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A network topology approach to the relation between painful disorders
and mutations in sodium channel proteins

by Alberto TOFFANO

The purpose of this thesis was to combine a number of different computa-
tional techniques to understand a major problem in neurosciences. Notably
we discuss the treatment of a membrane protein expressed in the human
peripheral nervous system and how mutations within its primary sequence
may lead to the onset of painful neuropathies. To address this question, it is
necessary to get structural information relating to each mutation. To obtain
such data in a short time, a computational approach was adopted, hinging
upon homology modeling. Using three models with a known structure of ho-
mologous proteins, structural models were produced for each mutation. The
generated set of models was analyzed through graph-theory complemented
by machine learning techniques, looking for a common patterns relating spe-
cific mutations to patological diseases, and able to discriminate them from
mutations that do not alter the correct functionality of the protein. Our results
suggest that the use of the graph kernel techniques and Dominant set clus-
tering are the optimal tools to identify common topological patterns among
pain-related mutations in over 90% of the studied models.
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Chapter 1

Introduction

The application of machine learning and graph theory techniques to neuro-
science has witness a resurgence of interest in the last decade due the new
tools that became recently available [66]. However, their application to the
field of painful neurophaties has been very scanty, also because of the limited
experimental results available in this area. The aim of the present thesis is
to show how a combination of different and complementary computational
techniques, including computational biology and network analysis, can help
to shed new light to this field.

Painful neuropathies nowadays afflict millions of people around the world
and their mechanisms are still unclear to a large extent. Partially for this rea-
son, available therapies are not able to satisfactorily alleviate those suffering
from these pathologies [8]. The factors leading to the emergence of these
problems are complex and multifacets (environmental factors, genetic pre-
disposition and diet to name a few). However, a common point is the way of
communicating pain, more in detail, it is known [43] that the pain stimulus
is mediated by a class of membrane proteins denoted as the voltage-gated
sodium channels. To this family belongs NaV1.7, which is of extreme interest
to humans. It is highly expressed in the peripheral nervous system, mediat-
ing the signal between the peripheries of the body and the central nervous
system (the brain). It has been speculated [22] that gain-of-function muta-
tions are in direct connection with the onset of painful neuropathies, such as
inherited erythromelalgia (IEM), paroxysmal extreme pain disorder (PEPD)
and small fibre neuropathy (SFN). Investigating how these mutations as com-
pared to others that do not involve functional alterations, modify the struc-
ture and the kinetics of this protein, can be of great help to understand what
are the mechanics that govern these problems. A classical pathway [64] to
derive structural information on each single mutation would require the use
of adequate and modified cell cultures where over-express the modified gene
of interest, protein purification and concentration for subsequent structural
analyzes by NMR, XDR or cryo-EM. This process, however, is both time con-
suming and expensive, hence a guideline toward an optimal experimental
probe would be desirable. Computational techniques can be of great help in
this respect as they offer increasingly reliable tools for the development of
representative models of protein structures. In particular, a homology mod-
eling technique [38], based on the observation that proteins having the same
biological function tend to preserve a common structure, has proven to be a
very effective tool that can be used in several different biological context. The
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underlying idea is that, given the structure of a homologous protein, it is pos-
sible to generate the structural model of a protein for which only the function
and the primary sequence are known, by aligning the common amino acid
traits, thus obtaining a rough model presumably having a geometry close to
that of the real native structure, This model can then be refined by energy
minimization to determine which is the set of coordinates of the native state
that minimizes the free energy of the system. In this way it is possible to
generate in a relatively short time a set of models representative of each mu-
tation, that can subsequently be subjected to further analysis. In this thesis,
we built upon this idea and tried to determine whether there was a pattern
linking gain-of-function mutations to each other compared to another set of
models representing mutations not directly related to functional disorders.
This idea was patterned after a previous study by a research group based at
the Carlo Besta Neurological Institute in Milan [32], that recently tackled this
issue using data coming from their own clinical counterpart.

To reach this goal, we exploited graph-theory complemented by machine
learning techniques, by representing proteins through their topological graphs.
Here a protein can be seen as a set of amino acids (nodes) connected to each
other by edges reflecting their internal complex interactions, and hence can
be represented by a complex network. First, this analysis approach allows for
reducing the complexity of a three-dimensional system to a two-dimensional
representation that preserves the topological information. And on the other
hand, it helps identifying common patterns impossible or hardly visible in
their three dimensional structure.

The basis of our study relies on past work by the Carlo Besta research
group, but we significantly improved it both from the methodological view-
point and the extension of the studied cases. Briefly, in [32], the authors
generated a set of models representative of some gain-of-function mutations
and mutations not directly related to neuropathies, using the 3RVY homolo-
gous protein, deposited structure of the voltage-dependent sodium channel,
as template Arcobacter bultzeri). The models were then subjected to an energy
minimization to allow them to converge to their native structures and then
transformed into the corresponding Residue Interaction Networks (RINs).
The RINs so obtained were then compared on the basis of the calculation
of some metrics (such as Betweenness Centrality, Edge Betweenness, Degree,
Clustering Coefficient, Closeness Centrality and Eccentricity). On this basis,
it was then speculated that the betweenness centrality index is the most sen-
sitive to pain-related mutations.

In this work, we used the same mutations used by Dimos et al [32], ap-
plied to three models generated by using three different templates. The first
template was the same used in [32] and was meant as a benchmark. The
other two templates derived from two other homologous proteins, in order
to produce models deriving from templates with greater identities with the
starting sequences and to probe an additional space of conformations. All the
structures generated have been subjected to energy minimization and trans-
formed into their corresponding RINs, the metrics have been calculated and
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the betweenness centrality index resulted again to be the most sensitive in-
dex for the distinction between gain-of-function mutations and mutations not
involved in alteration of functionality, as stated in the reference paper. An im-
portant novelty of our study was the use of an additional route that has been
explored by resorting to the use of Graph Kernels [35, 67], in particular the
Weisfeiler-Lehman kernel [63], to compare the whole RINs topology, rather
than using the punctual evaluation of a metric. A successive application of
the Dominant Set clustering method [10] allowed us to evaluate the ability of
the kernel methods to discriminate between gain-of-function mutations and
mutations not involved in alteration of functionality. The results obtained are
encouraging and seem to recognize in this approach an instrument of greater
selectivity and reliability.

The thesis is organized as follows: Chapter 2 gives a brief introduction
on proteins in general, their role inside the peripheral nervous system, how
they propagate the signals and how they are related to the onset of painful
neuropathies. Chapter 3 describes the computational tools employed in the
thesis and shows the workflow followed in this study. Chapter 4 presents two
main related works: the one by Dimos et al [32], and another closely related
work that addressed the same issues with a different approach. Chapter 5
illustrates the main results of the thesis and finally Chapter 6 draws some
concluding remarks.
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Chapter 2

Insight into the Context

This Chapter aims to introduce the reader to the roles of proteins in the hu-
man pheriperal nervous system. We start with a brief introduction to proteins
and their structure, and proceed afterwords by illustrating the tools that have
been our eyes into this world, emphasizing their merits and limits. We then
introduce the human’s peripheral nervous system, the role of proteins in this
system and how they are connected to the onset of neuropathic pain disor-
ders.

2.1 Proteins

Proteins play essential roles in most biological processes, they could be in-
volved in chemical reactions as enzymes; others like hemoglobin and myo-
globin are involved in transport and storage processes. Also some proteins
allow and median comunication between cells or are involved in control of
growth and differentiation of cells. Proteins are composed of twenty amino
acids, folding into unique three-dimensional structures that are strictly re-
lated to their biological functions. The onset of malfunctions resulting from
the development of diseases or alterations in the amino acid sequence in sen-
sitive traits, can cause fatal complications. Thus understanding the structures
of proteins and their related functions in various biological mechanisms are
important subjects of studies. Proteins are polymers made of monomers for-
mer from 20 amino acids. These mono-mers share a similar structure, all have
a central carbon with functional groups on the sides: amino and carboxylic
groups. This central carbon is called alpha (it is still part of the polypeptide
chain) and following the Greek alphabet are then named the other carbon
atoms constituting the side chain of each residue (if present). Cα also consti-
tutes a chiral center for all amino acids, except in the special case of glycine
whose side chain is made up of a hydrogen. Outside of these common points,
the properties of its side chain characterize the behavior of each amino acid.
For example, valine and leucine have apolar side chains that give these amino
acids a hydrophobic character. A different case is that of arginine and lysine,
which have charged side chains, and have a basic character at physiological
pH. A protein polypeptide chain is generated by joining amino acids end-to-
end through peptide bonds. In general, proteins can be classified into three
types: fibrous, membrane or globular. The classes of fibrous proteins con-
tain collagen, a-keratin and other proteins involved in many structural roles.
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FIGURE 2.1: Amino acid scaffold [59].

As in tendon and bone formation or compose hair and skin. Membrane pro-
teins reside in cellular membranes, where they mediate the exchange of the
molecules and information across cellular boundaries. Most proteins in the
cytoplasm of cells are soluble in aqueous environment and adopt compact
globular morphology. These globular proteins are the catalysis for virtually
all biochemical reactions in living cells. The basic structure of the peptide
bond is shown in the figures 2.1 and 2.2.

FIGURE 2.2: Peptide bond [45].

The peptide bond by its nature brings with it a hybrid character between
single and double bond. This results in a certain rigidity in the plane of the
bond, allowing rotation only around the Cα. The angles of rotation have been
called φ and ψ, around N-Cα and Cα-C bond, respectively (figure 2.3).

As mentioned before, the constituent elements of proteins are 20 amino
acids, defined by the properties of their side chain and can be divided into
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FIGURE 2.3: planarity due to peptide-bond [Biochemistry,
Seventh Edidtion, 2012 W.H. Freeman and Company].

two main groups: hydrophobic and polar (figure 2.4). It is these characters of
the side chains that guide the protein to rearrange itself in its native structure
and to determine its role within the biological sector; in particular, it is the
hydrophobicity that characterizes the side chains that play a pivotal role in
protein folding [11].

FIGURE 2.4: Amino acids list, classified based on their polar
or hydrophobic behavior [55].

The central problem associated with forming of the hydrophobic core
from the protein side chains is that the main chain of the protein is highly
polar, but it must be also buried in the interior of the protein. This problem is
solved in a very elegant way by the formation of regular secondary structure
within the interior of the protein molecule. The origin of these structures can
be tracked back to the presence of hydrogen bond donor and acceptor, NH
and CO. Thus, by forming regular hydrogen bonds between NH and CO, the
protein backbone can be neutralized in the protein interior. Such a secondary
structure is usually one of two types: α-helices or β-sheets.
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2.1.1 α-Helices

The most abundant types of secondary structures are α-helices. The first one
to deduce this (and also the other main secondary structure, β-sheet) was
Linus Pauling. He and his coworker were able to predict their existance al-
ready one decade before the structures of entire proteins were first revealed
by x-ray crystallography [21]. An example of α-helix is reported in the fig-
ure 2.5(left). This configuration is characterized to have 3.6 residues each
turn, that means that there is one residue every 100 degree of rotation. Each
residue is translated 1.5 Å along the helix axis, which gives a vertical dis-
tance of 5.4 Å between structurally equivalent atoms in a turn. The hydrogen
bonds between residues are established between each i-th element of the se-
quence and the i+4-th residual in cascade. The α-helix above described is
not the only helical-like structure, in biological life were reported other two
structures: 310-helix and π-helix. These structures differ from α-helix because
they are stabilized by a hydrogen bond between i, i+3 and i, i+5 residues
respectively.

2.1.2 β-Sheet

Beta sheets are built up from beta strands which are normally from 5 to 10
residues long. The side chains in a beta strand point alternatively up and un-
der the beta sheet. Usually, beta sheets have their beta strands either parallel
or antiparallel, in some samples, they have both, but they are less common
(figure 2.5 right).

FIGURE 2.5: Representation of α-helix and β-sheet [41].

Since it was first proposed that the amino acid sequence is sufficient to
determine the three-dimensional folded structure of the protein, significant
efforts have been done to investigate the fundamental protein folding mech-
anism and the physical driving force on protein folding from an amino acid
sequence. As previuos, the driving force to protein folding is the hydropho-
bic character of side chain. The explanation of this is to be sought in how
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these chains interact with the surrounding environment. Hydrophobic inter-
actions pack non-polar residues to minimize unfavorable contact with water.
This process can be seen as a ball rolling down a mountain, the bottom of the
mountain represents its free energy minimum (figure 2.6).

FIGURE 2.6: example of energy landscape of
conformation[17][18].

2.2 Overview on physical tools for determining the pro-
tein structure

Tertiary structure determination of biomolecules at atomic resolution pro-
vides essential insights into the function of bioactive molecules. X-ray crys-
tallography and nuclear magnetic resonance (NMR) spectroscopy have been
the primary methods over the past few decades to obtain high-resolution
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structures. More recently, the rapid technological growth of cryo-electron mi-
croscopy has seen this technique emerge as a third major approach to solve
bio-macromolecular structures at atomic resolution. The area of application
of these techniques is to be considered complementary. Information obtain-
able through NMR spectroscopy, in some cases cannot be achieved via X-
ray diffraction or cryo-EM. As an example solution NMR offers a number
of distinct features for structural biology studies: 1)Dynamics of protein fold-
ing, structural fluctuations, internal mobility and chemical exchange of target
molecules can be investigated over a wide range of timescales. 2) Studies of
protein-protein or protein–ligand interactions can be performed under phys-
iological conditions. The affinity and the location of the interaction sites be-
tween the target protein and its binding partner molecules can be determined
accurately and sensitively even if the interaction is very weak. A great suc-
cessful application of NMR to study biomolecular dynamics has been carried
out on intrinsic disordered proteins (IDPs) such as zinc finger proteins that
usually do not yield crystals, which provide sufficient quality X-ray diffrac-
tion data for high-resolution structure determination. Moreover, these pro-
teins are too small or too flexible to obtain strong contrast images by modern
cryo-EM analysis. [64] Nonetheless, these experimental tools have limitations
in determining the structures of some proteins and are very time consuming
and expensive. For example, some proteins are very difficult to crystallize,
which hampers the structure determination by x-ray crystallography. NMR
spectroscopy also has limitations, for example, in that currently it is applica-
ble only to proteins with less than about 30 kDa. When the molecular weight
of the target protein exceeds this level measurement and assignment of the
protein NMR signals become difficult owing to the increasing degeneration
and line-broadening of the signals. One other example is the structure deter-
mination of membrane proteins. Membrane proteins are located in the lipid
bilayer and of importance in the transport of the proteins across the mem-
brane and many other processes. These membrane proteins have very differ-
ent environment from that of other soluble proteins. While other cellular pro-
teins have polar environment, which is aqueous, membrane proteins reside
in the lipid bilayer which is hydrophobic. Thus, the structure determination
of the membrane proteins by conventional experimental tools is particulary
challenging. With the developments in genome project, the identification of
the protein sequences has been accelerated, but the speed of the structure
determination and functional assignments has been much slower. [29] In
light of these technological achievements, and thanks to their applications
in the medical context to date, extensive databases are available to the sci-
entific community that links mutations along the amino acid sequence with
the onset of human diseases. It remains an obstacle to find a reliable way of
probing and easily describing the changes resulting from mutations. Compu-
tational tools (CT) can help to overcome this obstacle, in an area that under-
pins a broad spectrum of disciplines, including chemistry and biochemistry,
catalysis, materials science, nanoscience, energy and environmental science,
and geosciences. Taking advantage of the tools made available by techno-
logical progress, we focused this study on the search of points in common
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between the mutations associated with neuropathies and those that do not
involve functional changes, in the context of a membrane protein shown to
be closely linked to these disorders. This protein belongs to the class of ion
channels. Many conditions such as epilepsy, pain syndromes, cystic fibrosis,
and many others have been attributed to mutations that lead to alteration
of ion channel function in some way. In order to be able to offer some kind
of drug-based treatment for these conditions in the future, an improvement
of molecular understanding of the effects of the mutations will provide the
most rational route to a successful. Outcome of this objective, to achieved
this we decided to resort to the use of tools such as homology modelling and
molecular dynamics (MD) simulations. [43][37]

2.3 Peripheral Nervous System

The peripheral nervous system (PNS) consists of all neurons that exist outside
the brain and spinal cord. This includes long nerve fibers containing bundles
of axons as well as ganglia made of neural cell bodies. The peripheral nervous
system connects the central nervous system (CNS) made of the brain and
spinal cord to various parts of the body and receives input from the external
environment as well. [16]

There are two types of cells in the peripheral nervous system, carrying
information to (sensory nervous cells) and from (motor nervous cells) the
central nervous system. Cells of the sensory nervous system send informa-
tion to the CNS from internal organs or from external stimuli. Motor nervous
system cells carry information from the CNS to organs, muscles, and glands.
[5]

In our body, peripheral nerve cells of different shape and thickness con-
nect the brain to the rest of the body and allow it to decode signals coming
from the outside world (see figures 2.7, 2.8 and 2.9). Most of these neurons
are unidirectional: either send messages to the brain about what happens
in or around the periphery, or they reply to a brain’s signal outward to the
muscles and other cells. Nevertheless, human’s anatomy including least-
evolved small diameter neurons called C-fibers still working in ancient and
undisciplined ways. As an example, they are bidirectional: in addition to
encoding and transmitting messages inward to the spinal cord and the brain
when they recognized dangerous stimuli, they also convey signals outward
to a wide range nearby cells throughout the body. Ascertained their role,
then it is easily acceptable how peripheral neuropathies which damage small
fibers lead to a bewildering array of symptoms: chronic wide-spread pain,
dizziness, weakness, nausea and more [34]. Dorsal root ganglion (DRG) are
clusters of sensory neurons, each projecting a single bifurcated axon toward
both the dorsal spinal cord as well as peripheral targets (skin, muscle, vis-
cera). In the periphery, axon terminals detect both noxious and innocuous
thermal, chemical, and mechanical stimuli, and transduce these signals in
the form of all-or-nothing action potentials toward the spinal cord. The type
and threshold of stimulus necessary to initiate afferent signals, as well as the
speed and fidelity with which these signals are processed, depends on the
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FIGURE 2.7: example of neuron, the basic unit of nervous sys-
tem [48].

FIGURE 2.8: Myelinated and Unmyelinated axons [54].
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FIGURE 2.9: Anatomy of nerve fibers [4].

type of sensory neuron. Small-diameter neurons with unmyelinated axons
have relatively high stimulus thresholds and are called nociceptors (or C-
fibers). Small to medium-diameter neurons with thinly myelinated axons,
have lower thresholds and higher conduction velocity are also referred to as
nociceptors, but specifically as Aδ-fibers. The largest-diameter sensory neu-
rons with relatively thick myelin are low threshold and called proprioceptors
since they are largely responsible for afferent feedback from muscles for po-
sition, movement, and reflex. Under normal conditions, nociceptive DRG
neurons exhibit relatively low levels of spontaneous spike activity. However,
inflammation due to disease or injury may lead to increased intrinsic activity
and increased sensitivity to external stimuli. This sensitization of peripheral
nociceptors significantly contributes to the manifestation of chronic pain.[7]

2.4 Voltage Gated Sodium Channels

Peripheral nerve cells are capable of performing the functions described above
through the presence of a special class of proteins at the level of their mem-
brane. This class of proteins are Voltage-gated sodium channels (NaV Chan-
nels, VGSCs), is a group of heteromeric integral transmembrane glycopro-
teins, the human genome contains ten structurally related sodium channel
genes encoding for the alpha-subunits which share more than 50% amino
acid sequence homology.

Their function, and the associated conformational change is precisely dic-
tated by the potential variations between inside and outside of the mem-
brane. When the cell membrane is depolarized by a few millivolts, above
a threshold level, sodium channel allowed the influx of sodium ions before
rapidly inactivating (see figure 2.10). Is this influx of sodium ions that gen-
erate the action potential indispensable for transduction and transmission of
the road range of somatosensory signals (temperature, touch, smell, proprio-
ception and pain) [25]. The ion-conducting aqueous pore is contained entirely
within the α subunit that have a size of ∼260 kDa, and the essential elements
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FIGURE 2.10: The Action Potential [2].
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of sodium-channel function: channel opening, ion selectivity and rapid inac-
tivation can be demonstrated when α subunits are expressed alone in heterol-
ogous cells. Coexpression of the β subunit is required for full reconstitution of
the properties of native sodium channels, as these auxiliary subunits modify
the kinetics and voltage-dependence of the gating [71]. The α subunits struc-
ture comprises four homologues domains I-IV (see figure 2.11), each domain
having six transmembrane helices(S1-S6). The voltage sensor is located in the
S4 segments, which contain positively charged amino-acid residues (mostly
arginine) in every third position. A re-entrant loop between helices S5 and
S6 is embedded into the transmembrane region of the channel to form the
narrow, ion-selective filter at the extracellular end of the pore. Upon depo-

FIGURE 2.11: Single Chain [25].

larisation of a cell, the S4 regions in domains I–IV move rapidly and induce a
conformational change in the protein which opens the ion channel pore. The
entry of sodium ions through the pore leads to the upstroke of the action po-
tential in excitable cells. Inactivation of the channel then follows as a highly
conserved trio of amino acids located in the intracellular loop between do-
mains III and IV moves into and occludes the channel pore, leading to the
downstroke of the action potential [28].
In an evolutionary analysis, Voltage-dependent sodium channel genes have
been identified in a variety of animals, including flies, leeches, squid and
jellyfish, as well as mammalian and non-mammalian vertebrates. The bio-
physical properties, pharmacology, gene organization, and even intron splice
sites of invertebrate sodium channels are largely similar to the mammalian
sodium channels, adding further support to the idea that the primordial sodium
channel was established before the evolutionary separation of the inverte-
brates from the vertebrates. This is an extremely important point thanks to
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this strong correlation between the amino acid sequences and the physio-
logical function performed, the homology modeling work is based on, and
which will be discussed in more detail below. The human’s NaV family com-
prises nine homologous α subunits (NaV1.1 - NaV1.9), which overall molecu-
lar structures are highly conserved, but they are encoded by different genes.
An evolutionary classification divide the genes into four groups, based on
their subdivision between the chromosomes.

FIGURE 2.12: Phylogenetic tree [71].

A first group composed by genes encoding NaV1.1, NaV1.2, NaV1.3 and NaV1.7
are located in chromosome 2 both in human and in rodent, these group share
high similarities in sequence, are broad express in neurons and have high
sensibility at nanomolar concentration of the neurotoxin tetrodotoxin, that
easily block the channel (see figure 2.12). A second cluster of genes encoding
NaV1.5, NaV1.8 and NaV1.9 is located on human chromosome 3, they share
approximately 75% identical in amino-acid sequence to the group of channels
on chromosome 2. This 25% in difference includes changes such as increased
resistance to tetrodotoxin, as example, NaV1.5 the principal cardiac isoform
has a single amino-acid changed, from phenylalanine to cysteine, in the pore
region of I domain and it is responsible for 200-fold reduction in tetrodotoxin
sensitivity, relative to the channels encoded on chromosome 2.
At the corresponding position in channels NaV1.8 and NaV1.9 the residue
is serine, and this change results in even greater resistance to tetrodotoxin.
These two channels are preferentially expressed in peripheral sensory neu-
rons. The last two isoforms NaV1.4 and NaV1.6 share greater than 85% se-
quence identity and similar functional properties to the chromosome 2 en-
coded channels, including tetrodotoxin sensitivity in the nanomolar concen-
tration range, but they are encoded in others chromosomes. NaV1.4 is located
in chromosome 11 and NaV1.6 in chromosome 15.
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FIGURE 2.13: 3D structure of Sodium Channel Protein [25].

2.5 Neuropathic Pain Disorders

Pain disorders severely afflicts about half a billion people around the world,
but medicine has no seen the remarkable progress in the treatment that other
areas such as cardiovascular disease or cancer have undergone. Despite a
substantial investments by the pharmaceutical industry, little progress has
been made in developing novel efficacious and safe analgesics. One reason
for this is that we know very little about the mechanisms that underlie differ-
ent sort of pain.

Our limited knowledge of the types of sensory neurons and the subtypes
of VGSCs involved in humans conditions, let alone the central mechanisms
that modulate pain. We just know that VGSCs are strictly related to pain
sensation, but the expression and role of NaV subtypes in native sensory
neurons are unclear. Moreover our way to develop new drugs are strongly
based on animals models, the translational gap from rodents and humans
has been blamed for the failure in developing pain medications. This gap
becomes clear if we look at the distinct ratio of expression of different NaV
subtypes. The ratio of NaV 1.7 expression in hDRG (human Dorsal Root Gan-
glion) is about 50% of the total VGSCs, and that value is much higher than
in the mDRG (mouse DRG)(20%). By context, the mDRG has much higher
ratio of NaV 1.8 (45%) than in humans (15%), and a critical role of NaV 1.8 in
the pathogenesis of neuropathic pain has been well documented in rodents.
It is reasonable to postulate that the high ratio of expression of NaV 1.7 in
humans DRG neurons is associated with an enhanced role of this subtype
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in human pain condictions compared with the other subtypes. This notion
is supported by human genetic showing that both most pain-related condi-
tions (loss-of-function and gain-of-function) are found in SCN9A gene, while
fewer mutations have been found in SCN10A (encoding NaV 1.8), SCN11A
(encoding NaV 1.9) and SCN8A (encoding NaV 1.6). Given this, blocking pe-
ripheral nerves as a route to treating many different type of pain is attractive.
Nerve block has been used for decades as an effective treatment for most
pain conditions and relies upon suppressing the electric signals carried out
by VGSCs. [22][14]
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Chapter 3

Computational Methods

3.1 Protein structure prediction

Owing to the significant improvement in genome sequencing technologies
and efforts, the genomic sequences of a large number of organisms have been
now determined. As of August 2015, 187 million sequences from 500000 or-
ganisms have been deposited in Genbank database. [6] Among them, 50
million sequences have been translated into protein amino acid sequences
and stored in the UniProtKB/TrEMBL database. However sequences alone
do not provide insight into what each protein does in living cells, and the
three-dimensional structure of these is often important for interpreting their
biological behavior. Structural biology techniques such as Nuclear magnetic
resonance (NMR), X-ray crystallography and Cryo-EM (Electron Microscope)
provide the most accurate characterization of the protein structure. However,
because of the technical difficulties associated with cost and time, the gap
between the number of protein sequences and that of protein structures is
rapidly expanding. As of August 2015, there are only 100000 protein struc-
tures solved and listed in Protein Data Bank (PDB), compared with 50 million
protein sequences in UniProt. Therefore, solved structures only account 0.2%
of the known sequences. One promising approach to reduce this gap comes
from computational chemistry modeling that can generate high-resolution
structural models for the sequences that can be conveniently used by the sci-
ence community.[33]

3.1.1 A brief introduction to modeling techniques

Traditionally, computational approaches for protein structure prediction have
been categorized into three classes:

• Homology modelling

• Threading

• Ab Initio modelling

Homology modellig

Homology modeling is the most powerful method for predicting the tertiary
structure of proteins in cases where a query protein has sequence similarity
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to a protein with known atomic structure. These methods are based on the
observation that structures are more conserved than sequences. Therefore, an
accurate molecular model of a protein may be constructed by assigning a con-
formation that is based on sequence alignment, followed by model building
and energy minimization. Reliable models could be obtain with a sequence
similarity over 30%.

Threading

This method differs from homology modeling substantially because it tries to
align the sequence with a structure, while in homology modeling there is an
alignment between sequences.

Ab Initio

This technique is often used when there are no homologous structures with
which to make a comparison. Not having a starting geometry, to compare
with more demanding computational simulations capable of probing the space
of the conformations in search of the coordinates that minimize potential en-
ergy. [40]

3.2 Swiss-Model

Homology modeling is become an important technique in structural biology,
significantly contributing to narrowing the gap between known protein se-
quences and experimentally structures determined. This technique relies on
evolutionary related structures (templates) to generate a structural model of
protein of interest (target). With more experimentally determined structures
of protein becoming available (in Protein Data Bank, PDB), it has been ob-
served that interacting interfaces are often conserved among homologous
protein. A significant contribution to this trend originates from the contin-
uous progress of structure determination technologies, including recent de-
velopments of Electron Microscopy (EM) based methods, which are particu-
larly suited for the large macromolecular complex. Swiss-Model is an online
server able to generate a structural model in a completely automated way,
through the homology modeling protocols [46]. Protein models were gener-
ated by following these main steps:

• INPUT DATA: Users can provide query sequence in FASTA [3] or write
the amino acid sequence as a plain text. When the target protein is
heteromeric, it’s necessary to specify each subunit.

• Template Search: The sequence uploaded were used to search an evo-
lutionary related protein structure by mean BLAST (Basic Logical Align-
ment Search Tool). This tool compare one or more query sequences to
sequence database and calculates the statistical significance of matches,
looking for the closest homologous protein. BLAST can be used to infer
functional and evolutionary relationships between sequences as well as
help identify members of gene families [44].
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• Template Selection: Typically the research for a candidate produces
more than a possible reference template, from which the most accu-
rate candidate has to been chosen using a scoring function. Various
aspects of the protein must be taken into account to evaluate the mod-
els, compatibility of amino acid residue with their local environment,
knowledge-based statistical potential and evolutionary information as
well as energy-based methods. Top-ranked templates are listed in a
tabular form with a descriptive set of features.

• Model Building: For each template structures, a protein model is au-
tomatically produced by copy conserved atom coordinates as defined
by target-template alignment. The insertion and deletion regions are
modeled as if they were loops, maintaining an atomic-resolution of the
residue. As final step, small structural distortions, unfavourable inter-
actions or clashes introduced during the modelling process are resolved
by energy minimizzation. Energy minimization are preformed using
OpenMM library and CHARMM27 force field for parametrization.

• Model Quality Estimation: The last step followed by Swiss-Model in-
volves the evaluation of the quality of the product model, relying on the
QMEAN scoring function. QMEAN uses several statistical descriptor,
three are based on energy potential based on geometry of model at dif-
ferent scales. Local geometry is evaluated by a torsion angle potential
calculated over three consecutive amino acids, a secondary structure
specific distance-dependent pairwise residue level potential is used to
assess long-range interactions and a solvatation potential is implemented
to describe the burrial status of residues. Finally two terms are added
to describe the agreement of the terms just mentioned [69][50][49].

3.3 FG-MD: Energy minimization

Swiss-Model is a template based method, actually the most accurate method
in protein structure forecast. As mentioned before, model are built by align-
ing the query sequences to a single protein template and then copying the
structure information from the template to the aligned regions. Therefore,
final structural models are often closer to the template than to their native
structures. Although is efficient for removing steric clashes and unfavor-
able torsional angles, MD simulations without restraints often drive struc-
ture away from the native state. FG-MD use a multiple templates approach
to reshape the energy landscape from golf-course-like to funnel-like ones and
drive the energy minimization closer to native state; CASP 8 and CASP 9 (The
Critical Assessment of protein Structure Prediction, [42]) refinement experi-
ments have shown how FG-MD was among the very few methods that could
consistently bring the initial model closer to the native state [30].
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FIGURE 3.1: The protocol includes three stages of identifica-
tion of fragment structures from the PDB, molecular dynam-
ics refinement simulation guided by fragmental restraints,

and final model selection [30].
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3.3.1 FG-MD Refinement Protocol

The workflow followed by FG-MD are summed in figure 3.1. Minimization
start from a target protein structures, the sequence was split into separated
secondary structure elements (SSEs). The substructures consisting of three
consecutive SSEs are used as probes to look for counterparts in the PDB li-
brary. The top 20 templates with the highest TM-score (A.2) were used to
collect spatial restraints. The final refined models were selected on the basis
of the sum of Z-score of hydrogen bonds, Z-score of the number of clashes
and Z-score of FG-MD energy. All procedure is completely automated and
FG-MD server is freely available at http://zhanglab.ccmb.med.umich.edu/
FG-MD.
FG-MD force field is composed of four terms (the values of the distances
shown below are dimensionless and normalized to 1 Å):

• Distance Map Restraints:
The Cα distance maps were collected from three sources of initial mod-
els, global structure templates and fragmental structure templates, and
it is written as:

E(r(ij)) =

{
k1(r(ij) − r1

(ij))
2 + k2(r(ij) − r2

(ij))
2 + k3(r(ij) − r3

(ij))
2 if r(ij) ≤ 15

0 if r(ij) > 15

where r(ij) is the distance (in Å) between ith and jth Cα atoms, r1
(ij), r2

(ij),
r3
(ij) instead are the distance maps from the initial model, global struc-

ture template and fragment template. k1, k2 and k3 are the correspond-
ing energy constants with values equal to 0.5, 0.5 and 2.0 kcal/mole
restrictions. The threshold value at 15Åis a heuristically determined
value.

• Explicit Hydrogen Binding:
H-bonding potential is defined as:

EHB(dij, α, β) =

{
k4(dij − d0)2 + k5(α− α0)2 + k6(β− β0)2 if dij ≤ 3.0
0 if dij > 3.0

Where dij is the distance (in Å) between hydrogen of the donor and
oxygen of the acceptor, α is the angle of N-H-O and β is the angle of
C-O-H (figure 3.2).

The values of d0, α0 and β0 are derived from the statistics average of
high-resolution experimental structures dataset. Autors found that val-
ues were d0 = 1.95± 0.17 Å, α0 = 160.0± 12.2◦ and β0 = 150.0± 17.5◦.
k4, k5 and k6 are the energy constants with values equal to 2.0, 0.5 and
0.5 respectively (kcal/mole).

• Repulsive Potential:
This Cα repulsive potential was designed to quickly relax structural pat-
terns with different clashes and is defined as follows:

http://zhanglab.ccmb.med.umich.edu/FG-MD
http://zhanglab.ccmb.med.umich.edu/FG-MD
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FIGURE 3.2: The definition of backbone hydrogen bond [30].

E(r(ij)) =

{
k(3.6− r(ij)) if r(ij) ≤ 3.6
0 if r(ij) > 3.6

Where the energy constant k = 200Kcal/mole.

• AMBER99 Force Field:
Here is reported the standard AMBER99 force field [68]:
split

EAMBER = ∑
bonds

Kr(r− req)
2 + ∑

angles
Kθ(θ − θeq)

2+

∑
dihedrals

Vn/2[1 + cos(nφ− γ)] + ∑
i<j

[Aij/R2
ij − Bij/R6

ij + qiqj/εRij]

(3.1)

where r, θ and φ are bond length, bond angle and torsion angle respec-
tively; req, θeq and γ are the respectively equilibrium values. Kr, Kθ

and Vn are the force constants (for bond length, bond angle and torsion
angle). Aij, Bij are Lennard-Jones parameters, qi and qj are the partial
charge of atom i and j. Rij is the distance between atom pair i and j.

3.4 QMEANBrane

Once the protein models are generated, a fundamental task is to evaluate
their goodness. Being able to discriminate the quality of a model allows to
choose the best candidate among a series of alternatives. In this sense, var-
ious techniques have been developed to address this question. However,
in the case of membrane proteins, the use of these methods clashes with
their chemical-physical properties that favorable interactions are opposite
to the case of soluble proteins. And these knowledge-based methods have
been calibrated on soluble proteins, thus the perform poorly when applied
to membrane proteins. QMEANBrane exploits the increasing availability of
deposited high definition membrane protein structures to adapt knowledge-
based methods to this class of proteins. It is known that the properties of
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membrane proteins are strongly influenced by their interaction with phos-
pholipid tails, but a clear division into a membrane region and a soluble re-
gion does not adequately reflect the variation in molecular properties along
the membrane axis. To capture these differences, QMEANBrane divides the
study into three parts: an interface zone consisting of all those residues whose
Cα are at a distance of 5Åfrom the defined membrane plane (see figure 3.3).
A membrane region enclosed by all those residues that are more than 5Åbe-
tween the two planes, finally, a region of soluble protein consisting of the
remaining amino acids [26].

FIGURE 3.3: Example of result obtain using QMEANBrane,
relative to WT (6A90 template) after FG-MD minimization.

3.5 RING2.0

RING2.0 is the tool that has been implemented to represent the models gen-
erated in the form of graphs. What is a graph? It is nothing more than a
mathematical representation of a system, through which the nodes identify
elements or characteristics of the system, and the connections between two el-
ements or more elements are highlighted through the arcs that connect them.

3.5.1 definition of graph

A graph is formally defined as G=(V,E), where V={1,...n} is a finite set of nodes
(or vertices) and E: V x V is the set of edges which connect the nodes. With
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the name n it means the total number of nodes, while m identifies the total
number of arcs (see figure 3.4).

FIGURE 3.4: Example of graph.

These interactions, in addition to a graphic representation, can also be
reported in matrix form: The adjacency matrix A of graph G is defined as:

[Aij] =

{
1 if (vi, vj) ∈ E
0 otherwise

(3.2)

where vi and vj are nodes of G. Moreover, a sequence of nodes vi, vj, ..vd of
length k-1 is defined as path w such that (vi−1, vi)∈ E for 1 < i ≤ k.wisapathi f vi
6= vj iff i 6= j∀i,j ∈ 1, ...k.

RING-2.0 algorithm generates the graph in two steps. The first identifies
a list of residue-residue pairs eligible to undergo an interaction based merely
on distance measurements. The second characterizes every contact by identi-
fying the specific type of interaction. The first step identifies interacting pairs
with different strategies according to the user choice, Network Policy param-
eter in the web server interface, and reflecting different cases.

• Closest: all atoms of the residue pair are considered to measure the
distance. This option is convenient for PDBs with good resolution for
which is safe to consider sidechain coordinates.

• Lollipop: the distance is calculated between the mass centers of the two
interacting residues. Moreover the algorithm checks that the sidechains
are not pointing in opposite direction.

• Cα: the distance is calculated between C-alpha atoms.

• Cβ: the distance is calculated between C-beta atoms.

This step produces a list of all retrieved interactions, labeling them as
generic Inter-Atomic Contact (IAC). Now an algorithm identify which kind
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of interaction exists between pairs and allow the users to decide the cardinal-
ity by means of the Interaction Type parameter (see figure 3.5):

• One: RING reports only one interaction per residue pair (the most en-
ergetic).

• Multiple: RING reports multiple interactions per residue pair but only
one interaction per interaction type.

• All: Were listed all the interactions.

• No specific: This second step is skipped and were provided only generic
IAC interactions.

FIGURE 3.5: Visual representation of how edges were built
depending on the chosen Interaction Type parameter [52]

3.5.2 Definiction of Interaction Type

RING2.0 is a freely available tool able to identifies 6 different type of interac-
tion, plus a generic interaction (IAC) that simply indicates a generic contact
based on a distance cutoff.

• Hydrogen bond (HBOND): they are determined on the basis of the
DSSP method (A.4). The H-bond between atom pair exist if it respects
these two rules: Distance between Donor (D) and Acceptor (A) is less
or equal to 3.5 (or 5.5 relaxed) Å. The angle H-D-A (θ) is less or equal to
63◦ (figure 3.6).

• Van der Waals (VDW): are identified by simply measuring the distance
between the surface of two atoms. The distance threshold is 0.5 (or 0.8
relaxed) Å. The pairs of atoms considered valid in establishing this type
of bond are C-C and C-S, plus the special case of oxygen and nitrogen
in the residues of Glutamine and Aspargine (figure 3.7).

• Disulfide bridges: This is a covalenta kind bond, and is subject to
strong spatial constraints. RING-2.0 identifies disulfide bridges when
the distance between sulfur atoms of cysteine pairs is lower or equal to
2.5 (or 3.0 relaxed) Å(figure 3.8).
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FIGURE 3.6: Representation of the hydrogen bond [52].

FIGURE 3.7: Representation of Van der Waals bond [52].

FIGURE 3.8: Representation of disulfide bond [52].
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• Ionic bridges: occurs when the center of mass of the charged groups
are at an equal or lower distance 4.0 (or 5.0 relaxed) Å(figure 3.9).

FIGURE 3.9: Representation of disulfide bond [52].

• π − π Stacking (PIPISTACK): this interaction is evalueted only be-
tween aromatic residues (His, Tyr, Trp, Phe). RING2.0 takes one ring
plane as reference and calculates the strength of the force based on the
angle between the planes of the two rings (figures 3.10 and 3.11).

FIGURE 3.10:
Possible angles
between the

rings.

FIGURE 3.11: Image
of π − π stacking.

• π-cation (PICATION): this interaction occurs between positively charged
residues (Arg, Lys) and the electronic clouds of aromatic rings. In this
sense, Histidine is not taken in account because it can act both as cation
and as π-system. The conditions for which RING2.0 considers the es-
tablishment of the bond are two:the distance between the center of mass
of the positively charged residue and any atom of the π-system must be
less than 5.0 (or 7.0 relaxed) Åand the angle between the distance vector
and the ring plane has to guarantee that the mass center of the cation
lies above (or below) the ring area (figure 3.12).

3.6 Cytoscape

Cytoscape is an open source software project for integrating biomolecular in-
teraction networks with high-throughput expression data and other molec-
ular states into a unified conceptual framework. The central organization
on which Cytoscape rests are the graphs, in perfect continuity with what is
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FIGURE 3.12: Representation of π-cation bond [52].

produced through the use of RING2.0. This tool responds to the growing
demand for a method of analysis due to the vastness of models that have
been developed to simulate biochemical reactions and gene transcription ki-
netics, cellular physiology, and metabolic control. Such models promise to
transform biological research by providing a framework to systematically in-
terrogate and experimentally verify knowledge of a pathway, manage the
immense complexity of hundreds or potentially thousands of cellular com-
ponents and interactions (how to represent the dense connections between
protein residues that give life to a biologically active structure). Further-
more reveal emergent properties and unanticipated consequences of different
pathway configurations (how to identify which biomolecule can represent a
good candidate in the development of increasingly selective drugs). The core
of Cytoscape is extensible through a straightforward plug-in architecture, al-
lowing rapid development of additional computational analyses and features
[60]. To facilitate the analysis, two plug-ins were used to carry out the analy-
sis on the network metrics.

• RINalyzer One of the main features of RINalyzer is the computation
and illustration of a comprehensive set of well-known topological net-
work centrality measures (based on shortest paths, current flows, or
random walks) for relating spatially distant residue nodes, and discov-
ering crucial residues and their long-range interaction paths in protein
structures. In particular, this tool was used to determine the metrics
based on a shortest path approach [19].

• CytoNCA CytoNCA provides multiple centrality calculations (Between-
ness and Closeness Centrality, Degree Centrality, Eigenvector Central-
ity, Local Average Connectivity-based Centrality, Network Centrality,
Subgraph Centrality, Information Centrality) for both weighted and un-
weighted networks, gives various forms of visualization analysis, and
quantitatively evaluates the computation results [65].

It was decided to use both tools to verify the consistency of the analytical
results.
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3.7 Pattern recognition through Kernel Methods

The search for recurring patterns between data sets is as old as science, and
in the same way the automated search for these schemes is as old as comput-
ing. Pattern analysis deals with the problem of detecting relations in data,
starting from the assumed that the data mean the output of any kind of ob-
servation, measurement or recording apparatus. This therefore includes im-
ages in digital format, sequences of DNA, pieces of text, time series, records
of commercial transactions or, like in our case, vectors describing the state
of a physical system. Once in possession of this data set, the ways through
which valuable knowledge can be obtained must be explored. Referring to
knowledge as something more abstract, at the level of relations between and
patterns within the data. Such knowledge can enable us to make predictions
about the source of the data or draw inferences about the relationships inher-
ent in the data. At the beginning, the automated approaches to this type of
problem have had to come up against various practical obstacles, that only in
the recent period have they been protagonists of two important turns: In the
mid-80s the field of pattern analysis underwent a nonlinear revolution allow-
ing, as the name suggests, to address the study of systems characterized by
non-linear patterns; albeit with heuristic algorithms and incomplete statisti-
cal analysis. Finally, in the mid-1990s, the approach to kernel-based methods
made it possible to analyze non-linear relationships with the accuracy that
was previously reserved only for linear patterns. Through patterns, we can
understand any relations, regularities or structure inherent in some source of
data. By detecting significant patterns in the available data, a system can an-
ticipate predictions about new data coming from the same source. There are
many important problems that can only be solved using this approach, prob-
lems ranging from bioinformatics to text categorization, from image analy-
sis to web retrieval [61]. In our case, the models were represented through
graphs, from which we then tried to extrapolate some congruent patterns
with their biological behavior. To do this, two kernels methods were used:

• Shortest-path kernels From a completely general point of view, the
graph-kernels are based on the comparison of substructures of graphs,
which can be: paths, subtrees and cyclic patterns. The first essential step
in a shortest-path kernel appraoch is to transform the original graphs
into shortest-paths graphs (G→ S). S is a graph composed of the same
set of nodes of G, but unlike G has an arc connecting each pair of nodes
of G connected by a path (the weight of this arc is proportional to the
shortest path connecting the two nodes).

– Definition of Shortest Path Graph Kernel Taken two graphs G1and
G2 transformed into their correspondents S1 and S2. It is possible to
define the shortest path kernel between S1 = (V1, E1) and S2 = (V2, E2)
as:

kShortestPath(S1, S2) = ∑
e1∈E1

∑
e2∈E2

k(l)w (e1, e2) (3.3)

where k(l)w is a positive define kernel on edge walks of length 1 [9].
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• Weisfeiler-Lehman kernel Weisfeiler-Lehman approach follows another
way to probe if two graphs share common patterns. As with the short-
est path, even with this approach, the graphs undergo a transformation
before a kernel is applied to them. Weisfeiler-Lehman takes a graph and
maps it to a sequence of graphs, whose nodes are defined in such a way
as to capture and label the local topology of the starting graph. With
this method it is necessary to introduce some tricks to the previously
described definition of graph: A graph G is defined by the triplet (V,
E, l), where V, E are the vertices and edges of graph and l: V → Σ is a
function the assigns an alphabet labels (∈ Σ) to nodes in the graph. This
method provides for probing the topology by studying the surround-
ings of the nodes, through the neighboring vertices. A neighborhood
of a node N(v) is defined as the set of nodes to which it is directly con-
nected by an arc (N(v) = {v’|(v, v’) ∈ E}). The concept of subtree must
therefore be introduced: a subtree is a subgraph of graph, which has no
cycles (a path of length k-1 in which v1 = vk) and it is rooted by de-
signed a node as a root of the subtree. Then the height of the subtree is
defined as the maximum distance between the root and any other node
belonging to the subtree (see figures 3.13 and 3.14) [63].

FIGURE 3.13: Subtree pattern of a graph with height 2 and
rooted in node 1 [63].

The idea behind this algorithm is to increase the labels of each node,
based on the local topology, this process is repeated until G and G’ dif-
fer. If the same new labels are kept, the two graphs are isomorphic.

– Definition of Weisfeiler-Lehman Kernel It is called a Weisfeiler-
Lehman sequence of graphs of height h as:

{G0, G1, ..Gi, ..Gh} = {(V0, E0, l0), (V1, E1, l1), ..(Vi, Ei, li), ..(Vh, Eh, lh)}
(3.4)

where G0 corresponds to the original graph, Gi identifies the generic con-
tract graph after i itterations and h is the total number of itterations im-
proved.
We then define the kernel between two graphs G and G’ as:

k(h)WL = k(G0, G′0) + k(G1, G′1) + .. + k(Gh, G′h) (3.5)
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where G0, ..Gh and G′0, ..G′h are the graphs sequences of G and G’ respec-
tively.

FIGURE 3.14: Rappresentation of the Weisfeiler-Lehman sub-
tree kernel with one itteration (h=1) for two graphs. In this
case the graphs are not isomorphic, they are already different

after the first itteration. [63].

3.7.1 Dominant-set Clustering

Dominant-set clustering framework is an approach that tries to answer at
the problem of organizing a set of elements in clusters, in such a way that
each group satisfies an internal homogeneity and expresses an external in-
homogeneity between the groups. The algorithm behind this approach does
not require any assumption underlying the data representation (cluster spec-
tra: does not require that the elements to be clustered have a representation
as points of a vector space), it also does not require prior knowledge of the
number of clusters (as it is able to determine them in sequence). Finally it
also allows to determine if there are overlaps between the clusters [10].

The schedule followed to produce this thesis is briefly summarized in the
pipeline below (see figure 3.15):

• The isoform 1 classified with the code NP_002968.1 has been selected as
Wild Type (WT) sequence, in agreement with NCBI (National Center
For Biotechnology Information).
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FIGURE 3.15: Rappresentation of pipeline followed.

• it has been prepared an excel file, and taking in account the mutations
reported by Dimos et al.([32]); they have been created manually 85
copies of WT sequence with a singolar puntual mutation.

• Homology modelling of each sequences has been produced using Swiss-
Model Server (https://swissmodel.expasy.org/). using three different
templates:

– A first template produced by Dimos et al, based on the cryo-SEM
structure of ortholog protein of Acrobacter bultzeri.

– A second template, from eukaryotic kingdom, it has been chosen
for its higher closeness to human.

– A last template, evolutionarily distant from humans, but interest-
ing because it is representative of the sodium channel in the open
state.

• Subsequently, energy minimization of each structures were preformed
using online tool FG-MD (Fragment-Guided MD simulation).

• Minimized structures obtained in this way, were upload to RING2.0
server to convert them in their corresponding RIN (Residue Interaction
Network).

• RINs taken as representative of the structures were analyzed using Cy-
toscape and kernel-method approaches.
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Related Works

The aim of this thesis was to test and improve the computational pipeline
proposed by Dimos et al ([32]), their work is reported below. Other publica-
tions have been considered and a work that has better explored the potential
of computational approaches is shown at the end of this chapter.

4.1 Reference Work

This research group is based at IRCCS Foundation “Carlo Besta” Neurologi-
cal Institute in Milan. Among the research areas followed by the institute of
neurology, there are clearly the study of the onset of forms of painful neu-
ropathies linked to gene expression. In particular, mutations in the SCN9A
gene, which codes for the α-subunit of the voltage-gated sodium channel
NaV1.7, have been speculated to be related with these pathological forms. Di-
mos et al used homology modeling to build an atomic model of NaV1.7 and
a network-based theoretical approach, which can predict interatomic interac-
tions and connectivity arrangements, to investigate how pain-related NaV1.7
mutations may alter specific interatomic bonds and cause connectivity rear-
rangement, compared to benign variants and polymorphisms. The analy-
sis of networks, and in particular, of how mutations change the topology of
these networks have been calculated by determining the following metrics:
betweenness centrality (Bct), degree (D), clustering coefficient (CCct), close-
ness (Cct) and eccentricity (Ect) where calculated for each graph. Finally, the
determined values were compared by taking the same value relative to the
WT model as a benchmark (∆value = mutantvalue −WTvalue).

4.1.1 Methods followed

The pipeline followed is briefly summarized in the figure 4.1, essentially
the work was divided into two main blocks. In a first part, representative
protein models of both the WT sequence and all the considered mutations
were generated. In the second block, the structures have been converted
into graphs showing the topology of the structures, representing as graph
nodes the amino acids, and the arcs as the interactions existing between the
residues.
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FIGURE 4.1: NaV1.7 computational protocol overview. A
NaV1.7 WT homology modelling of based on the bacterial
NavAb sodium channel template. B Energy minimization
and structure refinement of the protein structure with YAM-
BER force field and FG-MD server. C In-silico mutagenesis
for pathogenetic and control group (nABN/hSNPs) muta-
tions. D Transforming NaV1.7 structure into residue inter-
action graphs. The construction of inter-residue network was
based on interatomic bonds (hydrophobic, hydrogen bonds,
salt-bridges, cation-π and π-π stacking interactions) using
the commands “ListIntAtom” and “ListIntBo” via YASARA
software. The de novo network construction for each mu-
tant and WT models is achieved considering the predicted
binary interatomic bonds. E-F. Network centrality calcula-
tion and their relative variation between mutant and WT

(∆value = mutantvalue −WTvalue) [32]

• Homology Modeling of NaV1.7 WT sequence The representative model
of the closed conformational state was generated starting from the Ar-
cobacter bultzeri (NaVAb) template and using NM_002977.3 as a human
sequence, through the MEMOIR server [20]. Gap region (269-340, DI)
between template-target alignment and interdomain loop regions (416-
726, DI-DII; 967- 1175, DII-DIII; 1458-1498, DIII-DIV) were excluded
from in-silico mutagenesis. The template used and the WT sequence
share an identity of 28% respectively for DI, DIII and DIV while it is
24% for DII (overall 27% sequence identity). Ab-initio analysis was then
applied to extend a missing trait of the PD propeller S6, using the tool
I-TASSER online. The structure thus generated was subjected to an en-
ergy minimization, using first YAMBER force field (from YASARA soft-
ware [36]) and then with FG-MD.

• In-Silico Mutagenesis of NaV1.7 pathogenic and control mutations
Subsequently, mutations found in IEM, PEPD and SFN patients have
been introduced in silico. Of these mutations the gain-of-function char-
acter has been demonstrated through electrophysiology assay. To in-
crease the number of control variants, the missense SNPs identified
among the SCN9A homologous genes that share the identity of the
90% nucleotide sequence using the NCBI HomoloGene database were
added. finally, to converge to models closer to the native state of each
structure, each mutated-model was subjected to the same energy mini-
mizations applied for the WT.
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• Graph representation of NaV1.7 structures NaV1.7 models were con-
verted in their mathamtical graphs by indentifying interatomic bonds
between the residues. The nature of interatomic interactions considered
were: hydrophobic iterations, hydrogen bonds, saline-bridges, π-cation
and π-π stacking. And an edge was placed to represent them if they
came to be established between two amino acids i and j at a maximum
distance of 5 Å.

• Calculation of network metrics The calculation of the metrics was per-
formed by viewing the networks with Cytoscape and using the Net-
workAnalyzer plugin. Below is a brief description of the metrics con-
sidered, defining G=(N, E) a graph where N is a set of nodes and E is a
set of the edges:

– Betweenness Centrality (Bct): Bct (of a generic n node) is defined
as the fraction of shortest pathways between all pair of nodes of
network that go through that n node.

Bct(n) = ∑
c 6=n 6=t

σct(n)
σct

(4.1)

where s, t ∈ N, σct(n) is the total number of shortest paths from s
to t that n lies on, while σct indicates the number of shortest paths
between s and t. This metric can highlight the importance of a
node, showing how this node acts as a bridge between the various
topological connections of the network.

– Edge Betweenness (EBct): Similarly EBct shad light on the impor-
tance of an edge, quantity that is expressed by the equation:

EBct(e) = ∑
ni∈N

∑
nj∈N\(ni)

σninj(e)
σninj

(4.2)

where σninj indicates the total number of shortest paths between
ni and nj, while σninj(e) indicates the number of shortest paths be-
tween ni and nj which pass through e ∈ E.

– Degree (D): D(n) simply identifies the number of nodes directly
connected to n.

– Clustering Coefficient (CCct): CCct identifies if there are well con-
nected nodes, in detail the fraction of triangles around a node be-
tween the total number of possible triangles. Is define by:

CCct(n) =
2en

kn(Kn − 1)
(4.3)

where kn is the number of neighbors of n and en is the number of
connected pairs between all neighbors of n.

– Closeness Centrality (Cct): Cct it measure the sum of inverted dis-
tances (how far), to all other nodes in the graph. In view of the
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lower distance between a node and the rest of the network, the
more this node is important. It is define as:

Cct(n) =
1

average(d(n, m))
(4.4)

– Eccentricity (Ect): Ect measures the distances between a node n
and the most distance node m, if Ect(n) is low means the n close to
all the other nodes.

Ect(n) = max[d(n, m)] (4.5)

4.1.2 Results obtained

In assembling the structure of WT NaV1.7 in the closed state, a homology-
modeling approach was applied. Due to the presence of some gaps between
the reference template and the human sequence, some areas have been ex-
cluded from the final model, while an important missing treatise in the align-
ment (belonging to the helix S6 of the Pore Domain), has been modeled through
an ab initio approach. The model obtained was analyzed with RAMPAGE
server ([39]), resulting in 88.5% of residues in most favored region, 9% in
allowed region (90 residues) and 2.5% in outlier region (25 residues). The
work previously carried out shows how the gain-of-function mutations sig-
nificantly alter the bio-physical properties of the canal, without however high-
lighting what are the variations between the underlying interatomic bonds.
To do this the authors have resorted to a network-based approach, highlight-
ing how in particular the betweenness centrality is able to discriminate be-
tween pain-related mutations from non-pathogenic mutations and isomor-
phisms.

This work shows how ∆Bct(Bct(mutant) − Bct(WT)) values tend to be signif-
icantly higher in NaV1.7 pain-related mutations than in control groups, as
Bctrepresents the influence that the shortest communication pathways have
on the overall interatomic connections. Nodes with high Bct value could effi-
ciently integrate signals (e.g. energy) and the reduction of Bct value caused by
single amino acid substitutions suggests that the signaling transfer capability
of the network is decreased. Conversely, the increase of Bct value suggests
that a mutated node could facilitate the load transfer through the shortest
communication pathways. Therefore, changes in ∆Bct reflect increased or de-
creased potential for connectivity of amino acid within the protein and pro-
vides numerical values about how single amino acid substitutions might act
as a bottleneck for specific nodes linking different parts of the network. Fur-
thermore, previous studies have shown that there may be an allosteric type
of communication through residues having high values of Bct. More in de-
tail, the authors of this paper, using ∆Bct ± 0.26 as cut-off value, were able to
cluster 43 of the 53 control mutations and 23 of 30 gain-of-function mutations
with a specificity of 83% (figure 4.2).
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FIGURE 4.2: Representation of ∆Bct NaV1.7 mutations rela-
tive to IEM, PEPD and SFN.Reporting the physical-chemical
changes resulting from the mutation and their location along

the peptide chain.
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4.1.3 Conclusion

The authors conclude by stating that gain-of-function mutations significantly
alternate the connections between the channel residues and by proposing
to consider Bct as a marker of pathogenic shift in the mutant channels. In
any case experimental evaluations will be necessary to clarify their biological
meaning [32].

4.2 Other work

In strict correlation with what has been done, documentation of a work con-
cerning the voltage-gated calcium channels (VGCCs) was presented. As voltage-
gated sodium channels (VGSCs) also VGCCs are essential for maintaining
the normal physiological functions of the human body, are still embedded
in plasmatic membrane and they replay up to depolarization signals chang-
ing their conformation to open state and selectively allowing the influx of
calcium ions. Moreover VGCCs and VGSCs also share structural similari-
ties, in both cases the essential subunit consists of the rewinding of a single
polypeptide chain, which is organized into 4 domains (each domain has 6
transmembrane helices of which the first 4, S1-S4, form the sensitive volt-
age domain and the last two constitute the pore domain S5-S6) ([24]). In
mammals, there are 10 structures classified as VGCCs, and in particular the
authors of this work, have focused their attention on one of them: Cav1.2,
whose inhibition has proved to be a strategic key against hypertension and
myocardial ischemia. Several classes of small molecules, such as dihydropy-
ridine, benzothiazepine, and phenylalkylamine have shown inhibitory ca-
pacities towards Cav, but the modulation mechanism is still unclear. As in
our case study, they tried to shed light on this issue thorough homology
modeling approach, furthermore, they then used the models produced for
dynamic analysis through a molecular dynamics approach. They used as
template the resolved structure of the Cav1.1 of the rabbit (defined at near
atomic resolution of 3.6 Åand deposite in PDB with code:5GJV), as represen-
tative of the closed state.

4.2.1 Methods

The protein sequence related to the 4 transmembrane domains plus the con-
nection sections was recovered from the UniProt database and aligned with
the cryo-EM structure of Cav1.1 of rabbit, showing an identity around 65%
(see figure 4.3). Authors built 5 models using I-TASSER modelling pack-
age, which they subsequently checked with: PROCHECK (as tool to evaluate
stereochemical quality) and WHATS-CHECK (as probe of bond geometry).
The selected model at the end of structure evaluation, has been embedded in
20Åthick palmitoyl-oleoyl-phosphati-dylcholine (POPC) lipid bilayer, as rep-
resentative of the membrane environment. This step was performed using
CHARMM-GUI membrane builder [31] setting 570 POPC molecules, system
was fully solvated below and above with 66,951 TIP3P water molecule and
was ionized with 195 Ca2+ and 369 Cl− to reach the ionic concentration of 150
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mM. Moreover, they produced a model representative of open state starting
from deposited structures of NaV1.4 of eel (PDB code:5XSY) as a template,
embedding the obtained systyem in 543 POPC lipid molecules, solvated by
95,530 TIP3P water molecules and was ionized with 277 Ca2+ and 532 Cl−

to reach the ionic concentration of 150 mM. All molecular dynamics simula-
tion were performed using as force field CHARMM36 and as computational
software NAMD-2.9 package. The simulations were conducted under these
condictions:

• cutoff of 12Åfor the Van der Waals interactions

• cutoff of 10Åfor electrostatic interactions.

• the temperature has been set at 303.15K with 1 atm of pressure using
Langevin thermostat.

First, the restrained system was subjected to an energy minimization and
equilibrated with six steps: 2-steps of NVT dynamics using 1 fs time step
and 4-steps of NPT dynamics performed with 2 fs time step. Finally a clas-
sical molecular dynamics simulation of 100 ns was conducted without any
restrictions. In an attempt to trigger the channel opening, after the 100 ns
simulation, an external electric field was introduced along the Z-axis, cali-
brating the electric field in order to generate a voltage potential of -40mV.
The simulation with the effective field was carried out for 200 ns.

FIGURE 4.3: Identity ratio between the sequences taken into
consideration: Humans Cav1.2, Rabbit Cav 1.1, Eel Nav1.4
and CavAb(the bacterial homologue of Arcobacter bultzeri, the
same species form which Dimos et al taken the reference tem-

plate for generate their model).

4.2.2 Results and Discussions

The five models produced have been subjected to various evaluation tools,
among which: Ramachandran Plot assessment (figure 4.4) also used in the
work of this thesis. A comparison between the reliability of the models pro-
duced is therefore possible in the first generalization. Bearing in mind that
different proteins have been modeled, which however have different analo-
gies that unite them, the performances of the two tools used in homology
modeling can be compared (I-TASSER vs SWISS-MODEL). The results are
reported in 4.1, in particular, results of the WTM3 and WT6A models take
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Models Ramachandran plot (%)
Favored Allowed Disallowed

No.1 77.3 19.3 3.4
No.2 79.7 17.1 3.2
No.3 77.7 19.6 2.6
No.4 74.1 22.4 3.5
No.5 75.7 21.7 2.6

WTM3 78.5 17.1 4.4
WT6A 81.0 13.8 5.2

TABLE 4.1: Ramachandran plot evaluation results for the 5
models produced by [24] and the 2 WT (WT MOESM3-based

and WT 6A90-based) we produced.

into account the structures in their integrity, therefore also include the con-
nection sections between the transmembrane helices. Moreover, the simula-
tion with applied electic field improved to mimic the condition that bring to
the open state of the channel have not shown any ion influx along the pore.
They then resorted to a steered molecular dynamics approach, which were
able to identified several key residues that govern the calcium ion binding
and channel gating proccess. Steered molecular dynamics was carried out by
applying an external force on the calcium atoms, imposing a constant speed
of v=0.00004Å/fs and having an elastic constant of k=4kcal/molÅalong the
Z direction for a maximum displacement of 60Å. A total of 11 replicas were
recorded, and all of them have shown a huge barrier when the ion reaches the
internal gate region of the channel. Three sites associated with high energy
have been address to be potential binding sites in the selectivity filter (figure
4.5):

• Site 1) formed by four deprotonated Glu residues (Glu363 (DI), Glu706
(DII), Glu1135 (DIII), and Glu1464 (DIV)) from the four transmembrane
domains.

• Site 2) due to the coordination of the ion with a Glu residue from site 1
and to a residual Thr of site 3.

• Site 3) formed by four Thr residues (Thr361 (DI), Thr704 (DII), Thr1133
(DIII), and Thr1462 (DIV)).

4.2.3 Conclusion

The authors of this article reported for the first time an atomistic model of
the voltage-gated calcium channel enriching it with a molecular dynamics
analysis. Although they applied an electric field in order to mimic the con-
ditions that lead to the opening of the channel, they failed to register any
passage of ions along the channel; but using a steered molecular dynamics
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FIGURE 4.4: A)The Ramachandran plot of their No.2 model
and B) rappresentation of the channel embedded in the plas-

matic membrane [24]

FIGURE 4.5: A) Force profile of ion registered along Z-axis B)
graphic reconstruction of binding sites [24].
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approach, they were able to highlight three possible sites involved in ion se-
lectivity. Concluding that a molecular dynamics approach could be useful for
understanding the characteristics of the open state.
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Results

As previously discussed, the family of dependent voltage sodium channels
is involved in different levels of communication and amplification of signals
through localized nerve fibers throughout the body. Remarkably, mutations
in the sodium channel that is expressed at the level of the preferred nervous
system (NaV1.7) is itself proved to be closely related to the onset of neu-
ropathies. To shed light on which is the connection between mutations and
the onset of neuropathies, it would be crucial to have a structural model rep-
resentative of each mutation. The production of these models with experi-
mental techniques, which involve the grafting of the modified genetic trait in
an organism suitable for its expression, the over-expression, and purification
for the measurements of the protein; even for a small sample set it would re-
quire a large investment of time and money. For this reason, it was decided to
adopt computational models. In particular, since there are available orthol-
ogous structures deposited to the one under examination, it was decided to
develop the models using homology modeling techniques.

In accordance with the work carried out by Dimos et al, NP_002968.1 was
chosen as the reference sequence. From the NCBI site, it is classified as the
first isoform of the transcript variant 1 (NM_002977.3: identification code for
the chromosomal sequence)[27]. This was the starting point on which the
mutations were carried out, taking as a reference the same mutations consid-
ered by Dimos et al [32].

5.0.1 Deepening to the reasons that led to the choice of the NP002968.1
sequence as WT

To characterize the chosen sequence, it was compared with the isoforms made
available by the UniProt site ([15]), which reports 4 isoforms (IDs: Q15858,
Q15858-2, Q15858-3, Q15858-4) for this protein [15] (From the NCBI site, it is
classified as the first isoform of the transcript variant 1 (NM_002977.3) [27]).
Using the align tool made available by the same site, there is an identity
among the sequences of 99.296%, whose differences reside substantially in
two points. First of all, the WT sequence considered presents a deletion con-
cerning the isoform Q15858, which involves the absence of a stretch of 11
amino acids between 648-658 (ref Q15858). The second and more relevant
point, the presence of an arginine replacing a tryptophan in the 1150 position
(W1150R). Department of Neurology and Center for Neuroscience and Re-
generation Research of Yale University School of Medicine highlighted how
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the replacement of R with W involves a shifts activation voltage dependence
7.9 to 11mV in a depolarizing direction (based on the presence or absence of
β subunits). This mutation results in the doubling of the signal frequency in
small DRG neurons, thus making this isomorphism closer to gain-of-function
mutations. [23].

A total of 30 mutations closely correlated with the onset of painful-related
syndromes in humans and 55 mutations that did not show clear links with
neuropathologies (homologs Single Nucleotide Polymorphism) were cata-
loged in a special file in preparation for the next steps (these are the same
mutations taken into consideration in the work of Dimos et al.). As follow
figures representing the topological position of each single mutation along
the peptide chain have been prepared, figure 5.4 and table 5.2 refer to gain-
of-function mutations, figure 5.5 and table 5.3 are refered to hSNP mutations.

5.1 Homology Modeling

As a preliminary phase to the production of the structures by homology-
modeling, an excel file was prepared with all the sequences listed, in each
column of the file a sequence has been reported, and each row shows the cor-
responding amino acid in sequence (for a total of 1977 lines, how many the
total number of amino acids that make up the subunit-α of the channel). Each
box in the .csv file returns the acidic amino in the simple convention: ARG=R,
HIS=H, LYS=K.. (RHK..) it is easily interpreted by the SWISS-MODEL pro-
gram. In summary, a file was created with 86 columns (30 relating to neuro-
pathic mutations and 55 for isomorphisms, plus the WT sequence) showing
in each cell an amino acid of the sequence. Having considered point mu-
tations, each of the 85 columns (neuropathies + hSNP) differ from the WT
column only for one amino acid in the whole sequence, and obviously be-
tween them for two points. Once this material was prepared, we moved on
to the actual homology-modeling phase: Swiss-Model was the tool chosen to
perform this step, it was decided to prefer this instrument to MEMOIR (tool
used in the reference publication), as it offered the advantage of managing se-
quences with more than 1500 amino acids (which are instead the maximum
limit for MEMOIR). It has therefore allowed us to generate representative
models of the entire sequence, otherwise, Dimos et al, had to model each
single domain using MEMOIR and then unify them before performing the
refining with YASARA.

Swiss-Model is an easily usable tool via its online graphical interface,
from the Workspace it has been chosen the functionality that allows to carry
out the homology using templates provided by the user (figure 5.1). Each
mutations were uploaded in plain text format and validate and a structure
was subsequently produced by loading, one at a time, the three templates
taken as reference structures.

The first template was chosen in an attempt to reproduce the results of
Dimos et al; this template was obtained through the homology modeling
of the sequences of the 4 domains of human Nav1.7 in relation to the de-
posited PDB 3RVY structure (NaVAb, [56]). As they reported, the NaVAb (
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homologous protein synthesized by Acrobacter bultzeri), template shared 28%
sequence identity for DI, 24% for DII, 28% for DIII and 28% for DIV (over-
all 27% sequence identity). in this model the gap regions of the sequence-
template alignment are missing:

• DI: 269-340

• DI-DII: 416-726

• DII-DIII: 967- 1175

• DIII-DIV: 1458-1498

to improve the goodness of the model, they have extended the S6 helix of each
domain through an Ab Initio approach, by mean Iterative Threading ASSEm-
bly Refinement (I-TASSER) server [72]. This template has been renamed as
MOESM3 (M3).

The other two templates were chosen, in one case because the structure
derives from the homologous protein expressed by a eukaryotic organism,
therefore evolutionarily much closer to humans. In the second case, we are
always considering a prokaryotic organism, but in this case with the confor-
mation of the channel in open-state, thus offering the possibility of exploring
dynamic variations undergone by the protein, through a frame of different
equilibrium position.

The identification codes of both these two structures are : 6A90 ([57]),
5HVX ([58]) respectively.

• 6A90: This template refers to the structure in the closed-state of voltage-
gated sodium channel of the American Periplaneta (NaVPas) [62]. This
structure was obtained through cryo-EM techniques and, as mentioned
above, refers to an eukaryotic homologous protein, so it is closer to hu-
mans under different points. First of all, there is a difference between
the template used by Dimos et al, because it has a greater identity with
the human sequences of interest. Furthermore, it is also constituted by
3-dimensional rewinding, in four domains of a single peptide, unlike
the NaVAb homo-tetramer.

The alignments of humans Domains and NaVPas domains shown high
level of identity (alignment snapshots in Appendix A: A.1,A.2,A.3 and
A.4).

• 5HVX: Lastly 5HVX (NavMs) despite being a protein produced by a
prokaryotic organism (Magnetococcus marinus), was an interesting tem-
plate because the PDB carries information of another important struc-
tural arrangement: the open conformation of the canal. As this ho-
molog of bacterial origin, a substantial difference persists with the eu-
karyotic realm, since its structure is not due to the single rewinding of
a peptidic chain; as in the case of eukaryotes (the same problem of evo-
lutionary remoteness, also present in the NaVAb template). The align-
ments of humans Domains and NaVMs domain are shown in the Ap-
pendix A A.5, A.6, A.7 and A.8.
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Results of alignments NaV1.7 vs NaVPas and NaVMs for each domains
NaV1.7 NaVPas Identity (%) NaVMs Identity (%)

DI 112 - 410 141 - 413 46 13 - 229 16.23
DII 715 - 978 520 - 740 45.59 13 - 229 20.59
DIII 1169 - 1477 858 - 1108 41.75 13 - 229 20.71
DIV 1486 - 1784 1172 - 1410 47.16 13 - 229 18.12

TABLE 5.1: Align NaV1.7 vs NaVPas and NaVMs.

5.1.1 What exactly does SWISS-MODEL

As first point, SWISS-MODEL copies cartesian coordinates using the sequence
alignment as reference to obtain so called raw-model. The raw-model might
still contain gaps or lacks sidechains, it is at this stage that specific functions
intervene to complete the model. This tool uses two algorithms to perform
the minimization: Steepest Descent and limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS). The first algorithm is one of the oldest methods
for the minimization of a general nonlinear function, it was first proposed by
Cauchy in 1847 [13]. Although this algorithm has a very slow convergence
ratio, it has a sold and easily implementable structure, so it still finds space in
some applications. the algorithm is defined as follows: What we try to mini-
mize is the potential energy of the system, to do this we define the vector r as
the vector of all 3N coordinates, then we go on to analyze how the function
varies around its coordinates. Initially a maximum displacement h0 (e.g. 0.01
nm) must be given. F and potential energy are then determined and the new
positions accordingly:

rn+1 = rn +
Fn

max[|F|]
hn (5.1)

where hn is the maximum displacement and Fn is the force. The notation
max[F] means the largest scalar force on any atom. The forces and energy are
again calculated for the new positions [1]. The itterations end when either the
user has set a maximum number of itterations or has fallen below a threshold
energy value. In this case, the number of maximum itterations has been set to
10, as a limit if all the clashes between the atoms have not been removed. The
second algorithm, limited-memory Broyden-Fletcher-Goldfarb-Shanno, is an
optimization algorithm in the family of quasi-Newton methods. The original
BFGS algorithm works by successively creating a good approximation of the
Hessian matrix, but the memory requirement for this calculation is however
proportional to the square of the number of particles (storing a dense n x n
quantity of data). It made the use of this tool impractical in the study of large
systems, such as the study of biomolecules, while L-BFGS stores only a few
vectors that represent the approximation implicitly. ProMod3 runs up this
algorithm up to a maximum of 20 times, always if all clashes are not removed
first. (see second step in figure 3.15).
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Mutation Pain-related
IEM � PEPD � SFN �

I136V 1 V1298D 19 R185H 25
S211P 2 V1298F 19 I228M 26
F216S 3 V1299F 19 I739V 27
I234T 4 G1607R 19 G856D 28
S241T 5 M1627K 19 M932L 29
N395K 6 A1632E 19 M1532I 30
V400M 7
L823R 8
I848T 9
L858H 10
L858F 11
A863P 12
V872G 13
P1308L 14
V1316A 15
F1449V 16
W1538R 17
A1746G 18

TABLE 5.2: List of pain-related mutation.

Mutation not associated with abnormalities
hSNP � � �
S126A 31 R1207K 50 H531Y 69
L127A 32 T1210N 51 M1532V 70
M145L 33 I1235V 52 E1534D 71
N146S 34 N1245S 53 Y1537N 72
V194I 35 L1267V 54 T1548S 73
L201V 36 T1398M 55 H1560C 74
N206D 37 I1399D 56 H1560Y 75
T370M 38 D1411N 57 V1565I 76
E759D 39 K1412E 58 I1577L 77
A766T 40 K1412I 59 D1586E 78
A766V 41 K1415I 60 T1590K 79
I767V 42 S1419N 61 T1590R 80
T773S 43 V1428I 62 T1596I 81
V795I 44 A1505V 63 V1613I 82
A815S 45 S1509A 64 D1662A 83
D890E 46 S1509T 66 G1674A 84
D890V 47 Q1530D 66 K1700A 85
T920N 48 Q1530K 67
K1176R 49 Q1530P 68

TABLE 5.3: List of mutation that are not associated with pro-
tein function disorders.
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FIGURE 5.1: Snapshot of Swiss-Model Workspace [46].

FIGURE 5.2: Align sequences

5.2 Energy Minimization

At the end of the previous step, 86 structures were obtained for each template
used, the coordinates of these structures were used as starting geometries for
a further refinement of the models. This second step was performed using
the FG-MD online tool, that using the same algorithms mentioned above, it
aims to probe the energy landscape and converge to the minimum energy
(native state). Also in this case, the online tool offers a user friendly interface,
and in a completely automated manner takes the uploaded PDB file, carries
out remote minimization and sends the refined structure to a reference e-mail
address (figure 5.6). FG-MD relies on a modified version of LAMMPS, that
is a molecular dynamics (MD) code able to models ensembles of particles in
a liquid, solid, or gaseous state. It can handle atomic, polymeric, biological,
solid-state, granular, coarse-grained, or macroscopic systems using a variety
of interatomic potentials (force fields) and boundary conditions. Its code is
written in C++ with its earlier version written in F77 and F90 [53]. The details
on the set of parameters used are as follows:
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FIGURE 5.3: Align sequences.2

FG-MD setting parameters
units real

neigh_modify every 10
atom_style full
bond_style harmonic
angle_style harmonic

dihedral_style hybrid harmonic
pair_style lj/cut/coul/cut/ 10.0 10.0

pair_modify mix arithmetic
boundary p p p

special_bonds amber
thermo 1

thermo_style multi
timestep 2.0
minimize 1.0e-3| 1.0e-6 | 100 | 1000

run 10000

TABLE 5.4: List of setting parameters improved during struc-
tures refinments.

5.3 Quality Assessment

Each structures obtained in this way, was subjected to an evaluation of the
model, through a special scoring function designed for membrane proteins.
QMEANBrene is still a model evaluation tool devised by the Swiss Institute
of Bioinformatics; it is easily accessible from the same Swiss-Model workspace
shown above, from the Tool panel (figure 5.7).

The evaluation tool has shown that the models produced are of high qual-
ity in the transmembrane regions (values very close to 1). While in connection
areas (inter-domain loops) the reliability of the model is significantly lower.
The values found were reported punctually for each amino acid of interest
(tab:5.5, 5.6 are refered to models-MOESM3-template based and tab: 5.7, 5.8
are refered to models-6A90-template based), while a visual and graphic rep-
resentation of the chain as a whole is shown in the figures: 5.8,5.9,5.10 and
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FIGURE 5.4: Schematic illustration of the poly-peptide chain
and localization of mutations associated with pain conditions,

indicating the pathologies with a different color.

FIGURE 5.5: Schematic representation of mutation locations
not associated with pain syndromes.
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FIGURE 5.6: Snapshot of FG-MD Workspace [73].

FIGURE 5.7: Snapshot of QMEANBrane interface [47]
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5.11.

FIGURE 5.8:
QMEANBrane
analysis of

WTM3.

FIGURE 5.9:
QMEANBrane
analysis of

WT6A.

FIGURE 5.10:
QMEAN-
Brane: local
quality es-
timation of

WTM3.

FIGURE 5.11:
QMEAN-
Brane: local
quality es-
timation of

WT6A.

QMEANBrane is an assessment tool that provides an estimate of the qual-
ity of each model based on its own database of reference protein structures.
Knowledge-based assessment techniques are a reliable means of measure-
ment, however, further confirmation was also sought through the RAMPAGE
model evaluation. RAMPAGE evaluates the quality of the models based on
the values reported in the pdb-files, of the angles ψ and φ along to peptide-
sequence. Given the low quality in the regions outside the membrane, and
because the mutations of interest are all located in the transmembrane or in
close proximity, the RAMPAGE value was performed for the protein seg-
ments characterized by a secondary helix structure. As a result, in the case of
the model produced starting from the MOESM3 model, the amino acids that
fall within the favorable region are 95.8% (percentage that increases to 97.9%
for the WT produced starting from the 6A90 model); the residues that fall
within the permitted region are respectively 4% (28 residues) for MOESM3
and 2% (16residues) for 6A90. For both structures only one amino acid falls
in the forbidden region: Arg 896 (MOESM3) and Ile 720(6A90), either are
not taken in account for local analysis (plots are reported in figures 5.12 and
5.13). This tool also offered us a yardstick with the results shown in the pub-
lication that inspired this work: at first sight, and relying on the results of
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MOESM3
QMEANBrane of WT and mutations pain-related

Mut WT(Swiss) WT(FG-MD) Mut(FG-MD)

IEM

I136V 0.87 0.86 0.9
S211P 0.72 0.73 0.8
F216S 0.84 0.8 0.82
I234T 0.83 0.81 0.84
S241T 0.92 0.88 0.92
N395K 0.84 0.85 0.83
V400M 0.95 0.92 0.94
L823R 0.81 0.82 0.78
I848T 0.8 0.79 0.79
L858H 0.82 0.8 0.77
L859F 0.82 0.8 0.61
A863P 0.92 0.9 0.87
V872G 0.89 0.87 0.88
P1308L 0.63 0.61 0.74
V1316A 0.86 0.85 0.88
F1449V 0.89 0.84 0.89
W1538R 0.58 0.6 0.57
A1746G 0.91 0.91 0.91

PEPD

V1298D 0.86 0.77 0.87
V1298F 0.86 0.77 0.72
V1299F 0.89 0.77 0.81
G1607R 0.85 0.83 0.76
M1627K 0.77 0.77 0.74
A1632E 0.84 0.82 0.77

SFN

R185H 0.47 0.29 0.38
I228M 0.84 0.77 0.77
I739V 0.84 0.84 0.87
G856D 0.8 0.72 0.71
M932L 0.78 0.76 0.73
M1532I 0.56 0.62 0.49

TABLE 5.5: Columns in the middle report QMEANBrane val-
ues of WT model after Swiss-Model modeling and after FG-
MD refinement; the last column report the same value of mu-
tated structure after FG-MD. This table refers to models gen-

erated from MOESM3 template
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MOESM3
QMEANBrane of WT and mutations not related with pain-syndrome

Mut WT(Swiss) WT(FG-MD) Mut(FG-MD) Mut WT(Swiss) WT(FG-MD) Mut(FG-MD)
S126A 0.82 0.81 0.77 A1505V 0.82 0.73 0.72
L127A 0.82 0.81 0.84 S1509A 0.89 0.9 0.93
M145L 0.67 0.54 0.77 S1509T 0.89 0.9 0.87
N146S 0.71 0.53 0.73 Q1530D 0.58 0.69 0.56
V194I 0.89 0.85 0.84 Q1530K 0.58 0.69 0.42
L201V 0.81 0.8 0.82 Q1530P 0.58 0.69 0.62
N206D 0.73 0.73 0.6 H531Y 0.62 0.7 0.47
T370M 0.55 0.64 0.56 M1532V 0.56 0.62 0.62
E759D 0.65 0.65 0.74 E1534D 0.44 0.47 0.58
A766T 0.77 0.76 0.78 Y1537N 0.54 0.55 0.64
A766V 0.77 0.76 0.81 T1548S 0.9 0.88 0.89
I767V 0.75 0.76 0.85 H1560C 0.67 0.67 0.77
T773S 0.82 0.82 0.83 H1560Y 0.67 0.67 0.58
V795I 0.78 0.84 0.77 V1565I 0.79 0.8 0.71
A815S 0.77 0.76 0.88 I1577L 0.81 0.81 0.85
D890E 0.52 0.54 0.51 D1586E 0.75 0.75 0.6
D890V 0.52 0.54 0.51 T1590K 0.5 0.5 0.53
T920N 0.62 0.64 0.73 T1590R 0.5 0.5 0.58
K1176R 0.37 0.32 0.54 T1596I 0.82 0.84 0.75
R1207K 0.65 0.66 0.68 V1613I 0.8 0.78 0.78
T1210N 0.72 0.75 0.77 D1662A 0.54 0.52 0.58
I1235V 0.71 0.71 0.86 G1674A 0.79 0.84 0.84
N1245S 0.75 0.72 0.74 K1700A 0.64 0.63 0.67
L1267V 0.78 0.79 0.89
T1398M 0.8 0.77 0.7
I1399D 0.76 0.74 0.79
D1411N 0.54 0.55 0.55
K1412E 0.56 0.55 0.62
K1412I 0.56 0.55 0.67
K1415I 0.71 0.61 0.67
S1419N 0.81 0.84 0.84
V1428I 0.88 0.88 0.86

TABLE 5.6: Columns in the middle report QMEANBrane val-
ues of WT model after Swiss-Model modeling and after FG-
MD refinement; the last column report the same value of mu-
tated structure after FG-MD. This table refers to models gen-

erated from MOESM3 template
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6A90
QMEANBrane of WT and mutations pain-related

Mut WT(Swiss) WT(FG-MD) Mut(FG-MD)

IEM

I136V 0.84 0.85 0.89
S211P 0.66 0.68 0.78
F216S 0.74 0.78 0.83
I234T 0.88 0.86 0.86
S241T 0.99 0.93 0.94
N395K 0.88 0.86 0.88
V400M 1.0 0.99 0.94
L823R 0.74 0.74 0.74
I848T 0.73 0.78 0.75
L858H 0.87 0.88 0.82
L859F 0.87 0.88 0.89
A863P 0.98 0.98 0.97
V872G 0.87 0.86 0.88
P1308L 0.87 0.8 0.76
V1316A 0.91 0.9 0.93
F1449V 0.95 0.95 0.89
W1538R 0.92 0.96 1.0
A1746G 0.98 0.96 0.99

PEPD

V1298D 0.86 0.77 0.87
V1298F 0.9 0.92 0.89
V1299F 0.9 0.92 0.93
G1607R 0.87 0.85 0.76
M1627K 0.89 0.88 0.9
A1632E 0.9 0.9 0.84

SFN

R185H 0.61 0.46 0.6
I228M 0.74 0.72 0.72
I739V 0.89 0.92 0.96
G856D 0.85 0.86 0.8
M932L 0.79 0.77 0.79
M1532I 0.8 0.84 0.79

TABLE 5.7: Columns in the middle report QMEANBrane val-
ues of WT model after Swiss-Model modeling and after FG-
MD refinement; the last column report the same value of mu-
tated structure after FG-MD. This table refers to models gen-

erated from 6A90 template
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6A90
QMEANBrane of WT and mutations not related with pain-syndrome

Mut WT(Swiss) WT(FG-MD) Mut(FG-MD) Mut WT(Swiss) WT(FG-MD) Mut(FG-MD)
S126A 0.74 0.72 0.77 A1505V 0.84 0.87 0.82
L127A 0.78 0.78 0.77 S1509A 0.92 0.93 0.89
M145L 0.59 0.73 0.77 S1509T 0.92 0.93 0.97
N146S 0.57 0.79 0.69 Q1530D 0.67 0.87 0.67
V194I 0.88 0.91 0.88 Q1530K 0.67 0.87 0.73
L201V 0.71 0.69 0.75 Q1530P 0.67 0.87 0.77
N206D 0.54 0.47 0.32 H531Y 0.62 0.88 1.0
T370M 0.92 0.93 0.92 M1532V 0.8 0.84 0.88
E759D 0.72 0.87 0.9 E1534D 0.83 0.88 0.88
A766T 0.85 0.88 0.92 Y1537N 0.84 0.91 0.91
A766V 0.85 0.88 0.92 T1548S 0.91 0.93 0.94
I767V 0.82 0.84 0.93 H1560C 0.75 0.64 0.65
T773S 0.89 0.9 0.93 H1560Y 0.75 0.64 0.7
V795I 0.82 0.75 0.69 V1565I 0.74 0.72 0.72
A815S 0.66 0.66 0.74 I1577L 0.84 0.86 0.9
D890E 0.63 0.53 0.59 D1586E 0.48 0.58 0.42
D890V 0.63 0.53 0.49 T1590K 0.39 0.47 0.38
T920N 0.92 0.92 0.89 T1590R 0.39 0.47 0.42
K1176R 0.74 0.74 0.64 T1596I 0.79 0.8 0.81
R1207K 0.5 0.59 0.71 V1613I 0.74 0.77 0.78
T1210N 0.85 0.82 0.69 D1662A 0.62 0.7 0.63
I1235V 0.87 0.84 0.83 G1674A 0.9 0.87 0.85
N1245S 0.76 0.74 0.76 K1700A 0.59 0.64 0.68
L1267V 0.46 0.34 0.05
T1398M 0.92 0.9 0.9
I1399D 0.78 0.86 0.86
D1411N 0.71 0.67 0.7
K1412E 0.73 0.68 0.65
K1412I 0.73 0.68 0.63
K1415I 0.67 0.66 0.66
S1419N 0.7 0.76 0.75
V1428I 0.89 0.88 0.86

TABLE 5.8: Columns in the middle report QMEANBrane val-
ues of WT model after Swiss-Model modeling and after FG-
MD refinement; the last column report the same value of mu-
tated structure after FG-MD. This table refers to models gen-

erated from 6A90 template
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RAMPAGE, our models obtained a higher score (95.8% compared to 88.5%).
However, we must take into account that the models we evaluated have been
deprived of all the secondary structures with the exception of the propeller
rewinding, applying the same selection to the MOESM3 template, the per-
centage of residues in favoured region rises to 96.6%.

FIGURE 5.12:
Ramachan-
dran Plot
Analysis of
WTM3 model
after FG-MD
minimization.

FIGURE 5.13:
Ramachan-
dran Plot
Analysis of
WT6A model
after FG-MD
minimization.

5.4 Production of Residue Interaction Network (RIN)

The set of models thus generated and evaluated, is a set of extremely complex
data whose interpretation is not trivial. Transforming each structure into a
graph at first reduces the complexity of the system and secondly, but more
importantly, it can help in the search for a common pattern that associates
neuropathic mutations.

The graphs were constructed by considering each residue as a node and
the arcs identify the interactions between the residues, the interactions con-
sidered are hydrogen bonds, Van der Waals, ionic bridge, π-π stacking and
π-cation interaction. Of each structure two graphs have been built, the first
each arc represents an interaction between the residues if this comes to be
established at no more than 5 Å, in the second graph, however, each inter-
action has its own cutoff distance. The conversion from pdb to graph was
performed using the online tool RING2.0 [52].

5.5 Network Analysis

The RINs supplied in output from RING2.0 have been analyzed using dif-
ferent approaches. A first evaluation involved the use of the Cytoscape soft-
ware, more precisely the use of two apps: RINalyzer and CytoNCA. With
these tools, some metrics characterizing the graphs have been calculated, in
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Ramachandran Plot Analysis of WT and mutations pain-related
Mut MOESM3(SW) MOESM3(FG-MD) 6A90(SW) 6A90(FG-MD)

IEM

I136
√ √ √ √

S211
√ √

×◦ ×◦
F216

√ √ √ √

I234
√ √ √ √

S241
√ √ √ √

N395
√ √ √ √

V400
√ √ √ √

L823
√ √ √ √

I848
√ √ √ √

L858
√ √ √ √

A863
√ √ √ √

V872
√ √ √ √

P1308
√ √ √ √

V1316
√ √ √ √

F1449
√ √ √ √

W1538
√ √ √ √

A1746
√ √ √ √

PEPD

V1298
√ √ √ √

V1299
√ √ √ √

G1607
√ √ √ √

M1627
√ √ √ √

A1632
√ √ √ √

SFN

R185 × ×
√ √

I228 ×◦ ×◦ ×◦ ×◦
I739

√ √ √ √

G856
√ √ √ √

M932
√ √ √ √

M1532 ×◦
√ √ √

TABLE 5.9:
√

= residue present in the model containing only
the sequence sections having a secondary helical structure,
×=residue not present and ×◦= residual not present, but its

first neighbor yes.
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Ramachandran Plot Analysis of WT and mutations not related with pain-syndrome
Mut M3(SW) M3(FG-MD) 6A(SW) 6A(FG-MD) Mut M3(SW) M3(FG-MD) 6A(SW) 6A(FG-MD)
S126

√ √ √ √
A1505

√ √ √ √

L127
√ √ √ √

S1509
√ √ √ √

M145 ×◦ ×◦ ×◦ ×◦ Q1530
√ √

×◦
√

N146 × × × × H1531
√ √ √ √

V194
√ √ √ √

M1532 ×◦.
√ √ √

L201
√ √ √ √

E1534 × ×◦
√ √

N206
√

× × × Y1537 ×◦
√ √ √

T370 × ×
√ √

T1548
√ √ √ √

E759
√ √ √ √

H1560
√ √

× ×
A766

√ √ √ √
V1565 ×◦ ×◦ ×◦ ×◦

I767
√ √ √ √

I1577
√ √ √ √

T773
√ √ √ √

D1586
√ √

× ×
V795 ×◦ ×◦ ×◦ ×◦ T1590 × × × ×
A815

√
×◦ × × T1596

√ √ √ √

D890 × × × × V1613
√ √

× ×◦
T920 × ×

√ √
D1662

√ √
× ×

K1176 × ×
√ √

G1674
√ √ √ √

R1207
√ √

× × K1700 ×◦ × × ×
T1210

√ √ √ √

I1235
√ √ √ √

N1245 ×◦ ×◦ ×◦ ×◦
L1267

√ √
× ×

T1398
√ √ √ √

I1399
√ √ √ √

D1411 ×◦ × × ×
K1412

√ √
× ×

K1415
√ √

× ×
S1419

√ √
× ×

V1428
√ √ √ √

TABLE 5.10:
√

= residue present in the model containing only
the sequence sections having a secondary helical structure,
×=residue not present and ×◦= residual not present, but its

first neighbor yes.
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Strict cutoff interaction distance
Interaction type distance Å
Hydrogen bonds 3.5

Van der Waals 0.5
Ionic Bridge 4.0
π-π stacking 6.5

π-cation 5.0

TABLE 5.11: differentiated cutoff for each type of bond ac-
cording to the strict parameters of the RING2.0 tool [52].

particular a metric seems to have been recognized to be discriminating in dis-
cerning gain-of-function mutations from mutations that do not alter protein
functions. Finally, the networks were analyzed through a kernel that takes
into account the variations to the connections suffered by each node, instead
of the Shortest Path approach used in the calculation of the metrics.

5.5.1 Cytoscape Results

After turning all the structures produced into .xml files, the networks were
easily viewed with Cytoscape. Metrics were determined for each network
using RINalyzer and CytoNCA in succession (see figures 5.14 and 5.15).

FIGURE 5.14:
Frame of the
control shall of

RINalyzer.
FIGURE 5.15: Frame
of the control shall of

CytoNCA.

The results obtained are in partial agreement with what was stated in
the reference publication, even the recorded values of betweenness centrality
show how the gain-of-function mutations lead to a greater departure from the
WT standard. However, it is necessary to take into account the fact that the
analyzed RIN contained a significantly higher number of nodes, compared
to those generated by Dimos et al, due to the fact that the structures gen-
erated in this work took into account the protein connection traits between
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domains. The difference between the two networks is 600 nodes (1000 nodes
for the graphs of Dimos et al and 1600 for those produced in this work), this
60% increase has certainly made it difficult to directly compare the results
obtained, as it is a parameter that significantly influences the metrics based
on a shortest path approach. To be able to make more significant inferences
further studies are needed on how the increase of nodes within the graphs
influences the relationships between these metrics. Nevertheless, the same
pattern found by the authors, was also found in the measurements made in
this work (see figures 5.16,5.17,5.18 and 5.19).

FIGURE 5.16: ∆Bct measurements related to mutations not as-
sociated with neuropathies, for the structures produced start-

ing from the template of Dimos et al.

FIGURE 5.17: ∆Bct measurements related to mutations asso-
ciated with neuropathies, for the structures produced starting

from the template of Dimos et al.

5.5.2 Kernel Methods Results

Taken in account only the data obtained through a survey on the variation
of graph metrics we can see that betweenness seems to be the parameter that
best discriminates between gain-of-function mutations and mutations not as-
sociated with neuropathies. This result is in agreement with what was stated
in the reference publication ([32]), but it is through an analytical approach
based on the use of graph kernel methods that better results have been ob-
tained.

the results of the analyzes with the kernel approaches are reported in di-
agrams in which both row and column are shown in succession the graphs
relating first to the gain-of-function mutations and in succession those relat-
ing to mutations not linked to pathologies.
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FIGURE 5.18: ∆Bct measurements related to mutations not as-
sociated with neuropathies, for the structures produced start-

ing from the template 6A90.

FIGURE 5.19: ∆Bct measurements related to mutations asso-
ciated with neuropathies, for the structures produced starting

from the template 6A90.
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The intersection between rows and columns identifies the level of simi-
larity between the structures, obviously the diagonal that identifies the en-
counter between a graph in a row and itself in a column has the lightest color
(the light tonality is normalized for each row). There are two graph kernel
approaches used, the first always built on a shortest path-based algorithm:

• Shortest Path-based algorithm
In the case of MOESM3-based graphs there is a greater similarity in the
lower right quadrant (graph relating to non-pain-related structures),
but it is not clear. The information on the upper quadrant, concerning
pain-related graphs, is also poor (see figure 5.20). A single case deviates
from all other structures (except of course with respect to itself) is the
graph generated by the L1267V model, further investigations would be
necessary to clarify this discrepancy.

It is also possible to perform comparisons between graphs whose arcs
take into account only one interaction at a time (thus trying to discrim-
inate if there is a type of bond that most guides these phenomena: H-
bond, ionic, π-π stacking, VdW or π-cation) and from this analysis the
only ones that seem to identify common patterns between the graphs
of gain-of-function and graphs of mutations not related to pain are the
Ionic and the VdW diagrams (see figures 5.21 and 5.22).

FIGURE 5.20:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of all kind
of interac-
tions (for
MOEM3-
based

graphs).

FIGURE 5.21:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of ionic inter-
actions (for
MOEM3-
based

graphs).

Conversely, for the graphical representation of similarities between 6A90-
based graphs, a common pattern among pain-related mutations is more
evident (the upper right quadrant is characterized by a lighter color),
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indicating that all 30 mutations seem to share a common topology (see
figure 5.23).

FIGURE 5.22:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of VdW inter-
actions (for
MOEM3-
based

graphs).

FIGURE 5.23:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of ionic inter-
actions (for
6A90-based

graphs).

Using the previous selection by links, except for the comparison dia-
gram on the π-cation interaction, all the other bonds identify common
patterns among mutations of different biological significance (see fig-
ures from 5.24 to 5.27 ).

• Weisfeiler-Lehman-based algorithm
An increase of the distinction is obtained by resorting to the Weisfeiler-
Lehman graph kernel that since the first iterations appears to clearly
show a pattern that accumulates mutations gain of function between
them and a different and common pattern for mutations not involving
pain syndromes, the same results are also inferred also going to analyze
graphs that take only one interaction at a time (see fiugres from 5.28 to
5.34).

To support the results obtained previously, in the case of 6A90-based
graphs, all the comparison diagrams generated (with different iteration
scales from 1 to 5, both by dividing the arcs by type of bond) show how
the two types of mutation are classified otherwise (see figure from 5.35
to 5.41).

The last two figures (5.42 and 5.43) show how this way of clustering where
able to group 100% of the gain-of-function mutations in a common set, for
the structures developed starting from the 6A90 template. While, for models
based on the MOESM3 template, there is a selectivity of 93.33%. Data how-
ever very good, it is possible to justify this minor accuracy as the starting
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FIGURE 5.24:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of h-bond in-
teractions (for
6A90-based

graphs).

FIGURE 5.25:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of ionic inter-
actions (for
6A90-based

graphs).

FIGURE 5.26:
Results of
clustering
produced
by improv-
ing Shortest
path kernel,
taking into ac-
count of π-π
stacking in-
teractions (for
6A90-based

graphs).

FIGURE 5.27:
Results of
clustering
produced by
improving
Shortest path
kernel, taking
into account
of VdW inter-
actions (for
6A90-based

graphs).
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FIGURE 5.28: Results of clustering produced by improving
Weisfeiler-Lehman kernel, taking into account of all interac-

tions and after one iteration (for MOESM3-based graphs).

FIGURE 5.29:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of all inter-
actions and
after five
iteration (for
MOESM3-
based

graphs).

FIGURE 5.30:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of H-bond in-
teractions (for
MOESM3-
based

graphs).
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FIGURE 5.31:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of ionic inter-
actions (for
MOESM3-
based

graphs).

FIGURE 5.32:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into ac-
count of π-π
stacking in-
teractions (for
MOESM3-
based

graphs).

FIGURE 5.33:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of π cation in-
teractions (for
MOESM3-
based

graphs).

FIGURE 5.34:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of VdW inter-
actions (for
MOESM3-
based

graphs).
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FIGURE 5.35:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of all interac-
tions, after 1
iteration (for
6A90-based

graphs).

FIGURE 5.36:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of all interac-
tions, after 5
iteration (for
6A90-based

graphs).

FIGURE 5.37:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of h-bond in-
teractions (for
6A90-based

graphs).

FIGURE 5.38:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of ionic inter-
actions (for
6A90-based

graphs).
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FIGURE 5.39:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman
kernel, taking
into account
of π-cation in-
teractions (for
6A90-based

graphs).

FIGURE 5.40:
Results of
clustering
produced by
improving
Weisfeiler-
Lehman ker-
nel, taking into
account of π-π
stacking in-
teractions (for
6A90-based

graphs).

FIGURE 5.41: Results of clustering produced by improving
Weisfeiler-Lehman kernel, taking into account of VdW inter-

actions (for 6A90-based graphs).
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template was derived from a phylogenetically very distant protein from us,
which however led to a proper grouping in for more than 90% of the struc-
tures. With regard to structures not directly related to pain disorders, the
structures that emerge from non-pathogenic clusters are 23% for 6A90-based
structures and 27.3% for MOESM3-based structures. This result can also be
very interesting, as these structures have been derived from sequences that
seem to be unrelated to pathologies, but these assumptions are not proven
with certainty. More recruitment would require more in-depth investiga-
tions.

5.6 Surface Analysis

The surface characterization analyzes of the structures were carried out using
the UCSF Chimera tools, following these steps in succession:

• Hydrophobicity: Select → Structure → protein; Actions → Surface →
show and from Tools → Structure Analysis → Render by Attribute. Here
select Attribute of = residue and as kind of attribute kdHydrophobicity (see
figure A.9).

• Charged surface: Select → Structure → protein; Actions → Surface →
show and from Tools→ Surface/Binding Analysis→ Coulomb Surface col-
oring (see figure A.10).
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FIGURE 5.44: Wilde Type MOEMS3 colored by its hydropho-
bicity.
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FIGURE 5.45: Wilde Type MOESM3 colored by its Coulomb
surface.
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FIGURE 5.46: Wilde Type 6A colored by its hydrophobicity.
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FIGURE 5.47: Wilde Type 6A colored by its Coulomb surface.
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Chapter 6

Conclusion

The central problem we addressed in this thesis was to verify whether there
is a relationship between point mutations in Nav 1.7 protein sequences and
the occurrence of neuropathies in channel functionality. To this aim, we fol-
lowed a two-fold strategy. On the one hand, we revised the computational
pipeline implemented by the Carlo Besta research group [32], that was de-
vised for the same goal. On the other hand, we aimed at improving it both
from the methodological viewpoint and from the number of explored case
studies. The latter include the MOESM3 already studied in [32], the 6A90,
and the 5HVX templates. As regards the methodology, we improved it on
the following points. Firstly, we used SWISS-MODEL to replace the MEM-
OIR tool. This was necessary because of the MEMOIR limitations in terms
of the length of the possible analyzed sequences (below 1500 amino acids).
Indeed, this is the case of the human sequence encoding NaV1.7, exceeding
1500 peptides. SWISS-Model allows for a complete analysis of the various
domains including the connecting loops, rather than an individual analysis
of each domain as was done before in [32]. Our approach turns out to be
a significant improvement to the generation of high quality models in the
areas of interest (sections inside the membrane and in the interface strips),
that include all the examined mutations. Furthermore, a good quality Ra-
machandran Plot with more than 90% of the residues in favorable regions,
were obtained for MOESM3-based and 6A90-based structures: both of them
exceed this threshold, 95.6% in one case and 97.6% in other. Hence, in ad-
dition to obtaining a good set of models starting from the same MOESM3-
based template [32], it was also possible to widen the analysis by using two
more templates (the 6A90 and the 5HVX) derived from homologous proteins
closer to humans. Within this framework, an important result is represented
by the significant improvement obtained by using graph theory and machine
leaning methods for the topological analysis of the protein networks. The
analysis proposed by Dimos et al [32] hinged upon the use of simple central-
ity metrics, within which the betweenness centrality turns out to be the only
one able to discriminating between pathological and non-pathological cases.
We explicitly reproduced this result in the same original case study. How-
ever, a direct comparison was impossible, as the approach we followed led
to the production of RINs having many more nodes (about 600 nodes more)
as compared with the original ones [32]. The present study goes beyond this
by accounting for a new type of comparison involving the whole RINs rather
than single point mutation metrics. This approach allowed to classify in the



80 Chapter 6. Conclusion

same cluster 100% of the gain-of-function mutations in the case of RINs re-
lated to the 6A90-based models, and of the 93.33% for the RINs derived from
MOESM3-based models. Albeit based on preliminary analysis, these results
are rather encouraging and reinforce the results obtained by Dimos et al [32]
on the relationship between protein sequence mutations and neuropathies in
ionic sodium channels membrane proteins. Further work along the line of
the present study will be necessary to have a final confirmation.

We can envisage a number of possible perspectives for the present work,
along two main lines. The present work has unveiled the usefulness of study-
ing the topological properties of the network associated with a the three di-
mensional structure of a protein. Indeed it provides a very fast and effective
way to identify common patterns within a large set of available structures.
However, we were forced to use many different and unconnected tools to
reach that goal. It would be extremely useful to set up a more flexible and
user-friendly computational pipeline that builds upon a single thread. An-
other possible development of the present study, would be to perform a very
detailed all-atom calculation of the full membrane protein for the specific mu-
tations that were identified as interesting by the present study.

Following the lines suggested by ([24]), we could use the models gener-
ated not only as frames, but also to perform a full dynamical study. An at-
tempt to mimic the real biological conditions computationally undoubtedly
would allow a full understanding of the implications of each single mutation.
Highlighting how this is involved in every single phase of the biological role
of the protein and not only in a snapshot which can only provide an incom-
plete image, is the final goal for the next decade research in the field.
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Appendix A

Appendix A

A.1 Results of Alignments

FIGURE A.1: Alignment of DIs of NaVPas and NaV1.7, with
and identiy score of 46%.

FIGURE A.2: Alignment of DIIs of NaVPas and NaV1.7, with
and identiy score of 45.59%.

FIGURE A.3: Alignment of DIIIs of NaVPas and NaV1.7, with
and identiy score of 41.75%.
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FIGURE A.4: Alignment of DIVs of NaVPas and NaV1.7, with
and identiy score of 47.16%.

FIGURE A.5: Alignment of DIs of NaVMs and NaV1.7, with
and identiy score of 16.23%.

FIGURE A.6: Alignment of DIIs of NaVMs and NaV1.7, with
and identiy score of 20.59%.

FIGURE A.7: Alignment of DIIIs of NaVMs and NaV1.7, with
and identiy score of 20.71%.
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FIGURE A.8: Alignment of DIVs of NaVMs and NaV1.7, with
and identiy score of 18.21%.

A.2 TM-Score

TM-score (Template Modeling) is a score-function that measure the similar-
ity between two protein structure. The TM-score indicates the difference be-
tween two structures by a score between (0,1], where 1 indicates a perfect
match between two structures (thus the higher the better). Generally scores
below 0.17 corresponds to randomly chosen unrelated proteins.

TMscore = max[
1

L(target)

L(aligned)

∑
i

1

1 + ( di
d0(L(target))

)
] (A.1)

A.3 UCSF Chimera

Chimera is a high performance extensible software for the visualization and
analysis of molecular structures, including density maps, supramolecular as-
semblies, sequence alignments, docking results, trajectories, and conforma-
tional ensembles. Chimera’s primary programming language is Python, the
choice fell on phyton as it is an easy to understand programming language
enabling others to develop extensions without undue effort. This software
was used to check the results obtained from homology and energy mini-
mization steps, and it has been involved in the production of structures for
evaluation with Ramachandran plots (production of the .pdb files that took
into account only the features characterized by a secondary structure with α-
helix). Moreover, it is with chimera that the images of the colored structures
have been realized based on the chemical-physical properties of the residues
(hydrophobicity in colored scale cyan-maroon and charged surface in scale
from blue to red) (see figures A.9 and A.10). [51].

A.4 DSSP method

DSSP (Define Secondary Structure of Proteins)is a standard method for assign-
ing secondary structure to the amino acids of a protein, given its atomic co-
ordinates. This method identifies the intra-backbone hydrogen bonds of the
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FIGURE A.9: Command shall of Chimera to highlight hy-
drophobicity feature of structures.

FIGURE A.10: Command shall of Chimera to highlight
charged feature of structures.
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protein using a purely electrostatic definition, assuming partial charges of -
0.42 e and +0.20 e to the carbonyl oxygen and amide hydrogen respectively,
their opposites assigned to the carbonyl carbon and amide nitrogen. A hydro-
gen bond is identified if E in the following equation is less than -0.5 kcal/mol
[70].

A.5 Ramachandran Plots

Ramachandran plots is a tool for evaluating the quality of structures, taken
its name from Gopalasamudram Narayana Ramachandran and his collabo-
rators, who in 1963 came up with the idea. The reasoning that led to the de-
velopment of this tool starts from some intelligent assumptions. First, there
are 4 covalent bonds that make up the backbone of a protein, one of them
is the carbonylic double bond C=O. Which is of little relevance, as rotations
around its axis are extremely unfavorable and in any case would not affect
the shape of the backbone. Although to a lesser extent, the bond between
the carbonyl C of a residue and the amidic N of the subsequent residue also
has the character of a double bond, implying that there are only two possible
angles that stabilize the structure: 0◦(cis) and 180◦(trans). Thus the analysis of
the possible configurations is reduced to the study of the other two dihedral
angles:

• The N-Cα rotation, identified by the dihedral angle Ci−1-N-Cα-C, which
is named ϕ.

• And the Cα-C rotation, identified by the dihedral angle N-Cα-C-Ni+1,
which is named ψ.

Around these angles the rotations are easier, but not all are allowed, strong
obstructions are due to the clashes between the atoms during the rotations.
Using a hard-sphere atomic model based on quantum-mechanics principles,
atomic co-penetrations are impossible, i.e. ‘forbidden’. G. N. Ramachandran
and coworkers have put in place a protein model to test the energetic land-
scape according to the angles. This model was based on the compound N-
acetyl-l-alanine-methylamide (see figure A.11).

FIGURE A.11: The model compound N-acetyl-l-alanine-
methylamide used by Ramachandran and coworkers to ex-
plore the conformational space defined by the two dihedral

angles [12].
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All possible combination of ϕ and ψ were computed and for each it was
verified if interaction clashes occurred [12]. The results of the possible favor-
able combinations have been reported in a graph (see figure 5.12).

A.6 Weisfeiler-Lehman Kernel script

Script written by Giacomo Chiarot.

0.5
====================================

|| C l a s s i f i c a t i o n on the PROTEINS ||
|| Kernel generator ||
|| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ||
|| Giacomo Chiarot ||
|| giacomochiarot@gmail . com ||

====================================
" " "
from __future__ import p r i n t _ f u n c t i o n

p r i n t ( __doc__ )

from sklearn . model_se lec t ion import c r o s s _ v a l _ s c o r e
from grakel import GraphKernel
from grakel import Graph
from sklearn import svm
import numpy as np
import m a t p l o t l i b . pyplot as p l t
from scipy . c l u s t e r . h ierarchy import dendrogram , l inkage

" " "
Reads the l i s t of f i l e s and re turns the name of the f i l e s and t h e i r value which represent the c l a s s of each prote in
" " "
def readProte ins ( ) :

p r i n t ("−− reading f i l e l i s t " )
f = open ( " t r a i n i n g S e t / f i l e L i s t . t x t " , " r " )
proteinNames = [ ]
l a b e l s = [ ]
f o r l i n e in f :

l ineDivided = l i n e . s p l i t ( ’ ’ )
proteinNames . append ( l ineDivided [ 0 ] )
l a b e l s . append ( i n t ( l ineDivided [ 1 ] ) )

f . c l o s e ( )
re turn proteinNames , l a b e l s

" " "
Reads the l i s t of a r c s f o r each prote in and s t o r e s them as graphs
" " "
def readGraphs ( proteinNames ) :

p r i n t ("−− reading graphs " )
graphs = [ ]
f o r name in proteinNames :

p r o t e i n F i l e = open ( " t r a i n i n g S e t /" + name + " _adj_ALL . csv " , " r " )
l a b e l F i l e = open ( " t r a i n i n g S e t /" + name + " _nl . csv " , " r " )
graph = { }
l a b e l s = { }
f i r s t = True
f o r l i n e in p r o t e i n F i l e :

i f f i r s t :
f i r s t = Fa l se

e l s e :
values = l i n e . s p l i t ( ’ ; ’ )
edges = ( values [ 0 ] , values [ 1 ] )
graph [ edges ] = f l o a t ( values [ 2 ] )

f i r s t = True
f o r l i n e in l a b e l F i l e :

i f f i r s t :
f i r s t = Fa l se

e l s e :
values = l i n e . s p l i t ( ’ ; ’ )
l a b e l s [ values [ 0 ] ] = i n t ( values [ 1 ] )

p r o t e i n F i l e . c l o s e ( )
l a b e l F i l e . c l o s e ( )
graphs . append ( Graph ( graph , l a b e l s ) )

re turn graphs

" " "
Computes the weis fe i ler_ lehman kernel
" " "
def computeKernel ( graphs ) :

p r i n t ("−− computing kernel " )
wl_kernel = GraphKernel ( kernel = [ { " name " : " weis fe i ler_ lehman " , " n i t e r " : 5 } , { " name " : " subtree_wl " } ] , normalize=True )
re turn wl_kernel . f i t _ t r a n s f o r m ( graphs )

" " "
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Computes 10− t imes c r o s s v a l i d a t i o n with svm and re turns the mean of r e s u l t s
" " "
def runSVM(K, l a b e l s ) :

p r i n t ("−− computing s c o r e s with SVM" )
mod = svm . SVC( kernel = ’ precomputed ’ )
s c o r e s = c r o s s _ v a l _ s c o r e (mod, K, l a b e l s , cv =10)
re turn np . mean( s c o r e s )

def main ( ) :
proteinNames , l a b e l s = readProte ins ( )
graphs = readGraphs ( proteinNames )
K = computeKernel ( graphs )
np . s a v e t x t ( " 6 A90manual−kernelWL−ALL5 . t x t " , np . array (K) , fmt="%s " )
np . s a v e t x t ( " l a b e l s . t x t " , np . array ( l a b e l s ) , fmt="%s " )
r e s u l t = runSVM(K, l a b e l s )
p r i n t ( " Accuracy i s : " + s t r ( r e s u l t ) )
p r i n t ( " P l o t of the s i m i l a r i t y matrix saved in f i l e " )
f i g 1 = p l t . f i g u r e ( )
p l t . imshow (K)
# p l t . show ( )
f i g 1 . s a v e f i g ( " 6 A90manual−plotMatrixWL_ALL5 . png " , dpi = f i g 1 . dpi )
p l t . c l o s e ( f i g 1 )

" " "
Kdist = 1 . 0 − K
p r i n t ( Kdist )
c = l inkage ( Kdist , " complete " )
f i g 2 = p l t . f i g u r e ( )
d = dendrogram ( c )
# p l t . t i g h t _ l a y o u t ( )
p l t . s a v e f i g ( " c lus ter ing_comple te . png " , dpi= f i g 2 . dpi )
p l t . c l o s e ( f i g 2 )

" " "
i f __name__ == " __main__ " :

main ( )

A.7 Dominant-set clustering script

Script written by Giacomo Chiarot.

0.5
======================================
~~~~~~~~~~PROTEIN CLUSTERING~~~~~~~~~~

whit
Dominant s e t

======================================

Giacomo Chiarot giacomochiarot@unive . i t

" " "
p r i n t ( __doc__ )

from sklearn . metr i cs import p a i r w i s e _ d i s t a n c e s
from scipy . c l u s t e r . h ierarchy import l inkage
from sklearn . d a t a s e t s import l o a d _ d i g i t s
from sklearn . manifold import Isomap
from past . b u i l t i n s import e x e c f i l e
import m a t p l o t l i b . pyplot as p l t
from numpy . l i n a l g import norm
import numpy as np
import random

e x e c f i l e ( ’ l i b r a r y . py ’ )

f i l e s L i s t = [ ’ 6 A90manual−kernelWL−ALL5 ’ , ’6 A 9 0 s t r i c t−kernelWL−ALL5 ’ , ’MOESM3manual−kernelWL−ALL5 ’ , ’ MOESM3strict−kernelWL−ALL5 ’ , ’5 HVXstrict−kernelWL−ALL5 ’ ]
r e s u l t = [ [ ] , [0 f o r i in range ( 8 5 ) ] ]
r e s u l t [ 0 ] += [0 f o r i in range ( 3 0 ) ]
r e s u l t [ 0 ] += [1 f o r i in range ( 3 0 , 8 5 ) ]
l a b e l x = [ ’ A863P ’ , ’ A1632E ’ , ’A1746G ’ , ’ F216S ’ , ’ F1449V ’ , ’G856D ’ , ’ G1607R ’ , ’ I136V ’ , ’ I228M ’ , ’ I234T ’ , ’ I739V ’ , ’ I848T ’ , ’ L823R ’ , ’ L858F ’ , ’L858H ’ , ’M932L ’ , ’ M1532I ’ , ’M1627K ’ , ’N395K ’ , ’ P1308L ’ , ’R185H ’ , ’ S211P ’ , ’ S241T ’ , ’V400M’ , ’V872G ’ , ’V1298D ’ , ’ V1298F ’ , ’ V1299F ’ , ’V1316A ’ , ’W1538R ’ , ’A766T ’ , ’A766V ’ , ’ A815S ’ , ’A1505V ’ , ’D890E ’ , ’D890V ’ , ’D1411N ’ , ’ D1586E ’ , ’D1662A ’ , ’E759D ’ , ’ E1534D ’ , ’G1674A ’ , ’H1531Y ’ , ’H1560C ’ , ’H1560Y ’ , ’ I767V ’ , ’ I1235V ’ , ’ I1399D ’ , ’ I1577L ’ , ’ K1176R ’ , ’ K1412E ’ , ’ K1412I ’ , ’ K1415I ’ , ’K1700A ’ , ’L127A ’ , ’ L201V ’ , ’ L1267V ’ , ’M145L ’ , ’M1532V ’ , ’ N146S ’ , ’N206D ’ , ’ N1245S ’ , ’Q1530D ’ , ’Q1530K ’ , ’ Q1530P ’ , ’ R1207K ’ , ’ S126A ’ , ’ S1419N ’ , ’ S1509A ’ , ’ S1509T ’ , ’T370M ’ , ’ T773S ’ , ’T920N ’ , ’ T1210N ’ , ’T1398M ’ , ’ T1548S ’ , ’ T1590K ’ , ’ T1590R ’ , ’ T1596I ’ , ’ V194I ’ , ’ V795I ’ , ’ V1428I ’ , ’ V1565I ’ , ’ V1613I ’ , ’Y1537N ’ ]
l a b e l y = [ ’ c o r r e c t c l a s s i f i c a t i o n ’ , ’ dominant s e t c l a s s i f i c a t i o n ’ ]

f o r f i l e in f i l e s L i s t :
r e s u l t [ 1 ] = [0 f o r i in range ( 8 5 ) ]
p r i n t ( f i l e )

# −−− READING DATA −−−
p r i n t ("−− Loading s i m i l a r i t y matrix −−")
S = np . l o a d t x t ( ’ data / ’ + f i l e + " . t x t " )

# −−− COMPUTING DOMINANT SET −−−
p r i n t ("−− Compoting dominant−s e t −−")
x = dominant_set ( S , eps i lon =2e−6)

# −−− EXTRACTING ONE CLUSTER −−−
p r i n t ("−− E x t r a c t i n g one c l u s t e r −−")
c u t o f f = np . median ( x )
c l u s t e r = np . where ( x > c u t o f f )
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f o r i in c l u s t e r [ 0 ] :
r e s u l t [ 1 ] [ i ] = 1

f i g 1 = p l t . f i g u r e ( )
f ig1 , ax = p l t . subplots ( f i g s i z e = ( 1 8 , 5 ) )
p l t . imshow ( r e s u l t )
ax . s e t _ x t i c k s ( np . arange ( len ( l a b e l x ) ) )
ax . s e t _ y t i c k s ( np . arange ( len ( l a b e l y ) ) )
ax . s e t _ x t i c k l a b e l s ( l a b e l x )
ax . s e t _ y t i c k l a b e l s ( l a b e l y )

# Rotate the t i c k l a b e l s and s e t t h e i r alignment .
p l t . se tp ( ax . g e t _ x t i c k l a b e l s ( ) , r o t a t i o n =45 , ha=" r i g h t " , rotation_mode =" anchor " )

f i g 1 . t i g h t _ l a y o u t ( )
f i g 1 . s a v e f i g ( f i l e + " . png " , dpi = f i g 1 . dpi )
p l t . p l o t ( )
p l t . c l o s e ( f i g 1 )

A.8 RIN Parser

0.5
" " "

====================================
|| RIN parser ||
|| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ||
|| Fabio Rosada ||
|| Davide C r o s a r i o l ||
====================================
" " "

from bs4 import Beauti fulSoup as Soup
import numpy as np
import time
import random
import re
import csv

# PUT THE RIGHT PATH FOR YOUR DIRECTORIES
OUTPUT_DIRECTORY = " output /"
CACHE_DIRECTORY = " cache /"

# CONSTANTS
WEIGHT_ENERGY = " e_Energy "
WEIGHT_DISTANCE = " e_Distance "
NODE_POSITION = " v_Pos i t ion "
REALLY_HIGH_NUMBER = 100000 .0

c l a s s GraphMatrix :

# I f you don ’ t pass any parameter i t ’ l l load the d e f a u l t f i l e included in t h i s repo
def _ _ i n i t _ _ ( s e l f , f i l e ) :

i f not f i l e :
p r i n t ( " You need to give a t l e a s t one xml f i l e in input " )
re turn

s t a r t _ t i m e = time . time ( )

p r i n t ( " Loadind matrix from f i l e : " , f i l e )

xml = open ( f i l e , " r " ) . read ( )
xml = Soup ( xml , ’ lxml ’ )

s e l f . i n t e r a c t i o n s = d i c t ( )

edges = xml . f i n d _ a l l ( " edge " )
f l o o r = 0
f o r edge in edges :

tmp = i n t e r a c t i o n _ t o _ k e y ( edge . f ind ( key =" e _ I n t e r a c t i o n " ) . g e t _ t e x t ( ) )
i f tmp not in s e l f . i n t e r a c t i o n s :

s e l f . i n t e r a c t i o n s [ tmp ] = f l o o r
f l o o r += 1

p r i n t ( s e l f . i n t e r a c t i o n s )

s e l f . f i le_name = f i l e
s e l f . n_nodes = len ( xml . f i n d _ a l l ( " node " ) )
s e l f . nodes = [ ]
s e l f . nodesPosi t ion = [ ]
# metto z e r i in t u t t a l a matr ice
s e l f . matrix = np . zeros ( ( s e l f . n_nodes , s e l f . n_nodes , len ( s e l f . i n t e r a c t i o n s ) ) )
s e l f . edges = [ ]

# i n i t i a l i z e matrix with a r e a l l y big i n t f o r floyd−warshal l
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# l a diagonale rimane t u t t a a zero
s e l f . i n i t i a l i z e _ m a t r i x ( )

nodes = xml . f i n d _ a l l ( " node " )
f o r node in nodes :

s e l f . nodes . append ( node . f ind ( key ="v_NodeId " ) . g e t _ t e x t ( ) )
s e l f . nodesPosi t ion . append ( node . f ind ( key=NODE_POSITION ) . g e t _ t e x t ( ) )

s e l f . edges . append ( len ( edges ) )
f o r edge in edges :

# p r i n t ( edge [ ’ source ’ ] , edge [ ’ t a r g e t ’ ] )
s r c = i n t ( edge [ ’ source ’ ] [ 1 : ] )
t r g = i n t ( edge [ ’ t a r g e t ’ ] [ 1 : ] )
tmp_inter = edge . f ind ( key =" e _ I n t e r a c t i o n " ) . g e t _ t e x t ( )
i n t e r a c t i o n = s e l f . i n t e r a c t i o n s [ i n t e r a c t i o n _ t o _ k e y ( tmp_inter ) ]

# Choose between DISTANCE or ENERGY
weight = f l o a t ( edge . f ind ( key=WEIGHT_DISTANCE ) . g e t _ t e x t ( ) )
s e l f . matrix [ src , trg , i n t e r a c t i o n ] = weight
s e l f . matrix [ trg , src , i n t e r a c t i o n ] = weight

s e l f . p r i n t _ i n f o ( )
p r i n t ("∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\nTotal loading time : " , time . time ( ) − s t a r t _ t i m e , "\n " )

def get_dimen ( s e l f ) :
re turn s e l f . n_nodes

def get_node ( s e l f , n ) :
re turn s e l f . nodes [ n ] [ −3 : ]

def get_node_info ( s e l f , n ) :
re turn s e l f . nodes [ n ] . s p l i t ( ’ : ’ )

def name( s e l f ) :
r = re . compile ( ’ / ( [ ^ / ] + ) _network \. xml ’ )
re turn r . search ( s e l f . f i le_name ) [ 1 ]

def p r i n t _ i n f o ( s e l f ) :
n_edges = 0
f o r edge in s e l f . edges :

n_edges += edge
p r i n t ( " # Nodes :\ t " , s e l f . n_nodes , "\n# Edges :\ t " , n_edges )

def get_ interact ion_number ( s e l f ) :
re turn len ( s e l f . i n t e r a c t i o n s )

def g e t _ i n t e r a c t i o n _ i d ( s e l f , i n t e r a c t i o n : s t r ) :
i f "ALL" in i n t e r a c t i o n :

re turn −1
t r y :

re turn s e l f . i n t e r a c t i o n s [ i n t e r a c t i o n ]
except KeyError :

p r i n t ( " This i n t e r a c t i o n i s not present in t h i s prote in " )
re turn −2

# i n i z i a l i z z a l a matr ice con numeri a l t i s s i m i
def i n i t i a l i z e _ m a t r i x ( s e l f ) :

f o r row in range ( s e l f . n_nodes ) :
f o r c o l in range ( s e l f . n_nodes ) :

i f row != c o l :
f o r f in range ( s e l f . get_ interact ion_number ( ) ) :

s e l f . matrix [ row , col , f ] = REALLY_HIGH_NUMBER

# stampa i l f i l e con l a l i s t a d e l l e adiacenze : considera t u t t e l e i n t e r a z i o n i
# e s c r i v e poi l a dis tanza minima
def p r i n t _ a d j ( s e l f ) :

f i l e = open (OUTPUT_DIRECTORY + s t r ( s e l f . name ( ) ) + " _adj_ALL " + " . csv " , "w" )
w r i t e r = csv . w r i t e r ( f i l e , d e l i m i t e r = " ; " , l i n e t e r m i n a t o r = ’\n ’ )
w r i t e r . writerow ( ( ’ source ’ , ’ d e s t i n a t i o n ’ , ’ d is tance ’ ) )

f o r c in range ( s e l f . get_dimen ( ) ) :
f o r r in range ( 0 , c ) :

min = 100000
f o r e l in s e l f . matrix [ r , c ] :

i f e l < min :
min = e l

i f min < 100000 and min != 0 :
w r i t e r . writerow ( ( s e l f . nodes [ r ] , s e l f . nodes [ c ] , min ) )

# stampa un f i l e con l a l i s t a d e l l e adiacenze , per ogni s p e c i f i c a i n t e r a z i o n e
def p r i n t _ a d j _ i n t e r a c t i o n s ( s e l f ) :

f o r e l in s e l f . i n t e r a c t i o n s :
f i l e = open (OUTPUT_DIRECTORY + s t r ( s e l f . name ( ) ) + " _adj_ " + e l + " . csv " , "w" )
w r i t e r = csv . w r i t e r ( f i l e , d e l i m i t e r = " ; " , l i n e t e r m i n a t o r = ’\n ’ )
w r i t e r . writerow ( ( ’ source ’ , ’ d e s t i n a t i o n ’ , ’ d is tance ’ ) )
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k = s e l f . i n t e r a c t i o n s [ e l ]

f o r c in range ( s e l f . get_dimen ( ) ) :
f o r r in range ( 0 , c ) :

value = s e l f . matrix [ r , c , k ]

i f value < 100000 and value != 0 :
w r i t e r . writerow ( ( s e l f . nodes [ r ] , s e l f . nodes [ c ] , value ) )

# stampa i l f i l e con l a l i s t a dei nodi e l e loro e t i c h e t t e ( p o s i z i o n i n e l l a sequenza primaria )
def p r i n t _ n l ( s e l f ) :

f i l e = open (OUTPUT_DIRECTORY + s t r ( s e l f . name ( ) ) + " _nl " + " . csv " , "w" )
w r i t e r = csv . w r i t e r ( f i l e , d e l i m i t e r = " ; " , l i n e t e r m i n a t o r = ’\n ’ )
w r i t e r . writerow ( ( ’ node ’ , ’ l a b e l ’ ) )
i =0
while i < s e l f . n_nodes :

w r i t e r . writerow ( ( s e l f . nodes [ i ] , s e l f . nodesPosi t ion [ i ] ) )
i = i +1

def i n t e r a c t i o n _ t o _ k e y (name : s t r ) :
r = re . compile ( ’ ( . ∗ ) : . ∗ ’ )
x = r . search (name . upper ( ) )
i f x i s None :

re turn name . upper ( )
e l s e :

re turn x [ 1 ]

0.5
====================================
|| RIN parser ||
|| −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ||
|| Fabio Rosada ||
|| Davide C r o s a r i o l ||
====================================
" " "

import sys

from s r c . graphs_parser import GraphMatrix
#from s r c . graph_measures import GraphMeasures as measures
#from s r c . graph_measures import ∗

###########################
# VARIABLE INITIALIZATION #
###########################

# FILL THESE FIELDS BEFORE EXECUTION ( Or pass them as args from terminal )
FILE_NAME = " a s s e t s /3rvy_van0_network . xml " # d e f a u l t t e s t f i l e

# TERMINAL ARGUMENTS ( only f i l e name)
i f len ( sys . argv ) == 2 :

FILE_NAME = sys . argv [ 1 ]

########
# MAIN #
########

x = GraphMatrix (FILE_NAME) # load the graph

x . p r i n t _ a d j ( ) # P r i n t adjacency matrix f o r ALL i n t e r a c t i o n s on output f o l d e r
x . p r i n t _ a d j _ i n t e r a c t i o n s ( ) ; # P r i n t adjacency matrix f o r each s i n g l e i n t e r a c t i o n on output f o l d e r
x . p r i n t _ n l ( ) # P r i n t l i s t of nodes with t h e i r l a b e l s

A.9 FG-MD setting parameters details

Explanation of the meaning of command lines:

• Units real, for this style unites are:

– mass = grams/mole

– distance = Angstroms

– time = femtoseconds
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– energy = Kcal/mole

– velocity = Angstroms/femtosecond

– force = Kcal/mole-Angstrom

– torque = Kcal/mole

– temperature = Kelvin

– pressure = atmospheres

– dynamic viscosity = Poise

– charge = multiple of electron charge (1.0 is a proton)

– dipole = charge x Angstroms

– electric field = volts/Angstrom

– density = gram/cmdim

• neigh_modify every x, this command sets parameters that adjust the
building and use of pairwise neighbor lists. The every setting means
build lists every M steps (after the delay has passed, that means never
build new lists until at least N steps after the previous build).

• atom_style full define which style of atoms improve during simulation.
full use the attributes molecular + charge, which is particularly suitable
for the study of bio-molecules.

• bond_style harmonic, sets which formula(s) LAMMPS has to use to
compute bond interactions between pairs of atoms. harmonic treats the
interactions between atoms describing them with harmonic functions.

• angle_style harmonic, as in the previous case, with reference to the cal-
culation of angles.

• dihedral_style hybrid harmonic, define multiple styles to describing
dihedral angles,including harmonic.

• pair_style lj/cut/coul/cut, this command sets the formula(s) used to com-
pute pairwaise interactions. Pair potentials are defined between pairs
of atoms that are within a cutoff distance and the set of active interac-
tions typically changes over time. In this case it has been set 10 Åas
cutoff for Lennard-Jones and Coulomb interactions.

• pair_modify mix arthimetic, goes to modify the parameters defined
with the previous command:
epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j)/2

• boundary p p p, the style p means the box is periodic, so that particles
interact across the boundary, and they can exit one end of the box and
re-enter the other end. p is replicated three times for the directions of
space, it is valid for both the lower and upper face of the box.
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• special_bond amber, set weighting coefficients for pairwise energy and
force contributions between pairs of atoms that are also permanently
bonded to each other, either directly or via one or two intermediate
bonds. For this type of pairs of atoms, the calculation of the LJ and
Coulomb interactions either does not make sense to be calculated or
their weight should be reduced. amber sets the 3 coefficent of Lennard-
Jones potential to 0.0, 0.0 and 0.5, while fro Coulomb potential to 0.0,
0.0 and 0.8333.

• thermo N, compute and print thermodynamic info (e.g. temperature,
energy, pressure) on timesteps that are a multiple of N and at the begin-
ning and end of a simulation.

• thermo multi, style multi prints a multiple-line listing of thermody-
namic info that is the equivalent of “thermo_style custom etotal ke temp
pe ebond eangle edihed eimp evdwl ecoul elong press”.

• timestep 2.0, set the timestep size for subsequent molecular dynamics
simulations, based on the unit of measurement chosen in the units com-
mand. In this case are femtoseconds.

• minimize etol ftol maxiter maxeval, sets energy minimization paratemters.
MD simulation continue to iterate until one of the stopping criteria is
satisfied.

– etol: stopping tolerance for energy (unitless), it was set to 10e-3
Kcal/mole.

– ftol: stopping tolerance for force (force units), it was set to 10e-6
Kcal/mole*Angstrom.

– maxiter: max iterations of minimizer, it was set to 100.

– maxeval: max number of force/energy evaluations, it was set to
1000.

• run 10000, simply sets the total number of iterations to do.
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