Universita
Ca'Foscari
Venezia

Ca’ Foscari
Dorsoduro 3246
30123 Venezia

MSc (ex D.M. 270/2004)
in Computer Science

Dissertation

A Game-Theoretic Approach

to Graph Transduction:
An Experimental Study

Supervisor
Prof. Marcello Pelillo

Candidate
Michele Schiavinato
Id 810469

Academic Year
2012/ 2013



CA’ FOSCARI UNIVERSITY - VENICE

DEPARTMENT OF ENVIRONMENTAL SCIENCES,
INFORMATICS AND STATISTICS
Second Cycle Degree Programme in Computer Science

DISSERTATION

A Game-Theoretic Approach
to Graph Transduction:

An Experimental Study

Student: Supervisor:
Michele Schiavinato Prof. Marcello Pelillo
SID 810469

Academic Year 2012-2013



Contents

1 Introduction

2 Machine Learning
2.1 Machine learning bases . . . . . ... .00
2.1.1 Datamodel . . . ... ... ... L.
2.1.2 Learning categories . . . . . . . . .. ... ... ...
2.1.3 Dynamics of the learning . . .. .. ... ... ....
2.2 Measures of data similarity . . . ... ... ... ... ...
2.2.1 Similarity/Distance matrix . . . ... ... ... ...
2.2.2  Object-based similarities . . . . . . . .. ... ... ..
2.2.3 Label-based similarities . . . .. .. ... .. ... ..
2.2.4 Management of similarity measures . . . . . . ... ..
2.3 Data Pre/Post Processing . . . . . ... ... ... .. ....
2.3.1 Normalization/Standardization of descriptors . . . . .
2.3.2 Image descriptors . . . . . . ... .. ...
2.3.3 Normalized Graph Laplacian . . . . ... ... ....
2.4 Data Analysis and Evaluation measures . . . . ... ... ..
2.4.1 Similarity matrix Heat Map . . . . . . ... ... ...
2.4.2 Cluster membership . . . .. ... ... ... .....
2.4.3 Visualizing data in Scatter plot . . . . . . . ... ...
2.4.4 Standard deviation . . . . . ... .. oL
2.4.5 Classification error . . . . . . ... ... ...

3 Game Theory
3.1 Game assumptions . . . . . . . ...
3.2 Normal-form game . . . . ... .. ... ... ... ......
3.2.1 Canonical games examples . . . . . . . ... ... ...
3.3 Stochastic Normal-form game . . . . .. .. ... ... .. ..
3.4 Toward the game solution . . . . .. .. .. ... ... ....
341 Bestreplies . . . ... ... oo
3.4.2 Nash equilibrium . . . ... ... ... ... ... ..
3.4.3 Examples of Best Replies and Nash Equilibrium
3.4.4 Computing a Nash equilibrium . . . ... .. ... ..



3.5 Succinct Games . . . . . ... ...

3.5.1

Polymatrix Games . . . . .. ..

4 Labeling Problem
4.1 Discrete Binary CSP . . . . . ... ...
4.2 Relaxation Labeling model . . .. . ..
4.3 Relaxation Labeling process . . . . . . .
4.4 Consistency and Dynamics of Relaxation Labeling . . . . . .
4.5 Relaxation labeling in Game Theory . .

5 Graph Transduction Problem
5.1 Graph Transduction model . . . .. ..
5.2 Devising a transductive learning . . . .
5.3 Graph Transduction Game . .. .. ..
5.4 Operational settings of GTG . . . . ..
5.5 Introducing Category similarity in GTG

6 Experimental survey of GTG
6.1 Datasets . . . ... ... ... L.

6.1.1

Object descriptors . . . . .. ..

6.2 Graph construction . . . . ... ... ..
6.3 Validation approaches . . ... ... ..

6.3.1
6.3.2

Crisp misclassification . . . . . .
Soft misclassification . . . . . . .

6.4 Data analysis and experiments . . . . .

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7

7 Conclusions

Bibliography

Preliminary dataset analysis. . .

Data similarity effect on the learning . . . . . . . . ..

Category similarity adjustments

Category analysis of the errors .
Choosing labeled objects . . . . .
Scalability over multiple classes .
Learning with category similarity

56
o7
57
o8
61
63

65
65
66
68
70
72

74
75
76
76
78
78
79
81
81
84
89
90
94
98
100

112

118



Abstract

An important class of problems in machine learning is based on semi-
supervised process to look for consistent labeling for a set of objects. The
crucial aspect which features this topic is how to spread the available knowl-
edge on the data to infer a proper answer for the unknown one. In this
dissertation we use an important graph based model of semi-supervised
learning known as Graph Transduction. Our research begins from a novel
solution in Game Theory which models the problem just a noncooperative
game: the Graph Transduction Game (GTG). We study this algorithm for
the specific instance of visual world, leading the analysis over the main
information of visual similarity between images and measures of similarity
projected to categories. Finally we introduce the implications arisen on
large-scale classification, guessing a possible solution generalizing the current
version of GTG, which can exploit of category similarities actively in the
learning.



Document Notation

Multidimensional objects

Sets

a: is any generic element (normally can assume nominal, scalar or
vectorial form);

T

a= (ay,as,...,a,)" : is a column vector of m elements (or a m x 1

matrix, with m rows and one column);

A = (a;5): is a m x n matrix, with m rows and n columns where a;; is
the element in the matrix at the row ¢ and column j (if a;; is even a
matrix the structure A is said block matrix);

0: is a constant column vector or matrix whose all elements are 0 (the
dimensions are explicated by the context);

I,,,: is an identity m x m matrix composed by all zero values and ones
in the main diagonal;

e’ € {0,1}™: is a binary vector of m dimensions where the unique
value equals to 1 is the h-th component.

S ={s1,82,...,8m}: is a finite set composed by a homogeneous col-
lection of m different objects (|.S| = m denotes the cardinality of the
set as the number of its elements), if m = 0 then S is expressed as the
empty set ) = {});

N,Z,Q,R,C: are the typical infinite numerical sets respectively for
natural, integer, rational, real and complex numbers (to denote the
subset of all the positive or negative numbers is added the superscript
+ or —);

[a, ] C R: is the closed interval for all the real numbers between two
scalar ends with o < 3 (to denote that « is not included in the interval
the symbol ‘[ is replaced with ‘(" and in the same manner for § where
‘]’ becomes )’, in this case the interval is said open in one on both ends
and infinite 00 ends are possible);



e #(S): is the power set of any set S which contains all the possible
subsets of S including the empty set () and itself.

o Ay = {xeR™|Vi=1...m:x; >0,>" x; =1}: is the Standard
simplex set of m variables and contains any probability distributions
in R™ (let x € Ay, if x = e for some h = 1...m then x is a vertex
point in the boundary of the standard simplex, otherwise is any other
point in the interior space).

e 0(x) = {z e{l,2,....m} |z # 0}: is the support of a scalar vector
x of m elements as the set of all the indexes where are placed its not
null components.

Operations

e SxQ=1{(s,q) | s €S ,qe Q}: the Cartesian product between the sets
S and @ is a non commutative operation which returns a set composed
by all the possible |S||Q| ordered pairs from the elements contained in
them;

e S"=5x8x...x8:1is the Cartesian power of a set S as the Carte-

n times
sian product of itself for n times;

n!
° (Z) = m (with n, k € N;0 < k < n): the binomial coefficient
which determines the number of subsets of k£ samples without repetitions
extracted from a population of n different elements;

e exp(x) = e”: is a compact notation for a scalar exponentiation with
the typical Euler’s number e;

e (a)p = ay: is a shortcut notation to denote the k-th elements extracted
from a vector a;

e (A); = a;: is a shortcut notation to denote the k-th column vector
extracted from a matrix A;

m
e |la]| = /> a2: is the Fuclidean norm (or length in the Euclidean
k=1

space) of a scalar vector of m dimensions;

m 2
e la—Dbl| =,/ (ak - bk) . is the Fuclidean distance between two

scalar vectors of both m dimensions (you can observe that the norm
of a vector is equal to its distance with respect to the origin, namely
[a]] = [la —Off;



e a-b =737 arby = |l ||b|lcos(#): is the dot product (also known
as scalar product or inner product in Euclidean space) ot two scalar
vectors where 6 denotes the angle between them;

o AT: the typical transposition for a matrix A = (a;;) where AT = (a;;);

e C = A ®B: given the m x n matrix A and the p x ¢ matrix B the
Kronecker product between them returns C = (C;;) as a m x n block
matrix (or an extended mp x ng matrix) where the element at row 4
and column j is a p X ¢ matrix such that C;; = a;;B.

Any exception in this dissertation of the notation as above is locally
explained to avoid misunderstanding.



Chapter 1

Introduction

In machine learning community the most part of problems to deal with
generally is mainly ascribable to a categorization task, which consists in
the estimation of a suitable labeling assignment for a given set of objects.
Although the problem may seem easy to define in literature there exists
a wide collection of operational approaches for labeling problems, whose
differences depend mainly from the nature of the objects of interest, the
model which organizes the knowledge of the data and the ways to combine
different degrees of information in a computational process which researches
the better solution.

Semi-supervised learning (SSL) is a notorious subclass of machine learning
problems whose fundamental peculiarity is the employment of both labeled
and unlabeled objects in the training phase. A well-known approach to
SSL is the Graph Transduction problem, which consists in a graph-based
data model where objects are mapped to nodes and the weighed edges
reflect the similarities among them. This method is modeled over an im-
portant property on the data said cluster assumption, where the features
of the objects tends to form separated groups and two instances in the
same cluster should share the same category. According this hypothesis
the general principle to solve graph transduction problem is exploiting of
the supervised information, the labeled nodes, propagating that toward the
unlabeled nodes in order to estimate the consistent labeling for all the objects.

Game Theory [1] is a famous area of the science that models a prob-
lem under the abstract depiction of game, wherein players act to maximize
their score. In this dissertation we deal with a graph transduction problem
beginning from a novel solution already existing in the machine learning
panorama, which is the non-cooperative game known as Graph Transduction
Game (GTG) [2]. The solution of this schema is the condition of Nash
equilibrium [3], which is the state where all players have performed the best



move simultaneously, that leads to the best labeling for all objects. Moreover
GTG can be placed in one-correspondence with another famous problem
well-known as Relaxation Labeling (RL) [4], since the Nash equilibrium
in GTG matches with the consistency property of the weighted labeling
assignments in RL.

In this dissertation we introduce a specific case of study of the Graph
Transduction Game where objects to classify are visual images. For this
reason we focus our work treating typical topics of Computer Vision area (a
sub-discipline of machine learning) to deal with an image recognition problem
in semi-supervised learning. In general terms all our analysis is governed
considering two fundamental types of knowledge over the data:

e visual similarity as a measure to evaluate how much two images are
visually similar;

e category similarity as a measure to evaluate how much two classes are
similar according information either of visual nature or as high level
semantic relations from language ontology.

We are interested to reason about the relationships between visual and se-
mantic category similarity to understand how GTG is affected. Our survey
begins to consider the general case wherein the learning exploits of visual
similarity only. In this setting we study the properties of the input data
and the consequences through a detailed evaluation of the results. In partic-
ular we are interested to outline the fundamental aspects that involve the
learning, with the fundamental goal to understand the strict bound between
the similarity among objects and categories with respect to the classification
performances. In this survey we introduce the challenging task of large-scale
classification and the implications which takes in semi-supervised learning.
In that we finally attempt to guess an experimental form of learning as a
generalization of the original GTG algorithm, wherein similarity of categories
is effectively used to categorize data: the Graph Transduction Game with
Category Similarity (GTGwCS). Our experimental solution is studied in
detail with the aim to observe what occurs when GTG is released from its
original formulation, which is heavy rooted on cluster hypothesis.

The organization of this dissertation is as follows.

e Chapter 2. The second chapter introduces some common topics re-
garding the machine learning field particularly followed to perform this
work. In detail it begins from the basis, describing the typical data
model whose normal datasets are designed and the fundamental kinds
of learning approaches related to them (with major interest toward
semi-supervised learning), analyzing dynamical aspects of the possible



computational tasks too. Moreover there are collected some important
measures of similarity /dissimilarity over the domains of the training ob-
jects or nominal categories. Then the chapters covers some suggestions
of proper data pre/post processing to prepare or improve the learning
process. Finally there is presented a set of methods both to perform
data analysis of the training data and to evaluate the performances
given by an estimated model.

Chapter 3. The third chapter presents the fundamental basis of Game
Theory science, concentrating on a particular class of games built over
certain assumptions and defined in a general formal schema: the normal-
form game [3]. In particular it explains the properties requested to find
a solution of a multiplayer game and a general dynamical approach
to compute it. Finally there are introduced some game categories
expressed in a succinct formulation focusing in deeper the class of
Polymatrixz games, which is indeed essential in this dissertation.

Chapter 4. The fourth chapter covers the definition of the well-known
Labeling problem. The explanation begins in general terms introducing
formally the parallel problem said Constraint Satisfaction Problem
(CSP) [5, 6], which gives the basis about the concept of consistent
labeling assignment. CSP is necessary to introduce its famous gen-
eralization, which is a stochastic model definition whose solution is
computed by the Relazxation Labeling process. Moreover there are other
topics covered in detail about the property of consistency for the label-
ing assignments through relaxation labeling and the dynamical aspects
involved in this particular process. The chapter finishes showing an
important correspondence of the Relaxation Labeling model with the
polymatrix game in Game Theory.

Chapter 5. The fifth chapter introduces a class of problem in semi-
supervised learning well-known as Graph Transduction. First of all
it presents the essential definition of the graph-model inferred from
training data and the general goal of the problem. Then the chapter
begins its main topic introducing the basis of the transductive learning
followed to design a novel solution said Graph Transduction Game
(GTG), which is a reformulation of graph transduction problem as a
non-cooperative polymatrix game. GTG is explained in detail showing
its formal definition and some important operational aspects regarding
the data setting and execution of the concrete computational algorithm.
Finally the chapter introduces an experimental variant of GTG, the
Graph Transduction Game with Category Similarity (GTGwCS), which
employs of an additional information in the learning process about
the affinity among categories (from data objects or in semantic terms),
showing formally the basis of such guessed schema.



e Chapter 6. The seventh chapter summarized all the experimental
aspects and results that describe the experience of this work. The first
three topics regard initialization tasks before the real execution of GTG
and several validation criteria. In particular it introduces all the sources
of coarse data explaining those techniques and parameters are set to
build the effective datasets employed in the learning processes; then it
enters in deep about the construction of the training graph inferred
from an input set of data, showing the specific choices and properties
followed to obtain a suitable structure; finally there is introduced the
main evaluation strategy which is common for a greater part of the
analysis, showing detailed aspects about different forms of performance.
Finally the chapter begins to introduce the concrete experimental study
of Graph Transduction Game, describing in deep several surveys to
understand the behavior of this solution according different conditions.
In that there are employed different measures of similarity to figure
out the relationship between performances and themselves. The last
topic consists in the analysis of the variant GTGwCS, to observe what
occurs introducing class similarities in the learning.

e Chapter 7. The eighth chapter concludes this dissertation making
an overview about all the work performed and reasoning about the
obtained results.

10



Chapter 2

Machine Learning

A main area of the science is featured by the demand to learn something
of significant given a set of data. This activity is also well-known as Data
mining [7], which studies and offers useful tools to extract new information
from other information, where the latter seems to say nothing of really
general. The goal consists to discover non-trivial relationships that can help
to predict the possible future behaviors of the objects involved in the context
of interest. The request to get automatic these mining methods gives rise of
computational solutions, whose fundamental processing aspects are treated
in the parallel area of machine learning [8].

In this section we introduce basic notions and more specific topics, which
are mainly of reference to follow properly our work.

2.1 Machine learning bases

2.1.1 Data model

The preliminary subject focuses about the data model devised to depict
the knowledge in a learning process. In this field there exist different ways to
formulate a set of data, but the most general employed in practice is based
on the concept of record. Any real object has measurable features, e.g. for
an image could be the pixel color levels or for an animal some physical infor-
mation (e.g. height, weight, age, sex, and so on). In general a single feature k
is well defined in a proper domain JF; which may be numerical /quantitative
(e.g. height) or nominal/categorical (e.g. sex). Therefore considering the
representation of any object according a set of ¢ known features, it is possible
to define a common descriptor domain for all the objects of interest, which
can be modeled as the feature space 3 = F1 x Fp x ... x F;. Formally let
B ={1,2,...,n} the collection of n objects and F the descriptor domain of
q features, for each individual i € B its observation or feature vector is the

11



structure: .
£ = (fi(1), fi2),. fila) €

A good condition which is requested on the data that describes an object
is the lack of dependance among its features, namely a feature should not be
obtainable from other features (e.g. age vs. birth date). Moreover typical
algorithms are designed to work only with points over the real space, in
other terms F = RY. Anyway nominal feature can be easily mappable as a
quantitative finite domain, therefore we consider implied such preprocessing
step.

In a wide class of applications is necessary to introduce an additional
important feature associated to the data, whose concrete meaning depends
both from the problem of interest and what learning approach is employed
(see section 2.1.2). In detail it is sufficient to introduce in deep the idea of
label or class, which limits the domain of this feature to categorical case. We
can express formally the space of m possible labels as Y = {1,2,...,m},!
therefore for each object ¢ € B the data model is extended as the pair

(£, y:) € T x Y

where y; is the label associated to feature vector f; of the i-th object. Such
new information y; is considered as the depended feature with respect to
all the others contained in f;, which is hence an independent component; in
other terms the label is assumed to be determinable on the basis of own asso-
ciated descriptor. This model reflects the well-known classification problem
in machine learning.?

A data set may be seen as a non empty finite instance in & (J) and/or
P (F x Y) which collects the information available for all the objects of
interest, in general may be arranged as one of the following forms:

1. {f1,fs,...,£,} with the observations only;
2. {(f1,y1), (f2,y2), ..., (£, yn)} with the observations and labels;

3. {(fh yl)v (f27 y2)7 SER) (fk7 yk)}’ {fk+17 fk-‘r?v s 7fn} with the observations
but just a portion is labeled.

n this dissertation for the majority of the cases we consider the domain of categories
as a set of numerical indexes, but in other contexts we use the same symbol Y even
if it contains textual labels; although we retain quite easy for the reader to catch the
correct meaning. For this reason we avoid the introduction of further verbose notation to
distinguish such two aspects.

2The case when holds Y C R determines another class of learning which is the field of
regression problem; anyway it is skipped since not pertinent with respect to the work in
this dissertation.
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2.1.2 Learning categories

The dataset used in the learning phase, which is generally said training
set, covers a predominant role since is the unique source of information
exploitable to discover relevant patterns, and according the possible forms
listed in the section 2.1.3 are associated respectively three principal learning
categories.

1. Unsupervised learning. In this application is employed a training
set without labels: the unique information available is the feature
descriptors of the objects. In machine learning there exist different
techniques based on this assumption (e.g. Hidden Markov models, Blind
Signal Separation), but in this work is important to treat the well-
know Clustering approach, which exploits of the notions of similarity
or distance between objects to group them in ideal sets said clusters.
The relationship of these groups can be very different, they could be
partitions of the data (partitional clustering), or the clusters may share
objects (hierarchical clustering) or it is important to discover an unique
predominant group (one-class clustering). The classical interpretation
of a cluster is the membership to some significant data category (e.g. a
set of images of a soccer ball). The main goal followed in this analysis
consists to maximize the similarities between objects in the same group
(intra-class similarity) and to minimize the similarities between objects
from different groups (inter-class similarity) .

2. Supervised learning. The training set in this approach contains com-
plete labeled data. The introducing of a fixed domain of labels gives an
important contribute to the problem space, because the categories of in-
terest are predetermined and the association between object descriptor
and label is known. Typical model based on supervised learning is said
classifier, which produce a mapper ¥ : F — Y between set of features
and response label space according that learned from the training set.

3. Semi-supervised learning [9]. This is the particular case where the
training set is labeled partially; semi-supervised learning may be seen
as an approach that falls between the supervised and unsupervised
learning methods. The principal goal is to produce a classifier able to
map properly both label and unlabeled data. Clearly to be really useful
as technique the ratio of supervised objects is supposed to be much
more small with respect to rest of the unsupervised objects. In machine
learning the algorithms which deal with semi-supervised learning make
at least one of these several assumptions over the training set:

e Smoothness. Objects which are very similar are more likely to
share the same label.

13



e (Cluster. The global data tends to be organized in different sepa-
rated clusters and objects in the a same cluster are more likely
to share the same label. This property allows that objects which
share a same label could be placed also in different cluster (e.g. if a
group contains cats and another dogs two elements from different
clusters can share the same label pet, in other terms an unique
label may be organized in multiple separated clusters). Cluster
assumption can be seen as a special case of smoothness hypothesis.

e Manifold. The labeled and unlabeled information lies approxi-
mately on a manifold of much lower dimension than the input
space F. This assumption allows to deal with high dimensional
data and proceeds to classification using the properties of the
estimated manifold.

There exists two fundamental kinds of data inferences which a learning
process can be motivated:

e inductive learning: reasoning on an observed training set of examples to
infer a general rule which is applicable for any other unknown (external)
testing examples, i.e. not used to estimated the rule.

e transductive learning: reasoning on an observed set of examples from a
specific portion of training cases to unknown testing cases to infer a
rule which is valid only within that whole set.

In general the definition of semi-supervised learning is sufficiently flexible
to support both inductive and transductive inferences, although the lat-
ter would be more preferable; as concern supervised learning instead just
inductive-based models can be treated.

For any form of learning, the concrete application can be oriented accord-
ing two main ways:

e Off-line learning. The training set used for the learning phase does
not change during the time. This possibility is important when it is
requested the building of models assumed to remain static for long
periods. The condition allows to get acceptable the employing of
learning algorithms with a high time complexity for the problem treated.

e On-line learning. The training set is a data source which evolves during
the time. The behavior of the produced models is dynamical and have
to be updated very frequently during the time. Under this condition
the time of execution of the learning algorithms becomes relevant, since
the new inferred models have to get available with the same speed of
the data changing.

14



2.1.3 Dynamics of the learning

The learning algorithms from a computational point of view may be
implemented in different ways and according the problem space have different
complexity time order. In general there exist two main family of processes:

e Statical learning. The model is inferred follows a determined set of
finite steps, the process hence has a polynomial time with respect to
the number of objects. The reaching of a final solution usually is always
possible with weak data conditions over the training set.

e Dynamical learning. The model is inferred after a sequence of indeter-
minable updating steps, the process has not a polynomial time with
respect to the number of object. The reaching of a final solution is
not always guaranteed, unless are fixed some data constrains over the
training set.

In this specific work there are treated dynamical learning-based meth-
ods, whose reference description can be given as the well-known theoretical
models of Dynamical systems [10]. These systems are designed under the
fundamental concept of state over a time domain T, which can be continuous
or discrete. Formally the state of a system according the independent time
t € T is modeled as a vectorial function s : T — 8 as followings

T
st = (sgt),sgt),...,sgfl)) €s

where 8 is the state space of m dimensions. In other words s*) denotes the
equation of motion for the state of the dynamical system.!

If T =R a dynamical system can be described as a non linear system of
first order differential equations which is formulated as

d
s=—(s") = x(s") (2.1)

dt
where the dot symbol is a shortcut notation to specify derivative with respect
the time. The velocity vector function x : 8§ — & governs the behavior of the
dynamical system, which depicts a family of functions for each component

as followings

¥(59) = (a5 xa (55 (52))

Actually this is the definition of a dynamical system said autonomous, since
the differentiable map x does not depend from ¢; the conversely class is

'In literature is usual finding the notation s(t) for the system state: we precise that
the meaning is just the same, but we prefer the form s since is more flexible to explain
properly all the topics in this dissertation.
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well-known as the non-autonomous dynamical system, which is featured by
the relation (¢, s(t)). Anyway we treat in detail only the autonomous model,
whose example is the continuous Replicator Dynamic (3.1).

In the discrete domain of time T = N can be designed an operator (or
map) xq: S — 8 giving a formulation of the dynamical system as followings

gt+1) — Xd(s(t))

Often in real applications if the principal definition of the problem is a
continuous dynamical system of velocity x. is estimated a discretization yg
which maintains much possible its properties. This description is much more
suitable to be treated through the iterative constructs given by the typical
environments to design algorithms. Examples of these dynamics are the
Rosenfeld-Hummel-Zucker rule (4.3) or the discrete Replicator Dynamic (3.2).

When the dynamic system is satisfied can be interpreted as the reaching
of a sort of motionless state s®) =s, € 8 which is well-known as equilibrium
point. In a continuous dynamical system the equilibrium state is verified
when holds

x(s) =0 (2:2)

which means the evolution of the system is finished and the point s, is a
solution for (2.1); after all, since X(s(t)) is a derivative with respect to time
t, integrating on both sides of (2.2) we just get:

[x(s™)dt = [odt

st) = const

In discrete dynamical system the reaching of an equilibrium point takes to
the following relation
xa(s®) = s®

namely the system has terminated to produce new solutions at a finite time ¢.

Normally the concept of equilibrium point in this class of functions is
often associated to the mathematical definition of fized point, which is a
point in the domain of the function y which basically maps it in itself.

The behavior of a dynamical system while is getting close to an equilibrium
point can follow different forms of stability, for example is stable if does not
be affected by small transformations of the equilibrium point, while unstable
conversely. These considerations are well explained introducing some notions
of the Lyapunov stability, formally an equilibrium point s, € § can be:

e stable, when for each its neighbourhood Us, € § there exists another
neighbourhood V' C U, wherein any trajectories s®) which start from
any points in V remains in Us, for each time ¢ > 0;

16



e unstable, when it is not stable;

e attractive, if exists its neighbourhood Us, € 8 such that for each

trajectory s*) which starts from a point in Us, holds . 1i£Ln s =s,;
—+00

e is asymptotically stable, if is stable and attractive.

All the points generated by a dynamical system paints an image of the
state space composed by particular features. An attractor is a property of
the state space which can be a point or periodic orbit (cycle) whose the
proximity trajectories of the dynamical system are led with the flowing of
time. The main kinds of attractors are:

e punctual attractor: leads to an equilibrium state since the trajectory
which is followed by the system degenerates in a point;

e cyclic attractor: leads in an unstable state of the system wherein the
trajectory repeats itself perpetually.

The state space is partitioned in different areas which depicts the neighbour-
hood of each attractor, such regions are said basins of attraction. In a certain
sense when a system enters in a basin of attraction reaches a special form of
dynamical equilibrium, since its behavior is not chaotic.

Clearly a stable equilibrium point is a solution much more requested in a
dynamical system. The Lyapunov function ¢, : 8 = R (also well-known as
energy function for a dynamical system) is a fundamental tool which can be
associated to dynamical system y to proof the stability of an equilibrium
state. Formally assuming ¢, is derivable according the time and always
positive Vs € 8, s, € § is an equilibrium point and ¢, (s.) = 0, if:

o 4, (s) <0:Vs e Us, then s, is a stable equilibrium point;

® 4, (s) <0:Vs e Us, then s, is a locally asymptotically stable equilib-
rium point;

e 4, (s) <0:Vs e 8thens,is a globally asymptotically stable equilibrium
point.

In other terms s, is a point of local or global minimum of ¢,. An example
of Lyapunov function (although it is given as the symmetric formulation to
treat maximum equilibrium points) is the Average Local Consistency (4.4).

2.2 Measures of data similarity

An important problem to treat in machine learning consists to definite a
way to measure the affinity between couples of data entities, as for example
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objects or labels. There are two possible forms or nomenclature to express
the same concept from opposite point of views:

d(-) dissimilarity or distance: measures how much two elements are dissim-
ilar, typically ranges in [0, +00);

s(-) similarity: measures how much two elements are similar, typically
ranges in [0, 1].

Although this is a field indeed wide we just introduce the main topics which
are fundamental to understand our work. In that since some concept is
applicable both working with measure for objects and labels, we may avoid
to lose generality using the term “data entities” to merge both cases; therefore
a set of data D = {f;,f5 ...} or labels Y = {1,2,...} may be representing as
a more general entity set &€ = {e1,¢9,...}, in order to mean € =D or € =Y
simultaneously.

2.2.1 Similarity/Distance matrix

In machine learning it is widely employed a general structure well-known
as similarity matrir,' which is defined for a certain measure of similarity s(-)
applied to the elements of interest. Formally given a set of z data entities
&, it is possible to collect all the pairwise measurements in an unique z X z
real-valued matrix S = (so8), where s, = s(eq,€p) for two data entities
€as€p € €. In the same way can be defined the distance matriz, if the affinity
on € is a distance measure d(-), formally expressed as a z x z real-valued
matrix D = (dng), where dos = d(eq,€3). It is important to observe that
although the measure denotes as usual pair of elements, the computation that
describes s(-) or d(-) may involve the information on €, and eg in isolation
or additional collective data in €. Working with similarity/distance matrix
is a useful expedient for different reasons, for example making data analysis,
inferring graph structure, performing symmetrization of normalization of
measures, avoiding repetitive computation of same measures and so on.

2.2.2 Object-based similarities

The classical approach to compute similarity between two objects in a
dataset D = {f1,fs,...,f,} is based considering how much they are similar
from the values related to their descriptors f;, f; € R?. Anyway there exist
other much more extended techniques which can take in account other objects
which are bound according some criterion to the two instances, as for example
a distance relation.

!Often the term similarity matrix is used to denote its typical visual depiction or
heatmap used in several applications for data analysis (see section 2.4).
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2.2.2.1 Euclidean distance

In this measure it is exploited the vectorial concept of Fuclidean distance,
which is defined as followings:

q

dewc(£3,55) = [If: = £ = J S (£ - £8)

k=1

This formulation present some properties:
e is a symmetric function since deyuc(fi, fj) = deuc (£, £);
e is always positive since Seqe(fi, f5) € [0, +00);

e when sey.(fi,f;) = 0 (minimum distance) the two objects are equal
since holds f; = £;;

e when scyc(fi, f5) > 0 (opened upper limit) the two objects are different
since holds f; # f;.

Whereas dey.(f;, f;) is a measure of distance it weights actually the dissimi-
larity between the two descriptors, therefore how much is low much more the
two object are similar. There exist several techniques to turn the Euclidean
distance in a much more suitable normalized measure of similarity, but the
widely employed as for example the Gaussian kernel (2.3) or the more general
rule (2.4).

2.2.2.2 Cosine similarity

In this measure, particularly employed on text-based objects, is used
the cosine of the angle between two descriptors as measure of similarity.
Recalling the fundamental operation of dot product between two vectors as

q
f;-£5 = filk)fi(k) = |£] €] cos(6)
k=1

where 6 € R is their common orientation angle, the cosine similarity is
intuitively the measure
f; - f;
scos(fi fj) = e = COS(H)
’ 15[ 116
This formulation present some properties:
e is a symmetric function since scos(fi, ;) = Scos(£5, fi);

e is independent with respect to the lengths of the two descriptors since
their orientation can not change in relation of them, therefore it can
not suggest precisely information to compare the descriptors over their
feature values since may occur that holds f; # f; even if s..s(f;, f;) = 1;
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e may be both positive and negative since cos(#) € [—1, 1] for definition;

e when s.s(f;,f;) = 1 (maximum similarity) the two descriptors are
parallel, intermediate value sqos(f;, f;) € (0,1] is used to measure levels
of similarity;

o when s.0s(f;, f;) = 0 (neutral similarity) the two descriptors are orthog-
onal which denotes independence;

o when s.os(fi, f;) = -1 (minimum similarity) the two descriptors are
opposite, intermediate value scos(fi,f;) € [—1,0) is used to measure
levels of dissimilarity;

e when the two descriptors have components positive, i.e. f;, f; € (R1),
cosine similarity is always defined in the domain [0, 1];

e can be converted in a raunchy form of distance deos(f;, f;) € [0,2] as
dcos(fia fj) =1- Scos(fi7 f])

2.2.2.3 Gaussian k-Nearest-Neighbor method

Given a set of n object descriptors {f,fo, ..., f,} the Gaussian k-Nearest-
Neighbor is particular technique to build a graph structure which is described
by the weighted adjacency matrix W = (w;;), wherein the weight w;; reflects
a similarity measure that depends by the k-neighborhood of the pair of
objects ¢ and j.

The similarity weights are based often by Gaussian kernel (see sec-
tion 2.2.2) over the objects. In that, the kernel width space can be generalized
as a function

¢ :R— P(R)

which returns an ideal finite set ¢(0) = {01, 09,...,04} of w kernel widths
generated according an input value §! (the cardinality w depends explicitly
from ¢). The real implementation of ¢ may be very different with respect
to the nature of the objects, but in general are produced range of linearly
spaced numbers or general discrete interval of real-valued values. To compute
Gaussian similarity is necessary to choose a proper kernel width, which can

be expressed by the shortcut notation o, = ((;5(5), z) that denotes the z-th

kernel width extracted from the specific kernel space ¢(9).

The whole weighted adjacency matrix construction is led according the
specifications of k, ¢, z and a distance function d(-). In detail for each object

'In machine learning the conceptual function ¢ may require additional parameters,
anyway in this dissertation is not necessary to generalize further this tool.
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i € B can be denoted as NF C B\ {i} the set of the k nearest neighbors
objects with respect to ¢ (determined according the d(-) measure). The
average distance from such neighbors is expressed as

1

il jent

The quantity 7% is used to compute the kernel width space ¢(r¥), wherein is
selected the z-th kernel width as

o = (o(rF), 2)

Finally the values for the object ¢ in the weighted adjacency matrix W are
determined as following:

o n ; k
wis = 12 (A, 5)) je N,
0 otherwise

Therefore the similarity measure w;; between the objects 7 and j is smooth
according an proximity degree of the k-neighborhood, cutting off the exter-
nals objects.

Since the weighted adjacency matrix W contains values of similarity,
it is implicitly a similarity matrix too; in fact just letting S = W + I, to
express that in the classical centered and normalized formulation, since
W is also a null-diagonal matrix (i.e. Vi € B : wy; = 0) and defined in
[0,1] as consequence of the Gaussian kernel.! Anyway this method can not
guarantee to obtain symmetric measures; if this condition is a problem for
the application context may be necessary to execute some further procedure
of symmetrization (see section 2.2.4.2).

2.2.3 Label-based similarities

In (semi)supervised learning the categories may refer either to general
identifier for groups of data, as for example a set of numerical indexes
{1,2,...}, or a higher level information as concrete text words in a given lan-
guage {home, cat, flower,...}. In both the cases it is possible that different
categories may share common aspects, which may be measured in terms of
distance or similarity: for example when two category 1 and 2 are associated
to images of different mollusks, or the textual labels pony and horse. An

'In this dissertation we distinguish the symbol S with respect to W just to specify
that the latter is also a weighted adjacency matrix associated to some graph structure.
Although we could call them both generically as similarity matrix, if W contains similarity
weights.
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interesting aspect consists to observe that in the former case to infer a mea-
sure of similarity it is necessary to know the data entities contained in the
groups, while in the latter the information of similarity may be establishment
both from the data and according the semantic relationship associated to the
specif language (which is indeed opposed with respect to their syntactical
representation). Category similarities may be used for several tasks, such
as external information to perform data analysis, to evaluate classification
performances and even in the training phase of a classifier.

In this section we introduce several techniques to measure similarities
between data categories, on the basis of about is known about them. In
order to avoid misunderstanding we prefer to clarify what we mean with
certain expressions.

e semantic(-based) similarity. Refers to a similarity measure about the
linguist semantic (i.e. the associated sense in a given language) be-
tween/among words, which is assumed to be obtained according a
reference ontology which models semantic relationships of terms.

e object(-based) similarity. Refers to a similarity measure between/a-
mong any form objects, which is assumed to be inferred from the
information contained in their data descriptors. When the objects
of interest are images the same expression may be turned in “visual
similarity”.

e category/class similarity. Refers to a general similarity measure which
is projected between/among the labels used in classification problems
to distinguish classes/groups of objects. Therefore, if not specified, the
source of information used to infer this measure may be both semantic
(when the label is text-based) and object based similarities; when it
is necessary to specify this sharp difference, the same expression is
turned respectively in “semantic(-based) category/class similarity” and
“object (-based) category /class similarity”.

2.2.3.1 Semantic-based category similarities

The words of any language have semantic senses which can be connected
to other ones by several linguistic relations; therefore these properties may
be represented as an interlinked network of senses. The well-known Word-net
taxonomy [11] is a typical example to represent these structure and consists
in a huge database of lexical terms in English language where nouns, verbs,
adjectives and adverbs are grouped into interconnected sets of cognitive syn-
onyms said synsets. The fundamental aspect consists that not only WordNet
interconnects words together but also the specific sense (synset) of them.
Modeling the semantic property of a term as the membership in a given
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sense set it is a solution very expressive, since in a language same words
may lay in different synsets; this fact describes the linguistic concept of
word acceptation, e.g. as “tree may” mean the plant in nature or a hierar-
chical diagram. Moreover the synsets are connected to other ones from a
set of several fundamental semantic relations. The most important is said
super-subordinate relation or is-a relation which models the typical hierarchic
bound of the noun terms, or the linguistic property of hypernym and hyp-
noym. A simplified formal definition of this network can be seen as a forest
W = (V, E,w) where V is the set of senses or synsets, E C V2 the set of
edges or relations and w : £ — R a function which define a distance measure
given an edge.! Moreover WordNet has available another kind of textual
information which is well-known in linguistics as text corpus, which consists
in huge and structured sets of texts used for statistical analysis (for example
to check occurrences or validate linguistic rules within a specific language
territory). In WordNet the terms in corpora are annotated clearly to be
linked with the senses in W and allow to give a sort of semantic definition
(or Semantically Tagged glosses) of the synsets. There exists several text
corpus available in the WordeNet (version 3.0), but the must general for the
English language are the American National Corpus (ANC) and the British
National Corpus (BNC).

In this section we introduce a set of fundamental semantic similarity
measures according the WordNet taxonomy [12, 13]; anyway we remark that
such metrics would be applicable over any type of sense networks. Formally,
denoting with A, 1 € Y two text labels and with ¢y, ¢, € V the sense nodes
which contain them?, we introduce these fundamental functions:

e path: V — Z(V): the set of senses nodes along the path between the
parent of ¢, and its root node;

o L: V2 = R: length of the shortest path which connects the senses of
two terms (measured in edges or nodes), we assume to have always a
global root node ¢,.0: to guarantee the existence of a path between
any pair of nodes;

e D:V — N: taxonomy depth of a sense ¢, in other terms the number
of nodes in the path between the sense node ¢, and its root node ¢,

i.e. D(¢A) = L(¢7‘00t7 ¢A);

'In detail WordNet structure would be a fusion of four networks, with respect to the
different parts of the speech related to noun, verb, adjective and adverb. The fundamental
and richly backbone of WordNet is the Noun network, wherein we focus our work since
the labels of the objects are always nouns.

2Actually to obtain a sense node ¢ the system requires also other metadata, for
example a parameter to specify the kind of word A considered, i.e. noun, verb, adjective or
adverb.
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e LCS : V2 — V: Least Common Subsumer (LCS) or lowest super-
ordinate (LSO), which is the most specific ancestor sense node between
two synsets;

e IC: V — R: Information Content (IC) gives a measure of specificity
for the synset, formally let Pr(®)(¢,) the probability to encounter an
instance of the sense ¢) in the text corpus €, the information content
is equal to

IC(¢x) = —log (PT(G)(@))

Generalizing the explanation we may image to exploit in practice of a
function with form
s)) V2SR
which computes a semantic similarity measure of type ¢ between two sense
nodes whose definition is the followings.

1. Semantic Relatedness. Based on the concept of semantic distance [13]
in the taxonomy which is defined as

Ipath(¢x) N path(¢,)|
max(|path(¢y)|, [path(¢,)])

Although this metric is called “distance” has not be confused as a
conventional distance measure (see section 2.2), in fact high values
suggest that two words share many senses and hence are considerable
quite similar: in other terms is a measure of similarity.

S}N(sta Qbu) =

2. Shortest Path Similarity. Based on the shortest path length L(¢y, ¢,)
that connects the senses ¢, and ¢, in the is-a taxonomy.

3. Leacock-Chodorow Similarity. Based as an extension of the shortest
path similarity wherein is added the information of the maximum depth
of the taxonomy in which the senses occur. Formally the Leacock-
Chodorow similarity is defined as

L(a,
53 (Px, du) = —log 211(11\(]%
eV

4. Wu-Palmer Similarity. Based as a combination between the depth of
the least common subsumer LCS(¢y, ¢,,) of two senses and the length
of their shortest paths. Formally the Wu-Palmer Similarity is defined
as

2D <LCS(¢>>\,¢#)>

W =
S5 (0x, Pu) L(¢A,LCS(¢A7¢#))+L<¢“’LCS(¢’\’¢#))+2D<LCS(¢>\7¢#)>
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5. Resnik Similarity. Based on the information content of the least
common subsumer, in other terms

53 (62, @) = IC(LCS(62, 0,))

6. Jiang-Conrath Similarity. Based as a combination between the infor-
mation contents and least common subsumer according the relation

-1

s (br, bu) = (IC(@) +1C(6,) — 21C(LCS (9, %)))

7. Lin Similarity. Based as a combination between the information con-
tents and least common subsumer according the relation

21C(LCS (62, 64))
IC(¢/\) + IC((bu)

s¥ (P, dp) =

The semantic similarities introduced are all symmetric measures, anyway
in terms of domain of definition there are some differences; in the table 2.1
we summarize all these aspects.

Type Name Domain
1 Semantic Relatedness [0,1]
2 Shortest Path Similarity [0,1]
3 Leacock-Chodorow Similarity RT
4 Wu-Palmer Similarity [0,1]
5 Resnik Similarity RT
6 Jiang-Conrath Similarity [0, 1]
7 Lin Similarity [0, 1]

Table 2.1: Semantic similarity properties

2.2.3.2 Object-based category similarity

In the scenario of supervised learning the similarities among categorized
objects may suggest an estimated measure of category similarity. For example,
if the most part of objects from a certain pair of categories are similar
means that exists a strong correlation between them. Given a dataset
D ={(fi,y1), (f2,y2), ..., (fn,yn)} over a domain of m labels Y, there exist
different approaches to infer an object-based category similarity measure
s(A, ) between two labels A, u € Y. According the work in this dissertation
we distinguish two main groups of measures as followings.
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e Categorized similarity. This approach considers the similarity measures
between each pair of objects from different category to extract category
similarity. Let S = (s;5) the n x n generic similarity matrix computed
over D according any form of object-based similarity, we denote with
Qxy the set of real-valued similarity measures in S such that

p=1{silyi=Xandy;=p:i,5=1...n}

The object similarities contained in the set (), may be used to compute
s(A, 1) according several criteria as followings.

—  minimum: s(A, 1) = min(Qxy)
—  mean: s(A\,p) = Ol N 2seQr, S
—  maximum: s(A\, pu) = maX(Q,\M)

If S is asymmetric is not guarantee that the object-based category
similarity s(A, ) is symmetric and its domain of definition depends by
the original measure of object similarity employed.

e Category centroid. This approach is inspired to a well-known clustering
task where a category of objects is represented by an unique reference
feature vector said centroid; comparing such structures with respect
to data from different categories it is possible to infer object-based
category similarity. Formally the set of all feature vectors of a category
A € Y may be defined as

A ={f|(£y) e D,y =7}
The centroid of a category A from D is obtained as the average feature

vector
C)\ = Z f
‘Q)\‘ feQ,

For each pair of categories A\, u € Y we can compute two forms of
distance measures exploiting of the category centroids as followings.

— centroid divergence: d(A, ,u) = |lcx — ¢,
—  visual distance!: d(\ ) Z llex —
|Q,u fEQ

The distance measurement d(\, ) is always defined in R™ since it based
on aggregated Euclidean distances and can be converted in similarity in
different ways; the more general it is inspired to the classical rule (2.4)
and may formalized for this context as followings

ST ) =97 (A )

!This form of distance is introduced in [14] considering objects of “visual” nature,
nevertheless may be used in general terms for any extent of objects.
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for a scaling positive parameter v € R*. The measures based on
centroid divergence are symmetric, while this property is not guarantee
for the visual distances.

2.2.4 Management of similarity measures

In this section we collect the main notions to define and manage measure
of distance or similarity, in order to prepare such information for specific
contexts of application.

2.2.4.1 Distance-based similarity

In machine learning there exist several measure of distance between data
entities, but in many contexts it is necessary to convert and control them
in an equivalent form of similarity, especially defined in the usual domain [0, 1].

A wide employed tool that solves such aim is the famous Gaussian kernel,
which is described as the following function:

0°(d) = exp( — ;;) (2.3)

where d € RT is a distance measurement and o > 0 is a positive parameter
said Gaussian kernel width.

Let as usual the equation d(-) denotes some measurement of distance (e.g.
euclidean, cosine, centroid based) the Gaussian similarity for two entities
€as€p € € is the function

Sgauss (ECH 5,5) =0 (d([‘:aa 5,3))
This formulation present some properties:

e can be interpretable as a similarity measure just because decreases
with the distance and ranges between 0 (since can not be negative in
the limit) and 1 (when e, = €3);

e when the distance measure is Euclidean the similarity measure matches
with the well-known Gaussian radial basis function (RBF) kernel;

e the Gaussian function can be used as smoothness filter to convert a
distance measure d(-) in similarity where the parameter o is an useful
tool for scaling and in aggregated similarities (see section 2.2.2.3).

Anyway the Gaussian kernel suggests a possible generalized form which allows
equally to convert distance measures in similarities, but it is considered much
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more flexible for scaling needs and may be employed in further contexts.
This tool is described by the following rule:

V7(d) = exp( — 'de) (2.4)

where v € RT is a positive parameter to control the measure. Moreover it is
1

interesting to observe that letting v = 252" the equation (2.4) reproduces
o

the same behavior of the Gaussian kernel (2.3).

2.2.4.2 Symmetrization of affinity measures

The measure of similarity/dissimilarity between data entities is often
assumed to be a symmetric operation, but in machine learning such property
is not always respected. In fact in several methods to compute affinity
measures, the produced mapping allows two different levels for the same
pair of entities (e.g. Gaussian k-Nearest-Neighbor method, Resnik Similarity
and so on). This is a unsuitable condition both for data analysis or even
a wide class of computational algorithms, which requires to work over the
assumption of symmetric relationships.

The problem consists to define rules to get symmetric an asymmetric
measure. Considering to collect as usual all the possible measurements
for a set of z data entities £ in a typical similarity/distance z X z matrix
Z = (zqp) (which is asymmetric), the solution is acting an ideal operation of
symmetrization generating a z X z structure 7= (24), such that holds

s sT
Z=17

Several possible ways to obtain this property could be the following

assignment rules for each o, 3 =1...2:

e minimum distance: Zop = Min(2a8, 254)
Z z
e average affinity: Zap = W

e maximum similarity: 2,3 = max (2.3, 28q)

2.2.4.3 Normalization of similarity measures

Several measures of similarity are not defined in the typical domain [0, 1]
and this aspect in some context may be unsuitable. Considering to collect
z data entities in a ideal set &, whose the related similarity z x z matrix
S = (s4p) is obtained over a measure of similarity s(-) defined in R*, it is
clear that the maximum value which may be assumed for each data entity
a-th has to be sq. If this property holds, we may balance all the measures
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to unity center applying the following general rule for each pair a, 5 =1...z
as
Saf

ap = L2 (2.5)

to obtain a final collection of measures S in [0,1], with s4q = 1 for all
a = 1...z. Clearly if S is asymmetric also S continues to be that, but
conversely it is not still guaranteed that S remains symmetric; in fact may
occurs that S has not an unique maximum similarity value, i.e. given some
data entity e, € €, Jeg € €\ {ea} : Saa # 58, for this reason the rule (2.5)
produces an asymmetric measure. When this condition represents a problem
it is sufficient to apply some symmetrization rule (see section 2.2.4.2), which

is in general based on maximum criterion.

2.3 Data Pre/Post Processing

The real computational algorithms employed in training tasks are not in
general sufficiently flexible to work on any source of data, but are designed
just according specif dataset structures and properties. Anyway an initial
primitive collection of objects assembled for some aim could be registered
in a document form which is less suitable for directed usages in machine
learning. Moreover in this operational context are acted multiple steps
of data preparation in such way to adjust both the form and the internal
relations of the inputs which an algorithm expects.

In this section we introduce briefly some recurrent procedures of data
pre/post processing indeed observed in this work.

2.3.1 Normalization/Standardization of descriptors

In section 2.1.3 we introduce the typical data model employed in ma-
chine learning under the assumption of object descriptors expressed as
sequence of real-valued features. However if we consider a general point
f=(f1, f2,.-., fq)T € R? may arise a crucial problem which is due to the
domain of the measures related to each component with respect to the other.
For example, if a feature f; may have values limited in an interval of values
particularly high (e.g. [100,200]) while all the other remain in another indeed
small (e.g. [1,2]) it is clear that fj is predominant. This fact can be a
problem for the accurateness of affinity measures that depend by the length
of the feature vectors (e.g. Euclidean distance in section 2.2.2). For example,
if we consider a dataset D = {f},fs,...,f,} of n objects whose descriptors
follow the schema as above, then in the computation of the distance between
two objects deyc(f;, f5) just the information contained in the k-th component
contributes effectively to the measure, while all the other features in a certain
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sense are negligible.

The general method to solve this problem is well-known as Normaliza-
tion/Standardization which allows to balance all the descriptors to share
common properties from all the data D. There are two mainly formulations
employed in the practice, where a feature vector f; is replaced applying the
followings rules.

e Normalization. All the descriptors are taken to the space [0,1]?. De-
noting with min(D) € R? and max(D) € R? respectively the minimum
and maximum descriptors in D, a feature vector f; is replaced by the
rule:

i f; — min(D)
" max(D) — min(D)

€ [0,1]4

e Standardization. All the descriptors have null mean and unitary stan-
dard deviation. Denoting with mean(D) € R? and dev(D) € RY
respectively the average and standard deviation descriptors in D (in
the section 2.4.4 are introduced the scalar versions for the same statistic
concepts), a feature vector f; is replaced by the rule:

. f; — mean(D)
fi=———— > €cR
dev(D)  ©

2.3.2 Image descriptors

In computer vision or image processing the objects of interest are clearly of
visual nature. When the collection of data are set of images, the instances are
very often furnished in the typical raster/bitmap format. In machine learning
is more suitable to adopt the feature vector model (see section 2.1.3), therefore
are requested techniques to convert an image in this other representation.

2.3.2.1 GIST descriptor

The well-know GIST descriptor [15] is a method to convert a raw image
in a vector space of different dimensions, which is particularly addressed
to scene recognition. The goal consists to produce a low depiction of a
picture as an holistic representation of its spatial envelope, without required
segmentation methods. The fundamental idea is based to define a set of
perceptual dimensions (i.e. naturalness, openness, roughness, expansion and
ruggedness) which represent the dominant spatial structure of a scene reliably
estimable using spectral and coarsely localized information from Gabor filter
response. In detail, the descriptor is produced as the energy output from a
bank of Gabor filters, which are tuned on different orientations for z different
scales as {01,09,...,0,} (from high to low frequencies). Finally the square
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output of each filter is averaged on a n x n grid. The resulting descriptor
is a real valued feature vector fys; € R? whose number of dimensions is

determined as
z
2
g=n") o
s=1

2.3.2.2 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) is a particular method
based on the research of special local points over an images which does not
change (i.e. are invariant) under different transformations, such as rotation,
scaling, illumination and different 3D camera viewpoints. Therefore these
keypoints may be considered very distinctive features of an images and
compared with other images allows to recognize common similarities. In
other terms the SIFT descriptor depicts an image as a set of scale-invariant
coordinates which are relative to local feature points. The process may be
summarized in these following steps:

1. Scale-space extrema detection: under all the possible scales and im-
age locations are searched the more interesting invariant points, the
technique is based on difference of Gaussian function;

2. Keypoint localization: the keypoint are properly located according the
measures of their stability;

3. Orientation assignment: for each keypoint is assigned r orientation
histograms based on the gradient values is such point distributed in a
grid of n X n subregions;

4. Keypoint descriptor: the information of the gradients around the
keypoint are extracted and represented in a descriptor structure.

This particular process does not produce a conventional global feature
vector of an image, but actually a set of different local descriptors, whose
number k depends by the peculiarities of the input image processed. Anyway
for each keypoint descriptor found during the transformation its dimension
is determined as rn?. Therefore the global SIFT descriptor of the i-th image
may be seen as a matrix of size rn? x k;.

2.3.2.3 Spatial Pyramid Matching with Locality-constrained Linear Cod-
ing

The Spatial Pyramid Matching (SPM) [16] is a complex process to produce
feature vector of images indeed adapted to scene and object classification. A
wide class of descriptors (e.g. SIFT [17] or GIST) produce orderless bag-of-
features depiction of images, which is not able to register properly the spatial
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layout of the features, getting difficult to detect shape or segmenting objects
in a background. The SPM method may be seen as a process which refines
an initial object descriptor partitioning iteratively the image into increasingly
finer spatial subregions where are computed statistics (or histograms) of
local features. The typical setting consider sub-regions with a fixed form
2L % 2L up to the limit [ = 0,1,2. In detail the whole process may be divided
in different main steps:

1. Feature extraction: keypoint locations/feature points on the image are
detected or located in a fixed dense grid from which are extracted local
descriptors (e.g. with SIFT method);

2. Descriptor coding: given a precomputed codebook/vocabulary of z
entries (typically as a set of relevant centroids computed by k-means
analysis [18] on a subset of images in the same domain of the picture
of interest) each local descriptor is converted in a code of z dimensions
which respects certain criteria (normally is used a VQ coding [19]).

3. Spatial Pooling: the feature points are analyzed for multiple levels
of resolution and the sparse codes from each sub-region are pooled
together by averaging and normalizing into a histogram.

4. Concatenating: the several histograms are concatenated together to
produce the final global descriptor as a spatial pyramid representation
of the image.

Denoting with | the max order of subdivision in the pooling with a
codebook of z entries, the size of the produced descriptor f € R? is

l
_ i Lo
q—zzél —23(4 -1)

Although the VQ coding gives in general good performance, tends to
produce descriptors quite sparse and hence less suitable for linear classifier
(e.g. on typical Support Vector Machine (SVM) classifier). The Locality-
constrained Linear Coding (LLC) [19] is a novel coding scheme for SPM
application which exploits of locality constraint to project the descriptor into
its local-coordinate system. Moreover the spatial pooling and concatenating
phases do not use histograms since the results are combined with max pooling
and normalization of the codes. The resulting LL.C descriptor is be able
to deal with linear classifier obtaining indeed better performances than VQ
coding.

2.3.3 Normalized Graph Laplacian

This topic is especially addressed for algorithms which are designed to
work on graph models. The well-know Laplacian Matriz is a particular
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representation of a graph used to discover other new properties which are
related to another graph structure, for example the calculation of its the
spanning tree.

In machine learning this particular notion is widely used to improve an
initial weighted adjacency matrix W = (w;;) generating its related Laplacian
version W, which is said normalized graph Laplacian. Formally let D = (di)
the diagonal degree matrix of W such that d;; = > %_; w;j, the Laplacian
matrix normalization is acted as followings:

W =D WD 2

Therefore the learning algorithm works actually on a input graph which has
been updated with respect to initial definition. Anyway all the relationships
contained in W are still maintained in W, but employing this normalization
is considered as a good operation to enhance performance in real applications.

2.4 Data Analysis and Evaluation measures

In machine learning are indeed necessary performs data analysis on the
training data or measuring the quality of an estimated model; for these tasks
there exists several well-known solutions whose brief introduction is given in
this section.

2.4.1 Similarity matrix Heat Map

A typical requirement in machine learning consists to evaluating the
quality and accurateness of a similarity measure through a complete view of
all the measurements, which may be related to objects, labels and any other
entities of interest. Moreover in supervised applications it is fundamental
to verify if the clusters organized according the similarity of the objects
reflect the known labeling of the data, e.g. if it holds the concept of cluster
assumption (see section 2.1.2).

Given an ideal set of z data entities &€ may be computed a z X z similarity
matrix S = (s43) according some techniques (for example with centroid diver-
gence in 2.2.3.2 or based on Gaussian k-Nearest-Neighbor method in 2.2.2.3).
The main idea to analyze this structure consists to produce a visual depiction
as a z X z bitmap map P = (p,g) where each p,g denotes an ideal color
pixel. As concern the coloration aspect there exist different approaches.
For example, denoting the set all possible colors as C is fixed a color map
Cmap © [0,1] = € (where the shade of colors are distributed according the
minimum and maximum level of similarity) which is employed to compute
for each pixel a and f the specific color as pog = Cmap(Sap). Another way
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consists to generate a monochromatic depiction fixing a common color ¢y € €
and using an ideal operation * : € X R — € that compute the intensity of the
color according the level of similarity between the entities, formally could
be defined as p,g = co * So3. The heat maps can be useful to verify if the
similarity measure is properly calibrated for the data or to detect regions
interested by common similarity signals.

In the specif case of supervised learning the heat map could be employed
to discover other important features among similarity measures and cluster
membership. In this context the computation of the similarity matrix
S = (s5) occurs on a dataset of n objects D = {(fi,v1), (f2,¥2), ..., (£, yn)}
over a domain of m labels Y, where has to be respected a crucial arrangement
of the data which concerns the disposition of the objects with respect to
their supervised labels. The condition which is requested is that for each
i=1...(n—1)if y; # yit1 then y; # Yy : Vk = (i+1)...n, in other terms
the data are ordered for label.

You can observe that in this fashion along the principal diagonal of the
matrix are distributed in sequence the m squared partitions with the pairwise
similarities of points that share the same label, while the remained area
denotes pairwise similarity between mismatched labels. The analysis of how
appears the n x n image P can solve important answers:

1. if the partitions in the diagonal are indeed visible it means that objects
of the same label are also quite similar among themselves;

2. if in the mismatching area there is less noise it means that objects of
different labels are less similar;

3. if both 1 and 2 properties hold it means that according the similarity
measure employed is verified the cluster assumption on the data;

4. if the picture is chaotic the reasons may be different, e.g. poor quality of
the descriptors, a similarity measure unsuitable for the feature vectors,
all the objects are too similar among themselves.

Exploiting of the supervised information of the data can be designed also
another interesting way to define the nuance of the pixels. Usually for each
label A € Y is assigned a distinct color ¢y and is chose another color ¢y which
is different from all the others too. The color for each pair of objects i and j
is selected by the following rule

oy vi=A=y;
c(i,j) = {co otherwise

therefore the final color for each pixel can be express as
pij = c(i, J) * sij
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This solution gets more evident along the main diagonal how is modeled the
distribution of the membership block regions for each different label and the
entity of similarity registered for all objects belonged to different clusters.

In practical usages the heat map of similarity matrix are a strong tool for
data analysis, but the main weak of this method is just the visual approach,
which is less suitable than a numerical measure of performance (e.g. the
intra-class membership ratio in section 2.4.2). In fact when the number of
labels are quite large the depiction of P can be difficult to consult.

2.4.2 Cluster membership

In the unsupervised learning, especially for the clustering approaches
(see section 2.1.2), there exists different specific measures to evaluate the
discovered clusters, in general the main kind of metrics are based on:

e external index: used to measure the degree of agreement between
a known external labeling of the data and an estimated grouping
discovered by a clustering analysis;

e internal index: used to measure the goodness of a clustering structure
without using supervised external information.

In this dissertation we could formulate a coarse measure to evaluate how much
a similarity measure s(-) between/among objects can reflect the labeling of
the data points, in other terms the goodness of the cluster assumption. Given
a dataset of n objects D = {(fi,v1), (f2,y2), ..., (£f1,yn)} over a domain of m
labels Y and let as usual the set of all objects in the same class A € Y as

Q)\: {f| (fay) EDvy:)‘}
we introduce the intra-class membership ratio for all the classes in Y as
followings
o Yxey 2o, .5eQy S 1))
ntra ZZ‘J‘ S(fi, fj)

This measure may be exploited to formulate the global inter-class membership
ratio clearly as

Minter = 1 — Mintra

The cluster hypothesis says that objects similar should share the same label
(or being in the same cluster), therefore the level of all the aggregated
similarities for objects with the same labels with respect to all the possible
pairwise similarities (i.e. intra-class membership ratio) should be quite high
if holds this assumption (in fact, objects in different clusters should be not
similar too); in other terms the hoped condition would be mnirq => Minter-
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2.4.3 Visualizing data in Scatter plot

In many data analysis the objects of interest are projected in a bi-
dimensional or tri-dimensional scatter plot to obtain a visual overview of the
data distribution in the Euclidean space. Therefore the objects are depicted
as visual points whose distances reflect the similarity relation among them.
This new way to see the data is indeed useful for different analysis both in
unsupervised and supervised applications, for example: in the former may
help to detect significant partition of the objects; in the latter the points
may be colored per class producing a more detail depiction to verify cluster
assumption.

The typical data model based on the representation of objects as multi-
dimensional feature vectors (see section 2.1.3) may be disadvantageous when
the feature space F exceeds the three dimensions. The solution of this
problem consists to perform some method which can project the original
data in a reduced space of two or at most three dimensions. Formally given
an ideal dataset D = {f},fs,...,f,} of n objects on the feature space R? with
q > 3, we may model a process

3= ;. B (RY) — P (R")

that produces a new dataset P = &) (D) = {p;,ps,...,p,,} which con-
tains the same n objects as reduced descriptors in the space R” with r = 2, 3.
The result obtained by this ideal technique has to be considered as a sort of
global approximation P, which maintains most possible the same properties
of the original data set D. Moreover if we consider an original instance
f; € RY, the reduced version p; € R" is not produced only according the local
information of f; but considering the peculiarities of all D too. Anyway it easy
to observe that the operation of data reduction refers to a process much more
general with respect to the specific application for visual representations,
simply generalizing the case to the condition r < ¢. In this way the reduced
data set P could be replaced in a learning phase to save computational time
of execution.

In machine learning there exist several well-known techniques to reduce
data dimensionality [20], but for visualization tasks are employed mainly
Principal Component Analysis [21] and several variants of Multidimensional
Scaling (MDS) [22] whose especially t-Distributed Stochastic Neighbor Em-
bedding [23].

2.4.4 Standard deviation

In any context where are employed experimental measures obtained from
aggregated data, there becomes necessary to establish an index to evaluate
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their goodness. The mean of a set of values is the typical way to estimated a
coarse measure which should represent the average case: knowing how much
is the data variability can be an useful metric of precision for such expected
value. Formally let X = {x1,x9,...,2,} C R a generic set of n real-valued
numbers where is computed the average measure as followings

the standard deviation (whose squared is said variance) is the typical disper-
sion index of the population X around z, which is expressed as

i=1(zi — )
n

ox —

If ox takes value quite high it means the estimation of T is made in a set of
values with high variability, namely is rather imprecise. This indicator allows
to say that the most part of the measures in X is roughly far of ox with
respect to Z or in other words that falls in the interval [z — ox,Z + ox]. For
example, if X denotes the age of a population with £ = 25 and ox = 3, then
the most part of those persons are between 22 and 28 years old. Therefore is
ox is low means that x represents better all the data in X, since there is a
weak dispersion.

The standard deviation is often expressed as coefficient of variation in
the normalized version

ox
oy = —

X

which is more convenient since the value is always defined in [0, 1] nevertheless
X.

2.4.5 Classification error

In supervised learning the labeled dataset available D is used to sample
two subsets (D(tmm),D(test)) said respectively training and test sets; ac-
cording the type of inference (see section 2.1.2) with inductive learning the
division is a partition, i.e. holds D(*en) 0 D(test) — () while in transductive
learning the test cases are included in the training set but without the
supervised information (as formalized in section 6.3.1). The data division is
necessary for two different steps of whole process:

1. Learning phase. Estimation of a final mapper ¥prain) @ F — Y
between objects and labels according the input training set D(*rain)
under (semi)supervised learning methods (see section 2.1.2).
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2. Evaluation phase. Consists to determinate an error ratio committed
by the model over the test set D(test),

The essential principle of the second step is based on mismatches between
predictions and real response values provided by the testing individuals.
Given a data split D = (D(tmm), D(teSt)) there exist two important measures
of performances as followings:

e (Classification error rate. It is a measure based on the rate of error
produced by the model as:

(0 H(E0) € DU |y £ W ()]
|D(test) |

e Accuracy rate: It is a measure based on the rate of success produces

by the model as:

Ds) (Ds)

alPs)=1—¢

Normally the evaluation phase gives average measures of performances
produced by much more divisions of the original dataset D, in this way the
judgment of the model does not depends by a singular split chose. Formally
defining as Sp the finite set of data splits, the mean classification error rate
is expressed as

s6p) 1 T e
|8D ‘ Dse8p
and similarly as the general case, the mean classification accuracy is obtained

as
a®p) — 1 _ &8p)

The operational aspect to built Sp depends by the type of inference and
what degree of precision is requested for the performances; in general there
exist several well-known approaches to manage the validation, which are
briefly described as followings:

e Holdout: producing a single split reserving % for training and % for
testing with respect to D (the repartition is conventional only, other
ratios are possible);

e Repeated random sub-sampling: producing several splits randomly
and compute a mean measure of performances (if the repartition is
fixed for all the splits the approach is said Repeated Holdout);

o k-fold: partitioning the data in k disjoint subsets, training on the k£ — 1
partitions and testing in the remaining part, finally computing mean
measure of all the performances (when k = |D| the technique is said
Leave-one-out);

e Bootstrap: producing data splits with replacement.
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Chapter 3

Game Theory

The Game Theory is a science area modeled around a basic concept,
which it can be easily explained quoting an essential statement by [1]:

“The central problem of game theory was posed by von Neumann
as early as 1926 in Gottingen. It is the following: if n players,
Pi,..., Py, play a given game I', how must the i-th player, F;,
play to achieve the most favorable result for himself?”

The question gives us a clear intuition that the main aim of Game Theory
consists to describe in formal way how a player can act to maximize own
score, presumably on an environment subjected by the game rules and choices
of own rivals. It is important to underline that the meaning of “game” has
not to be considered in the typical playful terms, but it refers more generally
to any problem which follows a finite schema.

The notions of Game Theory help to solve typical complex problems, such
as Dominant Sets/Clustering/Segmentation [24], Graph Transduction [2],
Standard Quadratic Programming problems (StQP) and Binary Maximal
Cliques [25] and so on, which can be mapped to proper games whose solu-
tions in this new form are easier to estimate than the original formulations.
Thinking to be able to convert mathematical problems in games could be
strange or difficult to understand, but if we consider a problem as a challenge
between players the idea becomes more reasonable.

In this section we introduce the particular formalism and language of

Game Theory field, focusing just about those main topics and aspects to
understand our work.
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3.1 Game assumptions

In Game Theory there exist different models of games, whose features
depend mainly by the type of player interactions, the information that a
player has with respect to the other players and what are his environment
constrains to make an action and earn score. We introduce a famous subclass
of games which is summarized by the following main properties.

e Finite. The number of players and the actions that they can exhibit
are the first variables that determinate the “game dimension", which
can be predetermined or not. Clearly when we talk about finite game,
it means that is possible only a fixed number of players with a finite
sets for their actions.

e Non-cooperative. The concept of cooperativeness in game theory
matches with the idea of sets of players which interact among themselves
giving life to coalitions. Such aspect is very strong to model some
types of problems, wherein group of players can help each other to
increase own payoffs. In the non-cooperative game instead we present
an opposite scenario where the players are basically always independent
(i.e. their actions does not constrained by those of the others) and
enemies, with no possibility to tie relations.

e Static/Simultaneous-move. The typical game dynamics see rules which
may often keep in account the sequential aspects of the player actions.
The class of sequential games gives manner if a specific action is
presented before or after another one. An important observation is
the fact that the player has to wait the own turn before to make its
decision, there exists trivially a cyclic order followed by players in
the game play. Therefore the score gained by the players has to be
modeled according all the possible action sequences. In this game is
valid the assumption the player knows at least the last action made
by the previous player which has played. Clarity this minimum level
of knowledge for the players is necessary otherwise the time constrain
would be not involve really to their payoff, since the game moves can
not be described in sequential terms anymore. In fact, if there is lack of
this information we are treating instead another famous game category.
The simultaneous-move game depicts the democratic reality of a game
whose the turn constrain is just absent, simply because all the players
have to make own decision at the same time. As consequence of this
property, we can say each player has not knowledge of the actions
chosen by other players.

e Complete and imperfect information. A player can make decision
mainly exploiting of the information he has about the playing field, in
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particular with more relevance on response (just made and available)
and score of own rivals: it is trivial, if we can see what move another
player can do, it will involve of course on our future decision too. We
are putting together two main concepts of Game Theory well-known as
completeness and perfection of the information: the first one refers if a
player knows the opposing available actions and payoff; the second one
what particular replies the rivals have just made. The game we consider
gives complete information, but as effect is also simultaneous-move the
information is imperfect. In other terms is valid the assumption of
common knowledge, it means all players known what all players known,
and each player knows such information is shared to all.

e Rational player. The player is seen as an actor involved to make
rational decisions. Anyway in this context the rationality property
assumes only a specific meaning, in which the motivation that justifies
the player move is the increasing on own payoff. There is no interest
to model other possible goals that a player could follow during a game.

3.2 Normal-form game

The formal representation of a game it is not an easy task, since involves
much and different fundamental information of the problem, such as players,
actions, scores and relations among these elements; therefore it is necessary
to adopt a general model to organized all this data. There exist two main
forms to solve this aim, well-known as FEztensive-form and Normal-form
games. Although the former is able to generalize much more game schemes
in this work we show in detail the latter only, since it is more suitable for
the game assumptions as section 3.1.

We introduce the main objects needed to describe a game, the notations
used is according [26].

e Players. Main components of a game is the set of its players, which
can be formulated as J = {1,2,...,n} with n > 2. The definition of a
single player ¢ € J in this form is quite general and it is necessary just to
enumerate the several available actors. The classical meaning of “player”
in this context does not be interpreted as a human individual, actually
the effective nature of a player can be indeed different. Moreover it is
not requested that all players in a game have to have the same playing
freedom, but several roles are designable.

e Pure Strategies. The concept of pure strategy arises from the basic idea
of action/move that an actor can exhibit. We can add new information
for the player figure, which solves the need to assign those strategies
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he can exploit. In formal way for each player ¢ € J is defined an own
set S; = {1,2,...,m;} of pure strategies.!

Pure Strategy profile. The assumption of simultaneous-move gets
simpler the formulation of a specific session of game; the term profile
could be interpreted as synonymous of game stage and it can be
described as a complete sequence with all the pure strategies whose
players has played. This particular structure is called pure strategy
profile modeled as a vector s = (s1, s9, ..., sn)T € S. This definition
assumes it is clear and without ambiguities that the pure strategy
at i-th position it is made by player ¢ € J and hence s; € 5;. The
set S = 51 x S2 x...x S, (whose cardinality |S| = [, m;) is said
pure strategy profile space and contains all the possible pure strategy
profiles. We can observe that the game is finite if and only if the set .S
is finite.

Payoff function. The fundamental tool needed to a game is an assign-
ment of those scores the players have obtained in a certain game session.
The payoff therefore depends both to specific player and pure strategy
profile. The first aspect is trivial to explain, since each player has an
own semantic role within the game, which involves the payoff that he
deserves. The second one instead suggests something more important:
to compute the payoff for a player i-th it is not necessary knowing
only that pure strategy he has played, but also all those acted by your
rivals. The domain of the score value could be defined in different
forms, but very often is numerical and real. Made this assumption, for
each player ¢ € J we define its personal payoff function as m; : S — R.
Given a pure strategy profile s € S, the payoff obtained by player ¢
is the value 7;(s). Moreover can be useful to define an extend pay-
off function which is able to compute the payoff of all the players as
m: S — R™. In this case we obtain directly all the payoffs as the vector

m(s) = (mi(s), mas), . ﬂrn(s))T

Therefore normal-form game is modeled as the triple G = (3, .S, 7), where

J is the set of n players, S the pure strategy profile space and 7 the payoff
function for all the players.

Presenting the game structure just by defining its sets of objects can be

a way too strict for several applications. In Game Theory the normal-form
games are famous for a special visual depiction of theirs features (with major

"'We denote pure strategy as indexes for generality and suitable vectorial operations,
but in other formulations it may be expressed as text labels; moreover, at least it is not
by clear by the context, the pure strategies in different player sets are not semantically
comparable, e.g. if given h € S; and k € S3 holds h = k, it is not guaranteed that h and k
refer to a same conceptual pure strategy.
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interest to project the payoff function), which consists simply in a collection
of tables or matrices. The easier case we introduce is that with two players,
although it can be extended for greater games. In detail a two-player game
can be described by two mj X mg matrices, denotes as A = (ap) for player
1 and B = (bpy) for 2, where for both the rows map the elements of the set
of the strategies Sy of the first player, while the columns the strategies Ss of
the second opposing player. If h and k are pure strategies such that h € Sy
and k € 5o, keeping the first matrix A as example, the apy cell contains the
score assigned to player 1 in the pure strategy profile (h, k), in other terms

apr = m1(h, k) (hence bpi = ma(h, k) for player 2).

The depiction of a game in matrix form can explain very quickly some
special cases according certain properties between these structures, briefly
we give the following definitions (assuming m; = my).

e Zero-sum game. When A + B = 0, hence it holds apr = —bp, for each
(h, k) (S Sl X SQ.

e Symmetric game. When A = B’ hence it holds ap, = by, for each
(h, k:) €51 x Ss.

e Doubly-symmetric game. When A = BY = AT hence the game is
symmetric and further it holds apg = agp, for each (h, k) € S; x Ss.

Very often the formulation by couple of matrices appears very verbose
and troublesome to use. In the practice it is sufficient an unique matrix
expressible as Uyp = A U B, which contains the information of the pay-
offs assigned to both player 1 and player 2. Each cell uy; is the couple

(ank, bpx) = (m(h, k), ma(h, k)), we assume the order of what player payoff
is the first or the second in the pair uyy is clear by the context and respected
for each cell of Ugpg.

3.2.1 Canonical games examples

Now we introduce briefly the schemes of some classic examples of games
in normal-form, which are between two players and symmetric. Moreover in
the section 3.4.3 we recall them analyzing in deep other aspects about the
game solution.

Prisoner’s dilemma

A typical simultaneous-move game is the Prisoner’s dilemma which describes
a controversial situation wherein one of two prisoners from the same criminal
gang could betray the mate even if their mainly interest is to cooperate.
The available and common action a prisoner can do is confess (betray the
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mate admitting they are guilty) or deny the crime (cooperate with the mate
remaining in silence). The consequences of that couple of actions occurred
are the following:

e when a prison confesses but the other cooperates, the traitor is free
while the other partner receives the full sentence of twenty months;

e if both deny the crime are sentenced for one-month sentence;
e if both confess are sentenced for ten-month sentence.

Using the game rules we can depict the related payoff matrix as followings:

Prisoner 2
Confess | Deny
Confess | -10,-10 | 0,-20

Deny -20,0 -1,-1

Prisoner 1

Table 3.1: Payoff matrix of Prisoner’s dilemma game

This version of the dilemma is generalizable, but we present it giving a
possible practical scenario. Since game is symmetric, the preferable choice
for a player is the same also considering the other party (i.e. Confess). The
fundamental aspect of this problem consists that applying the assumption of
rational player the solution of the problem is not that where both prisoner
fall in the best situation, i.e. (Deny, Deny). The predicable human picture
wherein two prisoners could cooperate to defend themselves is lost treating
this situation as a normal-form game.

Rock-Paper-Scissors

Another typical simultaneous-move game is the Rock-Paper-Scissors, it
requires just two players with the common set of pure strategies as { Rock,
Paper, Scissors}. The symmetric rules of this game they refers to the features
of the objects:

an object again itself does not produce gain;

the rock beats the scissors but loses with paper;

the scissors beat the paper, but lose with rock;

the paper beats the rock, but loses with scissors.

One possible depiction of the payoff matrix as the following;:
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Player 2

Rock | Scissors | Paper
Rock 0,0 1,-1 -1,1
Player 1 | Scissors | -1,1 0,0 1,-1
Paper 1,-1 -1,1 0,0

Table 3.2: Payoff matrix of Rock-Paper-Scissors game

Battle of the sexes

The Battle of the sexes game depicts the scenario wherein husband and
wife have to meet them in some place, but they have forgotten the exact
location. In detail both know the same set of possible places, moreover have
some preferences. For example, if the locations are football and opera, it is
assumed the husband prefers the first one, while the wife the second choice.
Nevertheless the priority remains meeting in the same place.

Using the game rules we can depict the related payoff matrix as followings:

Wife
Football | Opera
Football 2,1 0,0
Husband Opera 0,0 1,2

Table 3.3: Payoff matrix of Battle of the sexes game

The main interesting aspect of the problem is if both players make a
wrong choice the score is equal and null, but conversely is unfair because one
of the two players has always obtained a gain greater than the other.
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3.3 Stochastic Normal-form game

The normal-form game schema introduced in the section 3.2 gives a basic
and crisp formulation of a problem, but in other applications it is too rigid
and incomplete to use. The main need consists to model that situation where
the action of a player is ambiguous, i.e. multiple actions could be possible
and with different weights. The formulation of the game therefore becomes
extended in stochastic terms, so new objects have to be added to the pure
model to treat this new concept.

e Mixed strategy. Given a player i € J the idea of a move with multiple
possibilities is described well by a probabilistic distribution over the set
of pure strategy available .S;, this tool is called mixed strategy which
is formulated as the vector

xi = (022, mi(my)) € A,

where the set A,,, is the typical standard simplex which defines the
domain of mixed strategies (it contains all the possible probabilistic
distributions of m; components, i.e. all mixed strategies of m; pure
strategies, for the player 7). The single element x;(h) € [0, 1] denotes
the ratio that the pure strategy h happens for the player i. Moreover it
is useful to define the support operator for a mixed strategy x; € A,
which may be formalized as the function o(x;) = {h € S; | z;(h) > 0},
that returns the set of possible pure strategies (those could occur
since their probability is not null). Anyway the definition of mixed
strategy does not lost the base case, in fact a pure strategy is just a
mixed strategy without uncertainty, in other terms the m; vertexes of
the standard simplex A,,,. For example, the mixed strategy for the
player ¢ € J which denotes exactly a pure strategy h € S; is the point
el € A,,,. Tt is fundamental to state that even if the mixed strategy
object contains information that involves multiple moves, it has to be
considered as an unique action employed by the player, but what it is
in terms of pure strategy remains unsure.

e Mixed strategy profile. The concept of game profile remains clearly
necessary also working with mixed strategies: we want to store the
particular stage or point of a game. A mixed strategy profile therefore
is a vector X = (X1,X2,...,X,)’ € © which collects some possible mixed
strategies by all the players, the component x; € A, is just the mixed
strategy for the player ¢. Therefore the mixed strategy profile space is
the set @ = Ay X Ay X oo X Ay, L

'For definition the standard simplex is an infinite set, hence © is infinite too; anyway
the stochastic game has to be considered still finite, since it extends a finite pure strategy
space S.
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e Payoff function. The computation of the player score has to be updated
to manage mixed strategy profiles. In this new model we have to build
a payoff function u; : ® — R that gives the score of a player ¢ € J
which has played in the mixed strategy profile x € @. To model it we
start from a strong assumption of probabilistic independence between
the mixed strategies exhibited by all the players in a profile. Therefore
given a pure strategy profile s = (s1,52,...,5,)7 € S, the probability
that may occur in a some mixed strategy profile x it is expressible as
followings:

n

Pr(s|x) = H xi(8;)

=1

The concrete payoff function is modeled as the expected value of the
pure score weighted according the incidence of the pure strategy profile
given into x of all the possible pure strategy profiles in S as:

u;(x) = Z Pr(s|x)m;(s)

seS

Even if such formula seems quite difficult to use, we can show its
computation is quite generalizable. If we consider as usual the case of
games with two players, given a mixed strategy profile x = (x1,x2)7 €
A, X Ap,, and recalling the two payoff matrix A and B of the pure
model (see section 3.2), we can use simple products between these
structures to solve calculus:

ui(x) = S0, SS02 wy (h)apkae(sk) = xT Axa
up(x) = S ST w1 (h)bpraa(sk) = x1 Bxo

The stochastic model introduced can be depicted as an extension of the
classic pure formulation G = (J, 9, 7) as the final schema G¥ = (G,©,u),
where © is the mixed strategy profile space and u is the ideal payoff function
for all the players.

3.4 Toward the game solution

In Game Theory the definition of the problem in a certain form (e.g
normal or extensive) is necessary mainly for the primarily task to describe in
formal way what a game is. Nevertheless the next fundamental step consists
to study what occurs in such environment: in other words, we are interested
to look for the solution of the problem. In normal-form games it normally
corresponds to specific game properties that strategies or strategy profiles
can assume for some configurations and players.
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Before to enter in deep about this topic we have to make some clarifications
about the meaning of notation and language we are going to use. The strict
distinctions between the terms pure strategy and mizved strategy as pure
strategy profile and mized strategy profile can be lightened using the general
nomenclatures as strategy and strategy profile, because in practical refer
always to the same basic concepts both in the pure and stochastic normal-form
games; exclusively if the explanation can lead to awkward misunderstanding
the distinction will be maintained. As concern the notation adopted we still
follow the stochastic model introduced in the section 3.5, since it includes for
its definition also the pure scheme properties (the reader can realize that the
relations we are going to explain are applicable in one-to-one correspondence
also with the objects of the pure normal-form game). Moreover we introduce
other compacted objects to simplify some steps: given any strategy profile
y € © and a mixed strategy x; € A,,, the object z = (x;,y_;) € © denotes
the strategy profile wherein the player ¢ € J plays x; while all the other
players follow the strategies in y. In other words the strategy z is modeled in
such way z; = x; for the i € J and z; =y, for each other player j € J\ {i}.

3.4.1 Best replies

We have to remember the assumption of rational decision-making player,
i.e. his main aim is that to maximize own score. This crucial goal justifies
the necessity to discover that strategy he should employ to reach it. The
strategy x; € A,,, of the player i € J is called best reply/response for the
opponent strategy profile y € © if and only if it holds:

wi(X;,y_;) > ui(zi,y_;)

for all the strategies z; € Ay, \ x;. Therefore the best reply for a player i is
just the choice that he has to do to obtain the greater score given a specific
answer y by his rivals. In a game the set of all the possible best replies for
the player ¢ € J against y € © is formulated as followings:

Bi(y) ={xf € A, |y €0,Vz; € Apy, s ui (X7, y_;) > ui(zi,y_;)}

In general the set B;(y) is always infinite, but it may occur a rare case
wherein it exist a finite number of best replies, which are pure strategies too.
Considering the sets of best replies for all the players in the common mixed
strategy y, it is possible to define a complete set of mixed strategy profiles
as followings:

B(y) = B1(y) x B2(y) X ... x By(y) C ©

Moreover we can underline two particular observation considering the
relation between mixed strategies with the pure strategies in their support:
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e if the support set of a best reply contains two or more pure strategies,
any different mixed strategy with the same support is still a best reply;

e in the same way, if we detect two pure strategies which are best replies,
any mixed strategies that support themselves are also best replies.

3.4.2 Nash equilibrium

The concept of best reply in section 3.4.1 focuses the incidence of a
single strategy with respect to his author and the context where is applied.
Very often we look for relevant properties that take in account all the set of
players, especially for static games: the fundamental concept in Game Theory
that looks the problem from this other point of view is well-known as Nash
Equilibrium. This idea is a desired expectation under the assumption of
rational decision-making for the players, which it should not be an inclination
that lead to a game without a solution.

In formal terms the Nash Equilibrium is a particular strategy profile
x* = (x],x%3,...,%x},) € © when is verified:

wi (x5, x%;) > ui(zi,x7;)
for all players ¢ € J and all the strategies z; € Ay, \x;‘ Moreover if the

property is never equality for all x; # z;, the strategy profile x* € © is
defined as strict Nash Equilibrium, it means that B(x*) = {x*}.

It is easy to observe that Nash equilibrium exploits of the main concept
of best reply extending it to all the players: in fact we could say it consists
in a best reply for itself since x* € B(x*). Therefore when players reach a
Nash equilibrium, they can do nothing to improve their gain changing moves.
In a certain sense they all played in the best way considering their game
profile, and such situation could be interpreted as sort of collective win or
an equilibrium state.

We remark an important theorem which underlines the link of mixed
Nash Equilibrium with the pure strategies:

Theorem 3.4.1 Given a strategy profile x* € © is a Nash Equilibrium if and
only if for each player i, every pure strategy in the support of the mizred
strategy x; is a best reply with respect to the opponent strategies x* ;. It follows
that every pure strategy in the support of any mixed strategy in equilibrium
leads its player to obtain the same expected payoff.

3.4.2.1 Nash equilibrium existence

The condition about the existence of Nash equilibrium is a topic crucial
in Game Theory. This particular strategy property has to be considered in
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distinct way according if we consider the problem in terms of pure or mixed
strategies.

o With pure strategies the only thing is possible to say is Nash Equilibrium
could exist, therefore its existence is not guaranteed. Moreover a
problem can admitting one or more Nash equilibrium, so such strategy
profile is not necessarily unique.

o With mized strategies instead the existence of at least one Nash Equi-
librium is always guaranteed [3]. This property is fundamental because
extending a pure game without Nash equilibrium in the mixed model,
we can always find a potential solution for the same problem (although
in stochastic terms).

3.4.3 [Examples of Best Replies and Nash Equilibrium

The compacted payoff matrices of the games, at least for small dimensions,
can be used to discover quickly best responses and Nash equilibrium. We
can show some examples exploiting of our toy games in the section 3.2.1,
where the bold style denotes best replies and the underlying for a profile
in Nash equilibrium (anyway you can observe that for definition the latter
matches to a cell which contains best replies for all the players).

Prisoner’s dilemma

Prisoner 2
Confess | Deny
Confess | -10,-10 | 0,-20

Deny -20, 0 -1,-1

Prisoner 1

The unique Nash Equilibrium in this game, namely the profile (Confess,
Confess), shows the interesting fact that is not the best situation for the
prisoners, which it should be (Deny, Deny). The reason of this paradox is
due to the assumptions of Game Theory, i.e. the rational decision-making
of the player in a simultaneous-move situation, which may lead to a Nash
equilibrium that fails the semantic of the game.

Rock-Paper-Scissors

Player 2
Rock | Scissors | Paper
Rock 0,0 1-1 -1,1
Player 1 | Scissors | -1,1 0,0 1,-1
Paper 1.-1 -1,1 0,0
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In this game does not exist a pure Nash equilibrium, but only a set of
best replies. Anyway, according the properties of existence in section 3.4.2.1,
using a mixed strategy extension we can solve the problem. In fact this game
has an unique Nash equilibrium (x1,x2) € ©® where the two players share the
same uniform mixed strategy x; = xo = (%, %, %)T, i.e. the barycenter of As.

Battle of the sexes

Wife
Football | Opera
Football 2,1 0,0
Husband Opera 0.0 12

The game admins even two Nash equilibrium, the profiles (Football, Foot-
ball) and (Opera, Opera). The solutions reflect the condition of both players
are addressed to make the same decision, anyway also in the equilibrium
state a single player is always ahead.

3.4.4 Computing a Nash equilibrium

In real applications the research of Nash equilibrium is a challenging
opened topic. It is necessary to understand in deep the nature of this for-
mal problem and discover possible operational processes to solve it. The
former aim has already reached a fundamental answer, classifying the Nash
equilibrium in an important subclass of NP problems well-known as PPAD-
complete [27]. Therefore we are dealing with a matter that can not be
solved in a polynomial computational time. Fortunately we have available in
literature different interesting approaches which suggests efficient algorithms
to compute this solution, obtained by revised formulations of the main Nash
Equilibrium concept. Considering the case of multiplayer games, we can cite
for example the simplicial subdivision method [28], continuation methods [29]
and enumeration-of-support methods [30, 31, 32].

In our work becomes indeed interesting to introduce a specific method
which is derived from the well-known Fvolutionary Game Theory, a sub dis-
ciple of the Game Theory whose fundamental contribute is ascribed to John
Maynard Smith [26]. The game in this new area is modeled under special
assumptions inspired on animal selection; the notions discovered through
such curious formulation have opened the way to build concrete operational
methods to compute Nash Equilibrium. This evolutionary approach is been
furthermore enhanced by [33, 34| exploiting of the multipopulation idea to
give a well-formed approach suitable on a multiplayer game.

The method to compute an equilibrium point is based on a particular
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dynamical system (see section 2.1.3) called Replicator Dynamics. Modeling
a mixed strategy profile as a function x(*) € © in the domain of continuous
time ¢ € R and considering a player ¢ € J which acts the pure strategy h € S,
the multiplayer version of the replicator is governed by the following relation:

i5(h) = wi(h) (wilell, x ) — ui(x)) (3.1)

This particular dynamics belongs to a subclass more restricted included
in the conventional regular selection dynamics based on payoff monotonic
dynamics, which is featured by the property that the ratio of strategies with
higher value of payoff tends to increase with higher rate [2]. The replicator is
invariant when the payoff functions produce positive affine transformations
during the evolution, i.e. u;(e?, x_;) — au;(el,x_;) + 8 with a > 0. More-
over, if x(O) € © is guaranteed for each player i € J that xgt) € Ay, for all
t > 0, namely each mixed strategy for the player ¢ remains in its standard
simplex A,,,.

The fundamental property of the replicator dynamics is its fixed points
are just Nash equilibrium, as stated in the following theorem [33]:

Theorem 3.4.2 A point x € © is the limit of a trajectory of equation (3.1)
starting from the interior of © if and only if x is a Nash equilibrium. Further,
if point x € © is a strict Nash equilibrium, then it is asymptotically stable,
additionally implying that the trajectories starting from all nearby states
converge to Xx.

The formulation of the replicator dynamics as continuous function is a
complete property from a theoretical point of view, but in real applications
becomes indeed awkward. The typical algorithms have a vision of the time in
a discrete domain, therefore we need to approximate the replicator dynamics
to use it properly. The following operator is a good discretization in t € N

wiel, x")

(t4+1) ()]
x; ' (h) = ;7 (h) uy (x®)

i i (32)
which maintains the same dynamical properties of its continuous version (3.1).
Given the payoff function of all the players v and an initial mixed

strategy profile x(©) € © a possible algorithmic procedure to compute a Nash
equilibrium is the following (where € € R is a threshold of tolerance for the
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updating process):

Algorithm 3.4.1: Discrete-Replicator-Dynamics(x(?), u)

t<0
repeat
> computation of mized strategy profile x(t1) € @
fori< 1ton
s uy(x1)

d for h < 1 to m;
° h )

79—

S

do wgtﬂ)(h) — :):Z(»t)(h)ui(e
err Hx(t“) — x(t)H
t+—t+1

until err < ¢

return (x())

3.5 Succinct Games

In Game Theory literature there exists a wide collection of classical game
patterns since different problems can be generalizable to unique schemes.
Moreover an important feature taken in account for the categorization of
these games is also their dimension, which is expressed in terms of number
of payoffs needed to depict them. If we recall the classical normal-form
model, without considering simplifications, a game with n players and m
common pure strategies would require a set of nm” values of payoff to be
stored: we can realize it is not a trivial magnitude. To treat this problem
we introduce the definition of succinct game (also known as succinctly rep-
resentable game), which is a property of a game to be reducible in a lighter
dimension than that it would be necessary with a normal-form representation.

We present very briefly a list of fundamental examples of succinct games.

e Sparse games. It is possible that the most part of the payoff values
consists in a null number. This condition allows to exploit of a reduced
depiction of the game considering the payoffs which are different by
zero only; for example, with two player games the payoff matrices
are sparse, therefore there could be used a typical Compressed sparse
row/column schemes to store them in a reduced format.

e Graphical games. The impact on the payoff for a player could be
involved to a restrict group of other players than all n. If we denote
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with d the greater number of players which have indeed effect to the
mates (presumably d < n), to depict the game are sufficient nmdtl
values of payoff. Moreover graphical games in a certain sense are a
special case of sparse games.

e Symmetric games. The main aspect in these games consists that all
players are identical, i.e. the rules of the game does not make distinction
to that player is affected. For this reason the only thing really important
to compute the payoffs in a possible profile is the number of n players
that play each of the m strategies. The dimension of this type of game

n+m—2 ) .

is just m( 1
e Anonymous games. For each player is defined an own payoff function
which does not depend to the extents of the other players (e.g. if the
player has to choose to go in a given place, it is not relevant who will
meet there, but how is crowded that location). For the calculus of
the dimension of this game it holds the same concept of a symmetric
game, but adding the payoff of the single player, hence the size is

n+m—2
(477,

e Circuit games. The idea consists to model the payoff function of a
player as a logical combination of the opponent strategies (in other
terms as a Boolean circuit). Through this new form is not necessary to
store each different output payoff because it can be computed on-the-fly.

We decide to dedicate a proper section for the explanation of another
succinct game, since being that more relevant to understand our work it
deserves a detailed treatment.

3.5.1 Polymatrix Games

The polymatrix game (also known as multimatrix game) is modeled ac-
cording the assumption that the effect of any exhibited action from a player
maintains the same incidence on the payoff for all the opponent players and
independently by their moves. The important consequences of this prop-
erty consists that only pairwise interactions between players are important.
As concern the payoff computation for the player, since the influence of
its strategy is the same for all the other ones, then it is solved simply as
a sum of all the payoffs that its move produces against each opponent strategy.

We can give a formal definition of this game as following.

e Given a set of n players J, all can play the same set of m pure strategy
P. There fore the pure strategy profile space is S = P and the mixed
strategy profile space the multisimplex ©@ = A7 .
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e For each couple of players ¢, j € J is defined a m x m payoff matrix as
Ajj = (aij(h, k)) Moreover the interaction for each player i € J with

himself is useless to consider, hence we assume without lost generality
that the payoff matrix A;; = 0, i.e. all its elements are set to zero.

e Given the pure strategy profile s = (s1,2,...,5,)7 € S, the payoff
function for a player ¢ € J is

mi(s) = Z a;ij (i, Sj)
j=1

e Given the mixed strategy profile x = (x1,Xa,...,x,)’ € © the payoff
function for a player ¢ € J is

— for unambiguous mixed strategy

ui(el, x_;) = > (Aix;)n
j=1

— for any mixed strategy
n
ul(x) = Z XzTAZ'ij
j=1

In this class of games usually all the payoff partial matrices are collected
in a unique block matrix structure A = (A;;), whose magnitude reflects the
dimension of the game too. In fact since we have a total of n? payoff matrices

and each one contains always m? values, the size of a polymatrix game has
order O(n?m?).

The research of equilibrium points in this category of game clarity is an
important case of study. Treating the formulation with stochastic structures
is possible to guarantee the Nash equilibrium existence and in terms of
computational complexity is been discovered that belongs to the class of
PPAD-complete [35]. There exist two notorious algorithms to solve this
game, which are based according different approaches to the same problem:

e the replicator dynamic systems derived by Evolutionary Game Theory
(see 3.4.4);

e the relaxation labeling operator employed to find the solution of the
Labeling problem (see 4.3).
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Chapter 4

Labeling Problem

Several computational problems applied in different science fields such
as, computer vision, pattern recognition and so on, fall in the main class of
methods based on the necessity to give labels to a set of objects: this specific
goal is generally well-known as labeling problem. It is presumable clearly
that the association between label and object has to respect some semantic
criteria. The latter refers to the fundamental consistency property of the
assignments, which is obtainable combining several levels of information
available on the objects. In literature there exist different processes to deal
with this topics, but a wide visibility is certainly given to the well-known
consistent labeling problem [36].

In this work we introduce a famous approach for labeling problem based
on the relazation labeling process formulated in 1976 by Rosenfeld, Hummel
and Zucker [37]. The main aspect held up in this model is based on the
combination of two levels of information associated to objects and predictable
label. The local hypothesis for the labels that can be given to an object
are weighted with the precious information of the context, which describes
how much the forecasts are supported with respect to the assignments given
to all the other objects. Looking for the best fitting that combines local
and contextual information allows to reach a consistent labeling assignment.
Moreover the relaxation labeling process may be seen as a generalization for
another more general class of problems known as Constraint Satisfaction
problem (CSP) [5, 6], wherein crisp constraints between variables are got
“soft” by weights which denotes their level of confidence.
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4.1 Discrete Binary CSP

The classical constraint satisfaction problem depicts a general set of crisp
constraints on a set of variables which have to be totally satisfied. Therefore
the valid solutions of the problem is just any assignments which respect all
the constraints, for this reason they are also said consistent assignments.
The discrete binary CSP is just a simplified case where the expressiveness of
the conditions is more restricted. Formally a binary CSP can be modeled as
the triple (V, D, R) with the following features.

e V={vy,v9,...,u,} is the set of n variables.

e D={D,Dy,...,D,} is the set of discrete and finite domains associ-
ated to each variable, namely Vi = 1...n, the variable v; € D;.

e R={Ryj | Rij € Dy, x Dy, } is the set of binary (or logical) constrains
of each pair of variables, wherein R;; € R contains all legal pairs
of values which may be taken by the variables v; and v;. Typically
the depiction of a constrain R;; can be formulates as a |D,| x |Dy,|

binary matrix R;; = (rij()\, ,u)) where if the cell 7;;(\, n) = 1 denotes
that the assignment v; = A € D,,, is compatible with the assignment
vj = p € Dy;. The case 7i;(A, ) = 0 has the complementary meaning,
i.e. such assignment for the two variables is incompatible (it is not
permitted).

The formal definition of this problem gets clearer the reasons because is de-
fined both discrete and binary: the domains of any variables are always finite
and discrete; the constrains are logical expressions which evaluate the truth-
fulness or falseness on all the possible combinations of values which variables
can taken. Hence this formulation is an instance of a general CSP prob-
lem, wherein are modeled instead any sort of variable domains and constrains.

Finding solutions in classical CSP over finite domains has a complexity
time which falls in the class of NP-complete [38]. The trivial way to look for
consistent assignment (or proof its nonexistence) is based on backtracking, but
involves times too long for practicable usage; more suitable computational
approaches are based on local search or constraint propagation [5, 6.

4.2 Relaxation Labeling model
The labeling problem and the process devised to solve it can be easily

explained giving firstly a formal definition of all the conceptual elements and
features which form the general model.
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“Problem: let B = {1,2,...n} a set of n objects and A = {1,2,...m}
a set of m labels, the goal of the labeling problem is defining a mapping
U : B — A, where the label for each i € B is solved as ¥(i) € A

The initial information that has to be available for the objects are the
following;:

e Local measurements. The nature of the object involved in the problem
have to allow its description in terms of measurable features (see
section 2.1.3). This information is assumed to describe uniquely the
object seen in isolation.

e Contextual information. According the possible nature of the problem
it is possible to define a priori hypothesis which depicts all the knowledge
of similarities between labels and objects. This information is collected
in a ideal four-dimensional real-valued structure, which can be depicted
as the n x n block matrix R = (R;;) (whose extended magnitude
is nm x mm), wherein for each couple of objects i,j € B is stored

the partial m x m matrix R;; = (rij()\,,u)) Given a pair of labels

A, i € A, the real value 7;;(\, p) is called compatibility coefficient and
it measures the strength of the following hypothesis:

“the object i is labeled with A\” and “the object j is labeled with u”.

In general high values for a compatibility coefficient denotes the hypoth-
esis is very likely, and low values vice versa; the condition r;;(X, u) > 0
is preferable in several applications, but not necessary. How inferring
the matrix R properly is an open problem.

The formulation just introduced gets evident that relaxation labeling
may be seen as a soft version of the Discrete Binary CSP, wherein the
variables match with the objects which share the same domain of labels
and especially the crisp logical constrains are taken in a stochastic
model.

4.3 Relaxation Labeling process

The method to solve the labeling problem is obtained by a relaxation
process wherein, starting from an initial assignment, it will be iteratively
updated up to reaching the final solution. For each step ¢ € N and object
1 € B it is necessary to compute a structure named local weighted labeling
assignment which collects the hypothesis of all the possible labels; formally
it can be expressed as the following vector:

T
pl” = (0 (1,07 (@),....0"(m)) " € A,
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(*)

, 1s a probabilistic distribution over the set of labels A

(*)

)

In other words p

in the standard simplex A,,. For each label A € A the value p
the weight of the hypothesis:

(\) measures

“the object i is labeled with \ at time ¢”.

Therefore if pl(t) is a vertex point of the standard simplex A,,, it means which

depicts an unambiguous assignment because it exists a possible associated
label only. The local measurements of an object ¢ may be exploited just
to solve the problem to infer a proper initial assignment pgo) at time ¢t = 0.
There exists interesting techniques to deal with this problem, for example
in image processing the information of a the color histogram describes the
distribution of colors in an image, if is found a relevant percentage of blue
shades for a picture the hypothesis its label may be sky is reasonable high.
Anyway in several applications, if this information is too poor to give a
proper initial assignment is acted a general initialization as the barycenter

T
of the standard simplex, i.e. pgo) = (%, e ,%) €A,
Considering the whole set of n objects we can define another combined
structure called weighted labeling assignment, defined in the multi-simplex
space K = A} as followings:

T
p® = (p1”.py,....p) €K

Similarly the case of single object, when p®) is a vertex point of the space
IK, it depicts an unambiguous weighted labeling assignment since for each
object there is no uncertainty of its associated label.

Another dynamical structure needed in the updating process for each
object ¢ € B at time t is called support vector and modeled as followings

T
" = (6" (1,4 @),....¢"(m)) er™

where the element for each label A € A is computed as

d00) =33 r O () (4.1)

j=1p=1

The contextual information given by qZ(t) (M) could be interpreted as a measure

for the statement “the context supports that object 7 is labeled with A at
time t”. According the definition for a single element (4.1), exploiting of
matrix operation the complete support vector for an object ¢ can be expressed
equally in the following form:

n
qgt) — Z Rl'jpg-t) (42)
7=1
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As the weighted labeling assignment, the global support vector of all objects
at time ¢ is denoted as q*) € (R™)™.! Further for the proposed defini-
tion (4.2), it holds that q(¥) = Rp®.

We introduce a heuristic solution well-known in honor of its authors as
Rosenfeld-Hummel-Zucker rule, which reflects the combination of local and
contextual information over the objects.

(®)

For each object 7 € B and label X € A, the assignment p,’ is updated at

time ¢ + 1 as followings:

e PP e
p=1D; (g’ (1)

The rule simply exploits of the two main information weights about the
(t)

label A and the object 7, whose nature is local for p,

ql(t)(A), normalized according the sum s for each labels to guarantee that

pl(t) € An.

(M) and contextual for

Relaxation labeling in operational terms is an iterative process which from
an initial weighted labeling assignment p© generates a sequence of updated
versions p(@, p(®) p@ .. p® along the time ¢, with the goal to converge in a
fixed point for the rule (4.3). This final weighted labeling assignment depicts
the solution (soft) of the labeling problem. A possible algorithmic form
which describes this process may be summarized as followings (where € € R
is a threshold of tolerance for the weighted labeling assignment updating).

!This shortcut notation has be not confused as (R™)"™ = R™", but the Cartesian power
is meant as (R™)" =R™ x ... x R™.
—_——

n times
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Algorithm 4.3.1: Relaxation-Labeling-Process(p(?), R)

t<0
repeat
> computation of support vector q(t) e (R™)"
and weighted labeling assignment pt+Y e K
fori< 1ton
5+ 0
for A\« 1tom

") = S0 Y (O )l ()
do 3 do ") =pP N (N

S48 +p§t+1)()\)
(t+1) I (t+1)

pP; <~ —Pp;
err <— Hp(tH) — p(t)H
t+—t+1

until err < e

return (p))

Clearly if the process finishes at the final labeling p € IK, it is very difficult
it is an unambiguous assignment too. A classical idea to get crisp the soft
assignments is based to select the most likely label for each object i € B.
Hence the estimated crisp labeling assignment can be modeled as a vector

A~ A oA A N\T
y= (y17y2>"'7yn) e A"

where for each object i € B the outcome is obtained by the typical
maximum a posteriori probability (MAP) rule

. 0
Ui argl}lggpz( )

Recalling the initial formulation of the problem, the estimated mapping
is therefore:
Ui)=y; Vi=1,...,n

4.4 Consistency and Dynamics of Relaxation Labeling
The relaxation labeling process may be formalized as an ideal continu-

ous mapping £ : K — K, where pt1) = £(p®) with ¢t > 0 according the
rule (4.3), or in other terms as a discrete dynamical system (see section 2.1.3).
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An open question consists to determinate what conditions have to hold to
guarantee the reaching of an equilibrium state for the dynamical operator
£, namely if exists ¢ € N finite such that £(p®) = p(). This topic is been
discussed in different studies [4, 39, 40] and we report the fundamental
properties involved in this process.

Since the updating of weighted labeling assignment depends uniquely by
its support vector, the relaxation evolves just if its contextual truthfulness
changes. If p € K is a equilibrium point for £ and q € (R™)" is its support
vector, then has to hold the following relation:

gi(\) = ¢; whenever p;(A\) >0 Vi=1,....,n, A\=1,...,m

for a some positive constants ci,co,...,¢, (we can realize from this
property that an unambiguous weighted labeling assignment is hence an
equilibrium point for £, even if it is not always true the opposite).

The particular property as above can be formalized in another form
which is well-known as Hummel and Zucker’s consistency [4] of the weighted
labeling assignment. Let as usual p € IK and q € (R")" the related support
vector, then p is said consistent if:

> opi(wai(p) > zi(pai(p) Vi=1,....n
p=1 p=1

for all the possible weighted labeling assignment z € K. Moreover if relation
is never equality for each z # p, the weighted labeling assignment p is said
strictly consistent (e.g. the unambiguous points). The consistency condition
is equivalent to the vectorial property (z—p)?q < 0 for all z € K, from which
we derive a geometrical interpretation: when the support vector becomes
orthogonal with respect to all the tangent vectors of p, it is reached the
consistency.

The main theorem and a relative corollary which summarize all this
concepts about to consistency property are the following [4].

Theorem 4.4.1 A weighted labeling assignment p € K is said consistent if
and only if, for alli=1,...,n and A=1,...,m, hold the two conditions:

1. gi(\) = ¢; whenever p;(\) >0
2. ¢i(N\) < ¢; whenever p;(A) =0
for some positive constants c1,ca, ..., Cp.

Corollary 4.4.2 Let p € K be consistent, then p is a fixred point for the
nonlinear relaxation operator L. If p is in the interior of K space the
converse also holds.
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The support vector depends mainly by the fixed weights of the com-
patibility coefficients in the matrix R. Therefore it is presumable that the
properties assumed on such structure involve heavy to the relaxation labeling
process. We said that the matrix R is symmetric when for all 4, 7 € B holds
the condition R;; = R;‘Fz To explain what occurs on the basis of R we have to
introduce the particular notion of average local consistency of an weighted
labeling assignment p € IK, which is depicted by the function T : K — R as
following;:

n m n
TP) =Y > pNa(A) => plai=p"q (4.4)
i=1 A=1 i=1

We quote another fundamental theorem from the Hummel and Zucker
work [4] which describes the behavior of the average local consistency under
certain conditions.

Theorem 4.4.3 Suppose that the compatibility matriz R is symmetric. Then
any local maximum p € IK of T is a consistent weighted labeling assignment.

This result is really important because under such assumption on R the
consistent labeling task can be turned into a maximum problem of a function,
or better the following StQP:

maximize  Y(p)
subject to p € K

Moreover if R is symmetric and positive the Rosenfeld-Hummel-Zucker
rule works increasing strictly the amount of average consistency [40], in other
terms it assumes the typical role of Lyapunov function for the system (see
section 2.1.3). The evolution of the whole process is stable and finite since it
holds the following relation

for each ¢ > 0, until it will be reached a fixed point for the operator L.

In general we can not presume that with an asymmetric R the process
never converges, in fact with unambiguous points it is always finite. Anyway
we can state that in presence of a strictly consistent labeling p € IK the
condition of symmetry for the compatibility matrix is irrelevant, since p is
also an asymptotically stable equilibrium point for the nonlinear relaxation
operator £ [39, 40].

4.5 Relaxation labeling in Game Theory

The labeling problem model in the section 4.3 is conceived according
assumptions which give space to a large set of applications. In our work it
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is important to introduce the contribute of relaxation labeling in the Game
Theory field. The interesting fact is the similarity between the problem to
look for the solution of a Polymatrix game (see section 3.5.1): in fact we can
say that is possible to define an one-to-one correspondence between them [41].

The mapping of these two problems can be easily understandable by a
comparison as following.

Relaxation Labeling Polymatrix Game
Set of n objects B Set of n players J
A unique set of m pure
Set of m labels A strategies P shared for all the
players
Compatibility coefficients R;; Payoff matrix A;; for a couple of
for a couple of objects i,j € B players ¢,5 € J

Block matrix R = (R;;) which Block payoff matrix A = (A;j)
collects all partial compatibility | which collects all partial payoff

coefficients matrices
Weighted labeling assignment Mixed strategy x; € A, for the
p, € A, for the object i € B player ¢ € J
Weighted lal;eéull}% assignment Mixed strategy profile x € ©

Consistent labeling assignment
pekK
Strictly consistent labeling
assignment p € K

Nash Equilibrium x € ©

Strictly Nash equilibrium x € ©

Table 4.1: Comparison of Relaxation Labeling and Polymatrix Game

The fundamental connection between these apparently different problems
is just the property of a consistent labeling assignment matches with the
Nash equilibrium of a mixed strategy profile. Therefore relaxation labeling
may be used as an useful computational method to find Nash equilibrium
points in any polymatrix game. In fact it is observable that the nonlinear
relaxation labeling rule (4.3) may be seen as the explicit form that the general
replicator dynamics (3.2) would assume according the payoff function of this
game class (see section 3.4.4).
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Chapter 5

Graph Transduction Problem

In the machine learning community semi-supervised approaches to deal
with labeling tasks (see section 2.1.2) are already well-consolidated methods
and the interest about these topics is in continuous ascent nowadays [9]. A
wide class of semi-supervised applications defines a theoretical problem as a
graph model, wherein the objects of interest coincide to nodes and the weights
over the edges are similarity measures among themselves (see section 2.2.2):
one of these graph-based techniques is known as Graph Transduction method.
In that the main matter to face consists to look for a suitable way to propa-
gate the supervised information given by known labeled nodes to unlabeled
ones, in order to obtain a consistent labeling for all the objects, which is
an approach in harmony with the typical transductive inference approach
(see section 2.1.2). It is important to state that this specific class of semi-
supervised learning works under the fundamental assumption on the data
well-known as clustering assumption, which reflects the natural homophily
principle of the social networks': namely, the tendency of individuals to
associate and bind with similar others [42].

In this work we introduce a novel solution of Graph Transduction, which
models the problem as a multiplayer noncooperative game [2] exploiting of a
strong relationship between the relaxation labeling (see chapter 4) process
and notions in Game Theory field (see section 4.5).

5.1 Graph Transduction model

First of all it is necessary to give a formal definition of the problem to
have a clear look of this topic. Graph transduction is a method which is
based on semi-supervised learning process. Therefore we can image to have

'Refers to an important branch of the social sciences, particularly in sociology and
anthropology, which studies the theoretical social structure made up of individuals or
organizations.
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aset B={1,2,...,n} of n objects which can be labeled in the finite domain
Y=1{1,2,...,m} of m labels. For each object i € B is associated a proper
feature vector f; (see section 2.1.3) to describe its isolated peculiarities in an
ideal global domain F for all the objects. The concrete training set available
can be modeled in the form D = (Dy, D_y) where:

e Dy = {(fi,11), (f2,y2), ..., (fx,y-)} is the sub set of z < n labeled
objects where Vi = 1... z the label y; € Y;

e D_y={f.41,f.40,...,f,} is the sub set of n — k unlabeled objects;

Moreover we introduce these shortcut notations B(Dy) = {1,2...z} and
B(D_y) ={z+1,2+2,...,n} to denote respectively the sub sets of labeled
and unlabeled objects within of all the population B.

The information in the dataset D which is available for all the individuals
it is clearly their feature vectors. These descriptors can be employed to
infer a graph structure according some methods (see section 2.2.2) to obtain
a n x n weighted adjacency matrix W = (w;;) which contained pairwise
similarity scores of the objects. Moreover it is necessary that W has to be
assumed as a null-diagonal matrix, since it is useless modeling self-loops for
the Graph Transduction problem. Therefore exploiting of the similarities in
W the construction of the weighted graph § = (B, E, W) is devised according
these following aspects:

e B: is the set of n labeled and unlabeled objects which may be seen
without lost generality as nodes/vertexes of the graph too;

o £ ={(i,j) € B? : w;; # 0}: is the set of edges in the graph which
depicts the relevant relationships among objects;

e W: the similarity matrix whose G is inferred represents just its weighted
adjacency matrix, which further may be seen as an ideal function
w : E — R that returns the real-valued weight of an edge (i,j) € E as

w(i, ) = wij

The goal of the Graph Transduction consists to estimated a final general
mapper ¥ : B — Y, under cluster assumption in the training set D, which
furnishes a consisting labeling for all the nodes/objects.

5.2 Devising a transductive learning
The research of a possible solution for the Graph Transduction problem

may begin under the analysis of a simplified case of study, which is obtained
imposing certain conditions on the input graph structure. We can image to
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have an instance of the dataset D such that produces a graph G which is an
unweighted undirected graph; in this way the related structure W is just a
binary adjacency matrix (i.e. defined in the domain {0, 1}) and symmetric
(ie. W = WT) since the graph is undirected too. Hence the presence
of an edge between two nodes denotes the perfect similarity between the
related pair of objects, while conversely their total dissimilarity: basically,
two objects can be either completely equal or different, without intermediate
weights. Under this setting the fundamental clustering assumption gains a
new interpretation, since in this simplified graph a data cluster in D matches
with a connected component (i.e. a subgraph of § in which any pair of nodes
is connected), therefore it is equal to say that:

“nodes in the same connected component should share the same label”.

An interesting way to solve this toy problem could be giving its reformu-
lation as a discrete binary constraint satisfaction problem (see section 4.3).
In fact if we consider to depict the label assigned to each node as a variable,
following the cluster assumption we derive that the information in the ad-
jacency matrix W is sufficient to define all the constrains that have to be
satisfied by the variables. Formally all the elements associated to this CSP
can be defined as followings:

e Variables. Since the graph is composed by n nodes the set of variables
is simply determined as V = {v1,va,...,vn}.

e Variable domains. The domains for the labeled objects B(Dy) are
restricted to their unique outcome value, while all the others may
assume any of the m labels available. Hence the generic domain for a
variable v; € V is defined as

_ My} i€ B(Dy)
Du { Y e B(D)

e Constrains. It is interesting to observe that given a pair of nodes
i,j € B, if w;; = 1 means that the two objects are equal, therefore for
the cluster assumption should have the same label too: this condition
is translated to the constrain v; = v;. Recalling the formulation of the
constrain set as the |D,,| x |D,,| binary matrix R;; = (rij()\, ,u)), to
model v; = v; it is sufficient that for each pair (A, 1) € Dy, x D, the
element 7;;(\, #) = 1 just when holds A = p. You can observe that for
each unlabeled variables/objects i,j € B(D_;) this definition produces
exactly R;; = I, namely the compatibility matrix is equal to the
identity matrix of m x m order. Trivially if w;; = 0 (the two objects are
different) the pair of variables v; and v; are free to assume any values,
i.e. their assignments has not be constrained between themselves, which
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is reflected by the condition r;;(A, u) = 1 for any value X and p in their
domains. All these indications can be summarized by the following

rule:
rij( A\ p) = 0 otherwise e (5.1)
1 otherwise

Therefore any assignments which satisfy all the constrains modeled on this
discrete binary CSP are consistent labeling assignments, or equally valid
solutions for the toy graph transduction problem considered.

5.3 Graph Transduction Game

The weak point of the transductive approach introduced in section 5.2 is
due to the crisp constrains modeled by CSP formulation, which are not able
to deal with any general graph, i.e. when W is defined in R. Hence it would
be necessary lookin for a way to maintain the constrain satisfaction principle
but that is softer too. The relaxation labeling model (see section 4.3) may
arise as a sharp source of inspiration since describes just that is requested.
Moreover another aspect much more interesting is that in Game theory field
(see chapter 3) there exist several notions that allow to model the same
transductive process: hence it is reasonably possible to formulate the Graph
Transduction problem as a noncooperative game.

The n objects in the dataset D, or in other terms the nodes of the as-
sociated graph G, may be translated as players of a normal form game (see
section 3.2), expressed by the set J = {1,2,...,n} = B. The labels in Y can
be treated as pure strategies for the individuals. Therefore all the players
share the same set of m pure strategies P = {1,2,...,m} =Y (namely, for
each player i € J is assigned S; = P), hence the pure strategy profile space is
the set S = P™. The interpretation of the game consists that a player i € J
which plays a pure strategy h € P declares the own membership for that
associated label. Anyway this pure formulation is still too rigid to model
our goal, therefore the current game is extended in a stochastic model (see
section 3.5). All the players can play mixed strategies, which clearly are
defined in the common mixed strategy space as the standard simplex of m
components A,,. The derived mixed strategy profile space is therefore the
multisimplex © = A . Moreover the complete set of players associated to
labeled objects can be formulated as J, = B(Dy) where the remained parts is
denotes as J_y = B(D_y). According the knowledge of the problem is clear
that each player does not act at the same way. In fact it is reasonable that
a player associated to a labeled object i € J; can play always the unique
pure strategy k associated to its supervised label y; = k, or equally the
related unambiguous mixed strategy ef . Therefore we denote with J, | k C Jy
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the subset of these labeled players that play the common pure strategy k& € P.

Treating the problem to define payoff functions we can assume that
only pairwise interactions between players are allowed. Therefore a suitable
reference schema which may be adopted it is that of a typical Polymatrix
game (see section3.5.1). Anyway the general definition of this class of games
can be explicated in this context highlighting the specific distinction between
the contribute given by labeled and unlabeled players. Formally, for each
player ¢ € J on a given mixed strategy profile x € ©, the payoff functions in
this polymatrix game are reformulated as followings:

e For unambiguous mixed strategy

ui(el,x i) = Y (Agxpn+ D > Aij(h,k)

JE€I_y k=1j€d4|k

e For any mixed strategy

UZ(X) = Z XZTAZ']'XJ'—I-Z Z X;F(Aw)k

S k=1j€dy|k

The final question to deal with is how to define the partial payoff matrix
A;; for each pair 7,5 € J of players. To emulate the same transductive
principle drafted in the section 5.2 it is necessary to look for a general model,
which can turn the logical crisp constrains in a soft form in such way the
cluster assumption setting is maintained. In that is interesting to realize
the weight of the hypothesis which two players have the same label may
be expressed just as much they are similar, in other terms through their
similarity measure. Therefore the general formulation of the partial payoff
matrix for the players i, j € J becomes:

Aij = wily,

The assumption of null-diagonal condition for the weighted adjacency matrix
W produces null payoff matrices A;; since holds w;; = 0 and this consequence
is in harmony with respect to the standard formulation of a polymatrix game.
Moreover the typical organization of all the payoff partial matrices can be
taken in the unique block matrix A = (A;;) which is easily computed by
Kronecker product as followings:

A=WaI, (5.2)

We can observe that such model in the case of unweighted undirected graph
reproduces just the constrains formulation (5.1) for the case w;; = 1, which
is more evident for unlabeled players/objects, i.e. A;; = w;;I,, = 1L, = Ry;.

69



In fact if the game is reduced to pure strategy playing, it emulates just the
same discrete binary CSP behavior.

This noncooperative game is singular since the players J, basically plays
always the same strategies, therefore their aim is not to maximize own
payoff: in a certain sense they act as prompters for the concrete active
players J_y, in such way the latter are led to perform those strategies which
reflects better their membership. Although it is clear that this principle
have to be maximized globally, which matches to that state wherein all
the players reach the best fitting simultaneously; hence the solution of this
game is just represented by the well-known concept of Nash equilibrium (see
section 3.4.2.1).

5.4 Operational settings of GTG

The transductive process of the Graph Transduction Game (GTG) has
been analyzed mainly as a formal model in section 5.3. Considering the
solution as a computational problem instead there arises new questions about
a proper data management and the consequent dynamical behavior of the
learning phase.

It is necessary to decide how prepare the initial state of the dynamical
system associated to GTG. Since this game is formulated for semi-supervised
learning, they are known without ambiguities the labels associated to the
objects in the subset Dy, while for the rest of the data D_, this lack of
information should be solved by the Nash equilibrium computed. As concern
the initial mixed strategies to give to all player, the favorite way consists to
assign for a labeled object the unambiguous strategy according its supervised
label, while the barycentric of the common standard simplex A,, over Y for
the unlabeled objects. Formally given a player ¢ € B the rule applied to
define the mixed strategy x(©) € A,, is the following:

eYi 1€ Jy

m m

1€J_y

The payoff block matrix A is initialized according the rule (5.2) and
such information is a parameter crucial of whole the learning process, since
depicts a fixed context along all the learning; whereas it depends mainly
from the weighted adjacency matrix W of the graph G, therefore the quality
of such information is indeed important. In that there are several aspects to
consider: the accurateness of the descriptors in F; the similarity technique
to compute W; the fundamental cluster assumption on the data. It is
interesting to observe another fact: if W is symmetric also the payoff matrix
A becomes symmetric. It has been amply argued about how the symmetric
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property of the compatibility coefficients determines specif behaviors on
the dynamical process which is acted to compute equilibrium points (see
theorem 4.4.3). Nevertheless to the original procedures to obtain W, it is
followed a typical practice known in several machine learning applications of
Laplacian normalization (see section 2.3.3). In detail, before to begin the
training phase is precomputed the normalized graph Laplacian W according
the given similarity matrix W, therefore the real payoff block matrix modeled
by GTG algorithm is actually:

A=WxI,.

Assuming that in an instance of Graph Transduction Game is found a
concrete Nash equilibrium x € ©, there remains the problem about how to
express this consistent weighted labeling assignment as crisp labels predicted
for all the players. The classical solution (as suggested for the relaxation
labeling model in section 4.3) is based to infer that pure strategy stronger
for each player ¢ € J in terms of maximum a posteriori probability by the
following rule

9; = arg max z;(k) (5.3)

which selects the more likely label to assign for the associated object i € B.
This final step depicts the consistent mapper ¥ as the solution of Graph
transduction problem (see section 5.1).

The Graph Transduction Game is mainly a type of polymatrix game
which can be solved by relaxation labeling process (see section 4.3) or in evo-
lutionary terms by the replicator dynamics (see section 3.5.1). Considering
the real implementation of this game the concrete transductive learning is
formalized always as a discrete dynamical system. In this setting, since a
polymatrix game is mappable perfectly with a relaxation labeling process,
GTG inherits the same dynamical behaviors of Hummel and Zucker’s system
(see section 4.4). The computational time of the learning process, shared
by both the discrete dynamics (3.2) and (4.3), is estimable in the order
O(tmn?), where as usual n is the number of players/objects, m is the number
of pure strategies/labels and ¢ the number of steps required to converge in a
Nash equilibrium point/Consistent labeling assignment. Another important
consideration consists to realize that if the payoff matrix A is symmetric, then
it is also guaranteed that the transductive process has a finite time; anyway
even if such condition does not hold the algorithm could however reach a
fixed point, which for the theorems 3.4.2 or 4.4.1 is still a Nash equilibrium.
Nevertheless in general does not exist a formal law to describe the number
of iterations ¢ required for the learning, anyway it has been observed a linear
increasing with respect to the number of objects n. This latter consideration
takes Graph Transduction Game to follow the computational time of O(n?),
which is on the line with the trends of other popular graph-based transduction
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methods. For this reason GTG would be not suitable for on-line learning
applications (see section 2.1.2); anyway there exist possible studies which
may be exploitable to increase the current performance, for example a novel
fast evolutionary game dynamics [43] or the MUCCA algorithm [44], both
solutions with linear time complexity.

5.5 Introducing Category similarity in GTG

Typical classifiers consider each single category completely different in
terms of similarity with respect to the others. However this assumption is not
always suitable in different applications, because may occur that some class
is for a certain aspect similar to another one, e.g. street and highway, pony
and horse, car and jeep and so on. Especially when the number of categories
is quite high, the class similarity sharing clearly is not negligible anymore and
hence there becomes indeed indispensable to introduce category similarity in
the learning process. The approach to exploit of class similarities may be
modeled in several manners, but in general it is based to weight properly
the similarity among objects from different categories. In other terms the
category similarity should help to improve accurateness whose a computer
system distinguishes multi-categorized objects [45].

In this dissertation we are interested to study the behavior of GTG when
its underlying transductive principle based on cluster assumption is extended
to incorporate category similarity information during the learning. The
challenging fact being able to formulate a classifier as above is clearly hoped,
but we treat this topic mainly for analysis tasks. For such purpose, we may
devise a presumable model which generalizes the original formulation of the
Graph Transduction Game. We remark that GTG is built under a relaxation
scheme wherein the possible labeling assignments are modeled as a set of
soft constrains. Nevertheless the general pattern that defines the high level
similarity relationships among labels (as for example the linguist semantic
or object-based forms of category similarity, see section 2.2.3) is a binary
structure which does not consider the real domain of categories involved,
since it rejects a priori possible levels of similarity between couple of different
labels.

In formal way we recall firstly some fundamental data components em-
ployed in GTG. Given a data set D of n objects B, it is inferred a graph
structure § = (B, E, W) whose n x n null-diagonal weighted adjacency matrix
W = (w;;) contains for each couple 7, j € B of nodes/objects their similarity
measure w;;. The domain of labels that the objects may assume is a finite
set of m categories Y. For each edge (i,j) € F in § is associated a m x m
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matrix that models all the soft constrains for the labeling assignments as
Aij = wisly,

which matches with the general payoff function for the polymatrix Graph
Transduction Game. You can observe that the binary matrix factor I,, may
be seen just as the similarity matrix which models the category similarities
over the domain Y, but actually it is independent by the real categories. In
fact it remains constant for any set Y, scaling on m only; moreover since L,
is always an identity matrix, it depicts that particular case where a set of m
categories does not share similarity, i.e. any label A € Y may be completely
equal only to itself s(A\, A) = 1, but totally different with respect to all the
other s(A, ) = 0:Vu € Y\ {\} (considering typical similarity measures in
[0,1]). This aspect is presumable to be the main weak point of GTG and
such limit suggests the definition of a further generalized form as

Aij = wijS(y)

where the structure S = (sxu) represents the real-valued m x m similarity
matrix over the category domain Y and s, weights the affinity between two
labels A\, u € Y (which may be computed by different class similarity measures
as section 2.2.3). Moreover we could assume as suitable precondition that
S is symmetric and with all ones along the main diagonal, as holds for
a wide class of similarity measures; it is reasonable that such properties
should weak much less possible the underlying cluster hypothesis and avoid
ambiguous relationships between categories. The collection of payoffs for any
pairs of objects is collected in the new block matrix as

A=Ws®

We call this new scheme Graph Transduction Game with Category Similarity
(GTGwCS) which combines object-based similarity W with category similar-
ity s just with a Kronecker product between these two kinds of information.
This new formulation does not lost generality since when st — I, then
GTGwCS reproduces the same behavior of the original GTG.
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Chapter 6

Experimental survey of GTG

Our analysis is mainly well-established on fundamental assumptions
related to image recognition in Computer Vision. Considering a general
categorization problem, we could say that the successful of such task depends
if the objects grouped in a given category reflect its semantic, therefore there
becomes interesting to wonder an essential thing: “What is a category?”.
In cognitive psychology [46] categories are seen as semantic units in the
human mind, which are so important to be considerable as the basis of
human intelligence [47]. In this cognitive science the open questions focus
about how humans can define categories and how they are depicted in the
mind. Moreover another fundamental research consists to verify if there
exist conceptual /semantic prototypes associated to a category [48]. If we
move our point of view considering the interaction of the human in the
visual world, the cognitive psychology supports different important relations
between semantic category and visual similarity of images, in detail:

e semantic categories are visually separable, or in other terms form cluster
in visual space;

e there exist possible visual prototypes which describe a semantic cate-
gory;

e visual similarity is correlated to semantic similarity.

Therefore taking this topics in computer vision, we are interested to verify if
a machine can respect those assumptions. In other terms, we wonder if the
common similarity measures used to distinguish images are able to reflect the
semantic differences of the categories involved too: in fact the greater parts
of the algorithms which employ visual affinities consider implicit such ability.
We solve our doubt from an interesting analysis [14], which proofs that typical
similarity measured by computer vision descriptors is sufficiently able, under
some preconditions, to follow the semantic bound with the categories in the
cognitive human visual system. This fact is fundamental otherwise we could
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not use computer vision tools to design solutions for image recognition tasks.

In this section we take these concepts in a real experience made through
the Graph Transduction Game (GTG) (see section 5), to understand in detail
what reasons are behind the measured results. We start introducing general
topics about practical aspects which are common for the greater part of all
the experiments, in particular:

e the main peculiarities concerning the datasets employed and their
technical depiction in feature vectors;

e the effective method to infer a graph structure from a dataset and the
several parameters/properties established;

e the evaluation strategies used to compute and compare performances.

Then we eventually analyze in deep several aspects about Graph Transduction
Game, from preliminary observations to other sharper surveys focusing the
relationships between visual and semantic similarities. Finally we complete
our study employing the variant GTGwCS (see section 5.5) to see what
occurs in GTG if measures of category similarities are introduced in the
learning process.

6.1 Datasets

Graph Transduction Game is designed over similarity relationships with-
out to impose what sort of objects is involved. In the original work [2] GTG
was already tested in different kind of datasets, which collect images, text
documents, citation networks, web pages and so on. Anyway in our practical
experiences we employ several dataset especially of visual nature whose main
features are introduced as followings.

e Scene [15]. Scene is set of 2688 natural scene images with resolution
of 256 x 256 pixels, which are classified into eight different categories.
Moreover for each class there are an average of 335 scenes.

e SUN [49]. SUN is a comprehensive collection of annotated images
covering a large variety of environmental scenes, places and the objects
within (131,072 Images, 908 Scene categories, 249,522 Segmented ob-
jects and 3819 Object categories). Our dataset consists in a selection of
397 scene categories, where the number of images for each category is
variable with a minimum support of 100 examples for a total of 108,754
images.

e Caltech-101 [50]. Caltech-101 is a collection of 9144 images which
are distributed in 101 categories. The subjects depicted in each class
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are objects (e.g. cars, keys, flowers, animals and so on) with relevant
variance in terms of shape. For each category are available about 40 to
800 images, but the major part there contains 50 items. The resolution
of each image is roughly of 300 x 200 pixels.

6.1.1 Object descriptors

For all the datasets employed the images are given as JPEG documents,
the conversion phase to vectorial object descriptors is described as followings.

e For the datasets Scene and SUN the original images are resized to be
not larger than 256 x 256 pixels (preserving the aspect ratio) and then
converted with GIST descriptors (see section 2.3.2.1). In detail it is
followed the original configuration [15] employing bank of 24 Gabor
filters for 8 orientations and 4 scales, whose signals are arranged in a
grid of 4 x 4 blocks: the resulting GIST descriptor is a feature vector
of 512 dimensions.

e For the dataset Caltech-101 the original images are resized to be not
larger than 300 x 300 pixels (preserving the aspect ratio) and then
converted through Spatial Pyramid Matching method with Locality-
constrained Linear Coding (see section 2.3.2.3). The initial feature
points in an image are extracted with SIF'T approach (see section 2.3.2.2)
with 8 orientation histograms on 4 x 4 subregions producing local de-
scriptors in 128 dimensions. A dictionary of 1024 entries is generated
by k-means clustering [18] over a subset of objects with an uniform
number of images for class. The spatial max pooling is performed over
4 x4,2x2 and 1 x 1 sub-regions. Therefore the final LLC descriptor
for each images has 21,504 dimensions.

According the peculiarities of the descriptors employed, the feature vectors
produced have not predominant features. On the basis of experimental
evaluations the process of Normalization/Standardization of the datasets
(see section 2.3.2) is been avoided, since relevant differences in term of
performance has not been observed.

6.2 Graph construction

The Graph Transduction Game works in a graph structure inferred from
an initial input dataset, hence it is crucial to define the better setting to
maintain faithful information with respect to the original input points. In all
the experiments we perform a graph construction technique that is inspired
from the original work [2] which we reintroduce the main aspects.
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The usual weighted adjacency matrix W = (w;;) is produced as a typical
Gaussian k-Nearest-Neighbor similarity matrix (see section 2.2.2.3); the
fundamental parameters set for this method are the followings.

e Nearest neighbors. The number of nearest neighbors is fixed to k = 20,
this choice is due mainly according the average magnitude of the
datasets employed and to avoid the generation of graph structure too
complete, which can not depicts properly the essential heterogeneity of
the training data.

¢ Distance measure. In general the more appropriated measure of dis-
tance depends of the kind of feature vectors. In our experiments we
have always considered Euclidean distances (see section 2.2.2.1) since
according the nature of the datasets employed is sufficiently suitable.

e Kernel widths. First of all, we denote with linspace(a, b, n) and ideal
function which returns a set of n linearly spaced real-valued numbers
between the ends a and b (both included). For the kernel width space
is established a specific window, that can be expressed as the following
function

»(d) = linspace(0.16,6,5) U linspace(d, 104, 5)
= {01702>"'709}

which returns a finite subset of nine kernel widths according the input
value ¢ (we remind that consists to the average distance of each points
with respect to its k nearest neighbors). You can observe that would
be possible to produce a different weighed graph for each kernel width
available; anyway in our experiments we decided to choose that built
with the greatest value, i.e. o9 (according the increasing order of the
kernel widths), since contains clearly sharper similarity signals by the
Gaussian filtering (see section 2.2.4.1).

In our work we consider experiments made on symmetric graph only,
therefore after the construction of the Gaussian k-NN weighted adjacency
matrix W, we perform also a symmetrization based on the maximum simi-
larity approach (see section 2.2.4.2). Moreover we recall that indirectly GTG
algorithm applies by itself a Laplacian normalization of the input graph
(see sections 5.4). Therefore putting together all these aspects the effective
learning structure is summarized as a symmetric and Laplacian normalized
Gaussian 20-Nearest-Neighbor graph, based on Euclidean distances among
feature vectors; since it is employed a Gaussian kernel all the measures of
similarity treated (the graph edge weighs) are defined in [0, 1].
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6.3 Validation approaches

6.3.1 Crisp misclassification

We design a specif evaluation strategy to guarantee good quality and
reliability of the collected results, which is based mainly on classification error
rate according the predictions returned by GTG algorithm (see section 2.4.5).

Given a generic dataset D = {(f1,v1), (f2,92), ..., (fn,yn)} of n objects
over a domain of m labels Y, we may prepare a training set for semi-supervised
learning (see section 2.1.2) simply deciding that subset of points from D
is considered labeled. Formally we denoting with D7) = (D,, D_,) the
training set where Dy C D and D_, = {f | (f,y) € D \ Dy} is the reaming
part of D but without the known labels. Therefore we may see the Graph
Transduction Game as a model

979D(train) . D—E — 13

which depends from the specif training set.

To get the evaluation faithful we establish some constrains to define the
subdivision between labeled and unlabeled points. First of all it is necessary
that holds |Dy| < |D_y|, therefore we could model a maximum ratio such
that |Dy| < an (with a € [0,1]) in order to hold such condition.! The
second fundamental aspect to consider is about what support to give for each
category in Y from the labeled points and the effect that such choice takes
to learning process. Remaining the cluster assumption on the data and the
graph transduction principle, we may express this observation: if the data
tend to spread in separated clusters and the information of the labeled nodes
is propagated to nodes in their neighborhoods, how will be estimated the
labels for those unlabeled points which are located in cluster with no labeled
points? In fact since we decide to select labeled points randomly there could
occur that the supervised information for some classes is cut off from the
learning, i.e. does not exist labeled points for a class. To reduce this uncer-
tain situation for each category we guarantee that in Dy there exists at least
one point belonged to that;? another solution would be to follow the trivial
rule where the number of labeled point is uniform for class (see section 6.4.5),
but we have left this way since the cluster dimensions may be unbalanced
in the dataset and very often this setting can not be practicable in real usages.

!Experimentally the choice of « is difficult to generalize for any datasets, but in our
experiments we have decided empirically to remain in the window « € [0.02,0.1], which
may be considered as a suitable tradeoff.

2(Clearly this approach does not guarantee always that all the clusters are covered by at
least a labeled point since some category can be described by multiple well-separated data
groups; anyway we assume that such scenario occurs sporadically and hence negligible.
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Graph Transduction Game is a semi-supervised model that performs
transductive inference over the data, which has to be evaluated in a manner
lightly different than the typical inductive models (see section 2.1.2). In the
latter in fact the main principle consists to learn once and then predicting
over unknown data; therefore to emulate this aspect in terms of evaluation
it is sufficient that the test cases are completely external with respect to the
training set. Instead as concern the validation on transductive learning, there
occurs the test samples are completing part of training set Dtrain) which are
determined just from the selection of unlabeled objects as D(est) = D \ Dy
(in other terms training and prediction phases may be seen as an unique
Macroprocess).

To avoid measure of error ratio which depends from a specific data
division it is convenient to produce different splits over the same dataset D
and compute an average measure of performance. Moreover for a proper
analysis the measure should focus a specific condition for the data split,

which is its number of labeled points. Formally, denoting with S%) the finite
set of several random selected data split (D(tmi"), D(t“t)) € S%) whose the

number of labeled objects in the training set is fixed to [ = |Dy|, the average
performance measure is computed as followings

1 ) {(£,y) € DU | y # GTG perain (D}

’D(test) ’

(6.1)
8]

rain es ()
(D(train) D(test))egl

This validation strategy may be seen as a version of the more general repeated
holdout approach (see section 2.4.5), which is adjusted for semi-supervised
learning with transductive models.

In much parts of our experiments we compute multiple performance
measures according an ideal sequence | = |Y|,...,~ an for the number of
labeled points and for each choice [ we performs 100 different data splits
(i.e. |S%)] = 100). This bag of data is finally depicted in a plot of average
classification error rate per number of labels points with standard deviation
ranges along the curves (see section 2.4.4).

6.3.2 Soft misclassification

The general misclassification performance which is considered in sec-
tion 6.3.1 detects an error when a predicted label ¢ for an instance f is wrong
with respect to its real label y. Anyway this crisp principle does not verify
how much the mistaken label is similar to the correct category. For example,
if the set of labels is {orange, mandarin,dog} and the object to classify is
an orange, the error mandarin with respect to dog has a relevance indeed
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different. Therefore we are interested to employ an evaluation technique that
can take in account of the error extent, whose weight follows some measure
of semantic/object based category similarity, in order to evaluate deeply
the classifier [13, 51]. We may design two new forms of misclassification
performance which employ of category similarities as followings:

e k-Nearest Soft Misclassification. Formally given a label A € Y we
may model the set Llj C Y that contains the first &k labels which
are more similar with respect to A (included) according a measure of
category similarity s(-). Therefore the rule to count an error during the
evaluation is updated as the condition ¢ ¢ L]; . The validation scheme
as (6.1) is updated as followings

| {(£y) € DD | STS prans (6 & L
@ Z(D(tTain)7D(teSt))€S%) |D(t€8t)| .

In all the experiments which employ this form of performance the pa-
rameter k is set to 3, since we retain suitable that the wrong predictions
fall at most within the first two different labels much more similar than
the correct one. You can observe that this evaluation criterion is a sort
of generalized scheme, since with k£ = 1 the rule (6.2) becomes identical
to the method (6.1), which is based on the common misclassification
error.

e Free Soft Misclassification. The main disadvantage of the measure
based on k-nearest soft misclassification is the requirement of a fixed
threshold, which cut off the real level of similarity between correct and
wrong labels. Therefore the evaluation may be relaxed considering
directly the cumulative amount of similarity weights, under the assump-
tion to work with a measure of similarity s(-) defined in [0, 1]. This
new scheme may be seen as a further more expressive generalization of
the classical crisp misclassification. Considering the pair of labels for a
certain test instance as y,y € Y, in the latter the correct prediction is
evaluated when y = ¢ and counted as 1; exploiting of similarity instead
for the same condition the result of the evaluation does not change,
since equally s(y,9) = 1. The unique difference is in the case of error
y # 1, because may be considered a weight which is not always null
as occurs in the crisp performance. Therefore the evaluation scheme
as (6.1) may be updated as followings

— >

851 \ e 0
D (D(trazn)’D(test))ESD

Z(f,y)ED(teSt) S (y7 979D(train) (f))
‘D(test) ’

(6.3)
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6.4 Data analysis and experiments

In this section we introduce concretely whole survey made on Graph
Transduction Game. First to focus in detail this topic we prefer to give a
briefly description regarding the original experimental story of Graph Trans-
duction Game [2], in order to have an overview more complete about all its
known abilities with respect to the restrictive case of study in our dissertation.

Considering the initial aspect of the source of data, the evaluation tests
were performed in several kind of datasets and feature descriptors too.
Moreover the graph construction did not always follow our setting since
were executed different deeper experiments, from which we summarize these
particular differences:

e the distance measures employed were both euclidean and cosine based,
clearly the distinction was according the type of objects in the dataset;

e for each dataset were inferred different graphs (one for kernel width
available), but among the several performances collected was chosen
the best only;

e the algorithm was tested both symmetric and asymmetric similarities;

e the definition of the kernel width space was revised for experiments
with negative similarities (dissimilarity information).

Moreover the results of these particular tests were compared with other
graph transduction algorithms well-known in machine learning community,
in particular we cite the spectral graph transducer [52], the guassian fields
and harmonic function-based method [53], the local and global consistency
method [54], the Laplacian regularized least squared [55], the mixed la-
bel propagation method [56] and manifold regularization with dissimilarity
method [57]. The conclusions derived from of all these experiments have
proofed that Graph Transduction Game is very competitive with other solu-
tions, being able in different cases to overcome them.

Although GTG has been already tested under different conditions in
our survey we analyze in detail further several aspects, in order to under-
stand more clearly how is featured its learning process; all our analysis is
projected to reason about the strength relationship between data similarity
and classification performances.

6.4.1 Preliminary dataset analysis

We start our survey making a brief analysis of the datasets (see section 6.1)
employed to understand how the several instances are distributed and make
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hypothesis of data similarity in spatial terms. For this aim we use a typical
visual approach producing a scatter plot (see section 2.4.3) in bi-dimensional
space using the ¢-Distributed Stochastic Neighbor Embedding [23] method
to reduce data dimensionality; the membership for each class is distinguished
by a proper color.

In figure 6.1 we have a complete depiction of the dataset Scene, whose own
8 categories Y = {coast, forest, highway, inside city, mountain, open country,
street, tall building} seem quite ordered in terms of clustering subdivision.
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Figure 6.1: Scatter plot of Scene dataset with categories

Anyway looking more in detail we observe more overlapping mainly for
the class open country and mountain up to coast and forest. From a semantic
point of view we are not surprised of this fact, since the scenes of these
classes are intuitively similar. In the same way we found weak correlation
for the categories tall building, inside city and street too (although this fact
is rather in conflict than a semantic interpretation of such classes).

The original datasets SUN and Caltech are too huge to be entirely an-
alyzed and used in practical experiments, therefore we decide to work on
smaller portions of data taking a reduced selection of categories and points
from the complete data sources. We distinguish such two subsets with an-
other nomenclature to avoid misunderstanding.

SUN-CS8 dataset is built following almost the same structure of the Scene
dataset: in detail we make a selection of 8 categories Y = { creek, mountain,
playground, restaurant, shopfront, living room, cockpit, cathedral (outdoor)}
with a fixed number of 350 scenes for a total of 2800 samples. In figure 6.2
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we can see the peculiarities of our dataset which seem quite similar as Scene,
but with lower level of separation for some categories; moreover for each
category the images contained have a greater distance among themselves, i.e.
they share less features, which suggest clusters much more condensed.
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Figure 6.2: Scatter plot of SUN-C8 dataset with categories

It is interesting to discover that the categories living room and restaurant
are particularly overlapped between themselves and surrounded by all the
other ones. Considering the semantic of the real world this fact is not partic-
ularly clear since they refer to senses completely different; anyway we already
know that in general the class of scene images is particularly inclined to arise
this sort of results (as observed in the analysis of the similarity matrices in
section 6.4.1).

Caltech-C6 dataset is built over a selection of 911 images of objects,

organized in 6 different classes Y = {bonsai, car side, chandelier, ketch,
leopards, watch}, wherein for each one is given a mean support of 152 images.
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Figure 6.3: Scatter plot of Caltech-C6 dataset with categories

The figure 6.3 shows a situation indeed different with respect to Scene
and SUN-C8, since the categories form well-separated clusters. Clearly the
datasets are less comparable for several reasons, mainly for the different
nature of the images and the number of classes. Moreover in this dataset
is rather evident an interesting aspect bound to the data, in particular we
observe that some categories, such as leopards, chandelier and bonsai may
be formed by different well-separated groups; this fact is just in agreement
with the fundamental definition of cluster assumption (see section 2.1.2).

6.4.2 Data similarity effect on the learning

In this part of our analysis we start eventually to familiarize with Graph
Transduction Game through real usages over our datasets. Moreover we are
interested to make a preliminary observation of its behavior to understand
how the similarities among objects may influence the learning performances.
For all the experiments the construction of the weighted graph is according
the setting introduced in the section 6.2, while the evaluation of the results
is based on typical crisp misclassification in section 6.3.1.

The first experiment is performed over the whole dataset Scene whose
result are collected in the plot 6.4.
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Figure 6.4: General GTG performance on Scene dataset

This trend suggests clearly that the support of labeled points is crucial for
the performances of GTG (as widely treated in section 6.4.5), but also that
the transductive learning works well in Scene dataset, since just employing
60 labeled points is possible to classify correctly more of 65% of all the 2688
scenes (about 1747 images).
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Figure 6.5: General GTG performance on SUN-C8 dataset

In the plot 6.5 we see the behavior of our second experiment with SUN-
C8 dataset, which are quite worse with respect to the experiment 6.4. We
remains that the construction of this dataset is made following the structure
of Scene, in such way to obtain results more comparable. Therefore if the
performance decreases have to be there some measurable reason; we could
guess different and combined aspect that may explain this behavior, for
example:

e the scenes inside the same category share less features, i.e. images of
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the same category are visually low similar among themselves;

e the images belonged to different classes share many features, i.e. the
categories are similar in visual terms;

e there is noise in the data (or outlier points), which may be seen as low
quality images or scenes whose supervised label is unsuitable.

In fact if we compare the heatmaps of the graphs built for Scene and SUN-C8
datasets looking at the figure 6.7 in the latter the amount of external images
which are similar is indeed greater, while those belonged to the categories
are rather dissimilar (as it is visible also in the depictions 6.1 and 6.2); in
other terms the cluster assumption over the dataset SUN-C8 is weaker then
Scene, which involves negatively to the general performances.

The third experiment is performed over the dataset Caltech-C6, which
contrary to Scene and SUN-C8 it contains images of objects.
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Figure 6.6: General GTG performance on Caltech-C6 dataset

The performances in plot 6.6 are really good already from small values of
labeled points, which suggest a low degree of ambiguities to classify the data.
Although it is important to consider that in Caltech-C6 the problem space
with respect to our previous experiences is indeed reduced both in terms of
number of classes and instances; therefore also this aspect has contributed
to obtain better results.

In the figure 6.7 as below we collect the heat maps of the weighed
adjacency matrices built for all the three experiments; the several categories
are distinguished with different colors. Looking these weights seems that
the problem of similar images among different classes it is a trend much
more visible for the scene than object pictures. This observation is not only
an isolated case related to our datasets, but actually refers to a notorious
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problem that arises just between these two kinds of pictures. In visual terms
in fact is quite intuitive that any ambient figures which could be categorized
in different classes may contain common artifacts, for example categories
such as open country, hill, forest, mountain share vegetation, sky, animals
and other elements. Therefore we do not wonder about this indeed gap of
performances registered among Scene and SUN-C8 with respect to Caltech-
C6. Clearly this aspect may occur also with objects images, especially when
contains backgrounds, but experimentally has been observed to have a minor
incidence.

1To deal with this weakness about the scene images, in Computer vision there exist
other interesting variant with respect to well-known GIST descriptor (see section 2.3.2.1);
in that we cite for example the work [58] on SUN dataset, which is based on a representation
with 102 high-level attributes. Anyway in this dissertation we are not interested to evaluate
performance with respect to different types of feature vectors.
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Figure 6.7: Similarity matrix/Gaussian 20-NN graph heatmaps for several
datasets

The level of goodness of the results collected in these several experiments
is supported by the measure of intra-class membership (see section 2.4.2) in
the table 6.1 too, that proofs to us how the strength of the cluster assumption
involves the learning process.

Scene | SUN-C8 | Caltech-C6
63.66 | 52.79 |  79.67

Table 6.1: Levels of intra-class membership ratio (%) for each experiments
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6.4.3 Category similarity adjustments

In our experimental analysis we use similarity measurements over the set
of categories which are inferred from data objects or the WordNet ontology
(see section 2.2.3). The original definition for some metrics do not give
suitable measures of similarity which should be symmetric and defined in
[0, 1] (see normalization and symmetrization respectively in sections 2.2.4.3
and 2.2.4.2). These two properties are crucial for our survey, especially for
the computation of soft misclassification (see section 6.3.2), the comparison
between different measures and the experimental phase of GTGwCS (see sec-
tion 6.4.7). Therefore we decide to specify once all the common adjustments
we always made before to use these measures in our experiments.

e Semantic-based category similarities. For semantic-based category
similarities (see section 2.2.3.1) we start to adjust the class names
since some original labels in our dataset are unknown in WordNet. To
solve this problem we have chosen a proper replacement as proposed

in table 6.2.
Scene | SUN-C8 |  Caltech-C6
insidecity — city cathedral(outdoor) — cathedral carside — car
opencountry — country leopards — leopard

tallbuilding — skyscraper

Table 6.2: Labeling adjustments per dataset

The word acceptation for each label is that considered most common,
which in WordNet is specified by the first synset (sense number #1)
where the category is contained (see section 2.2.3.1). Moreover for
Resnik, Jiang-Conrath and Lin semantic similarity we use the British
National Corpus. The measure that are unbalanced and defined in a
general domain R are Leacock-Chodorow and Resnik similarities; for
this reason we apply normalization and symmetrization (with maximum
criterion) for both.

e Object-based category similarities. For object-based category similari-
ties (see section 2.2.3.2) we start often from a random selection D' C D
of instances which are established according the requirements of the
analysis to perform. In detail for the measures based on aggregated
similarities according the principles of minimum, mean and mazimum,
we can either skip the choice of D’ to exploit directly of any preexisting
normalized similarity matrix (e.g. based on the weighted adjacency ma-
trix W used by GTG) or choose a subset D’ where inferring a similarity
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matrix from a precomputed Euclidean-based distance matrix (see sec-
tion 2.2.2.1). The measures of centroid divergence and visual distance
have to be always computed from a subset D’ according the operational
steps described in 2.2.3.2. For those measures which involve a choice
of an initial subset D’ is always required a halfway conversion from a
distance measure to a normalized similarity in [0, 1], which follows in
our case the common rule (2.4); in order to avoid to work on saturated
measures, the scaling parameter chosen in this phase is always v = 8.
At this step all the measures are defined in [0, 1] but some could not be
balanced, in particular for minimum, mean and visual distance category
similarities, where we apply normalization and symmetrization (with
maximum criterion) for the last two only. Unfortunately we can not
adjust minimum object-based category similarity since the maximum
level is not centered (i.e. IN € Y : I;rtlglj{(s’\“) # s))); anyway we solve

the problem with a non conventional rule simply forcing that for each
label A € Y holds §)) = 1 (we consider this trick an acceptable tradeoff
for the nature of the measure and our aims) .

All the other measures which are not cited are already normalized and
symmetric for definition.

6.4.4 Category analysis of the errors

The misclassification ratio considered in section 6.4.2 gives an overall
measure of performance without to say nothing about the effective entities
of the wrong predictions. We are questioning if there exist a correlation
between the mistaken labels with respect to the correct classes, in other
terms whether objects from similar categories tends to be more confused.

In order to verify this hypothesis we compute an object-base category
similarity matrix 8¥ = (sfj) with average affinity criterion (see section 2.2.3.2)
from the visual similarities W which describe the graph built for the dataset
Scene (as specified in 6.2). That we should obtain is a shoot about the
similarities of the categories in visual terms seen by GTG (since the process
knows just W about the data). The table 6.3 is a simply way to show briefly
part of the information in SV where for each category we list the first three
similar categories ordered for visual similarity level (from the more similar

to less).
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Category + < Visual similarity — —
coast opencountry highway mountain
forest mountain tallbuilding insidecity

highway coast opencountry — mountain

insidecity street tallbuilding  opencountry

mountain opencountry forest tallbuilding
opencountry mountain coast highway
street insidecity highway mountain
tallbuilding insidecity forest mountain

Table 6.3: Category per similar categories of Scene ordered for visual simi-
larity

It is important not to fall in the error to expect a sharp matching with
our human knowledge of the real world, i.e. to see a correct order with
respect to the semantic senses of the categories. In fact the results in sV
reflect the semantic in Scene dataset, which is another story; for example,
the second similar class highway with respect to coast in the first row, it
would be more suitable if was placed at least after mountain (making a
general semantic interpretation), but it is evident that in Scene the images of
highway share much more aspects than those of mountain in relation to coast.

Nevertheless we perform another interesting analysis to proof that the
similarities according SV are correlated to the wrong predictions made by
GTG. In the plot 6.8 we show a distribution of the errors collected during
all the 100 runs of GTG. If we denote as usual the set of all 8 classes as Y,
each category A € Y in the x-axis denotes a correct supervised label. The
distribution built over A shows the degree of those erroneous classes whose
the label X\ is been wrongly predicted; for example, we can see that the images
of classes opencountry are confused in majority with the label mountain,
then coast and so on.
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Figure 6.8: Error distribution of correct class per unmatched labels from
several trials on Scene dataset

At this point, making a comparison between the table 6.3 and the plot 6.8
we can observe keeping a reference class A that the labels more mistaken are
just those more similar to A (at least for the majority of the cases). This
experimental analysis suggests that our hypothesis is true, i.e. according
the category similarity of the dataset the wrong predictions are those more
similar to their correct labels. For this reason the similarity among different
classes has a relevant effect for the general performances.

Another way to verify the same aspect consists to introduce category
similarity to evaluate the results through the soft misclassification approach
(see section 6.3.2). In the figure 6.9 we compare both crisp and the two
forms of soft performances with nearest-based category threshold and free
soft misclassification for all our datasets; moreover the category similarities
taken in account are both visual and semantic, respectively obtained by mean
criterion (see section 2.2.3.2) and shortest path measure (see section 2.2.3.1).
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Figure 6.9: Crisp and Soft performances on several datasets

We can observe that the results based on soft misclassification are better
in general than crisp misclassification, in particular way for the 3-nearest
soft misclassification; another interesting aspect consists to notice how visual
similarity catches much more affinity among the real outcomes and wrong
predictions with respect to the semantic measure. This panorama is a fur-
ther proof that the greater part of the errors are among similar categories.
Moreover it is important to observe that this evaluation method may be
employed for other extended forms of classification as for example multi-label
learning [59], i.e. multiple categories for a single objects; this new topic
remains to a hidden structure in GTG, the Nash equilibrium mixed strategy
profile, which intrinsically already contains multiple object-based estimations
of more likely memberships on the data, which are clearly lost by maximum
a posteriori rule (5.3). Anyway we remark that our experimental study is
funded on ex post observation of the Graph Transduction Game.

We conclude our analysis of the errors showing a particular depiction

inspired to the visual representation of a dataset as in section 6.4.1. Our
idea consists to see where are placed the wrong instances in the data space.
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Figure 6.10: Scatter plot of Scene dataset with must frequent wrong objects

The figure 6.10 shows the usual scatter plot of the dataset Scene where
we mark the objects that are mistaken most frequently, i.e. the instances
that have been harder to classify correctly according all the runs of GTG (in
this way we can present a result which is quite independent with respect to
a specific selection of labeled nodes in the learning). Comparing the plain
figure 6.1 with 6.10 we can see that the most part of the errors are placed in
the regions of overlapping of several categories. This fact proofs again the
problem of the visual similarity sharing of the categories, which reduces the
cluster assumption principle confusing the transductive learning process.

6.4.5 Choosing labeled objects

A crucial condition that involves on the graph transduction learning is
the choice of the labeling points. We are interested to study the behavior of
GTG about the combination of these following aspects:

e those labeled points has been chosen;
e how many labeled points has been chosen.

We start our analysis focusing on a single category A € Y of Scene dataset.
In detail we want to see if the amount of the errors increases when the
chosen labeled points are in the neighbourhood of overlapping points from
different categories (with respect to A). The transductive learning in graph
transduction approach propagates the information from labeled points to
those unlabeled whose share similarity, or in other terms all the nodes which
are reachable in the graph from them. The associated graph G of Scene is
depicted by a weighed adjacency matrix W which is symmetric, therefore
G is an undirected graph. A category may be formed as more separated
clusters, in other terms by several connected components. Although if we
consider a single connected component that contains a point of label A it is
not guarantee that all the other reachable points share the same label (since
there exist edges among objects which are similar in visual terms, but from
other categories). These stranger points are considerable as a sort of noise
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that dirty the cohesion of the category depicted by a connected component.
We decide to collect these structures building a subgraph §®) of G which
is the union of all the connected components that contain at least a node
of category A. In the scatter plot 6.11 we show the images associated to
the nodes of G for all the eight classes in Scene, where the black dots
denote just the reachable nodes of stranger classes inside the same connected
components of .

‘ * coast * forest highway insidecity mountain opencountry  *  street * tallbuilding * Stranger

Figure 6.11: Connected component for class with stranger nodes of Scene
dataset!

This depiction is indeed interesting since we can see that there exists a
high degree of stranger points connected to a single category, which reveals
how similarity between objects may introduce relationships which does not
reflect the real supervised categorization.

After this overall vision of the graph G we decide to continue our analysis
working with the class forest only since it seems quite well-defined (i.e. it is
presumably formed by an unique predominant connected component). The
experiment consists to execute two runs of GTG selecting 20 labeled points
per class but in such way those of forest are either near (a) or far away (b)

!The stranger nodes which are integrated in the representation are detected considering
edges with similarity weights over 60%.
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with respect to the neighborhood detected by the category centroid.

‘ * forest +  Stranger * Error % Labeled Stranger * Labeled forest W Centroid

(a) Labeled points near to centroid (b) Labeled points far from centroid

Figure 6.12: Two learning experiment for class forest with respect to different
labeled points

In the plot 6.12 are represented all the labeled points and wrong predic-
tions especially related for the class forest. This result is indeed interesting
since shows how is crucial the choice of labeling points in the learning. In
general the category membership of any labeled points is propagated along
the reachable neighbor nodes, but if they are integrated in connected compo-
nent which would represent better other classes, then will generate confusion
about the predictions of the unlabeled points. In the case (a) the labeled
points of class forest falls in the principal region which describes that same
class, therefore the cluster receive a strong contribute for the correct label.
In the case (b) instead since the support from labeled nodes of class forest is
confined in far and dispersive regions with respect to the reference cluster of
this category, then their contribute will be too weak to solve all the unlabeled
nodes of class forest, which will be classify mainly by the wrong suggestions
given from those stranger labeled nodes which are nearer in the main area.

The amount of labeled points clearly involves on the general performances
since it reduces the size of the test set, i.e. the number of errors that is possible
to commit. Anyway we may perform a study considering the increasing
of the labeling points with respect to how they are selected. In detail we
are questioning if for a given amount of labeled points the performances
are different if they are selected randomly or equally distributed for all the
categories. The crisp misclassification method introduced in section 6.3.1
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is based just to select a certain number of labeled points in random order
over the whole dataset, we may adjust this principle dividing their amount
with the same proportion for each class (the selection of labeled points is
still random, but inside the same category only).
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Figure 6.13: Performances with labeled points randomly selected and uni-
formly per class on several datasets

In plot 6.13 we make a comparison of the classical approach with respect
our new idea for our datasets; to read these new performances is sufficient to
consider that the amount in the x-axes [ means that each class receives exactly
% labeled points. The results are interesting since the second approach
works better already from small selections. The reason may be motivated
implicitly from that we have understood in the previous analysis of the graph
structure. In fact if we select labeled points for each class is more likely
they cover much more connected components that forms such category, we
could say that the supervised knowledge is democratically distributed (since
for each class in the datasets employed there is available approximately the
same number of objects)!; instead with a random selection can be given

1t is right wondering if a dataset which contains some categories much more supported
than others involves negatively to the learning performances. Anyway from our experience
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more help for certain classes than other ones. However gradually the number
of labeled points is increasing the method based on random selection will
converge to the uniform criterion, since it is less likely that some classes is
more preferred.

6.4.6 Scalability over multiple classes

In the section 6.4.5 we study the effect of the labeled points on the
performances without consider the amount of classes involved. We have to
remind that GTG is mainly a multi-class classifier, therefore it is necessary
to study how the number of classes affects the learning; in other terms how
much Graph Transduction Game is class scalable.

For this analysis we employ the complete datasets D = SUN-397 and
D = Caltech-101 introduced in section 6.1, since we can rely on a very huge
selection of images and categories Y. In detail, for an experiment with a
subset H(k) C Y of k different classes randomly selected, we build a dataset
D®) < D extracting for each class A\ € Y(k) 3 fixed number z of objects;
finally over the dataset D®) we compute as usual the crisp misclassification
performances. For a comparative analysis we prefer to merge the results
given for multiple experiments k = k1, ko, ..., k,, but to obtain a faithful
observation we should allow that in the learning of any datasets is given
the same help in terms of labeled points, i.e. they scale with the number of
classes. According the evaluation strategy in section 6.3.2, we can not control
properly the distribution of the labeled points for each D) D) Dlkn),
Therefore we redefine the evaluation strategy just computing performance
on a fixed number of labeled points ¢ < z per number of classes k; which
is shared for all i = 1...n, in other terms for any dataset D*i) the real
number of labeled points chosen for the learning depends only from k; and it
is obtained as [ ;) = ¢k; (in this way for different choices of ¢ the learning
is always democratic for all the experiments). In detail we perform n = 10
experiments where for each ¢ = 1...10 the number of classes is k; = 5i;
moreover we make six selections of labeled points per class starting from a
base case go = 1 to the others j = 1...5 cases as ¢; = j5 (for each class
of a dataset D% the ¢; labeled points are randomly selected). Finally in
the construction of the dataset in all the experiments the classes receive a
support of z = 100 different images, hence |D®)| = 100k;.

we consider this aspect negligible since it is much more relevant the similarities among
objects than their magnitude, unless this degree of imbalance is indeed heavy.
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Figure 6.14: Performances per different values of classes on several datasets

In figure 6.14 we can observe that already over 10 classes the performances
registered are rather weak and the trend worsens much more quickly with
higher values of classes. It is important to remark the real fact that working on
many classes increasing indeed the category similarity sharing and in general
degrade the cluster assumption on the data. In the figure 6.15 we proof in
detail this fact, showing simply with 20 instances per category how the level
of intra-class membership ratio (see section 2.4.2) decreases with respect to
the number of classes and the symmetric inter-class measure underlines the
reinforcement of the similarity degree between objects of different categories.
Therefore this should be a typical context where category similarity could
help to go beyond such limit.
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Figure 6.15: Intra/Inter-class membership ratio per number of classes on
several datasets

With this analysis we discover that GTG is not particularly scalable in
terms of data heterogeneity; although this fact does not have to underestimate
GTG, simply we may say that is not adapted to work with wide scales of
classes.

99



6.4.7 Learning with category similarity

The category similarities establish a precious high-level information which
may be used for different tasks. So far we have used them to evaluate in
deep the behavior of GTG, in the general setting which exploits of the
visual similarity among the objects only. It is presumable that introducing
class similarities in the learning process should help to decrease ambiguities
and as consequence increasing the performances. An important advantage
of (semi)supervised learning consists to have whole knowledge about the
involved category domain Y for all the objects. This condition allows to get
possible the computation of the label similarities among all the classes even
before to start the training phase. In the section 2.2.3 we introduced two
main approaches to infer category similarities, where the former is based on
the linguistic semantic extracted from the sense network WordNet and the
latter on the observation of the similarities among objects with respect to
their membership. From a conceptual point of view it is licit to wonder if the
similarity relation described from these two source of data are comparable
and in particular similar. We are questioning if the category similarity from a
dataset is another facet of the high level semantic category similarity, where
we consider the latter as the nearest formalization of the human knowledge.
We already know that exists in general correlation between visual and se-
mantic similarity [14], but not how much these two kinds of information can
be interchangeable for real usages. In the category analysis of the errors in
section 6.4.4 we have already observe how object-based category similarities
can be not particularly understandable in semantic terms, but we could make
a direct comparison with effective semantic-based category similarities over
the same classes. For such test we employ the dataset Scene to compute a
visual-based category similarity matrix sV = (52\7#) with centroid divergence
method (see section 2.2.3.2); for the same classes, we compute a semantic
category similarity matrix 87 = (sgu) using the Jiang-Conrath measure (see
section 2.2.3.1), which is well-considered for several linguistic analysis [60].
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Figure 6.16: Object and Semantic based category similarities from Scene
dataset

In the figure 6.16 we see in detail all the category similarity levels as
heat maps (see section 2.4). It is immediately visible how SV and S7 are
dissimilar, i.e. they not describe the same relations for the domain of classes,
at least for the greater part of configurations. In the table 6.4 this fact is
even more evident, where we collect as usual for each class and method the
first three classes ordered for the similarities.

Category + ¢ Visual similarity — — + < Semantic similarity — —
coast highway opencountry mountain e mountain insidecity street
forest insidecity street mountain ... | opencountry insidecity street
highway coast opencountry — mountain . street insidecity mountain
insidecity street mountain tallbuilding ... street mountain  opencountry
mountain opencountry  tallbuilding insidecity e coast insidecity street
opencountry mountain coast highway . forest insidecity street
street insidecity mountain  opencountry ... highway insidecity ~ mountain
tallbuilding mountain insidecity — opencountry ... insidecity street highway

Table 6.4: Category per similar categories of Scene ordered for visual and
semantic category similarity

We made these comparisons also for other measures of similarity, but
the general answer derived from our heuristic observation suggests that is
preferable to consider visual and semantic category similarity as two different
separated sources of information, since in real usages there are too aspects
that involve on their distance. Although it is interesting to decide that of
these two forms of similarities would be more suitable in the learning.

The visual category similarities ¥ = (s}\?ﬂ) from a dataset D may been
seen as a membership digest from the similarities among all the objects in
D:; for this reason the visual category similarity 8}\7” is always correlated
to the visual similarity between two objects w;; in D whose classes are

101



respectively y; = A and y; = p. Therefore the information in SV may act as
an augmentative factor for the contextual hypothesis made for the objects.
In a certain senses it should help the learning to continue for a course that
implicitly already known. The semantic category similarities S7 are clearly
a new additional information which is totally external with respect to the
working dataset. Therefore it should be able to give a contribute even more
distinctive than that object-based, since these measures may unweighted
misleading hypothesis supported by visually similar objects which belong to
different categories actually.

It is important to observe that the computation of visual-based category
similarity matrix SV clearly depends mainly from the origin dataset, while the
information in the semantic category similarity matrix S” is global (consider-
ing a fixed reference sense network), i.e. depends explicitly by Y only and
may be reused for any datasets categorized over the same domain of labels.
Although the objects in the training set may be hand labeled according a cat-
egory acceptation which may be particularly far with respect to the common
sense of the words; if this peculiarity of the dataset was not known, namely
supervised, then it could be better to employ object-based category similarity.

On the basis of all the considerations as above, we may say that does not
exist an unique answer about the choice between visual or semantic category
similarities in the learning, but the latter is surely preferable in the majority
of the cases since it should depict better the human knowledge.

In the section 5.5 we guess a way to introduce category similarity in the
Graph Transduction Game, the Graph Transduction Game with Category
Similarity (GTGwCS), which is formulated simply as a generalization of the
compatibility matrix modeled in the original insight. We start to explore
concretely our GTGwCS making before some experimental observation in
order to understand how to control this new form of learning; finally we
use GTGwCS in real cases to study respectively the performances obtained
with visual and semantic category similarity. In all the experiments the
reference evaluation approach continue to be based on crisp misclassification
(see section 6.3.1), but with the new extended conceptual model expressible
as

9T9< ) 5D—€_>y

D(train) ’S(’;J)

6.4.7.1 Preliminary dynamical observations of GTGwCS

Introducing new additional information in the learning consists in a
novel approach of GTG. Therefore we prefer to observe firstly what happens
simulating a real learning under toy category similarities, in other terms we
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want to check the stability of GTGwCS while the structure S progressively
goes away from the base case Ijy|. We design this analysis with several rules
to compute all the elements of a general, normalized and symmetric matrix

S; = (st()\, ,u)) (since we work in real cases with symmetric category similarity

measures normalized in [0, 1]); moreover for each experiment ¢t = 1,2...n the
off-diagonal elements are randomly determined in a domain scaled according
a fixed parameter a € RT as followings.

(a) Variable random selection. Choosing random values in the window
[0, at] such that:
s¢ €10, at A
se(A, ) = s, A) = { & 100t h

1 otherwise

(b) Constant random selection. Choosing a constant random value in the
window s; € [a(t — 1), at] such that:

_ _JSst AFp
st ) = s, A) = { 1 otherwise
(c) Incremental Random filling. Established a sub set of ¢ non trivial
configurations P, C Y2 (i.e. Y(\, ) € P, (e, B) € Py : (o, B) = (11, \)
and |P;| = t), choosing random values in the window [0, a] such that:

st €10,a] (A p) € P

st(A p) = se(p, A) = 1 A=p
0 otherwise

All the perturbation tests are made on Scene dataset computing as usual
classification performances (see section 6.3.1) where: for both the methods
(a) and (b) we decide to perform until n = 5 experiments over the fixed
parameter a = 0.02; for the method (c) we perform experiments for several
4]
2

choices until to fill whole structure with n = = 28 (the binomial

coefficient of |Y|=8 choose 2), over the fixed parameter a = 0.1. Clearly to
understand the extent of the variations we add the reference performance
where simply we assign So = Ijy;. Moreover the selection of labeled objects
for each different experiment ¢ is always the same for a much more accurate
comparison (as formally explained in section 6.4.7.3 too).
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Figure 6.17: Perturbation performance analysis with GTGwCS on Scene
dataset

In figure 6.17 we see the final results of all our experiments where we
can underline several aspects. The case (a) shows how GTGwCS is sensible
already from small values of category similarities; this fact suggests that the
information contained in S; has to be adequately adjusted for real usages (see
section 6.4.7.3). In the analysis (b) instead the trend is stable, this behav-
ior is quite understandable since the bag of perturbation is democratically
distributed in S;. Finally the analysis (c) shows how the learning process is
sensible already with little information available in S;.

6.4.7.2 Category similarity adjustments for the learning

The tips introduced in 6.4.3 allows to prepare any our measure of similarity
in terms of normal form [0, 1] and symmetric property. This decision is
important since it limits the study with category similarity measures that
contain the base case Iy, which we know is fundamental to model the
transductive learning of GTG (see sections 5.2 and 5.3). Anyway according
the experimental observations in section 6.4.7.1 we can not introduce this
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information directly in the learning since the process seems really sensitive.
Therefore in order to avoid possible predominance whit respect to the object-
based information, we design a general rule which is applied before to start

the learning on any category similarity measures S; = (st()\, ,u)) of type t

(already normalized and symmetric) as followings

510 m) = exp( = (1= si0n))) (64

where the positive parameter n € RT is used to manage the decay factor
of the similarity level. The parameters are empirically learned for each
experiments according the principle that the new performances obtained
(i.e. after the introduction of S;) remains in a the window [0, pg + 0] with
respect the first one registered for the base case pg; the threshold of tolerance
imposed is always § = 0.2.

6.4.7.3 Experiments with visual category similarities

The measures of visual category similarities should be much more possible
external with respect to effective training set used to built the graph structure
G in GTG, but clearly always in harmony with the same nature of the objects
to classify. In fact it is less reasonable to compute sV using the same objects
to infer the related weighted adjacency matrix W for several aspects:

e The real information introduced in the learning is redundant, because
implicitly already contained in the training set.

e The computation of visual category similarities requires whole super-
vised data, but due to semi-supervised learning we know only the
labeling objects, which represent actually just a minimal part of all the
instances to classify. Therefore the visual category similarities further
to be redundant, they get invalid the learning performances since in a
certain sense there would mean to suggest the correct labeling a priori.

According these conditions we design a new evaluation strategy. Formally
for a generic dataset D = {(f1,v1), (f2,y2), ..., (f.,yn)} of n objects over a
domain of labels Y we extract for each class a sufficient fixed number of
objects (whose value is decided on the basis of available data in D) to build
a new subset Dv C D taken in account to compute sV (according the tips
in section 6.4.3); after this step the reaming part D; = D\ Dv is used to
compute G for all the experiments with GTGwCS.

In the section 2.2.3.2 we introduce five methods to compute the matrix

Sy, therefore we are interesting to see the performances obtained for each
measure t = 1...5. Moreover to understand the distance with respect to
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the original formulation of GTG, we add the performance without visual
category similarities, denoting as usual with £ = 0 the general base case
Sg = I;y|. However to get faithful the comparison among all the category
measures, the selection of labeled and unlabeled points in D have to be
maintained in all the measure. Formally (according the evaluation method
in section 6.3.1) let S%)L the finite set of random selected data split of [
labeled objects, we compute the crisp misclassification performances sharing

the unique fixed division (ngm), DgeSt)) € 8%)/; for each visual category
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Figure 6.18: Heatmap per visual category similarity measures for Caltech-C6
dataset

In figure 6.18 we give a briefly panorama of the several visual category
similarities computed for Caltech-C6 dataset; we can see the strong correlation
among all the metrics, since they furnish with different weights information
rather similar, in particular way clearly for the types t = 2,4, 5.
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Table 6.5: Learned scaling parameters for visual category similarities per

datasets

The figure 6.19 presents eventually all the performances obtained over our
datasets according the learned experimental parameters in table 6.5. Making
a preliminary analysis we do not observe relevant advantages about the
introducing of visual category similarity on any measures. Anyway the worst
results are got when the number of labeled points is low, while progressively

t Method Scene 1, SUN-C8 7, Caltech-C6 7
1 minimum 1 1 1
2 mean 15 6 8
3 maximum 12 ) )
4 | centroid divergence 12 6 15
5 visual distance 18 8 26

all they converge to the normal GTG without category similarities.
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6.4.7.4 Experiments with semantic category similarities

In the section 2.2.3.1 we introduce seven measures of semantic similarity
which are exploited to compute the matrix Sg = (st()\, ,u)) according the
text labels associated to the categories. The strategy of evaluation is as that
decided for visual category similarity (see section 6.4.7.3), but clearly the
learning can be simply performed over the complete dataset (in other terms
Dy = D) since 87 is inferred from the sense network based of WordNet,
therefore it can never be a redundant information with respect to the objects
to classify (or the similarities in W).

o

8

(6) Jiang-Conrath (7) Lin

Figure 6.20: Heatmap per semantic category similarity measures for Caltech-
C6 dataset

In figure 6.20 we introduce the several semantic similarity measures
computed for Caltech-C6 dataset. As already observed with visual category
similarities (see section 6.4.7.3), all the metrics share a common evaluation
for the labels involved; another visible aspect is how semantic similarity
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can distinguish sharper such configuration, in particular we see that class
leopards and bonsai have less in common with respect to the semantics
between themselves and all the other categories.

t Similarity Scene 1, SUN-C8 7,  Caltech-C6
1 | Semantic Relatedness 23 13 21
2 Shortest Path 6 4 6
3 Leacock-Chodorow 13 8 12
4 Wu-Palmer 29 13 26
5 Resnik 26 19 12
6 Jiang-Conrath 6 4 5
7 Lin 20 10 11

Table 6.6: Learned scaling parameters for semantic category similarities per
datasets

The figure 6.21 introduces as usual the performances obtained over all the
datasets according the learned parameters in table 6.6. The behavior seems
to be quite similar to the experiments with visual category similarity (see
section 6.4.7.3), as concern the comparison with the base case and the trend
on small numbers of labeled points. Therefore not even the best candidate
information of semantic category similarity can improve the classification
performance of GTG on our datasets.
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Figure 6.21: Performances with semantic category similarity on several
datasets

Making a general evaluation according all the registered results, we retain
that very likely the real problem is not due to the type of category similarity
measure but just to the theoretical model of GTGwCS. It is indeed interest-
ing to realize how this process attempts to abort much more possible the
information of category similarity given, in such way to take back GTGwCS
toward the original schema of GTG; in other terms remaining anchored on
the polymatrix game structure (see section 3.5.1) it seems to not exist a
better solution to improve the general performances.

Reasoning in terms of the underlying relaxation labeling scheme (see sec-
tion 4.3) the generalization of GTG seems quite suitable, since the contextual
information is a combination of visual and category similarity. Anyway if we
analyze in deep such model looking to the transductive learning principle
devised in GTG (see section 5.2), we could guess a possible reason to justify
this fact. The cluster assumption is a strong hypothesis made on the input
data, but GTGwCS impoverishes this principle to generalize the case of
different categorization for similar objects, equally to state that objects which
are similar may have similar labels. Moreover it is difficult that an unique
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common set of pairwise category similarities can be sufficiently reliable to
represent the membership sharing for each local object in the dataset. It very
likely that GTGwCS’s scheme becomes too expressive/general in practice
usages and hence chaotic.
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Chapter 7

Conclusions

In this dissertation we explored several crucial aspects of semi-supervised
learning through the novel Graph Transduction Game (GTG) [2]. Our first
analysis was about the fundamental information of similarities among objects
to understand those properties have to hold in order to support properly an
inference task. We saw how the cluster assumption or homophily principle
whose GTG devises its transductive learning represents the crucial condition
for the application of such model. Over this preliminary observation we
investigated other deeper aspects which involved the learning as labeled ob-
jects, multi-category scale and classification trends estimating these following
conclusions.

e The number of labeled objects chosen affects on the performances, but
actually it is only the consequence of another real cause, which is the
degree of labeled instances spread uniformly in well separated clusters;
in other terms, it is less important how much supervised information
is given than the quality of itself.

e The greater part of objects which are misclassified falls in regions of the
data space whose neighbor instances do not share the same membership,
equally they are mistakenly predicted with categories which appears
similar to other ones.

e The number of categories clearly contributes on the complexity of
the model, but the reason which the classification accuracy decreases
is due to the impoverishment of the cluster hypothesis, since much
more objects of different classes tends to increase the similarity sharing
among themselves.

The observation of these answers suggested us that the main problem of all
the story consists that objects heterogeneously categorized not should share
features, but clearly this scenario does not match with data in the real world.
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In order to perform our survey we focused the specif context of computer
vision, employed as instances of interest common images of scenes and objects.
To evaluate the behaviors of GTG we exploited of another form of similarity,
which is instead projected on the domain of categories and inferred directly
on the visual data. In literature we discovered that visual similarity is corre-
lated to another higher level information, the linguistic semantic behind the
categories [14]. We learned that exist measures which may suggest a priori
those categories are similar and in there it was obvious to wonder if this new
knowledge may be used to reduce ambiguities in a learning task. As marginal
study of our analysis we decided to test a possible approach introducing
category similarity information in the original version of GTG, forecasting
a generalized model which called Graph Transduction Game with Category
Similarity (GTGwCS). The initial analysis of the dynamics in GTGwCS
already suggested that the stability of the base case was too compromised.
Anyway we continued our study proofing that both with visual and semantic
category similarities the performances obtained were not significantly better
with respect to the original GTG.

Enlarging this particular topic we found interesting correlated works
wherein semantic similarity is employed as an extension for common classi-
fiers [45] or concretely introduced in the learning as minimization problems [51,
59]. As concern GTG was clear that the constrain of cluster assumption it is
indeed strength to be easily smoothed through our variant GTGwCS, which
allows higher expressiveness for the category relations, too much maybe.
Moreover we could guess that the evolutionary model [33] whose GTG is
anchored very likely is compromised. In that we are supported by the observa-
tion of the well-known quasispecies equation [61]; GTGwCS in a certain sense
seems to imitate such schema, which contrary to replicator function employed
by GTG, it models the mutation dynamics where is open the possibility to
generate new categories or pure strategies. In other terms the fundamental
global Nash equilibrium related to whole population of categories is lost
generating confusion that takes to unsuitable labeling assignments.

In this dissertation we made a wide overview about what involved semi-
supervised learning on large-scale categorization. Graph Transduction Game
has been our tool to analyze in deep this important field, which has revealed
interesting ability over a moderate number of classes. The study on the
implications taken by reality samples of the visual world and how these may
be discriminated for classification task, there has allowed us to understand
what is been made but how much is even necessary to do.
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