
the capital of the regions is justified as it is a simple and methodical manner to set the node
representing each region, and by the fact that the region capitals correspond to the most
populated cities for almost all the regions*

The rest of the bilateral variables include Linder’s variable for the economic distance be-
tween two regions (linder;;;) and the Multilateral Resistance term (M R;j;). Both are defined

IThe capitals of the regions are the regions’ Capoluoghi (plural of Capoluogo), where the regional council
is located. Note that in Italian the usage of the word capitale is restricted to the capital of a country, so
Rome would be the capitale of Italy but Milan is the capoluogo of Lombardy. Rome is also the capoluogo of
its region: Lazio.

2For the case of the islands, distances have been defined as the shortest driving plus ferry distance between
their capitals and every other. The distance has been taken from Google Maps since the ISTAT does not
have data for it. I have checked that the distance given by Google Maps is similar to that given by ISTAT
for the rest of the distances so that the definition is the most consistent possible

3In 2019 for example, the combination of automobiles, buses and campers accounted for 81% of total
travels, compared to less than 7% of airplanes (Data obtained from ISTAT. Viaggi e loro caratteristiche:
Mezzo di transporto e destinazione).

4They are: Veneto (whose most populated city is Verona with 257 748 inhabitants, approximately two
thousand more than Venice in January 2021), Abruzzo (whose most populated city is Pescara with 119 327
inhabitants while its capital L’Aquila has 69 996) and Calabria (with 173 367 inhabitants in Reggio Calabria
while the capital, Catanzaro, has 86 606). In the case of Veneto the population difference is very small to
really be a concern of the population rule, while Abruzzo is small enough in its extension as to have a very
small effect on the distance variable. The only case that could raise a concern is Calabria, although being one
case out of twenty one and the driving distance between Catanzaro and Reggio not surpassing the 160km it
can be safely assumed that using population to define the nodes would not significantly change the results.
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as in section 2.3 on tourism determinants. According to Linder’s hypothesis the coefficient
associated to Linder’s variable should be negative as the more different the countries are
the less trade should take place, while the higher the multilateral resistance term the more
comparatively accessible is destination j and therefore more tourism should be expected
to happen, thus yielding a positive coefficient. The only dummy variable in this group is
the one expressing if regions ¢ and j share the same border or not (border;;), whose sign is
also expected to be positive. Adding year effects, which do not depend on any region, all
variables studied are included. Table 3.1 is a compilation of all the variables along with a
short description, their main characteristics and their source. Finally, the main descriptive
statistics of the quantitative variables are shown on table3.2.

Table 3.1: Description of the explanatory variables

Variable Definition Nature Region Time Source
varying

arrivals Number of arrivals registered by re- Q B Yes ISTAT: Movimento dei

gion of origin and residence and year clienti  negli  esercizi
ricettivi.

distance Driving distance (in km) among the Q B No ISTAT: Matrice delle dis-
capitals of the origin and destination tanze and GoogleMaps.
regions

GDP_pc Nominal GDP (as in December of the Q OD Yes ISTAT: Prodotto Interno
corresponding year) divided by total Lordo lato produzione.
population

population Population by region counted the 1st Q OD Yes ISTAT: Popolazione resi-
of January dente al 1° di gennaio.

CPI Consumer Price Index for the entire Q OD Yes ISTAT: Nic. Medie an-
collectivity taking 1998 as the refer- nuale. Classificazione
ence value. General index Ecicop (3 cifre)

border Signals if the regions share a border D B No Defined ex profeso

eu_border  Signals if the reggion shares a border D O No Defined ex profeso
with a European country

island Signals if the region is an island D OD No Defined ex profeso

culture Number of museums and other cul- Q D No ISTAT: Musei ed insti-
tural institutions (galleries, archaeo- tuzioni similari.
logical sites, monuments and other
places open to the public) in 2015

crime Total number of crimes reported by Q D Yes ISTAT: Delitti denun-
the police regardless of whether the ciati dalle forze di polizia
identity of the offender is known by all’autorita giudizaria
100 000 inhabitants

linder Absolute value of the difference be- Q B Yes Defined ex profeso
tween the GDP per capita between the
region of origin and that of destination

MR Multilateral resistance term as defined Q B Yes Defined ex profeso
in Chapter 2

year Year effects D

Note: The name of the variable corresponds to the name given in the code except for the origin/destination marker. Nature
refers to the type of variable, whether quantitative (Q) or dummy (D). Region expresses the region of definition of the variable.
B stands for Bilateral (the variable is distinctly defined for each Origin-Destination pair), O and D mean that the value of the
variable for a flow only depends on the region of origin or destination of the flow respectively. OD means that the variable enters
twice into the equation, accountig for the value in the origin and the destination separately and are called < Variable > _or
and < Variable > _dest.
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Table 3.2: Main descriptive statistics of the explanatory variables

mean sd median min max range skew  kurtosis se

arrivals  104428.48  173262.36  41114.50 0.00 2182620.00 2182620.00 4.54 32.71  2440.56
distance 615159 340137 558458 58537 1588000 1529463 0.67 -0.05 4791.14
GDP_pc 0.03 0.01 0.03 0.02 0.05 0.03 0.25 -0.86 0.01
population 2853452 2444421 1650793 125653 10010833 9885180 1.04 0.73 34432
crime 8.24 0.24 8.21 7.70 8.72 1.02 0.17 -0.76 0.01
culture 5.25 0.72 5.38 3.74 6.31 2.57 -0.59 -0.45 0.01
CPI 135.80 6.62 136.50  121.60 155.20 33.60 -0.07 -0.44 0.09

MR 1.07 0.04 1.08 0.98 1.14 0.16 -0.61 -0.99 0.001

Note: Table computed using R’s function describe from the psych package.

3.2 Results

To run the model I have used the library Gravity of R, which includes a specific ppml function
which runs a PPML model, although the default glm function could have been used as well
obtaining the same results. I have also run an OLS regression on the transformed dependent
variable In X;;; + 1 to compare, and in both cases I have checked the results both with and
without time effects. The preferred specification in case of discrepancies corresponds to the
PPML with time effects. Details on the values and significance of the estimated elasticities
are shown on table 3.2.

The results are generally in accordance to what it was expected. Changing the specifi-
cation from an OLS with dependent variable In X;;; + 1 to a PPML where the dependent
variable is not transformed, leads to fairly different estimated coefficients for most variables.
Including or not year effects leads to significant changes, especially in some time-varying
variables such as GDP _pc_or or the C'PI variables. This could be due to a previous partial
assimilation of the influence of omitted time trends by these variables due to its monotonic
changing nature. As it was expected, the deviance of the PPML models is very high, imply-
ing that the data does not follow a Poisson distribution, but the pseudo-R? shows a good
fitting of the model both with and without time effects. Regarding the coefficients, all the
classic gravity model variables are significant and have the expected sign. Still, other vari-
ables have coefficients which are contrary in sign to what was expected or are not significant,
deserving some remarks to analyse the reason.

For those defined at the origin, GDP per capita shows significant positive values for both
versions of the PPML regression, although it is somewhat higher for the case of time effects.
The result is comparatively smaller than that obtained by Massidda and Etzo (2012) of 1.4,
but quite similar to the one obtained by the equivalent study on Spanish domestic tourism
done in Priego et al. (2015), implying that domestic tourism in both countries is not a luxury
good®. This could be the result of the difference in the statistical models used, although the
fact that Massidda and Etzo (2012) includes a proxy for international trips, or that it does

SLuxury goods are usually defined as goods for which its demand increases more than proportionally as
income increases. Since, as discussed in the work, domestic tourism is a substitute of the most expensive
luxury tourism, which I could not proxy, the low GDP elasticity could be the result of the omitted variable
bias.
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Table 3.3: Means and Standard Deviations of Scores on Baseline Measures

Estimator: OLS OLS (Time eff.) PPML PPML (Time eff.)
Dependent variable: InX;;; +1 InX;; +1 Xijt Xijt
distance -0.76%** -0.77F** -0.51%%* -0.51%%*
(0.02) (0.02) (0.01) (0.01)
GDP_pc_or 0.10** 0.24%** 0.38%** 0.63%**
(0.04) (0.04) (0.03) (0.03)
GDP _pc_dest 0.96%** 1.03%** 0.76%** 0.85%**
(0.04) (0.04) (0.05) (0.04)
population_or 1.03%** 1.02%** 1.04%** 1.06%**
(0.01) (0.01) (0.01) (0.01)
population_dest 0.45%** 0.43%** 0.31%** 0.31%%*
(0.01) (0.01) (0.01) (0.01)
island_or -0.43%** -0.38%** -0.23** -0.18%**
(0.03) (0.03) (0.03) (0.03)
island_dest 0.28%** 0.34%** 0.09** 0.13%**
(0.03) (0.03) (0.03) (0.03)
eu_border 0.06** 0.02 0.04** 0.03*
(0.02) (0.02) (0.01) (0.01)
border -0.10%** -0.13%** -0.05%* -0.06%**
(0.03) (0.03) (0.02) (0.02)
crime -4.01%%* -3.35%** -2.35%%* -2.16%%*
(0.43) (0.48) (0.33) (0.37)
culture 2.05%** 1.94%%* 1.01%** 1.07%**
(0.11) (0.11) (0.09) (0.09)
linder 0.06%** 0.05%** -0.01 -0.02
(0.01) (0.01) (0.01) (0.01)
CPILor -4.55%** -1.10** -0.24 4.13*%*
(0.25) (0.33) (0.24) (0.37)
CPI_dest 5.94%** 10.03*** 1.44%** 4.34%%*
(0.26) (0.36) (0.23) (0.29)
MR 4.09%** 4.63*** 3.22%x* 3.40%**
(0.12) (0.12) (0.04) (0.04)
Year effects No Yes No Yes
Null deviance: 846039967 846039967
Residual deviance: 83642617 79994608
R? and pseudo R? 0.900 0.902 0.901 0.905

Note: The OLS estimation has been performed using the 1Im command in R, while the
PPML estimator has been applied using the ppml function from the package Gravity also
in R. The estimated coefficients are shown in the same level of the variable name, while
The deviance and R? values are
obtained applying the function summary to the respective models and the pseudo-R? was
computed using the deviances. Stars denote p-values as follows: *p < 0.05; **p < 0.01,

each estimated standard deviation is shown under it.

*¥kp < 0.001.
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not include an aggregate “mass” variable (e.g. population or GDP) may also play a role.
For its part, the elasticity of population revolves around 1, so an increase in one percent of
the population results in an increase of one percent in tourism flows, which is exactly what
it was expected from the theoretical derivation and points to the validity of the model. Note
that some authors working with GDP obtain substantially smaller estimates, both for trade
(as was the case of Silva and Tenreyro (2006)) and for tourism (as is in the case of demand
for tourism in Greece studied in Chasapopoulos et al. (2014)). Still, most papers do obtain
elasticities close to 1, for example see again Priego et al. (2015).

Other variables, island_or and C'PI _or, are less conclusive. The first has the expected
sign but it is not significant in the preferred specification, and the second has mixed results:
from being negative or not significant, to somewhat significant and positive (as expected)
in the preferred specification. Finally, eu_border seems to be somewhat significant but with
a positive sign, so belonging to a region with an European border actually increases the
expected flow to other Italian regions. This surprising result may be due to some omitted
variable bias. These regions, which are also some of the richest in Italy, may have other
characteristics not accounted for in GDP per capita that foster Italian tourism demand.

Moving on to the variables defined at the destination, GDP per capita and population
have again the expected signs and a high significance level. Surprisingly, GDP per capita
seems to play a bigger role at the destination than at the origin (maybe due to the bias
discussed before). On the other hand, population_dest has (as expected) a positive significant
elasticity which is a bit less than half of the origin population elasticity. For its part,
both crime and culture have very consistently negative and positive elasticities respectively,
showing that they do repel and attract tourism in the manner that was expected. On the
contrary, C' PI_dest does show a consistently significant effect, but it is opposite in sign to
what it was expected. Again, it may be possible that the prices at destination correlate with
hidden variables that are not accounted for with GDP per capita. This possibility will be
discussed in a moment. Finally, the island destination dummy shows a significantly positive
effect, which might be surprising due to the associated transport restrictions, although the
own characteristics of being an island, for example kilometres of coast which is not accounted
for, might explain it.

Finishing with the bilateral variables, distance shows a fairly more negative elasticity,
—0.51, compared to the value of —0.2 that some authors (e.g.Massidda and Etzo) take as a
reference for international tourism following Khadaroo and Seetanah (2008). Yet, it remains
quite lower in absolute value than the one of —0.9 found by Priego et al. for in Spain or
even the one of —0.7 that Culiuc estimated for international flows. In any case, the fact
that distance is a stronger barrier for domestic tourism than for the international one should
not be surprising, if only because domestic tourism is mainly performed by road trips, while
the international one by airplane travels®. Another argument in favour would be the role of

6My reasoning is that airplane travel implies costs much less proportional to distance than road costs,
being the first a very complex variable depending on many market factors while the second mainly depends
on fuel consumption and possible motorway tolls. Also, travel time is almost proportional to road distance
for car trips, while this is much less clear for plane travels, which also include transportation to the airport,
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exotism in international travel as studied by Mayo et al. (1988). Surprisingly, Massidda and
Etzo (2012) find a elasticity of —0.07 for the Italian domestic tourism flows, concluding that
in fact domestic travel has an elasticity with respect to distance smaller than international
tourism.

The effect of the other bilateral variables is more abstruse. Sharing the same border
seems to have a negative effect, although quite small compared to that of distance, and
contrary to what most papers find: in most cases is a positive sign (including Priego et al.
(2015) for domestic tourism and Culiuc, 2014 for international tourism); and sometimes a
non-significant coefficient (for example Silva and Tenreyro (2006) for trade). Still, there is the
possibility that sharing a border might have a downwards effect in arrivals, as an important
share of visits would maybe be one-day trips, and actual hotel stays are proportionally higher
in other regions once distance is accounted for. On the other hand, Linder’s variable fails to
show influence as a determinant. This could be considered a point in favour to the gravity
model compared to Linder’s theory, based in different premises. Finally, the multilateral
resistance factor shows a strong effect in the preferred specification and with the expected
sign. The fact, however, that price in the destination does not have a negative effect may raise
concerns on the interpretation of this result. If high prices in the destination do not deter
but actually increase tourism, high prices in competing zones compared to the destination
should decrease and not increase the flow of tourism.

Finally, I have run some tests checking the robustness of the model. First, I have run an
overdispersion test to see if the use of the pseudo-poisson model is justified or if instead a
Poisson regression could have been suitable. I have applied the test proposed in Cameron
and Trivedi (1990), and which is easily performed in R thanks to the package AER, which
includes it in the function dispersiontest”. The statistics of the test for equidispersion
against and alternative hypothesis of overdispersion had an associated p value of the lowest
number possible in R, therefore the null hypothesis is rejected along the possibility of the
implementation of a Poisson model.

More information on this matter can be obtained from the plots of the residuals. In figure
5.2, I have plotted the deviance residuals, which are defined for each raw residual as the root
square of its contribution to the residual deviance (defined in equation 2.9), multiplied by

time spent in controls, etc; which are fixed or not very correlated with distance. Thus, distance should have
a clearly lower effect in international tourism than in the domestic one, as found in the work.

"The functionning of the test is fairly straightforward. The variance is formulated in the following
manner: V(X;j;) = Xijt + ¢ % f(g), where f() is a monotonic increasing function and ¢ is a parameter
indicating overdispersion if ¢ > 0 or underdispersion if ¢ < 0. Then, the null hypothesis is Hy : ¢ = 0 and
the alternative Hy : ¢ # 0. The test statistic is a t statistic which is asymptotically standard normal under
the null. There are also one-side versions of the test to specifically test for over or underdispersion as the

alternative hypothesis.
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the sign of the raw residual®. Deviance residuals are more robust to the inclusion of zero
values and are somewhat preferable than Pearson residuals for the case of GLM (see Dunn
and Smyth (2018)). From the figures it is possible to observe the overdispersion of the data
along with some error clustering that was not perfectly accounted for? (see the queues at the
right part of the plot). In figure 5.3 T also present a plot of Cook’s distances and a residuals
vs. leverage plot. These plots are useful to know if excluding certain extreme observations
could lead in steep changes in the estimation. Cook’s distances remain very low, with some
peaks corresponding to the flows between Campania and Molise but not important enough
to be considered outliers. On the other hand, no outliers are present for very high values of
the leverage. Therefore, there should not be strong concerns of atypical influencial values,
although some authors caution on the interpretation of these graphs for generalised linear
regressions. To see more on diagnostics for generalised linear regressions see Dunn and Smyth
(2018).

Another concern regarding the model can refer to the selection of the explanatory vari-
ables and the changes resulting from their exclusion. Since the effect of prices on tourism is
probably the least clear (both a high CPI in the origin and in the destination seem to have
a similar positive effect), I also have run an alternative model where origin and destination
CPI enter as a single variable, called C'PI _rate. This variable is defined as the rate of prices
at destination divided by prices at origin. This specification is very common in other works
using the gravity model (including Massidda and Etzo (2012) or Culiuc (2014)), and allows
for a more simple entrance of prices in the model. The results of the regression are shown
in the appendix, in table 5.2. The pseudo R? of the new model is very close to the old one,
losing very little information from this change. Surprisingly, the positive coefficient implies
that higher prices at the destination compared to the origin attract more instead of less
tourism. However, other works do find negative elasticities for this variables, for example,
around —0.3 in Culiuc (2014) or —8.97 in Massidda and Etzo (2012) (who use the same data
and definition).

As one of the differences of this work with respect to others is the inclusion of the MR
effect, which is defined by using CPI in the destination, I ran a third model excluding
the MR factor and maintaining the relative CPI variable. The results are shown table
5.3. Even if the MR term and the relative CPI do not have a strong correlation!®, both
PPML regressions (with and without time effects) now yield negative and non significant
coefficients once M R has been left out, although in this case the pseudo R? value significantly
decreases to 0.837. These results may suggest a possible bias arising from the inclusion of

8For the specific case of a Poisson regression the deviance residual of observation i equals to:

. > XZ ; A~
dijt = S’Lg?’l(Xijt — Xijt) Q[X”t 11’1 Aijt — Xithijt]
Xijt
9This is probably the result of not including regions fixed effects and could have lead to some bias in the
estimations.
0They have a correlation of —0.14 before applying logarithms and a correlation of 0.26 after applying
them.
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the multilateral resistance term in the model, which being negatively correlated and having
a positive coefficient, could bias upwards the coefficient of the relative price. Next chapter
will help to conclude whether these coefficients are robust or not when different variables are
excluded of the model.

In conclusion, it has been possible to corroborate the effect of the classic determinants
of tourism for the case of the domestic Italian flows. In particular, distance, population and
GDP per capita, but also culture or crime. Furthermore, some elasticities have been shown
to be close to the results found by other authors and in the case of discrepancies it has
sometimes been possible to trace the cause of the deviations. However, a big question mark
remains on the actual role of the less significant or more volatile variables such as Linder’s
and having a border with another European coutnry, or even those regarding prices and the
MR term, whose interpretations are not totally clear. Besides, working with a model based
on a pseudo-distribution reduces the amount of statistical tools that can be used to check the
robustness of the specification, or at least makes their interpretation trickier. Here is where
the Bayesian Model Averaging technique, which, with all due caution, is compatible with
pseudo-distributions and takes a less strict approach than other model selection algorithms,
can be helpful to double check the robustness of the estimated coefficients.



Chapter 4

Bayesian Model Averaging

In the second chapter some of the most commonly studied tourism determinants have been
discussed and proposed, first from a purely theoretical derivation and then getting inspiration
from other empirical papers. Then, in the third chapter a Poisson Maximum-Likelihood
model has been proposed for the estimation of their elasticities, which have been compiled
in table 3.2. From their statistical significances it is possible to draw conclusions on their
actual relevance regarding the study of (at least Italian) domestic tourism flows, and it would
have been possible to finish the work with a set of statements such as “income is a clearly
positive determinant of domestic tourism”, or “Linder’s hypothesis does not hold in this
specific case”.

This common practice suffers from the limitation of only focusing on one possible model
to draw conclusions. The amount of models that have been applied by different researchers
to model tourism flows might raise some doubts on the validity of the model presented
in this work. Although the usefulness of applying a PPML model to the data has been
discussed, hopefully extensively enough so that it can be accepted as good practice, the
selection of the variables has been influenced by different sources and it is unclear how a
different specification could affect the conclusions. Due to correlation, the inclusion and
exclusion of a certain variable can severely affect the estimates of the elasticities of the rest
of the variables. Although the correlation matrix of the variables has been studied to make
sure that no pair of variables is close to show collinearity!, some correlation still exists, and
when the number of variables is as high as in this case it is very likely that taking different
combinations of the covariates results in different conclusions for each model.

In order to mitigate this uncertainty, a Bayesian Model Averaging procedure will be
implemented. Starting with the initial model where all the presented explanatory variables
are included, a classic frequentist approach to model selection would usually end up with a
subset of variables that maximises some information criterion (namely Akaike’s or BIC). On

LA very high correlation among a set of variables makes their estimates very sensitive to the inclusion
or exclusion of one or a subset of these variables. If the correlation of a pair of variables is very high, one
of them is already proxying of the other so it must be excluded. When there is perfect collinearity the
estimation simply cannot be computed.

26
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the contrary, a model averaging strategy consists of taking into account all candidate models
and then draw conclusions by giving different weights to them. These weights correspond
to the perceived probability that a given model is the correct one. Once these weights are
endowed, it is possible to compute a new coefficient for each variable as the weighted average
of the models estimates of the coefficients where the weights are the model probabilities.
Furthermore, a distribution for each coefficient can be obtained, and also its probability of
being different from zero. The interest of model averaging is that no model is unilaterally
chosen to be the correct one, but uncertainty is instead modeled and used to draw conclusions.
Although there also exists a frequentist version to model average (as defended in Moral-
Benito (2011)), model averaging procedures have come from a bayesian context and imply
the specification of priors for both the models considered and the coefficients to be estimated.

4.1 Bayesian statistics

The classic philosophy of statistics is based on the assumption that with enough observations
it is possible to obtain a more accurate depiction of a the data generating process under a
phenomenon of study. This corresponds with the frequentist approach, which is backed by
theorems like the Central Limit Theorem and the Laws of Large numbers, and which allows
for an (at least asymptotically) objective estimation of the parameters of a model.

The bayesian paradigm takes a different perspective. Instead of hoping that the number
of observations will be high enough for the asymptotic theorems to be good enough approxi-
mations, a bayesian statistician in a parametric context already starts with some assumptions
on the coefficients that they want to estimate. After they are confronted with the data, they
modify their previous believes incorporating the new information into their model. For ex-
ample, in order to estimate a regression model, the researcher may start with an assumed
distribution for the vector of parameters to be estimated, Pr(f3). Then, given a dataset D,
composed of a set of independent variables and a dependent variable, the distribution of the
parameters can be updated following Bayes’ theorem:

Pr(D|B)Pr(B)
Pr(D) )

Pr(8|D) = (4.1)

Each term of this equation receives a specific name, referring to its role and nature in a
bayesian framework. Pr(f) is the prior probability, reflecting the previous believes of the
researcher on the parameters that they want to estimate. Pr(/|D) is the posterior probability,
and corresponds to the modification of the prior to adapt to the evidence. Pr(D|f) is called
the likelihood, indicating the compatibility of the data with a hypothesis. Finally, Pr(E) is
usually termed the marginal probability. Although I have referred to a regression model for
clarity, this philosophy can be applied to much more general contexts, in which we can talk
about a hypothesis, H, whose probability can be affected by the data and for which we have
a prior.
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4.2 Theoretical framework of BMA

Bayesian Model Averaging is a special case of application of bayesian statistics in which not
only the coefficients of a regression are initially endowed with a prior, but also the different
models are treated as uncertain and given probabilities.

To implement the method, it is first of all necessary to establish the models {M;};=1,
that are deemed possible and associate a prior probability to all of them (P(A;) for j =
1,...,k). In this case, the models considered will be all the possible models defined by taking
all possible subsets of the set of explanatory variables Z = {Z1, ..., Z,}*. Thus, 2¢ models
can be estimated, each seeking to explain the same data y, and yielding their own set of
coefficients {Bl, - Bq}. Considering a model M; that does not include a certain variable
Zy is in this case tantamount to setting the corresponding value of the vector of coefficients
equal to zero (ﬁg = 0). If we stack our data in D, which includes both the value of the
dependent and the explanatory variables, then the law of total probabilities allows for the
specification of a probabilistic distribution of the coefficients conditioned on the data. This
is the posterior distribution of 3, and is given by:

k
Pr(8|D) =Y Pr(8|D, M;)Pr(M;| D). (4.2)
j=1
In 4.2 is possible to see here that the BMA posterior distribution is a weighted average of
the posterior distributions of the vector of coefficients 5 under each of the models, where the
weights are the posterior probabilities of the models. They are given by:

Pr(M;|D) = Pr(D|M;)Pr(M;) _ Pr(D|M;)Pr(M;) (4.3)

Pr(D) lépr(li)Pr(Ml).

In order to work with expression 4.3 it is necessary to be able to compute the likelihood of
the data when it is conditioned on each model. This is obtained by integrating the likelihood
of the data over the unknown coefficients®:

Pr(DIMG) = [ Pr(DI3 L) Pr(|M, a5 (4.9

The first factor, the likelihood of the data given the vector of coefficients and the model
has to be specified by the researcher. In the case of a model based on a pseudo distribution
the most natural election would be to use the origin distribution, in this case a Poisson.
The second one is just the coefficients prior, which must also be chosen by the researcher.

2The probabilistic space of models is simply equal to the power set of Z on which it is defined a probability
measure, where Z is understood the set whose elements are the variables 71, ..., Z,.

3Remember that given three random variables X7, Xo and X3 with joint density f(Xi, X», X3), the
conditional density function of the first random variable over the others is defined as: f(X;|X2, X3) =
f(X1, X2, X3)/ f(X2, X3). Therefore: [ f(x1|x2,23)f(v2lxs)drs = [ f(a1,22,23)/f(x3)dxs = f(x1]22)
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Therefore, this integral is theoretically computable once the assumptions are clear. However,
the high dimensionality of the integral can make the estimation by numeric methods too hard.
And although in the linear regression case where the errors are assumed to be normal it has
an analytical expression, this is not generally the case.

There are several approaches that are followed in order to cope with this integral. Many
researches use MonteCarlo methods to reduce the computational complexity of its resolution.
In this work I use the package of R BMA, which solves the challenge by approximating the
integral by using BIC (see Raftery et al. (2005)). The approximation is as follows:

21n Pr(D|M;) =~ 2In Pr(D|#) — d;Inn = —BIC;, (4.5)

where d; is defined as the dimension of the vector of coefficients in the model and §; is the
Maximum Likelihood estimator of coefficient S under model j.
With this approximation, equation 4.3 becomes:

exp{—BIC;/2}
> exp{~BIC;/2}
Once that the weights of equation 4.2 are computed, the posterior of the coefficients will
be specified. If the expectation of both sides of equation 4.2 is computed and the conditional

expectation of § over a model is approximated by the maximum likelihood estimator, it is
possible to obtain a BMA estimate of 5:

Pr(M;|D) = (4.6)

Beaa = E(BID) =) E(B|D, M;)Pr(M;|D) ~ ) ' Pr(M,|D). (4.7)

J=1 Jj=1

Note that if the interest is to compute an estimate of 3, the described procedure leaves a
very small space for the influence of the priors. Only the priors of the models play a role, and
since they are almost universally taken as equiprobable, the bayesian nature of the method
disappears and it could be possible to talk about a frequentist model averaging. Another
value of interest is the Posterior Inclusion Probability (PIP) of a variable, which for a given
variable p is only the sum of the posterior probabilities of the models which include that
variable:

PIP(B,) = Pr(8, # 0|D) = Y _ Pr(M;|D) (4.8)
Bp#0

The PIP allows for a new conception of significance of a variable. It is common to establish
a threshold for a variable’s PIP to consider it significant. I will follow the common practice
of considering that a variable is significant whenever its associated PIP is higher than 0.5
(Beck et al. (2017a)). In other words, whenever there is a higher probability of variable to
be included than not it will be called significant.

Note that the model priors are defined so that all models are equiprobable, no variable
could have a PIP equal to one, since the probabilities of the models which do not include
that variable are strictly positive. In practice, however, it is very common that the most
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likely models accumulate a very big part of the probability mass. These group of very likely
models often share a big set of explanatory variables which are included in all of them, so
some variables end up having extremely high PIP, which are rounded up to 1. Besides, many
BMA algorithms do not actually run all possible models since it would be extremely heavy
in computational terms, but instead use some sort of shortcut, often dropping all models
without a given variable when the posterior probability goes down a lot after its removal (it
is for example the case of the MC? algorithm described in Moral-Benito (2011)).

Note that the way the posterior expectation is defined also makes the estimates of the
coefficients to be somewhat closer to zero than they would be in the case that the focus were
limited to the models where those variables are included?. This latter value can also be of
interest for the researcher and it is denoted as the conditional posterior mean (PMC). It is
just the posterior mean conditioned on the variable being in the model:

Zj:L..kwp;éo PT(MJ|D)B£
Pr(B, #0)

Another estimate of interest can be the posterior standard deviation (PSD), which is
equal to:

PMC(ﬁp) = E(/Bp| ﬁp # O7D) = (4~9)

PSD(5,) = Z Pr(M;| D)V (8;|M;, D) + Y P(M;|D)[5 — E(B,| D, My)]2,  (4.10)

j=1

whereas the conditional posterior standard deviation (PSDC) is given by:

V(5| D) + E(B,| D)?
Pr(B, #0)

PSDC(B,) = \/ — E(BplBp # 0, D). (4.11)

These are the key concepts that will be used to analyse the effect of the tourism deter-
minants. For a more theoretical description on BMA I refer again to Moral-Benito (2011).
Another matter of interest when applying a BMA can be the relationships between the vari-
ables, in particular as substitutes and complements, which can be analysed through the use
of jointness measures. Although I will not treat this issue in this work, a theoretical ex-
planation and application of the BMA perspective for the case when pairs of variables care
studied together and in relation with each other can be seen in Beck et al. (2017b), where
the author also applies a BMA to a gravity model specification.

It can be noted now that the BMA suffers from the same problems as most statistical
tools when working with pseudo-distribution models: they are using a likelihood which is
not assumed to be true. Without incurring in this discrepancy it would not possible to

4Remember from equation 4.2 that the BMA estimates of the coefficients are computed as their posterior
expectations. This equals to the weighted mean of the coefficients estimates from the models where the
weights are the model posterior probabilities. When a model does not include a variable in its specification
the associated coefficient is just set to zero.
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operate further than computing the coefficients and the variance of the model. The question
is when using this likelihood can be too problematic. In the case of the BMA, the likelihood
plays a role only in the computation of integral 4.4, in particular in the computation of the
BIC by the package BMA, which plays a relative role in assigning the probabilities of each
model with respect to the data. While changing the likelihood would change the posterior
probabilities of the models, note that the PPML has been shown by Silva and Tenreyro (2006)
to be consistent in its estimation of the elasticities for different cases of overdispersion, so
the Poisson likelihood is already effective to fit models to the data, even if the variance is
computed aside. Therefore, the BIC values should be good indications on which models
are most likely according to the data in relative terms. Besides, the BMA is used a as
a robustness method, and its balancing nature should assuage concerns of possible biases
arising from its use in the context of a model based on a pseudo-distribution.

Regarding its implementation, there are, at least to my present knowledge, three packages
available for R to perform BMA: the already cited BMA, the BMS (Bayesian Model Selection)
package and the BAS (Bayesian Adaptive Sampling) package. The choice in favour of BMA was
rather a necessity, since it is the only one which is compatible with generalised regressions.
What is more, for the Poisson model it permits to choose whether to follow the equidispersion
constraint or to estimate the robust variance separately, therefore being compatible with a
pseudo-poisson specification. It has other interesting characteristics as well, namely its use
of the BIC to approximate the integral 4.4, reducing a lot the computational requirements
of the model. For a discussion on the R packages for BMA and more information on the BMA
package that has been used see Amini and Parmeter (2011).

4.3 Results

I have run the bayesian model averaging algorithm from R package BMA. The results are
shown on table 4.1. They include the variables names in the first column, along with their
estimated PIP, expected value and standard deviation in the next ones. The names of the
variables are in bold letters when they are considered significant (PIP > 0.5). The rest
of the columns represent the estimates of the first five most probable models, along with
their BIC and their posterior probability. Note how very small differences in the BIC value
translate into very different posterior probabilities for the models.

The most likely model according to the BMA procedure, which accumulates a probability
mass higher than 0.5, includes all variables except for the eu_border. This finding corrobo-
rate those found in the previous chapter, providing strong evidence against the inclusion of
this previously significantly ambiguous variable, which has a PIP of only 15.5. This might
be either an evidence against the hypothesis that international tourism is a substitute of
domestic tourism, or is the result of a failure of the model at trying to proxy it with this
variable. Another possibility could be that regions sharing a border with another European
country actually travel more than those which do not. As it was already mentioned, this
group of regions include many of the richest areas in Italy and there could be some correla-
tion with an omitted variable. Still, it is hard to explain what is the nature of this omitted
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Table 4.1: BMA results

p!'=0 EV SD model 1 model 2 model 3 model 4 model 5
distance 100.0 -0.517247 0.016656 -5.178e-01 -5.278e-01 -5.202e-01 -4.901e-01 -5.301e-01
GDP_pc_or 100.0 0.655134 0.033968  6.611e-01 6.557e-01 6.313e-01 6.614e-01 6.233e-01
GDP_pc_dest 100.0 0.844211 0.030314  8.485e-01 8.387e-01 8.450e-01 8.373e-01 8.352e-01
population_or 100.0 1.066591 0.008312  1.068e+-00 1.066e+00 1.064e+00 1.067e+00 1.062e+00
population_dest 100.0 0.306722 0.010986  3.079e-01 3.054e-01 3.089e-01 3.015e-01 3.066e-01
island_or 100.0 -0.185623 0.030039 -1.849e-01 -1.841e-01 -1.837e-01 -1.940e-01 -1.828e-01
island_dest 99.6 0.129412 0.030365  1.312e-01 1.305e-01 1.306e-01 1.229e-01 1.299e-01
eu_border 15.5 0.004755 0.012298 . . 2.982e-02 . 3.247e-02
border 88.6 -0.050466  0.023601  -5.634e-02 -5.894e-02 -5.662e-02 . -5.913e-02
crime 100.0 -2.101190 0.373547 -2.115e+00 -2.111e4+00 -2.160e4+00 -1.934e4+00 -2.162e+00
culture 100.0 1.072410 0.095050  1.065e+-00 1.086e+00 1.065e+00 1.084e+00 1.086e+00
linder 76.9 -0.013810  0.008932  -1.794e-02 . -1.721e-02 -1.890e-02 .
CPI.or 100.0 4.137500 0.372680 4.163e+00 4.069e+-00 4.135e+-00 4.170e+00  4.043e+00
CPI_dest 100.0 4.327922 0.294658  4.353e+00 4.274e4-00 4.338e+00 4.319e+-00 4.260e+00
MR 100.0 3.410229 0.042469  3.413e+00 3.411e+00 3.404e+00 3.404e+00 3.402e+00

nVar 15 14 16 14 15
BIC -3.775e4+04  -3.774e4+04 -3.774e4+04 -3.774e4+04 -3.774e+04
post prob 0.575 0.169 0.094 0.083 0.044

Note: Bayesian model averaging performed with the function bic.glm from the R package BMA. The first column of results
represents the probability of inclusion, the second and the third the expected value and standard deviation. The remaining
columns show the results of the most probable models. Variables which are significant (PIP higher than 0.5) are in bold letters.

variable and why it would be correlated to the dummy vairable and at the same time not be
correctly proxied by GDP per capita.

The other main revelation that the BMA provides refers to Linder’s variable. While
this variable was not significant in the model including all the variables, its probability of
inclusion is of 0.77 when considering all models, and it is included in the most likely model.
Its expected value, around —0.01, is somewhat smaller in magnitude than the one that is
found in Keum (2010) for aggregate trade, which is around —0.06 (although he obtained
positive or non-significant effects when considering tourism).

The graphs of the estimated posterior densities of the coefficients are shown in figure
5.4 in the appendix. The black lines on zero show the cumulative probability of the models
which do not include the variable, and therefore represents the probability of not inclusion
(1-PIP). The package also shows the conditional means and conditional standard deviation
values as defined in equations 4.9 and 4.11.

In conclusion, the BMA is a useful procedure that sheds some light on the uncertainties
that considering only one model can cause, while having a smoothing nature which should
reduce concerns on specification bias, especially those arising from very high correlations.
While it may not reveal new results regarding those determinants whose effect was already
well assessed, it does help make stronger conclusions on the variables whose role was dubious
and for which only one perspective might be non determinant.



Chapter 5

Conclusions

There are several conclusions that can be drawn from this work, referring both to the problem
studied, the determinants of Italian domestic tourism, and to the choice and implementation
of the PPML estimation and the BMA as a robustness test. Some aspects also need to be
discussed in order to understand the results and to be able to contextualise them within the
limits of this work.

First of all, it has been possible to corroborate how the classic tourism determinants
have a significant effect on tourism flows. Distance has shown to be a stronger determinant
than in the case of international tourism, which has been explained both from the point
of view of costs (as international travels distance correlates less with monetary and time
costs than in the case of national travels) and from the point of view of exotism, which
likely plays a higher role for international flows. In fact, exotism is probably the main
cause behind the positive coefficient of island_dest, showing that the difficulties associated
to the travel to an island are more than compensated by the characteristic attractions of the
islands compared to continental destinations. This effect does not function in the reverse
direction, as the elasticity of island_or is negative. The problem of correctly dissociating
the underlying competing causes which once aggregated lead to the value of the elasticity of
distance has been very scarcely treated in the literature, and the matter of the differences
between national and international flows is only a special case of this wider problem. Since
distance is the key variable of the gravity model, and the most constant one in terms of how
it is defined across papers, it is important that studies do not limit themselves to yield an
estimate of the elasticity of flows to distance, but also try to compare it with other similar
works and provide a reasoning for their similarities or discrepancies. Hopefully, this work
has shed some light on the matter and has provided some reasoning to the results that have
been found.

The other main variables proposed by the economic derivation, income and population
at the origin and their destination counterparts, have also been shown to be significant. The
higher elasticity of income at destination than at origin can be surprising. Still, I suspect
that income at origin may have a complex effect on national tourism, as it probably greatly
increases the absolute number of tourism flows from that region, but high incomes may cor-
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relate with more international travels, therefore pulling downwards the coefficient. Perhaps,
had I had access to data on international trips I would have obtained a different coefficient.
Besides, there are a very high number of characteristics that can correlate with income at
destination, of which only two have been studied. A future line of work on this matter
should take use data of international travels and include more destination characteristics
to account for these matters. Regarding population, the elasticity of one is exactly what
was expected, suggesting that everything equal an increase of one percent of the population
implies an increase of one percent of travel to every destination, while the smaller but sig-
nificant elasticity of population at destination does probably reflect the influence of absolute
number of attractions and facilities at the destination not already accounted for culture.
Seeing the very high differences in these effects, I would strongly discourage the old practice
(still sporadically followed today) of summing origin and destination populations yielding to
a total population mass variable, since aggregating under such different elasticities can lead
to strong bias and the impossibility of correctly interpreting results.

The culture and crime variables have had very consistent effects with the same sign as it
was expected, which can be seen as a success, both in terms of the adequacy of the model
and as a good sign regarding its implications for public policy interventions to increase
the touristic appeal of a region. However, there remains the question of how much these
coefficients reflect causality and how much they reflect correlation. I believe that it is safe to
trust that culture’s coefficient reflects the actual attraction by historical sites and museums in
a region, although there are probably differences in the magnitude of these effects comparing
UNESCO heritage sites with more modest cultural institutions. Since the number of the
latter is more easily increased than that of the first, this estimate should be understood
as an almost inaccessible upper bound to what a local government can attain regarding
culture expenditure. Again, it would be interesting in future works to disaggregate cultural
attractions and compare the new etimates. On the other hand, it is possible that the crime
rate correlates with other characteristics of a region such as inefficient public transportation,
degradation of the public spaces, etc. Still, the inclusion of GDP per capita at the destination
level should reduce the amount of bias arising from hidden variables and there is no reason
to believe that crime rates do have a strong repulsion effect to tourism.

Another success of this work has been the confirmation of the effect of Linder’s hypothesis
also at the national level and for the case of tourism. Still, I would argue that the variable
of economic distance probably shows the effect of more phenomena than that described
by Linder’s reasoning of similar factors’ prices leading to similar services, and therefore
attracting tourists from equally rich regions. In fact, an important part of Italian travels are
motivated by labour (almost 8 million in 2019 according to ISTAT: Viaggi per motivo data),
and it is likely that these flows are more common among regions with similar industries.
Another study could focus on the differences of leisure and business travel, although flows
disaggregated by motive are not available for Italy yet. Furthermore, it could even be argued
that places with similar geographical characteristics have similar comparative advantages,
therefore centering on similarly value-added industries. If tourists are attracted by the
geographical and not the economic similarities, then Linder’s variable would be proxying
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more phenomena than that described by Linder’s hypothesis. A similar reasoning could be
made regarding the role of historical ties and cultural resemblances, which may both attract
tourists and correlate with economic distance. In order to discern these possibly entangled
effects, I would propose a bigger model where some variables could account for cultural and
geographical ties such as belonging to the same political entity before the Italian unification,
having similar elevations, temperatures, etc.

There remain the variables which have a less clear effect on tourism and which also need
some more discussion. I have already mentioned that the border variable can have an effect
contrary to what was expected due to a higher prevalence of one-day-trips in flows between
adjacent regions. In order to be able to affirm this it would be advisable to study the
model changing the dependent variable from stays to total number of leisure trips with or
without staying at the destination. I would expect a strong change in the border coefficient
in that case. Still, it is also possible that this contradictory result is caused by a failure
of the specification to correctly account for the role of distance. Some recent works using
the gravity model have allowed for more complex effects of distance on flows (for example
Congdon (2000) where the author permits a stronger effect of physical distance for short
distances and a growing effect of car distance for bigger distances), and it can be the case
that its effect is not linear, but it plays a smaller effect for short distance and a bigger effect
for large ones. Therefore the border variable effect would only be a correction of this bias.
This theory seems to be backed from the decrease of the distance effect in model 4 of the
table 4.1, which is the only of the most likely models not accounting for adjacency, compared
to the rest. Fitting a model where distance has a polynomial and not only a linear effect
could be informative on this regard.

Finally, the biggest surprise has come from the positive effect of price at the destination,
which has been found when performing the PPML regression to the model and under the
BMA results. The information obtained from running the alternative specifications was
somewhat ambiguous, relative prices still have a positive effect when the MR variable is
included and it becomes non significant when it is excluded. It seems that rather than an
economic phenomenon that can be explained, it is the result of a misspecification arising
from the inclusion of the MR term, although it is still possible, as already mentioned, that
it can be the result of hidden variables bias. Due to this incongruity of prices, I would not
venture to interpret the effect of MR even though the sign was the expected one. Instead,
I would propose to take into account the multilateral resistance factor in a different way,
ideally basing more strongly on the derivation from Anderson and Van Wincoop (2003) and
making assumptions on the elasticity of substitution of tourists.

In general, it could be concluded that the PPML has been successful in estimating coher-
ent elasticities for the different determinants, and the cases of discrepancy correspond more
to problem arising from the selected variables than to the estimation procedure. In fact,
the differences between the OLS and the PPML should be accepted as the result of the bias
arising from the transformation of the dependent variable in the first case. Hopefully, the
work has also helped introducing the reader to quasi-maximum likelihood estimation and
has provided some guidance on its use. There are still many discrepancies and contradicting
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points of view regarding what is permitted and what it is not under its use, and some more
theoretical work, and especially empirical guides, are necessary.

Regarding the model, there remains the possibility that not having included fixed effects
has led to bias in the results. Indeed, some of the possible hidden variables that I have just
identified could have theoretically been prevented by taking at least region-pairs fixed effects,
and some even having taken only origin and destination. The decision to only include time
effects has been justified by the will of included as many variables as possible to have a more
comprehensive visual than otherwise it would have been possible, and it has also helped
regarding the computational viability of the demanding technique that is the BMA. In fact,
origin and destination time-varying fixed effects could have helped eliminate the multilateral
resistance bias, but its implementation would have been so demanding and the set of possible
variables included so restricted that the study would have lost its essence. Yet, for studies
focusing on a reduced set of time-varying variables, I would follow the literature and suggest
using a model with fixed effects

The last chapter preceding the conclusions has been an application of a very simple BMA
procedure which has helped better identify the effects of the different determinants. Hope-
fully, the practice of studying more than one specification can become more common in the
future. Even if a specification is clearly and uniquely defended by a theoretical derivation,
the BMA keeps being a very informative robustness test that allows for verifying the signifi-
cant coefficients and obtaining more information about the least clear ones. Furthermore, it
also helps to understand how removing a set of variables influences the results obtained by
the remaining ones, as it was the case with the border variable and distance. And instead
of blindly perfrming this way, the BMA already identifies the most likely models, so that
comparisons can be better focused. As I have already mentioned, the relation among the
sets of variables can also be studied under a BMA perspective in a more structured way like
in Beck et al. (2017b). Thus, I conclude by saying that the bayesian model averaging is a
technique that offers multiple benefits to the researcher and whose possibilities have been
barely touched in this work.
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Figure 5.1: Travel flows network in 2019
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Note: The width of the edge is proportional to the number of travels summing both directions
of the flow and the size of the vertices is proportional to the population of the region. The
image has been created using the package igraph for defining the underlying graph structure,

and ggplot?2 for the image design.
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Table 5.1: Correlation matrix of all the explanatory variables.

distance  GDP_pc.or GDP_pc_dest population_or population_dest linder island_or island_dest border crime culture CPl.or CPI_dest MR

distance 1.00 -0.19 -0.19 -0.02 -0.02 0.59 0.33 0.33 -0.49 -0.14 -0.07 0.08 0.08 -0.16

GDP _pc_or -0.19 1.00 -0.03 0.05 -0.00 0.10 -0.37 0.02 0.07  -0.05 -0.01 -0.04 0.07 -0.14

GDP _pc_dest -0.19 -0.03 1.00 -0.00 0.05 0.10 0.02 -0.37 0.08 0.26 0.14 0.07 -0.04 0.23

population_or -0.02 0.05 -0.00 1.00 -0.05 -0.00 0.06 -0.00 0.08  -0.03 -0.03 -0.03 0.01 -0.01

population_dest -0.02 -0.00 0.05 -0.05 1.00 -0.00 -0.00 0.06 0.08 0.61 0.68 0.01 -0.03 0.05

linder 0.59 0.10 0.10 -0.00 -0.00 1.00 0.03 0.03 -0.29 -0.11 -0.12 0.15 0.15 -0.19

island_or 0.33 -0.37 0.02 0.06 -0.00 0.03 1.00 -0.05 -0.13 0.01 -0.01 0.01 -0.00 -0.01

island_dest 0.33 0.02 -0.37 -0.00 0.06 0.03 -0.05 1.00 -0.13  -0.12 0.13 -0.00 0.01 -0.03

border -0.49 0.07 0.08 0.08 0.08 -0.29 -0.13 -0.13 1.00 0.08 0.06 -0.03 -0.03 0.06

crime -0.14 -0.05 0.26 -0.03 0.61 -0.11 0.01 -0.12 0.08 1.00 0.73 -0.12 -0.20 0.16

culture -0.07 -0.01 0.14 -0.03 0.68 -0.12 -0.01 0.13 0.06 0.73 1.00 0.00 -0.02 0.03

CPI.or 0.08 -0.04 0.07 -0.03 0.01 0.15 0.01 -0.00 -0.03  -0.12 0.00 1.00 0.74 -0.06

CPI_dest 0.08 0.07 -0.04 0.01 -0.03 0.15 -0.00 0.01 -0.03  -0.20 -0.02 0.74 1.00 -0.13

MR -0.16 -0.14 0.23 -0.01 0.05 -0.19 -0.01 -0.03 0.06 0.16 0.03 -0.06 -0.03 1.00

Note: Computed with the deafault R function cor.
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Figure 5.2: Residuals plots
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Note: The points correspond to the deviance residual of every observation for the PPML
model with time effects. The plot has been created using commands from library ggplot?2
in R and obtaining the deviance residuals from the residuals function.

Standardised deviance residuals vs. fitted values
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Note: The points correspond to root of the absolute value of the deviance residual of every
observation for the PPML model with time effects. The plot has been created using com-
mands from library ggplot2 in R and obtaining the deviance residuals from the residuals
function.



CHAPTER 5. CONCLUSIONS

Figure 5.3: Outliers identification
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Table 5.2: Regression results of the model where CPI enters as rate of the destination over

the origin.

Estimator: OLS OLS (Time eff.) PPML PPML (Time eff.)
Dependent variable: In Xijt +1 In Xijt +1 Xijt Xijt
distance -0.76%** -0.76%*** -0.51%** -0.51%**
(0.02) (0.02) (0.01) (0.01)
GDP _pc_or 0.09* 0.08* 0.36*** 0.35%**
(0.04) (0.04) (0.03) (0.03)
GDP _pc_dest 0.98*%**  (.97%** 0.79 *** 0.76 ***
(0.04) (0.04) (0.03) (0.03)
population_or 1.03%** 1.03%** 1.04%** 01.04%**
(0.01) (0.01) (0.01) (0.01)
population_dest 0.47*%* 0.46%*** 0.32%** 0.31%%*
(0.01) (0.01) (0.01) (0.01)
island_or -0.43%*** -0.43%*** -0.27** -0.28%**
(0.03) (0.03) (0.03) (0.03)
island_dest 0.47*%* 0.46%*** 0.32%** 0.31%**
(0.01) (0.01) (0.01) (0.01)
eu_border 0.05%* 0.06** 0.03* 0.04**
(0.02) (0.02) (0.01) (0.01)
border -0.09%** -0.09%** -0.06*** -0.05%*
(0.03) (0.03) (0.02) (0.02)
crime -4.98%** -4.73%%* -3.10%** -2-36%**
(0.41) (0.48) (0.32) (0.38)
culture 2.12%** 2. 11%%* 1.04%* 0.99***
(0.11) (0.11) (0.09) (0.10)
linder 0.07*** 0.07*** -0.01 -0.01
(0.01) (0.01) (0.01) (0.01)
CPI_rate 5.09%** 5.12%%* 0.98%** 0.98%**
(0.24) (0.24) (0.23) (0.23)
MR 3.95%** 3.96%** 3.19%** 3.20%**
(0.12) (0.12) (0.04) (0.04)
Year effects No Yes No Yes
Null deviance: 846039967 846039967
Residual deviance: 84883390 84366618
R2 and pseudo R? 0.896 0.896 0.900 0.900

Note: The OLS estimation has been performed using the 1lm command in R, while the
PPML estimator has been applied using the ppml function from the package Gravity also
in R. The estimated coefficients are shown in the same level of the variable name, while

each estimated standard deviation is shown under it.

The deviance and R? values are

obtained applying the function summary to the respective models and the pseudo-R? was
computed using the deviances. Stars denote p-values as follows: *p < 0.05; **p < 0.01,

#¥p < 0.001.
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Table 5.3: Regression results of the model with relative CPI and excluding the MR term.

Estimator: OLS OLS (Time eff.) PPML PPML (Time eff.)
Dependent variable: In X5 +1 InXg+1 Xijt Xijt
distance -0.95%** -0.95%** -0.70%** -0.70%**
(0.02) (0.02) (0.02) (0.02)
GDP_pc_or 0.01 0.01 0.26*** 0.26%**
(0.04) (0.04) (0.05) (0.05)
GDP_pc._dest 1.20%**  1.20*** 0.91%** 0.90 ***
(0.04) (0.04) (0.05) (0.03)
population_or 1.01%** 1.01%** 0.98%*** 0.98%**
(0.01) (0.01) (0.01) (0.01)
population_dest 0.58%** 0.58%** 0.43%** 0.42%**
(0.01) (0.01) (0.01) (0.01)
island_or -0.32%*%* -0.32%*%* -0.16** -0.16%**
(0.03) (0.03) (0.03) (0.03)
island_dest 0.30%*** 0.30%*** 0.09 0.09
(0.03) (0.03) (0.05) (0.05)
eu_border 0.08%** 0.08%** 0.08%*** 0.08%**
(0.02) (0.02) (0.02) (0.02)
border -0.02%** -0.02%** -0.04*** -0.04%*
(0.03) (0.03) (0.03) (0.03)
crime -4 .81%** -4.,94%** -3.54%** -3.24%**
(0.45) (0.53) (0.51) (0.60)
culture 2.01%** 2.02%** 1.15%* 1.13%**
(0.12) (0.12) (0.15) (0.15)
linder 0.08%** 0.08%** -0.01 -0.01
(0.01) (0.01) (0.01) (0.01)
CPI_rel 2.87*¥* 2.86*** -0.14 -0.16
(0.25) (0.26) (0.37) (0.37)
Year effects No Yes No Yes
Null deviance: 846039967 846039967
Residual deviance: 138592650 138012691
R? and pseudo R2 0.873 0.873 0.836 0.837

Note: The OLS estimation has been performed using the 1lm command in R, while the
PPML estimator has been applied using the ppml function from the package Gravity also
in R. The estimated coefficients are shown in the same level of the variable name, while
each estimated standard deviation is shown under it. The deviance and R? values are
obtained applying the function summary to the respective models and the pseudo-R? was
computed using the deviances. Stars denote p-values as follows: *p < 0.05; **p < 0.01,
*HEp < 0.001.
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Figure 5.4: Plotted posterior densities of the elasticities coefficients.
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Table 5.4: Conditional expected value and standard deviation

PIP EV EVcond. SD SD cond.

dist_log 100.00 -0.52 -0.52  0.02 0.02
GDP_pc_or 100.00 0.66 0.66 0.03 0.03
GDP_pc_dest 100.00 0.84 0.84 0.03 0.03
population_or 100.00 1.07 1.07 0.01 0.01
population_dest 100.00 0.31 0.31 0.01 0.01
island_or 100.00 -0.19 -0.19 0.03 0.03
island_dest ~ 99.50 0.13 0.13 0.03 0.03
eu_border 11.70 0.00 0.03 0.01 0.01
border  88.00 -0.05 -0.06 0.02 0.02

crime 100.00 -2.10 -2.10 0.37 0.37

culture 100.00 1.07 1.07 0.10 0.10
linder  80.40 -0.01 -0.02 0.01 0.01

CPIl.or 100.00 4.14 4.14 0.37 0.37
CPI_dest 100.00 4.33 4.33 0.29 0.29

MR 100.00 3.41 3.41 0.04 0.04
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