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Abstract 

 

 

The aim of this thesis is to identify entropy regimes for the European financial market. I 

applied Markov switching model to the entropy series estimated on three different systemic 

risk measures,      , Marginal Expected Shortfall (MES) and finally network 

connectedness In-Out measure. The approach used to estimate those models is Expectation 

Maximization. I considered two and three states. In order to select the model I used (AIC) and 

(BIC) criteria  

 

Finally since the entropy measures exhibits a unit roots I investigate the role of the unit root in 

the detection of the entropy regimes. 
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Introduction 

 

The financial crisis of 2007-2008 has pushed concerns about systemic risk and its 

measurement at the forefront of both academic research and supervisory policy agenda. In 

particular, ongoing work by the Basel Committee and the Financial Stability Board striving to 

set new regulatory requirements for Systemically Important Financial Institutions (SIFI) 

requires that an agreement can be reached on which characteristics make a financial 

institution more prone than others to be severely hit by system-wide shocks (systemic 

resilience or participation) or to propagate such shocks to other institutions, thereby 

amplifying their overall impact (systemic contribution)
1
. 

New mathematical and computational tools have allowed researchers to work on 

undiscovered areas and to create new measures and approaches to systemic risk measurement. 

In particular, systemic risk analysis has improved a lot using extended versions of VaR based 

measures as       , defined as the difference between the VaR of the financial system 

conditional on the institution being under distress and the VaR of the financial system 

conditional on state of that institution. Another relevant measure is the marginal expected 

shortfall (MES) proposed by Acharya et al. (2010), it considers the average return of each 

firm during the 5% worst days for the market. Additionally to these measures Diebold and 

Yilmaz (2009) introduced a new approach of connectedness which called  In-Out measure, it 

is an international  spillover index based on assessing shares of forecast error variation in 

different locations ( firms, markets, countries,etc) due to shocks arising elsewhere.  

 

In the same way, few years ago new econometrics measures appeared considering the 

connectedness among financial institutions, one of the new measures is called Dynamic 

Causality index introduced by Gemantsky, Lo and Pelizzon and also (Billio et al 2012) which 

is capturing the degree of interconnectedness by looking at Principal Components and 

Granger Causality relations between returns and the international spillover index.  Thus it is 

interesting to compare this new approach to understand the systemic risk with some previous 

categories of measures in order to identify the best risk measure that could capture possible 

missed elements of the contagion effect observed during financial crises and also to 

characterize network structure. These measures consider the financial system as a “portfolio” 

of institutions, where the shocks of the market price could impact the others. These measures 

are constructed primarily to capture the contribution to systemic risk of individual institutions. 

In particular, they capture the relation between the distress of each individual firm and the 

distress of the whole system. 

 

Finally, my study relies on the use of entropy applied to a feature distribution estimated on the 

market, such as the cross-sectional systemic risk measures introduced above         MES 

and network connectedness In-Out measure. Indeed, the change of entropy built on these 

measures could reveal signs of changes on systemic risk.  

                                                           
1
 Analytically, one may want to distinguish between situations where bank A reacts more than others to an 

exogenous shock and situations where Bank A is a source or an amplifyer of endogenous systemic events. Both 

dimensions of systemic importance are in practice clearly inter-related. The participation vs contribution 

approach was proposed by Drehman and Tarashev (2010). 
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Econometric tool model applied in this thesis is the Markov switching model, which is an 

important reference point since the work of Hamilton (1989, Econometrica). These models 

have been increasingly used in financial time-series econometrics thanks to their ability to 

capture some key features, such as heavy tails, volatility clustering, and mean reversion in 

asset returns [see Cecchetti and al. (1990), Pagan and Schwert (1990), Turner and al. (1989), 

Gray (1996), Hamilton (1988), and Timmermann (2000), among others]. In contrast to linear 

models those assume stationary distributions (such as ARIMA models), regime-switching 

models are based on a mixture of parametric distributions whose mixture probabilities depend 

on unobserved state variable(s). A key difference between the various regime-switching 

models lies in the stochastic structure of the state variables S. For instance, the state of the 

unobserved process can be modeled by a discrete time/discrete space Markov chain, which 

can has either fixed or time-varying transition probabilities, or by an independent stochastic 

state variable. 

 In this analysis I focus on univariate mean/intercept and variance switching models only 

considering the cases of two and three states with no time-varying transition probabilities. I 

compare three entropy indexes Shannon (1984), Rényi, (1960) and Tsallis (1988) applied on 

the three cross section distribution of risk measures mentioned before, ΔCOVAR, MES and 

In-Out.  

These popular models are applied for the entropy indexes associated with each risk measure 

obtained from the available total number of financial institutions included in the European 

market for the period January 02
nd

 1986 to May 12
th

 2014, the data corresponding to the three 

entropy indexes. In order to compare the goodness of fit of the models we compute the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). In the models 

estimations I use the MS_Regress Matlab Tool-Box developed by Marcelo Perlin (Perlin, 

2014) for estimating Markov Chain Switching Models (MCSM) through the maximum 

likelihood method and Hamilton´s filter. 

This thesis is organized as follows, after this introduction, in section 1 and 2, I will offer a 

literature review covering past studies into systemic risk and systemic risk measures, which 

offer a suitable backdrop to the results of this paper. In section 3, I will discuss the entropy 

measures applied on the risk measures introduced before focusing on their differences and 

characterizations. I follow up by revising the approach of Markov Chain Switching Models 

and its importance in section 4. Before introducing and discussing empirical results in section 

6 and 7 for data with unit root and without unit root, a detailed description of the estimation 

used in the empirical results is given on section 5. The intention of this is to give the reader a 

factsheet with which to study the empirical results of section 6 and 7. Finally, in section 8, I 

provide a conclusion of the outcomes of this study. As the study involves a substantial amount 

of empirical work, the main body of this thesis covers and discusses the most important 

elements thereof. The empirical appendix on section 9 offers detailed explanations about the 

MATLAB code implemented, general summary and statistics. 
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1. Systemic Risk 

1.1 Definition and literature review. 

There is no accord regarding the concept of financial stability and systemic risk. The 

materialization of systemic risk during the recent global financial crisis proved that the 

financial safety net and financial institutions significantly underestimated it. Systemic risk 

turned out to be much more than just the composition of individual types of risks affecting 

financial institutions. Whereas liquidity risk, credit risk, operational risk, etc. can be directly 

attributed to a given institution, systemic risk can only be attributed indirectly. Before the 

global financial crisis those types of risk were frequently considered separately. However, the 

interaction (correlation) between them leads to undesired and unexpected costs and 

consequences and when aggregated to systemic risk. Systemic risk evolves along with the 

development and growth of financial markets, regulations and collective behavior of market 

participants and it may be prompted by regulatory arbitrage. It is useful to explore the 

Systemic Risk definition. As Patrick Liedtke discusses, “what is truly remarkable is that at 

this point in time no definition of systemic risk exists that would be both fully convincing and 

generally accepted”  

1. Clearly it represents an important aspect to deal with in order to identify an appropriate 

measure. The European Central Bank defines systemic risk as “the risk that the inability of 

one institution to meet its obligations when due will cause other institutions to be unable to 

meet their obligations when due. Such a failure may cause significant liquidity or credit 

problems and, as a result, could threaten the stability of or confidence in mar-kets” 

2. In this sense, the Contagion Effect that characterizes financial crises could be associated 

with one of the mechanisms by which systemic risk is observed. Of course, a good measure of 

systemic risk has a relevant role for policy makers, as Acharya comments “the need for 

economic foundations for a systemic risk measure is more than an academic concern as 

regulators around the world consider how to reduce the risks and costs of systemic crises”  

3. As a result, an appropriate systemic risk measure should include both theoretical and 

practical relevance. 

There are at least three approaches that can be used to assess the build-up of systemic risk. 

The first focuses on monitoring traditional indicators of financial soundness or stability in 

order to assess broad developments in the financial system; the second focuses on measuring 

interconnectedness between financial institutions; and the third focuses on changes in the 

behavior of prices of financial assets.  
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2. Systemic Risk Measures 

In this section I introduce three cross sectional distribution of marginal systemic risk measures 

first Marginal expected Shortfall (MES), Delta Conditional Value-at-Risk         , and 

network connectedness called In-Out measure. 

 

2.1 Systemic risk measure: Marginal Expected Shortfall (MES) 

MES is a measure of the sensitivity of a financial firm to systemic risk .Systemic risk is 

defined as “the risk that the intermediation capacity of the entire financial system is impaired” 

(Adrian & Brunnermeier p.1). The first way to look at this risk is to examine the extent to 

which an individual bank or institution is affected by a systemic crisis. To this end, Marginal 

Expected Shortfall (MES) as introduced by Acharya et al. (2010) is considered. It is the 

average return of an individual institution during the 5% worst days of the market: 

     
   *

  
 

    
 

      + 

In which 

     
    = Marginal Expected Shortfall during the 5% worst trading days on the market 

  
 

    
      = Return of institution i 

              = The 5% worst outcomes at the market 

MES measures the loss of an individual Institution when the entire market is doing poorly. A 

more negative value for MES indicates more systemic risk. From now on, a higher value of 

MES is interpreted as a more negative value for MES. Thus a higher value for MES implies 

more systemic risk. 

 

 

2.2 Systemic risk measure:       : 

 

The second way to view systemic risk is to measure the contribution of an individual 

institution i to the overall systemic risk of the system. For this purpose,        is used as 

discussed in Adrian and Brunnermeier (2011). CoVaR is the conditional Value at Risk, in 

which “Co” stands for conditional, contagion, or co-movement. CoVaR of the institution i 

relative to the system is the VAR of the whole financial sector conditional on institutions 

under distress. Furthermore,        is the difference between the CoVaR of the financial 

system conditional on institution i being in distress and  CoVaR of the financial system 

conditional on institution i operating in its median “normal” state, (Brunnermeier, Dong, and 
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Palia, 2012). As deduction  CoVaR, captures the marginal contribution of a particular 

institution i (in a non-causal sense) to the overall systemic risk. 

 

           
               

           
              

                   
 

 

Denote            
 as the contribution of Institution i to the systemic risk of the entire system 

at time t. Denote            
           

as the Value at Risk of the entire system conditional on 

bank i being in distress at time t. It is the q % Value at Risk of the entire system conditional 

on institution i operating at its VaR level. Denote            
                   

as the Value at 

Risk of the entire system conditional on bank i operating at its median state at time t. As one 

can conclude from subscript t, the terms are time varying, which implies that the model is a 

dynamic conditional model instead of a stable unconditional model. 

There are several advantages to the         measure. First, while         emphasizes on 

the contribution of each institution to overall system risk, traditional risk measures focus on 

the risk of individual institutions. Further, it is general enough to study the risk spillovers 

from institution to other across the whole financial network. Δ for example captures the 

increase in risk between two institutions, when the first falls into distress. To the extent that it 

is causal, it captures the risk spillover effects that institution i causes on institution j. Of 

course, it can be that institution i distress causes a large risk increase in institution j, while 

institution j causes almost no risk spillovers over institution i. The most common method to 

test for volatility spillover is to estimate a multivariate GARCH processes. 

 

2.3 Systemic risk measure:                               

Systemic risk highlights on contagion, spillover effects and co-movement in financial 

markets, some measures of systemic risk are based on principal components analysis (PCA) 

or Granger-causality test. For instance absorption ratio based on PCA was used for systemic 

risk measurement as proposed by Kritzman et al. In the same vein, Diebold and Yilmaz 

(2014) propose several connectedness measures built from variance decompositions, and they 

argue that these piece of variance decomposition provides a natural and insightful measure of 

connectedness among financial asset returns and volatilities. They also show that variance 

decomposition defines weighted, directed networks, so that their connectedness measures are 

intimately-related to key measures of connectedness used in the network literature. „Building 

on these insights, we track both average and daily time-varying connectedness of major U.S. 

financial institutions' stock return volatilities in recent years, including during the financial 

crisis of 2007-2008. On the other hand, Billio et al. (2012) suggested several measures of 

systemic risk focused on the connectedness of the financial institutions to quantify the 

interrelationship between the monthly returns of hedge funds, banks, brokers and insurance 
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companies based on principal Component analysis (PCA) and Granger-causality tests. They 

introduced an indicator Number of Connections (NC) calculated from Granger-causality test 

to measure the degree of systemic risk. When applying PCA, the basic idea is that systemic 

risk is getting higher when the largest eigenvalue increases explaining most of variation of the 

data. When applying Granger-causality test. The first step is to estimate a Generalized 

Autoregressive Conditional Heteroskedasticity model for the returns using a structure 

GARCH (1, 1) and conditional on the system information that is developed over the sigma-

algebra б: 

    
         

      
       

    

 

So this structure allows identifying the relationships among institutions that are included in 

the network. Applying the Granger-causality test they work on the directionality of the 

relationships between the elements in the system. Now, they define the following indicator of 

causality: 

(                    
                           

 

 

And also when (       . This indicator is used to define the connections between N 

financial institutions. The degree of Granger causality (DGC) among all N (N-1) pairs of N 

financial institutions is given by the formula: 

 

    
 

      
∑∑     

   

 

   

 

 

As a result, when DGC exceeds a threshold K the systemic risk increases and it is possible to 

count the Number of Connections that affect a particular institution (IN) and are affected by 

the same institution (OUT). So, when systemic risk is raising the level of system 

interconnectedness also increases. Therefore, the total number of connections is given by: 

 

                     
 

      
∑                   
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3. Entropy index 

3.1 Introduction 

 “Entropy” this word appeared in 1865 when the German physicist Rudolf tried to rename the 

irreversible heat loss, what he previously called “equivalent-value”. This name was chosen for 

the reason that in Greek, en+tropein” means “content transformative” or “transformation 

content” .since this years the entropy has an important application in thermodynamics. Being 

defined as the sum of “heat supplied” divided by “temperature”, it is central to the Second 

Law of Thermodynamics. Using the Conrad definition “In our probabilistic context entropy is 

viewed as a measure of the information carried by the probability distribution, with higher 

entropy corresponding to less information (more uncertainty, or more of lack of 

information)” 

Entropy can be used and measured in many other fields than thermodynamics. One of the 

important applications of entropy in information theory is Shannon entropy. In finance as well 

the application of entropy can be considered as the extension of the information entropy. It is 

an important tool in asset pricing and portfolio selection. 

All the above papers recognize that entropy could be a good measure of risk; however it 

seems to be difficult to use this measure. In the systemic risk context considering the financial 

system behavior as random process where the values of the risk measure associated with each 

institution included in are realizations of this process, it is possible to estimate an entropy 

function for some specific period and then analyze the performance of this entropy index over 

the time. Thereby, comparison between entropy indexes associated with different risk 

measures could be a good method to understand systemic risk dynamics.  My main motivation 

is to compare tree different entropies indexes, each one based on tree different systemic risk 

measures,        , MES, In-Out in order to select the best model to identify and forecasts 

financial crises. 

3.2 Concepts of Entropy Used in Finance 

3.2.1 The Shannon Entropy (1984) 

The Shannon entropy of a probability measure p on a finite set X is given by: 

 

              ∑                                   (1) 

 

Where ∑    
 
   = 1,    ≥ 0 and 0 log 0 = 0. And the base of the logarithm is 2. 
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When dealing with continuous probability distributions, a density function is evaluated at all 

values of the argument. Given a continuous probability distribution with a density function 

f(x), we can define its entropy as: 

E = -∫             
  

  
                    (2) 

 

Where ∫       
  

  
=1 and f(x) ≥0. 

 

3.2.2 The Rényi (1960) and Tsallis (1988) Entropy 

For any positive real number α. 0 <   < ∞ The Rényi and Tsallis entropy of order  , of a 

probability measure p on a finite set X is defined to be. 

 

        
 

   
    (∑   

      )                     (3) 

 

 

      = 
 

   
   ∑   

                             (4) 

 

We need      1 to avoid dividing by zero, but l‟Hôpital‟s rule shows that the Rényi entropy 

approaches the Shannon entropy as   approaches 1 

 

             =  ∑            

 

Maszczyk and Duch (2008) showed that, the Shannon entropy is a special case of the Rényi 

and Tsallis entropies. Specifically, according to the value of α, the measures in Equations (3) 

and (4) attribute roughly weight to the tails of the distribution. At a first glance, the main 

difference between Shannon and Rényi entropies is the placement of the logarithm in the 

expression. In Shannon entropy (1), the probability mass function weights the log (  ) term, 

whereas in Rényi entropy the log is applied for the total summation that involves the   power 

of the probability mass function. A large positive   value implies this measure is more 

sensitive to events that occur often, while for a large negative   value shows more 

sensitiveness to the events which happen seldom. 
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In order to compare further with Shannon entropy let me rewrite Rényi entropy as 

 

       =  
 

   
    (∑   

      ) = - log (∑   
      ) 

 

    

                 = - log (∑     
        ) 

 

                                 (5) 

 

 In (5) the probability mass function     also weights a term that now is the     power of the 

probability mass function. At a deeper level, Rényi entropy measure is much more flexible 

due to the parameter   enabling several measurements of uncertainty (or dissimilarity) within 

a given distribution, the higher the   and the less the distribution entropy far from the 

uniform. In other words the farther a distribution is from the uniform, the thinner its tails are. 

 

While, the Tsallis entropy assigns less importance to randomness that is it penalizes 

uniformity in the distribution. This entropy behaves in the same way of Shannon; there is only 

difference in the magnitude. When   increases or decreases the magnitude also increases or 

decreases. 

 

 

4. Markov Chain Switching Regime 

4.1 Glossary 

 Regime-Switching Model 

Is a parametric model of a time series in which parameters are allowed to take 

on different values in each of given fixed number of regimes 

 

 Markov Chain (MC) 

Is a process that consists of a finite number of regimes, where the probability 

of moving to a future regime conditional on the present regime is independent 

of past regime 

 

 Markov-Switching Model (MSM) 

Is a regime switching model in which the shifts between the states evolve 

depending on an unobserved MC. 

 

 Regime-Switching Model 

Is a parametric model in which parameters are allowed to take on different 

values in each of given fixed number of regimes (states). 
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 Transition Probability 

The probability of switching from state j to state i 

 

 Filtered Probability of a Regime 

The probability that the unobserved Markov Chain (MC) for a Markov-

switching model is in a  particular regime in period t, conditional on observing 

sample information up to period T. 

 

 Smoothed Probability of a Regime 

The probability that the unobserved MC for a Markov-switching model is in a 

particular regime in period T, conditional on observing all sample information. 

 

 

4.2 Definition and Importance of Regime switching models 

 

Regime-switching models have been discussed more than 50 years ago. Early econometrics 

focused on a simple model that incorporates a single non-recurring structural break. These 

time-series models in which parameters are allowed to take different values in each fixed 

number of “regimes.” A stochastic process supposed to have generated the regime shifts is 

included as part of the model, that allows for model-based forecasts which incorporate the 

possibility of future regime shifts. In some special situations the regime in operation at any 

point in time is directly observable. Generally the researchers must conduct inference about 

which regime the process was in at past points in time.  

Describing changes in the dynamic behavior of macroeconomic and financial time series has 

been the main purpose of using these models in the applied econometrics literature. Regime-

switching models could be divided into two categories, “threshold” models and “Markov-

switching” models, which are used in my thesis. The principal difference between these 

approaches is in how the advancement of the state process is modeled. The first models, 

introduced by Tong (1983), suppose that regime shifts are triggered by the level of observed 

variables in relation to an unobserved threshold. The second models, introduced to 

econometrics by Goldfeld and Quandt (1973), Hamilton (1989), suppose that the regime shifts 

evolve depending on a Markov chain. Regime-switching models became increasingly popular 

tool of modeling for applied work, these models provided an alternative and important 

approach to understand and interpret how an economy‟s growth rate changes over time. An 

important development in this regard is the Hamilton (1989) to model and identify the phases 

of the US business cycle. There is other application which includes modeling regime shifts in 

time series of inflation and interest rates (Garcia and Perron, 1996).High and low volatility 

regimes in equity returns (Hamilton and Susmel, 1994; Hamilton and Lin, 1996) and time 
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variation in the response of economic output to monetary policy actions (Lo and Piger, 2005; 

Kaufmann, 2002). 

 

 

4.3 Markov chain Switching 

There is huge interest in modeling dynamic behavior of macroeconomic and financial time 

series. One of the challenges for this analysis is that these time series usually undergo changes 

in their behavior over reasonably long sample periods. The change usually occurs in the form 

of a “structural break”, in which there is a shift in the behavior of the time series due to some 

permanent change in the economy‟s structure. The change in behavior might also be 

temporary, as in the case of wars or “pathological” macroeconomic episodes such as 

economic depressions, hyperinflations, or financial crises. These shifts might be both 

temporary and recurrent, in that the behavior of the time series might cycle between regimes. 

For example, as indicated by early studies of the business cycle, the behavior of economic 

variables changed dramatically in expansions vs. recessions.  

The constant parameter time series models might be inadequate to describe the potential for 

shifts in the behavior of economic time series and their evolution. As a result, recent decades 

have seen extensive interest in econometric models designed to incorporate parameter 

variation. One approach to describing this variation, denoted a “regime-switching” model in 

the following, is to allow the parameters of the model to take on different values in each of 

some fixed number of regimes, where, in general, the regime in operation at any point in time 

is unobserved by the econometrician. The process that determines the arrival of new regimes 

is assumed known, and is incorporated into the stochastic structure of the model which allows 

the econometrician to draw inference about the regime that is in operation at any point in 

time, as well as form forecasts of which regimes are most likely in the future. 

Quandt (1958) first tried to estimate the parameters of this linear regression system; he 

supposed that such a system follows two separate regimes. Similar to the model in (1) and (2) 

 

   =     +               ∼ N  (0,  
 )          (1) 

   =     +               ∼ N (0,  
 )           (2) 

 

Denote    as return series, and    and   
  define the mean and variance in period i (further     

>      or    <     is assumed). He assumed a point in time at which the system switches the 

regime and the data is described by a different regression equation. Using maximum 

likelihood estimation, Quandt was capable to infer the corresponding turning point and to 
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determine the regression parameters. Despite, his model considers only the possibility of a 

single switch and it was only tested in a hypothetical sampling experiment. 

To allow studies of multiple regime-switches Quandt (1972) prolonged his earlier model and 

applied it to the US housing market between June 1959 and November 1969, by introducing 

the λ-method, where λ and1 – λ are unknown probabilities for the observed data points being 

driven by the regime 1 or 2, as result he got a significant results for the two regime. 

Goldfeld and Quandt (1973) introduced the first Markov-switching model after relaxing the 

assumption of constant regime probabilities. They assumed that there is dependence of the 

current regime on its preceding state through a Markov chain process. To capture the state 

dependency they introduced a transition probability matrix, which governs the transitions 

across states. When they applied τ -method to the same data sample as Quandt (1972) they 

obtained also similar results as for the λ-method. All these applied works shows that these 

models became more sophisticated and complex because of the data availability and 

computational improvements.. 

 

5. Estimation 

 

A general Markov Switching model can be estimated with two different ways first by 

Maximum likelihood or by Bayesian inference (Gibbs-Sampling). This thesis focuses and 

explains the first method. 

 

This estimation precedes a recursive filter and numerical maximization by a method by an 

EM algorithm, which is appropriate for maximizing likelihood with unobserved variables or 

missing observations. I describe these procedures in this section. 

 

5.1 Specification 

I define the model structure that I will apply in this estimation. I am working on intercept 

and variance switching models, for two-states the model is given by: 

 

       
     

    { 
      

                           

      
                         

 

 

Where      represents one entropy index for each of the risk measure in the period t and    
 

and    

  represent its mean and variance. I assume that     and    
 follow a distribution that 

depends on a latent process (variable)   , this variable follows a Markov Chain process. At 
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each point in time, the process    is in one of two regimes, which we Indicate by    

  and     . 

 

In both regimes, the entropy (    follows a normal distribution, though with different means 

and different variances. I use the function f to denote the normal probability density function. 

 

      
 

√     
 

     (  
        

 

    
 ) 

 

And the log likelihood of this model is given by: 

 

    ∑   (
 

√     
 
     (  

        

    
 )) 

            (1) 

If all of the states of the world were know, that is, the values of     are available, then 

estimating the model by maximum likelihood is straightforward. All I need is to maximize 

equation (1) as a function of parameters    ,    ,  
  and   

  . But is not the case of a Markov 

Switching model, because the states of the world are unknown. So in this case it is necessary 

to change the notation of the likelihood function. By considering                as the 

likelihood function for state j conditional on a set of parameters ( ), then the full log 

likelihood function of the model is given in the equation (2) 

     ∑     
                              )     (2) 

 

The latent process    follows a first order Markov Chain, this means that the probability for 

regime 1 to occur at time t only depends on the regime at time t-1 . I denote these Transition 

probabilities by 

 

    = Pr [   = i |      = j] 

 

The      term represents the probability of switching from state j to state i. The transition 

probabilities for the departure states j should add up to one, i.e.,     +      = 1 and     +      

= 1. So, for a binary process   , I have two free parameters.      and     .The transition 

matrix is defined by: 
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P =  (
      

      
) = (

        

        
) 

 

To estimate the parameters of the regime switching models using a maximum likelihood 

approach. As with other conditional models such as ARMA- or GARCH-models, the 

likelihood function will take a conditional form, too. I gather the parameters of the model in a 

vector   = (   ,         
    

         )  

 

 

5.2 The Hamilton filter 

In order to maximize the Log-Likelihood function is necessary to estimate            using 

the Hamilton‟s filter that allows estimating these probabilities using the available information 

in the period t-1 denoted by    . In this sense, the Log-Likelihood function will be estimated 

as a function of the parameters and the available information, then we have: 

 

     ∑   

 

   

∑    

 

   

                           

 

Four steps are needed to realize the algorithm: 

1. Establish a guess of stating probabilities in t=0 of each state,            for j=1,2 

which satisfy the relation 

                
      

            
 

                
      

            
 

 

2. Prediction of regime probabilities i.e. In t=1 compute the probabilities for each state 

given    and the transition matrix, where 

 

                 ∑    
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3. Calculation of filtered probabilities through update i.e Update the probability of each 

state with the new information from time t. This can be done using the parameters of 

the model in each state,          
    

  and the transition probabilities     and      for 

computing the likelihood function in each state over the period t. Next step, update the 

probability of each state given the new information as follows: 

 

               
                                

∑      
                                 

 

 

4. Now move to t+1 and repeat the steps 2 and 3 until t=T, completing all the available 

data in the T periods. As a result, we obtain all the state probabilities across the 

sample. 

 

 

5.3 Maximization 

After computing the states probabilities by applying Hamilton‟s filter, it is possible to 

maximize the log likelihood function using a numerical method. In this case the numerical 

method used in MS_Regress_fit.m consists on applying four algorithms included in fmincon 

function in MATLAB. 

1. SQP Algorithm 

2. Interio-point Algorithm 

3. Active-set Algorithm 

4. Trust-Region-Reflective Algorithm 
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6. Results 

 
6.1 data 

 

I consider the daily closing price for the stocks of the European financial institutions from 2
nd

   

January 1986 to 12
th

 may 2014. The data has 7398 observations. According to the dynamics 

of system the number of institutions is changing across the time, beginning with 30 

institutions and ending with 203. 

 

To estimate systemic risk measures I used a rolling window approach (e.g., see Zivot and 

Wang J.(2003), Billio et al.(2012), Diebold and Yilmaz(2014)) with a window size of 252 

daily observations, which corresponds approximately to a year of daily observations. 

 
6.2 Descriptive statistics 

In this section I study the mean and variance behavior of each entropy index related with each 

risk measure       , MES and INOUT, in order to identify different regimes of entropy 

and multimodal entropy distribution. 

1.        

 

 
Figure 1: The entropy indexes for                 
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Figure 2: The entropies distributions for        measure 

 

 

Figure 3: First difference entropies indexes for        measure 
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For the cross-sectional systemic risk measure       , the Figure 1 shows the plots of the 

three entropies Shannon, Tsallis and Rényi. The two first entropies behave in the same way, 

the difference remains in the magnitude. The Rényi behaves differently. Using this entropy 

could change totally the estimation of MSCM, specifically the presence of the states. I will 

have more information by analyzing the histograms and the first difference included in the 

Figure 2 and 3. 

In order to get some conclusion about the state of the mean and of the variance, as the 

histograms show the mean is not representative because the entire histograms exhibit clearly 

multimode, so taking the mean like a normal model is not working properly for this data. 

Therefore I need to use models which account for multimodality such as mixture normal or 

Markov Switching, are more suitable, for these data. 

Even more, the first difference series shows the presence of at least two states for the variance 

behavior. As a result, taking in account these facts I consider that a three states switching 

Markov chain could be the best model to approximate the entropies indexes. I will compare 

these expectations with the estimation results. 

At the end my expectation for the entropy related to this systemic risk measure, is a Markov 

Chain Switching Model three states for the Rényi entropy, and two states for the Shannon and 

Tsallis. 

 

 

2. Marginal Expected Shortfall (MES) 

 

 

 
Figure 4: The entropy indexes for MES         
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Figure 5: The entropies distributions for MES measure 

 

 

 

 

Figure 6: First difference entropies indexes for MES measure 
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From the Figure 4 I have the same conclusions for this measure, the Shannon and Tsallis 

entropies are similar in the behavior. Furthermore, after the period 3000 the mean increases 

and also the behavior becomes more volatile. Unlike the Rényi „s entropy, the histograms of 

Marginal expected shortfall reflect that it could be a Markov chain switching model with two 

state for the Shannon and three states for the Tsallis and Rényi In addition, the first difference 

shows that there are at least two states for the variance. 

As a result my expectation for the entropy related to MES is a Markov Chain Switching 

model three states for all the entropies. 

 

 
3. In-Out 

 

 

Figure 7: The entropy indexes for In-Out         
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Figure 8: The entropies distributions for In-Out measure 
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mode .however it is possible to have three states for all of the entropies. In addition the first 

difference for the Shannon entropy is more even, in this case it will be difficult to identify the 

states but for the other entropies it has at least to states for MCSM. 

Additionally when I plot the normalized entropy against the non-normalized, I remark that for 

the Shannon the normalization does not affect the pattern, I have only the change in the 

scales, because this entropy was normalized by using this formula (1) where k is the bins. 

However checking the magnitude the entropies before and after the normalization the Rényi 

entropy becomes the highest one, it means that the normalization has a bigger effect over 

Shannon and Tsallis than Rényi. 

 

Entropy Shannon_n = 
                               

     
      (1) 

 

The expected result for the entropy based on In-Out systemic risk measure is three states for 

all the entropies. 

 

6.3 Estimation results 

I apply Markov chain switching model to entropy indexes, using the estimation method 

outlined in the previous section, for two states and three states. The data consists of three 

entropy indexes each one associated to one of these risk measures       , MES and In-Out 

for the period mentioned before for two cases non-normalized and normalized.  

The thesis includes the estimation of 36 models. In order to compare the fitness of the models 

I compute the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

AIC = -2 ln (L) + 2 ln (k) 

BIC = -2 ln (L) + k ln (n) 

Where L is the likelihood evaluated at the mode of the parameters, n the number of the 

observations and k is the number of parameters in the model. BIC compares the (negative) 

likelihood, but penalizes for increased model complexity. For small sample sizes, BIC tends 

to choose less complex models, but the series in the empirical study have many observations, 

so this is not an issue. 

  

After checking the estimation results I can identify some issues. Table 1 summarizes the log 

likelihood values evaluated at the parameter modes obtained for the different states. As 

expected, in most of the cases the log likelihood increases with the number of states in the 
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MCSM, with a big jump for the MES. According to the BIC values, a switching model with 

three states is the strongest candidate. I examine the results from these models further. 

  

Tables 2-3 and 4 contain the values of (BIC) and (AIC) estimated for each entropy in two and 

three states MCSM. First of all I focus on the normalized case, for the Shannon and the Tsallis 

entropy, the best measure is        for three states, unlike the Rényi entropy the best one is 

MES also in three states. Similarly the non-normalized indexes have the same results.  

 

One the other hand when I compare the criteria for the normalized and non-normalized 

indexes it is clear that the models for the normalized indexes show a better performance than 

the non-normalized. In fact sometimes the difference between both is 29 times for the 

Shannon and Tsallis entropies. However in the Rényi case there are no significant differences, 

this could be associated to its own formula. As result I can say that the normalization is a 

good tool to improve the quality of the estimation in the Shannon and Tsallis entropies, but 

not in the case of the Rényi entropy. 

 

When I analyze the models associated to In-Out measure, for all the entropies the best result is 

the three states and also the normalized case is better than the non-normalized. As result 

MCSM three states for normalized Rényi entropy index based on this measure has the lowest 

value for both criteria. 

 

 It is important to underline that when I compare the models related to Shannon entropy, the 

ratio for the (AIC) between the best model and the worst is 4.42 times, 1.43 times for the 

Rényi and 4.08 times for the Tsallis, as a conclusion is less sensible to the use of different risk 

measures, in other words this entropy has a lower model risk unlike the other entropies. Last 

important remark, this ratio is very high in the case of Shannon entropy for the non-

normalized data (17.02) times, in the same why, by analyzing the (BIC) criteria I got similar 

results. In the case of the Shannon and Tsallis the normalization has a positive effect in 

reducing model risk but no a significant results for the Rényi. 

  

 

 

 

                
Table 1: The likelihood evaluated at the parameter modes obtained for different states 

 

 

logliklihood non-Norm Norm non-Norm Norm non-Norm Norm

∆CoVaR -8306.2301 5701.4137 10723.1721  13060.9947 -5737.2494 5559.2982

MES -2040.9473 11966.2589 13994.4332 13651.2607 436.631 11733.1787

In-Out -10821.0986 3186.5452 11522.4526 13860.2752 -8083.1864 3213.3613

∆CoVaR -623.6275 13384.0163 10723.0509 13061.0641 1784.8115 13081.3592

MES -1078.0593 12929.5845 16378.6258 18716.4484 436.6299 11733.1776

In-Out -4903.11 9104.5338 14295.3194 16633.142  -1095.6283 10200.9194

2 S

3 S

Tsallis entropy Index Rényi entropy Index Shannon entropy Index 
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 Table 2:  (BIC) and (AIC) values for the Shannon entropy index in two and three states 

 

Table 3: (BIC) and (AIC) values for the Tsallis entropy index in two and three states 

 

Table 4:  (BIC) and (AIC) values for the Rényi entropy index in two and three states 

 

After the estimation of the models, comparing these results with my expectations, I got the 

same conclusions for all the entropies based on In-Out measure; it means that the best model 

is MCSM with three states. For the Rényi and Shannon entropy based on MES measure the 

efficient models are three states MCSM, which agrees with my expectation, additionally the 

model related to Tsallis index is a two state MCSM which is opposite to my beliefs. On the 

other side for all the entropies related to        measure, the expectations are opposite to 

the results, notice that for the Rényi index the difference between the states is very small. 

Now it is relevant to analyze the results of the best model of each entropy index in the 

normalized case in terms of the switching process and the level of the states. 

BIC -1.1349e+04 BIC -2.3879e+04 BIC -6.3196e+03

AIC -1.1391e+04 AIC -2.3921e+04 AIC -6.3611e+03

BIC 1.6666e+04 BIC 4.1353e+03 BIC 2.1696e+04

AIC 1.6624e+04 AIC 4.0939e+03 AIC 2.1654e+04

BIC -2.6661e+04 BIC -2.5752e+04 BIC -1.8102e+04

AIC -2.6744e+04 AIC -2.5835e+04 AIC -1.8185e+04

BIC  1.3542e+03 BIC 2.2630e+03 BIC  9.9131e+03

AIC 1.2713e+03 AIC 2.1801e+03 AIC 9.8302e+03

∆CoVaR MES In-Out
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Non_NORM
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Non_NORM

2 S

NORM

Non_NORM

NORM

Non_NORM

3 S 

NORM

Non_NORM

NORM

Non_NORM

BIC -2.6069e+04 BIC -2.7249e+04 BIC -2.7667e+04

AIC -2.6110e+04 AIC -2.7291e+04 AIC -2.7709e+04

BIC -2.1393e+04 BIC -2.7935e+04 BIC -2.2991e+04

AIC -2.1434e+04 AIC -2.7977e+04 AIC -2.3033e+04

BIC -2.6015e+04 BIC -3.7326e+04 BIC -3.3159e+04

AIC -2.6098e+04 AIC -3.7409e+04 AIC -3.3242e+04

BIC -2.1339e+04 BIC -3.2650e+04 BIC -2.8484e+04

AIC -2.1422e+04 AIC -3.2733e+04 AIC -2.8567e+04
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BIC -1.1065e+04 BIC -2.3413e+04 BIC -6.3733e+03

AIC -1.1107e+04 AIC -2.3454e+04 AIC -6.4147e+03

BIC 1.1528e+04 BIC -819.8082 BIC 1.6220e+04

AIC 1.1486e+04 AIC -861.2620 AIC 1.6178e+04

BIC -2.6056e+04 BIC -2.3359e+04 BIC -2.0295e+04

AIC -2.6139e+04 AIC -2.3442e+04 AIC -2.0378e+04
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The transition matrix of the Shannon entropy based on         has1´s in all the diagonal 

showing than there is a strong evidence of switching between the three states. However, the 

transition matrix has zeros out of the diagonal, showing a low efficiency of the Markov Chain 

process, which implies that there is no relation between the state in one period and the state of 

the next period. This is the transition matrix associated with this model: 

 

 

 

P = (
            
            
            

) 

 

 

  

Figure 10: Smoothed states Probabilities for Shannon entropy based on        
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Figure 11: Conditional mean of Shannon entropy based on        

 

 

Even more the level of the entropy is higher in the state three with 0.6992 followed by state 

one 0.5484 and state two 0.4267. In particular the state three has two relevant period of crises 

especially around the observations 4000 (crises of 2001) and before the period 6000 (crises of 

2008), for this model the crises finish in 2013.in this case I can say that the state two reflects 

no crises period and the state one could be considered as the bullish market before the crises. 

Finally it is important to remark that the expected duration for the state three is 1.4 years.  

As regards the analysis of conditional mean related to this entropy index, the order is reverse 

for the lowest and mid-level because the lowest level of standard deviation corresponds to 

mid-level of entropy. And lowest level of entropy correspond midlevel of standard deviation, 

but when the level of entropy is high also the level of Standard deviation is high, when both 

are high the probability of systemic risk is high and that corresponds to period crises in 2001 

and 2008 (see the figure 11), while the state one reflect in the case the period before the 

crises. Table 5 summarizes for each state the level and the value of both conditional mean and 

conditional standard deviation.  

 

 

Table 5:  levels of both Cond-mean and the Cond-standard deviation with their values 
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For the Rényi entropy based on MES measure I also obtain some interesting results. , the 

three-state model has values different of zero in three of the six transitions probabilities out of 

the diagonal. However, the probabilities related to transition from the first and the second 

states to the third state are equal or close to zero indicating low relation between the states for 

two different periods. But the probability of switching from state three to state two is 15%, so 

there is a significant relation between these states, this is the transition matrix: 

 

P = (
            
            
            

) 

 

 
Figure 12: Smoothed states Probabilities for Rényi entropy based on MES 
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Figure 13: Conditional mean of Rényi entropy based on MES 

 

 

Here the level of the entropy is increasing from the state two to state one as follow, 0.8083, 

0.8636, and 0.9167. This model it does not recognize the crisis period because it includes the 

crises before the 4000 and 5000 period and after 1000 period as a conclusion I have a lot of 

small crises with higher frequency, and in particular this model it doesn‟t recognize the crises 

of 2008. Simultaneously the expected duration for this state is 5723.12 (23years). 

Following the idea of analyzing the level of entropy in this case the lowest level of 

conditional mean corresponds to high level of standard deviation, high conditional mean 

corresponds to mid-level of standard deviation and finally mid-level of conditional mean 

corresponds to lowest level of standard deviation. The state one has the highest level of 

entropy and it appears in these years:  at the end of 1987, after May 2001 and also after May 

2008 but it last till 2013 with small jump to state three in 2009 which lasts a few months. 

 

 

Table 6:  levels of both Cond-mean and the Cond-standard deviation with their values 
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For the In-Out measure the model with the best performance was the Rényi with a three 

states, for this case I have a probability of 3% to switch from state two to one and also for 

switching from three to two, I have no significant result between these two states and the state 

one.as show the transition matrix  

P = (
            
            
            

) 

 

 

Figure 14: Smoothed states Probabilities for Rényi entropy based on In-Out 
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system has increased across the time making more difficulties to identify the crises using this 

risk measure. 

 

Figure 15: Conditional mean of Rényi entropy based on In-Out 

 

 

 
 

Table 7:  levels of both Cond-mean and the Cond-standard deviation with their values 

 

 

For the last model the level of entropy is different than the previous models because the 

lowest and the mid-levels of the conditional mean corresponds in the same order the high and 

the mid-levels of the conditional standard deviation, but as shown in the Figure 15 the 

difference between this two levels is not significant, as regard the high level of entropy it is 

clearly that the standard deviation has the lowest level. In this model since April 2001 till the 

end of the series the state one covers this period which recognizes the dot-com bubbles and 

the global financial crises. Additional remark in this period there is a jump but no change in 

the regime that could be possible because the conditional mean is not the value of the mean in 

the regime      but is an average with weights given the smoothed probability, consequently 

the probability of the state one is changing but it continue to be the highest of the states. 
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As a conclusion of this section I identify the ∆CoVaR three states Shannon entropy model as 

the best one for the identification of the crises, in spite of the relation between the states is not 

a strong as it is reflected in its transition matrix. On the other hand the MES and In-Out 

measure were not able to identify both properly the global financial crises even if the 

transition matrix shows a significant switching, however for the In-Out the switching process 

could be affected by the presence of positive trend of the connectedness of the system, thus it 

could be interesting to estimate the models after removing the trend. 

 

7. MSCM Removing the trend  

 

7.1 Tests  

Let    be the observed time series which contain a unit root, in order to check the existence of 

these roots, I will apply two tests: 

 

The ADF test and the  PP test the following way to proceed can be determined beforehand: 

 

 I Apply the Phillips-Perron (PP) which assesses the null hypothesis of a unit root in a 

univariate time series, Values of h equal to 1 indicate rejection of the unit-root null in 

favor of the alternative model. A value of h equal to 0 indicates a failure to reject the 

unit-root null. 

 

 I Apply the Augmented Dickey Fuller (ADF) test to check the null hypothesis of unit 

root existence. If the null hypothesis is rejected, the conclusion is there is no unit root 

(stationary),  

 

After the ADF test I got h = 0 for the all entropies with a pValue around 0.56 which indicate a 

failure to reject the null hypothesis, it means a failure to reject the existence of unit root. 

Similarly the PP rejects null hypothesis h = 0, as result all the entropies have a unit root. (See 

table 1) 

In conclusion as all the entropies indexes are not stationary, all of them have at least two 

states in the Markov Chain process. In order to identify clearly the states I removed the trend 

by running a linear regression of each entropy index against the time and I applied the MCSM 

on the residuals of this regression, so this procedure will not affect the states of the original 

index as it is not changing the non-stationary pattern 

 

http://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
http://en.wikipedia.org/wiki/KPSS_test
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Table 8: ADF and PP tests on entropies indexes before removing the trend  

 

7.2 Descriptive statistics  

The residuals look much better after removing the trend. Figures16-18 and Table 6 show the 

residuals for the all entropy indexes and the results of the Tests after removing the trend. First 

of all the indexes are moving around zero, also there is a change for the Rényi entropy that 

now behaves similar to the others unlike the descriptive analysis seen above. 

 

 Figure 16:  Residuals of entropy indexes based on  CoVaR 

 

h_ADFtest pValue h-PPtest pValue

Shannon entropy 0  0.5147 0     0.5147   

Rényi entropy 0  0.5720 0 0.5720

Tsallis entropy 0  0.4778 0  0.4778

Shannon entropy 0 0.5877 0  0.5767

Rényi entropy 0 0.6506 0  0.6033

Tsallis entropy 0 0.5580 0  0.5580

Shannon entropy 0 0.5767 0  0.5767

Rényi entropy 0 0.6033 0 0.6033

Tsallis entropy 0 0.4863 0 0.4863

before removing the trend 
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Figure 17: Residuals of entropy indexes based on MES 

 

 

 

Figure 18: Residuals of entropy indexes based on In-Out 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
residuals MES entropy index

 

 

shannon entropy

Rényi entropy

Tsallis entropy

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
residuals  entropy index

 

 

shannon entropy

Rényi entropy

Tsallis entropy



 
37 

 
 

 

 

Table 9: ADF and PP tests on entropies indexes after removing the trend  

 

 As result the detrend has a positive effect on the entropies related In-Out measure in the sense 

that the series behaves with more stability that allows to identify the mean states, additionally 

the Tsallis is more volatile than the others. 

 

7.3 Estimation Result  

Knowing that the normalization increases the quality of the estimation I will just focus on the 

normalized indexes. Using the criteria (BIC) and (AIC) to compare the efficiency the models I 

got the following results: 

For Shannon and Tsallis entropies based of In-Out measure in three states were the best 

models, for the Rényi entropy based on MES still the best model as the previous case ( trend 

included). In this sense I can say that the detrend method is a good tool to clean the In-Out 

measure in order to increase its efficiency detecting the financial crises using the 

connectedness approach. Tables 7, 8 and 9 show the results. 

 

 

Table 10:  (BIC) and (AIC) values for the residuals of Shannon entropy index in two and three states 

ADFtest pValue PPtest pValue

Shannon entropy 1   1.0e-03 1 1.0e-03

Rényi entropy 1   1.0e-03 1 1.0e-03

Tsallis entropy 1   1.0e-03 1 1.0e-03

Shannon entropy 1 0.0036 1 0.0036

Rényi entropy 1  0.0010 1 0.0010

Tsallis entropy 1 0.0015 1 0.0015

Shannon entropy 1   1.0e-03 1  1.0e-03

Rényi entropy 1   1.0e-03 1  1.0e-03

Tsallis entropy 1   1.0e-03 1  1.0e-03

In-Out

after removing the trend 

MES

∆CoVaR

NORMALIZED MEASURE BIC AIC

∆CoVaR -19500 -19541

MES -24485 -24526

In-Out -25611 -25653

∆CoVaR -20586 -20669

MES -26239 -26322

In-Out -26537 -26620

Shannon Entropy 

2 states

3 states

Shannon Entropy 
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Table 11:  (BIC) and (AIC) values for the residuals of Rényi entropy index in two and three states 

 

 

 

Table 12:  (BIC) and (AIC) values for the residuals of Tsallis entropy index in two and three states 

 

Now I will be focus on the results of the best model of each entropy indexes. I start by 

analyzing the Shannon entropy  

P = (
            
            
            

) 

 

The transition matrix in this case has a probability of 1% of switching from the state three to 

one and also of switching from state three to state one, but the other probabilities are null 

except the diagonal. Even more the smoothed states probability shows the presence of blocks 

of blank, in this case it is difficult to identify which state represent the crises. The state two 

shows the highest level of the standard deviation which corresponds to the lowest level of 

entropy, the state one in this model represents the highest regime. (See table 13 and Figure 

13). Between April 2006 and January 2008 the switching was only between state one and 

three, this happened also between September 2008 and May 2010, the period of financial 

NORMALIZED MEASURE BIC AIC

∆CoVaR -26045 -26086

MES -32441 -32483

In-Out -30719 -30761

∆CoVaR -27461 -27544

MES -33639 -33722

In-Out -30666 -30749

2 states Renyi Entropy

3 states Renyi Entropy

NORMALIZED MEASURE BIC AIC

∆CoVaR -19019 -19061

MES -23848 -23890

In-Out -25290 -25331

∆CoVaR -20076 -20159

MES -25334 -25417

In-Out -26142 -26225

3 states Tsallis Entropy

2 states Tsallis Entropy
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crises. In this case it is difficult to identify the dot-com bubble; it could be related with the 

contagion effect that usually has strong changes during the financial crises. But also this 

systemic risk measure could be sensible to other situation that affects the connectedness of the 

system like wars or political events.  In contrast with the case including the trend the expected 

duration of the regimes is shorter. For example the Expected duration of Regime #2: 170.79 

time periods. 

  

 

Figure 19: Smoothed states Probabilities for Shannon entropy based on In-Out 
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Figure 20: Conditional mean of residuals Shannon entropy based on In-Out 

 

 

Table 13:  levels of both Cond-mean and the Cond-standard deviation with their values 

 

 

The Tsallis entropy also identifies that the model of the In-Out as best the one. The transition 

matrix and the probabilities are the following: 

 

P = (
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Figure 21: Smoothed states Probabilities for Tsallis entropy based on In-Out 

 

 

As the transition Matrix shows, the probability of switching between the states is not 

significant. Focusing on the smoothed states probabilities, the switching process shows 

several blank that represents the presence of a crises especially after 3000 (crises 2001) and 

6000 (crises 2008), also I can say that the states three represents a mid-level of entropy and 

high volatility with some persistence before 2001, this state has the longest expected duration: 

180.92 time periods  
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Figure 22: Conditional mean of residuals Tsallis entropy based on In-Out 

 

Analyzing the conditional mean, I remake that the level of entropy and the level of standard 

deviation behave in the same way. In 1990, 1994, 1998 and 2008 the level of entropy is high 

before the dot-com bubble and before the global financial crises of 2008 but there is a jump 

from the lowest state to the highest in 2008. 

 

Finally in the case of the Rényi entropy the best model was the MES for a three states as in 

the previous case the element out of the diagonal in transition matrix are not significant 
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Figure 23: Smoothed states Probabilities for Rényi entropy based on MES 

 

Figure 24: Conditional mean of residuals Rényi entropy based on MES 
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Table 14:  levels of both Cond-mean and the Cond-standard deviation with their values 

 

The smoothed states probabilities for this entropy index show a persistent switching between 

the states that makes a difficult to detect the financial crises periods, this is represented by the 

presence of several blank in the switching process plot. As a conclusion comparing this model 

with the results in presence of the trend, this model is worst because it can not identify which 

state represents the financial crises; in fact the Rényi entropy based on the MES is more 

efficient without removing the trend. 

 

Following the idea of analyzing the level of entropy in this case I have reverse results between 

the highest and mid-level of conditional mean and conditional standard deviation, but for the 

lowest they are the same, in this case the period of high entropy represented by state two. In 

some periods there only a switching between low and high state, for example between 1992-

1994, 1997-1998, 1999-2000 and finally 2006-2007 which complicate the identification of 

which state corresponds to the crises. 

 

As result of this part all the figures of conditional mean related to these series shows a high 

number of small jumps between the states which sometimes makes the identification of the 

crises periods complicated unlike the conditional means in the case of presence of trend the 

states lasted more longer and most of the time it was a state which could be considered as the 

bullish market before the crises. Additionally the detrend method was useful for the In-Out 

measure. 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cond-mean levels Cond-std levels

state1 0.0000 L 0.000234 L

state2 -0.0000 H 0.001472 M

state3 -0.0000 M 0.007721 H
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8. Conclusions 

 
 

 

 Using Markov Chain Switching approach is useful because it is possible to identify the 

different regimes of market entropy. 

 

 The  estimation of the MCSM shows that is difficult to determine the probability of 

transmission between the states,  this is represented by the presence of values close to one 

in the diagonal of transmission matrix of most of the models. The normalization 

improved the quality of the results, especially for the Shannon and Tsallis entropy but not 

for the Rényi entropy, it could be related to its formula. 

 

 All the criteria show that the MCSM three states is more efficient  than two states that 

implies the existence of one transition period between the crises and the stable period. 

 

 The model with the best performance for the Shannon Rényi and Tsallis entropy are in 

order the       , MES and       . However in the case of Rényi and Tsallis the 

models were not able to recognize the crises period of 2001 and 2008, as result the 

entropy Shannon based on         was the best one. 

 

 After removing the trend the models with the best performance for the Shannon Rényi 

and Tsallis entropy are in order the In-Out, MES and In-Out. 

 

 Analyzing the In-Out measure it is remarkable to see a positive trend for the whole 

analysis period. The detrend method increased the efficiency of this measure in sense that 

after applying this method it became the best measure for the Shannon and Tsallis 

entropy. The In-Out measure is more sensible to other situation that affects the 

connectedness of the system different than financial crises.  
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9. Appendix 

 

I provide a brief description of the MATLAB library used for the estimation of the MCSM. I 

refer reader to Marcelo Perlin paper MS_Regress - The MATLAB Package for Markov 

Regime Switching Models, (version: April 19, 2015) for further details. The flow is explained 

based on the functions as the following flowchart. 
 

.  

 

MS_Regression_Fit

Process OutputPlot

doPlot?

doPlots()

doOutScreent?

doOutScreen()

end

getvarMatrix_MS_Regress()

preCalc_MSModel()

Start

param2spec()

Build_constCoeff()

Check_constCoeff()

checkSize_constCoeff()

check_Inputs()

N

Y

N

Y

 

To understand how this flowchart works, I will explain part by part in this chapter. 

9.1 The process part 

 

 

Before reaching the calculation, I need to provide some inputs: 
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Functions Explanation 

check_Inputs() This function will check every given input from the outline.m 

file.  It is started from the number of input function and then 

the availability of its variables in one object, which is advOpt, 

whether or not they are empty.  The explanation of these 

variables itself is given below : 

- advOpt.distrib 

It defines a certain distribution to be used in the maximum 

likelihood calculation. 

- advOpt.std_method 

It defines the method to be used for the calculation for the 

calculation of the standard errors of the estimated 

coefficients. 

- advOpt.useMex 

It defines whether to use the mex version of Hamilton‟s 

filter in the calculation of likelihood function. 

- advOpt.diagCovMat 

It defines the use of a diagonal matrix for sigma (covariance 

matrix) in a multivariate estimation 

- advOpt.printOut 

Flag for printing out to screen the model in the end of 

estimation 

- advOpt.printIter 

Flag for printing out numerical iterations of maximum 

likelihood estimation 

- advOpt.doPlots 

Flag for plotting fitted conditional standard deviations and 

smoothed probabilities in the end of estimation. 

- advOpt.optimizer 

it defines which Matlab‟s optimizer to use in the maximum 

likelihood estimation of the model. 

Build_constCoeff() This function is to make the constants : 

- advOpt.constCoeff.covMat 

it defines covariance matrix of innovations 

- adv.constCoeff.nS_Param 

it defines for all switching coefficient at indep matrix (also 

chosen with input), in this case we use vector (1,1), which is 

the first order is switching mean and switching variance, and 

these are already given from the input. 

- adv.constCoeff.S_Param 

it defines for All switching coefficient at indep matrix. 

- adv.constCoeff.p 

it defines transition matrix 

Check_constCoeff() This function is to check whether the constants generated by 

Build_constCoeff() are not empty. 

CheckSize_constCoeff() This function use to check the size for every variable in 
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constCoeff structure 

preCalc_MSModel() This is pre-calculation for switching model. 

getvarMatrix_MS_Regress() This function is to calculate standard errors of 

MS_Regress_Fit.  The calculation (approximation) of the first 

and second derivative of the likelihood function is done by a 

two side finite differences method.  The four methods for the 

calculation of the covariance matrix were implemented here : 

- Using the second partial derivatives 

- Using first partial derivatives (outer product matrix). 

In this function also does the MS_Regression_Lik that will be 

explained later in this table. 

param2spec() This function will check some parameter specification for the 

spec_out 

MS_Regression_Lik All of the models are estimated through this function using 

maximum likelihood.  There are 3 outputs given by this 

function, which are : 

- sumlik 

Negative sum of log likelihood for fmincon.  In addition, it 

minimizes the function. 

- Output 

This is structure variable which contains of 

- Coeff 

It is a structure variable with the same structure as 

consCoeff in Build_constCoeff(). 

- filtprob 

the filtered probabilities of regimes (iterated over the 

states (columns)) 

- LL 

Final log likelihood of model 

- k 

Number of states 

- param 

all estimated parameters in vector notation 

- S 

Switching flag control (iterating over equations (cell)) 

- advOpt 

- A structure variable with the same structure as in 

check_inputs(). 

- logLikeVec 

it is a logarithm of the function to calculate for maximum 

likelihood, in vector column 
 

 

9.2 Plots part 

Every calculation has done.  It continues to the next step, doPlots().  The second part will do 

plotting some graph from its calculation.  Each graph will include: plot of the inputs given, 
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such as  CoVAR, MES, and In-Out respectively and plot of conditional mean followed by 

plot of conditional standard of Entropy. Finally the plot of the smoothed states probabilities. 

The best of those plots are already shown in the estimation part. 

 

 

 

9.3 Summary result part 

 

All results that been calculated will be summarized through doOutScreen(). From this part, it 

will show on command window, but only local variables that can be accessed in 

MS_Regression_Fit.  Hence, even if we run the function outside, it will not show anything. 

Having finished doing calculation through this process, all variables will be saved in to this 

spec_output structure variable: 

 

The content of Structure Variables Explanation 

SsmoothProb Smoothed probabilities of regimes (iterated 

over the states (columns)) 

nObs Number of Observations (rows) in the model 

nEq Number of dependent variables 

Number_Parameters Number of estimated parameters 

advOpt.distrib The type of distribution used for this 

calculaton, in this case is Normal 

Distribution. 

advOpt.std_method The same explanation in check_Inputs() 

Coeff_SE A structure with all standard errors of 

coefficients (same field as Coeff) 

Coeff_pValues A structure with all parameter‟s p-values 

(same fields as Coeff) 

AIC Akaike information criteria of the estimated 

model 

BIC Bayesian information criteria for estimated 

model 
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9.4 MATLAB code 

 

 

clc; 

clear all; 

close all; 

clf; 

  

load('entropy_final.mat') 

  

% specify beginning and ending as string variables 

dateBeg = '725374'; % day, month, year: ddmmyyyy 

dateEnd = '735731'; % day, month, year: ddmmyyyy 

  

% dynamic assignment to end of period 

dateBeg = datestr(725374,'ddmmyyyy') % today as first date 

dateEnd = datestr(735731,'ddmmyyyy') % today as last date 

  

% Take the data from normality entropy 

for i = 1:3, 

    dCoVaRentropy(:,i) = dCoVaRentropy_n(:,i); 

    MESentropy(:,i)    = MESentropy_n(:,i); 

    INOUTentropy(:,i) = INOUTentropy_n(:,i); 

end 

  

% The name of Entropy Formula of entropy 

methods    = ['Shannon';'Rényi  ';'Tsallis']; 

cell_mthds = cellstr(methods); 

type       = ['dCoVar';'MES   ';'INOUT '];  

cell_ent   = cellstr(type);  

  

%-------------------------Plot the Entropy--------------------------

------- 

for j = 1:3, 

    plotEntropy  

end 

  

  

% Descreptive statistics--------------------------------------------

--------------------------------------------------------------------

------------------- 

for j = 1:3  % Type : dCoVaR,MES,INOUT 

    entropy_Data = 0;  

    for i =1:3, % Methods : Shannon,Renyi,Tsallis 

        change_entropy; 

        figure(j+3); 

        subplot(3,1,i); 

        [meanRet1(j,i),stdDev1(j,i)] = 

entropyCalc(entropy_Data,cell_mthds(i),cell_ent(j)); 

    end 
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end 

  

  

%------------------------Plot First Difference----------------------

------% 

for j = 1:3, % Type : dCoVaR,MES,INOUT 

    entropy_data = 0; 

    figure(j+6); 

    hold on 

    for i=1:3, % Methods : Shannon,Renyi,Tsallis 

        plotfirstdiff; 

    end 

end 

         

  

for i=1:3, % Methods : Shannon,Renyi,Tsallis 

    [h_adfC(i),pValue_adfC(i)]   = 

adftest(dCoVaRentropy_n(:,i),'alpha',0.05) 

    [h_adfM(i),pValue_adfM(i)]   = 

adftest(MESentropy_n(:,i),'alpha',0.05) 

    [h_adfI(i),pValue_adfI(i)]   = 

adftest(INOUTentropy_n(:,i),'alpha',0.05) 

    [h_ppC(i),pValue_ppC(i)] = 

pptest(dCoVaRentropy_n(:,i),'alpha',0.05) 

    [h_ppM(i),pValue_ppM(i)] = 

pptest(MESentropy_n(:,i),'alpha',0.05) 

    [h_ppI(i),pValue_ppI(i)] = 

pptest(INOUTentropy_n(:,i),'alpha',0.05)    

end 

  

  

%-------------------------------------------------------------------

--------------------------------------------------------------------

------------------- 

T = 7398; 

t =[1:T]' 

for j = 1:3,  % Type : dCoVaR,MES,INOUT 

    for i = 1:3, % Methods : Shannon,Renyi,Tsallis 

        change_entropy; 

        [r(j,i),m(j,i),b(j,i)] = regression(t,entropy_Data,'one') 

        switch j 

            case 1 

                e1(:,i) = entropy_Data - m(j,i)*t-b(j,i); 

                [h1,pValue1]= adftest(e1(:,i),'alpha',0.05) 

            case 2 

                e2(:,i) = entropy_Data - m(j,i)*t-b(j,i); 

                [h2,pValue2]= adftest(e2(:,i),'alpha',0.05) 

            otherwise 

                e3(:,i) = entropy_Data - m(j,i)*t-b(j,i); 

                [h3,pValue3]= adftest(e3(:,i),'alpha',0.05) 

        end 

    end 

end 
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% for j = 1:3, 

%     plot(e1) 

%     legend('shannon entropy','Rényi entropy','Tsallis entropy') 

%      

% end 

  

  

for i=1:3, % Methods : residuals Shannon,Renyi,Tsallis 

    [h_adfC(i),pValue_adfC(i)]   = adftest(e1(:,i),'alpha',0.05) 

    [h_adfM(i),pValue_adfM(i)]   = adftest(e2(:,i),'alpha',0.05) 

    [h_adfI(i),pValue_adfI(i)]   = adftest(e3(:,i),'alpha',0.05) 

    [h_ppC(i),pValue_ppC(i)] = pptest(e1(:,i),'alpha',0.05) 

    [h_ppM(i),pValue_ppM(i)] = pptest(e2(:,i),'alpha',0.05) 

    [h_ppI(i),pValue_ppI(i)] = pptest(e3(:,i),'alpha',0.05)     

end 

  

  

% plot(e1) 

% legend('shannon entropy','Rényi entropy','Tsallis entropy') 

% title('residuals dCoVaR entropy index') 

% plot(e2) 

% legend('shannon entropy','Rényi entropy','Tsallis entropy') 

% title('residuals MES entropy index') 

% plot(e3) 

% legend('shannon entropy','Rényi entropy','Tsallis entropy') 

% title('residuals  entropy index') 

  

 

% ESTIMATION--------------------------------------------------------

--------------------------------------------------------------------

-------------------- 

i = 2; %number of the column related to each entropy index (Shannon, 

Rényi,Tsallis) 

load 'entropy_final.mat' 

logRet.CoVaR     = dCoVaRentropy(:,i); 

logRet.CoVaRNorm = dCoVaRentropy_n(:,i); 

logRet.MES       = MESentropy(:,i); 

logRet.MESNorm   = MESentropy_n(:,i); 

logRet.INOUT     = INOUTentropy(:,i); 

logRet.INOUTNorm = INOUTentropy_n(:,i); 

dep.CoVar        = logRet.CoVaR; 

dep.CoVaRNorm    = logRet.CoVaRNorm; 

dep.MES          = logRet.MES; 

dep.MESNorm      = logRet.MESNorm; 

dep.INOUT        = logRet.INOUT; 

dep.INOUTNorm    = logRet.INOUTNorm;  

  

constVec = ones(length(dep.CoVar),1); 

indep = constVec; 

k=2; 

S=[1,1]; 

advOpt.distrib='Normal'; 

advOpt.std_method=1; 
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hold on 

%Calling fitting function 

display('*****************************dCoVar Entropy 

Computation********************************') 

figure(1) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','dCoVar Entropy Computation') 

Spec_out_dCoVar     = MS_Regress_Fit(dep.CoVar,indep,k,S,advOpt) 

display('**********************dCoVar Entropy Normalized 

Computation****************************') 

figure(2) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','dCoVar Entropy Normalized Computation') 

Spec_out_dCoVarNorm = MS_Regress_Fit(dep.CoVaRNorm,indep,k,S,advOpt) 

display('*******************************MES Entropy 

Computation*********************************') 

figure(3) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','MES Entropy Computation') 

Spec_out_MES        = MS_Regress_Fit(dep.MES,indep,k,S,advOpt) 

display('***********************MES Entropy Normalized 

Computation******************************') 

figure(4) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','MES Entropy Normalized Computation') 

Spec_out_MESNorm    = MS_Regress_Fit(dep.MESNorm,indep,k,S,advOpt) 

display('****************************INOUT Entropy 

Computation**********************************') 

figure(5) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','INOUT Entropy Computation') 

Spec_out_INOUT      = MS_Regress_Fit(dep.INOUT,indep,k,S,advOpt) 

display('***********************INOUT Entropy Normalized 

Computation****************************') 

figure(6) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','INOUT Entropy Normalized Computation') 

Spec_out_INOUTNorm  = MS_Regress_Fit(dep.INOUTNorm,indep,k,S,advOpt) 

hold off 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% 

[StaMa,StaInd]=max(Spec_out_dCoVarNorm.smoothProb'); 

dt=datestr(dates,'ddmmyyyy'); 

df=((StaInd(2:end)-StaInd(1:end-1))~=0)'; 

T=size(dates,1); 

nn=(1:T)'; 

%stairs(StaInd'); 

plot(Spec_out_dCoVarNorm.condMean'); 

xlim([1,T]); 

%ylim([-0.1,3.1]); 

%yticks([1 2 3]); 

  

  

dtc=[dt(1,:);dt(df,:);dt(end,:)]; 
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dn=size(dtc,1); 

Xt=[nn(1);nn(df,1);nn(T)]; 

dtc=dtc(1:4:end,:); 

Xt=Xt(1:4:end,:); 

set(gca,'XTick',Xt); 

  

Xl=[1,T]; 

ax = axis;    % Current axis limits 

axis(axis);    % Set the axis limit modes (e.g. XLimMode) to manual 

Yl = ax(3:4);  % Y-axis limits 

  

% Remove the default labels 

set(gca,'XTickLabel','') 

% Place the text labels 

t = 

text(Xt,Yl(1)*ones(1,length(Xt))*1.00001,num2str(dtc(:,[3,4,7,8]))); 

set(t,'HorizontalAlignment','right','VerticalAlignment','top', ... 

      'Rotation',90,'Fontsize',8); 

% Get the Extent of each text object.  This 

% loop is unavoidable. 

for i = 1:length(t) 

  ext(i,:) = get(t(i),'Extent'); 

end 

% Determine the lowest point.  The X-label will be 

% placed so that the top is aligned with this point. 

LowYPoint = min(ext(:,2)); 

% Place the axis label at this point 

XMidPoint = Xl(1)+abs(diff(Xl))/2; 

tl = text(XMidPoint,LowYPoint,'', ... 

          'VerticalAlignment','top', ... 

          'HorizontalAlignment','center'); 

       

%set(gca,'XTickLabel',num2str(dtc(:,[3,4,7,8])),'Fontsize',8); 

 

% ----------------residuals ESTIMATION------------------------------

------- 

i = 3 

logRet.CoVaRNorm = e1(:,i); 

logRet.MESNorm   = e2(:,i); 

logRet.INOUTNorm = e3(:,i); 

dep.CoVaRNorm    = logRet.CoVaRNorm; 

dep.MESNorm      = logRet.MESNorm; 

dep.INOUTNorm    = logRet.INOUTNorm;  

  

constVec = ones(length(dep.CoVaRNorm),1); 

indep = constVec; 

k = 3; 

S=[1,1]; 

advOpt.distrib='Normal'; 

advOpt.std_method=1; 

hold on 

%Calling fitting function 

display('*******Residuals dCoVar Entropy Normalized 

Computation**********') 
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figure(10) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','dCoVar Entropy Normalized Computation') 

Spec_out_dCoVarNorm = MS_Regress_Fit(dep.CoVaRNorm,indep,k,S,advOpt) 

display('*******Residuals MES Entropy Normalized 

Computation*************') 

figure(11) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','MES Entropy Normalized Computation') 

Spec_out_MESNorm    = MS_Regress_Fit(dep.MESNorm,indep,k,S,advOpt) 

display('******Residuals INOUT Entropy Normalized 

Computation************') 

figure(12) 

set(gcf,'NumberTitle','off') 

set(gcf,'name','INOUT Entropy Normalized Computation') 

Spec_out_INOUTNorm  = MS_Regress_Fit(dep.INOUTNorm,indep,k,S,advOpt) 

hold off 
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