

Corso di Laurea magistrale (ordinamento ex
D.M. 270/2004)
in Informatica – Computer Science

Tesi di Laurea

Performance evaluation of
garbage collection policies

Relatore
Dott. Andrea Marin

Laureando
Alberto Amadio
Matricola 806052

Anno Accademico
2012 / 2013

Acknowledgements

This thesis concludes my Master studies.

There are many people I have to thank starting from my supervisor, Dr. Andrea

Marin, for his valuable guidance and advice.

Thank to Gian-Luca Dei Rossi, Ph.D., who helped me with the models anal-

ysis and performance evaluation.

I want also thank the technical staff of Department of Environmental Sci-

ences, Informatics and Statistics (DAIS) for providing the environment and

facilities to complete this work.

A special thanks to my family, who always supported me during those years

of study full of events.

I have to remember all the other colleagues and friends for giving me extra

motivation during those two years.

Finally, I dedicate this thesis to the memory of my grandfather, who passed

away when my thesis was nearing completion.

3

Abstract

Many modern programming languages allow the programmer to allocate the

memory in a simple and transparent way, without the need of the explicit

deallocation of the memory when an object is not necessary any more. This

is achieved by means of the Garbage Collectors, i.e., special threads that

use some algorithm to mark unused objects and then reclaim their space.

However, the drawback of this approach is twofold. First, the response

time of an application using the garbage collection is generally worse than

that of an equivalent that explicitly allocates and deallocates the memory

because of the process time required by the garbage collection itself. Second,

the algorithms used by the collectors are usually CPU-intensive and hence

cause a high consumption of CPU-cycles and a consequent waste of energy.

The goal of this thesis is to statistically characterise the memory allo-

cation requirements of some classes of applications, to provide numerically

tractable models to predict some performance indices of the system, i.e.,

throughput and average response time, given different garbage collection

policies, and to validate those models through a comparison with experi-

mental results.

Contents

1 Introduction 1

1.1 Automatic memory management 2

1.2 State of the Art . 3

1.3 Performance metrics . 4

1.4 Algorithms for GC . 5

1.4.1 Mark-sweep collection 6

1.4.2 Mark-compact collection 6

1.4.3 Copying collection . 7

1.4.4 Reference counting . 8

1.4.5 Generational garbage collection 9

2 Java Hotspot Virtual Machine 11

2.1 Memory management . 11

2.2 Available collectors . 12

2.2.1 Serial Collector . 13

2.2.2 Parallel Compacting Collector 14

2.2.3 Concurrent Mark-Sweep Collector 14

2.2.4 G1 Garbage Collector 15

3 Theoretical Background 17

3.1 Markov process . 17

3.2 Discrete-time Markov chains 18

3.2.1 Irreducible Markov chains 19

3.2.2 Communication classes 20

3.2.3 Classification of states 20

3.2.4 The steady-state distribution 21

3.3 Continuous-time Markov chains 23

3.3.1 Infinitesimal generator 24

3.3.2 The steady-state distribution 26

I

3.4 Computation of the stationary distribution 27

3.4.1 Quasi-Birth and Death process 28

3.4.2 Matrix geometric/analytic methods 29

3.5 Queueing theory concepts . 33

3.5.1 The arrival process . 33

3.5.2 The service process . 34

3.5.3 Queuing discipline . 34

3.5.4 Kendall’s notation . 35

3.5.5 Measures of effectiveness 35

4 A QBD Model for GC 37

4.1 Model description . 37

4.1.1 Queueing model . 38

4.1.2 Memory assumptions 38

4.1.3 Garbage collector’s role 39

4.1.4 State of the system . 39

4.2 Transition rate matrix . 40

4.3 Numerical Solution of Markov Chain 42

5 Markov-Modulated Queueing Model for GC 45

5.1 Simplest version . 45

5.1.1 Transition rate matrix 47

5.2 Improved version . 48

5.2.1 Transition rate matrix 50

5.3 Numerical Solution of Markov Chains 51

5.3.1 Assumptions . 52

5.3.2 Matrix geometric approach 52

6 Model validation 55

6.1 Architecture . 55

6.2 Server overview . 56

6.2.1 Applications . 56

6.2.2 Configuration . 57

6.3 Client description and tools 58

6.4 Experiments . 60

6.4.1 Description . 60

6.4.2 Analysis of data . 61

6.5 Results . 63

6.5.1 Results for Magnolia CMS 64

II

6.5.2 Results for Matrices 68

7 Conclusions 73

7.1 Contributions . 73

7.2 Results and Future Works . 74

Bibliography 75

III

IV

List of Figures

2.1 Generations after a minor collection 12

3.1 Quasi-birth and death process state diagram 29

3.2 General Queueing System . 33

4.1 Single-server queue . 38

4.2 Blocks regularity . 40

5.1 Early version CTMC . 47

5.2 Improved version CTMC . 50

6.1 Magnolia CMS - GC Activation Trend 64

6.2 Magnolia CMS - Heap Usage 67

6.3 Magnolia CMS - Models Comparison 68

6.4 Magnolia CMS - Erlang-r Distributions Comparison 69

6.5 Matrices - GC Activation Trend 71

6.6 Matrices - Heap Usage . 71

6.7 Matrices - Models Comparison 72

6.8 Matrices - Erlang-r Distributions Comparison 72

V

VI

List of Tables

6.1 Client/Server Specifications 56

6.2 Magnolia CMS - Rates . 65

6.3 Magnolia CMS - Performance indices 66

6.4 Matrices - Rates . 70

6.5 Matrices - Performance indices 70

VII

Chapter 1

Introduction

This thesis aims of studying the impact of Java’s garbage collection policies

in some types of programs and providing numerically tractable models to

predict a set of performance indices of this policies. Both of the stochas-

tic models presented have an underlying Markov chain with the particular

structure of Quasi-birth and death processes. This characteristic allows

the application of the matrix-geometric method, a technique to compute a

numerical tractable solution of the steady-state distribution. These mod-

els are then validated through experimentations on a testing environment

specifically designed to resemble a real scenario. The parametrization is

done according to a set of measurements which are done during the server

working-time. Average response time is also measured and used to validate

the models.

The document is organized into 7 chapters as following. The first chap-

ter, named Introduction, provides the basic concepts of automatic memory

management describing the most fundamental garbage collection techniques

and algorithms. Furthermore, performance metrics and design goals are dis-

cussed.

Chapter 2, named Java HotSpot Virtual Machine, describes the technol-

ogy employed to manage the memory and summarizes the design character-

istics and the performance goals of the available garbage collectors.

Chapter 3, named Theoretical Background presents the fundamental

concepts of Markow Chains and Queueing theory, which are useful to un-

derstand the following two chapters.

Chapter 4 and 5, namely A QBD Model for GC and Markow-Modulated

Queueing Model for GC respectively, discuss two stochastic models to pre-

dict the performances of a garbage collection policy. Moreover, theory con-

1

2 Chapter 1. Introduction

cepts and resolution methods previously discussed are used to define the

models and to find their numerical solutions.

In Chapter 6, named Validation, the models are validated showing a

comparison between experimental measures and model predictions. This

chapter describes in detail the test environment, discussing the hardware and

software employed, the problems encountered and the applications chosen

for the validation.

Finally, in Chapter 7 we discuss some final remarks and possible future

works.

1.1 Automatic memory management

Many modern programming languages implements a garbage collection mech-

anism which allows the programmers to use the memory in a transparent

way. In explicit deallocation languages like C, the programmer is responsi-

ble for freeing memory of unused variables. As an example, in C functions

malloc() and free() are used to allocate and deallocate memory blocks, re-

spectively. Without discipline it is very difficult to keep track of all the

references in the programs, i.e., pointers to memory, especially in complex

codes with many lines. Many parts of a typical code share objects and a

programmer may incur in two errors: he/she may free the memory too early

or forget to do it at the end of data usage. To avoid programming errors and

memory problems like memory corruption and memory exhaustion, modern

languages have introduced garbage collectors.

A garbage collector is a special algorithm which automatically frees the

memory from unused objects which are called garbage. Garbage collec-

tion is implemented by Sun’s Java Language, Microsoft’s Common Lan-

guage Runtime and also by wide-spread scripting languages such as Perl and

Python. Garbage collectors exist also for languages with explicit memory

management such as the Boehm– Demers–Weiser garbage collector, known

as Boehm GC, which is a library for C and C++. The task carried out by

a garbage collector is not trivial and over the years several research efforts

have been denoted to define optimization policies in order to allow better

performances.

1.2. State of the Art 3

1.2 State of the Art

While garbage collection’s software engineering benefits are unquestionable,

its performance impact is very difficult to quantify and remains controversial.

Several studies were conducted to measure the performances of garbage

collectors and how they affect the program execution. Diwan et al. [7] use

trace-driven simulations to conclude that generational garbage collection

involves on the worst-case about of 50% of execution time.

Other researchers [9, 8] tried to compare automatic memory manage-

ment versus explicit memory managers, showing that, in general, languages

which implement garbage collection algorithms are less efficient. However,

a directly comparison on costs is not possible because programs written in

those languages, e.g. Java, do not contain calls to free function. For the pur-

pose, Hertz and Berger [9] prosed a new methodology to treat Java program

as if they used explicit memory management by the use of oracles which

insert calls to free. Their results show that the runtime performance of

some garbage collectors are competitive with explicit memory management

when given enough heap size [8]. They also show that garbage collectors

performances decrease when paging occurs.

A very complete study on the impact of garbage collection were conduced

by Blackburn et al. [4], which examine the behaviour of different collectors:

copying semi-space, mark-sweep and reference counting. With experimental

results they tried to explain the direct and indirect costs of garbage collection

as a function of heap size, in order to guide the users to choice the right

collector.

Buytaert et al. [5] proposed GCH, a profiled method for guiding garbage

collection. Experimental results obtained with SPECjvm98, a benchmarks

suite, and two generational garbage collectors show significant reductions

on the time required for collections and that the the overall execution time

can be reduced by more than 10%. Authors also cite other related works

that aim at providing some criteria to select the most appropriate garbage

collector give the characteristics of the running application.

However, to the best of our knowledge, the literature does not present

any queueing model to predict garbage collection performance except [1].

Our contribution is the continuation to the research carried out by Balsamo

et al. [1], which propose a queueing model to analyse a system with a garbage

collector. We validate this model with real-experiments and we propose

Markov-modulated queueing model, a simplified version which try to involve

4 Chapter 1. Introduction

less parameters. Furthermore, we compare the models analysed and we

discuss the experimental results.

1.3 Performance metrics

A garbage collector should provide high application throughput, high mem-

ory efficiency and high responsiveness. A modification on one of these

characteristics affects the others, thus become important to find a trade-

off between them. Setting a heap size too small to preserving memory

space, has the consequence of a low throughput and responsiveness, because

the garbage collector runs with high frequency. Conversely, if with a large

heap the garbage collector runs more rarely with improvements in terms of

throughput and system responsiveness, the disadvantages may be the waste

of resources and memory fragmentation.

Unfortunately, it is not possible to identify the “best” collector for all

possible configurations. Thus, we are going to describe the performance met-

rics that are useful to chose the most suitable garbage collection algorithm.

These metrics are:

� Throughput, the percentage of total time not spent in garbage collec-

tion, considered over long periods of time.

� Pause time, the time when an application appears unresponsive be-

cause garbage collection is occurring.

� Footprint, the working set of a process, measured in pages and cache

lines.

� Promptness, the time between when an object becomes dead and when

the memory becomes available.

Users have different requirements of garbage collection. For example,

some consider the right metric for a web server to be throughput, since

pauses during garbage collection may be tolerable, or simply obscured by

network latencies. However, in an interactive graphics program even short

pauses may negatively affect the user experience. On systems with limited

physical memory or many processes, footprint may dictate scalability, while

promptness is an important consideration in distributed systems that use

the Remote Method Invocation (RMI).

1.4. Algorithms for GC 5

1.4 Algorithms for GC

This section introduces the job carried out by a garbage collection algorithm

and the models at the base of garbage collection schemes.

Dynamic memory allocation allows objects to be store in the Heap, even

if their size is not known at the compiling time. These objects are accessed

through references, i.e, pointers that address the memory location where an

object is stored. Garbage collector’s task is to free the memory when there is

no pointer from a reachable object, avoiding possible memory leaks derived

from programming errors. A garbage-collected program is divided into two

semi-independents part [10]:

� The mutator, which executes the application code. It is responsible

for object allocation and mutates the graph of the objects by changing

reference fields. As a result if an object is disconnected, it becomes

unreachable.

� The collector, which executes the garbage collector algorithm to dis-

cover unreachable objects and recall their storage.

More specifically, a mutator load pointers from the current set of root ob-

jects, which are heap elements accessed directly by the mutator. When an

object is unreachable, i.e, a mutator thread has removed all pointers, it can-

not be reached again and it can be safety reclaimed by the collector. A

garbage collector is correct only if it never reclaims live objects, i.e., reach-

able objects. A collector is called mainly when a mutator can not allocate

an object for insufficient memory space. In general, there are different con-

ditions to call a collector that depend on the algorithm used and the policies

adopted.

Once the collector has completed its job, the mutator repeats the allo-

cation request. For example, in a Java code the request is performed by the

New operator. If the operation fails again for insufficient heap space the

program raises an exception. We assume that the mutator can run many

threads and there is only a single collector thread. We also assume that

while the collector is running all mutator threads are stopped. This policy,

called stop-the-world, simplifies the design of collectors and we adopt it for

the stochastic models presented in this work.

All garbage collection schemes are based on one of four fundamental

approaches:

1. mark-sweep collection;

6 Chapter 1. Introduction

2. mark-compact collection;

3. copying collection;

4. reference counting.

Now we summarize their main characteristics. Finally, we conclude with

generational garbage collection which is as the base of G1 algorithm of Sun

Microsystems’ HotSpot Java virtual machine. For a detailed explanation on

schemes presented, refer to The Garbage Collection Handbook [10].

1.4.1 Mark-sweep collection

Mark-sweep collection [10] is an algorithm developed by McCarthy on 1960

and it is a tracing algorithm. This kind of algorithms traverse the heap,

or a portion of the heap, to determine which objects are reachable and

which can be reclaimed. Mark-sweep’s name comes from the two phases:

mark and sweep. In the mark phase the collector start traversing the graph

of the objects marking encountered objects. Then, in the sweeping phase

the collector examines every object: any unmarked element is considered

garbage and its space is reclaimed. It is an indirect algorithm because

garbage is not collected directly, like in reference counting.

Despite its age, it performs well and remains a valid choice. Since the

simplest form imposes no overhead on mutator read and write operations

it is also used as a base algorithm for more complex collectors. It offers

a good throughput if combined with lazy sweeping, a technique to reduce

sweeping costs by delegating the operation to the allocator. However, for

the stop-the-world condition, it requires that all the mutators to be stopped

while collectors run and the pause time depends on the program and on the

underling system. Since it is a tracing algorithm it requires a large heap.

With small heaps the collector is called more frequently, whereas the mark

phase is very expensive and hence should be done infrequently. Mark-sweep

is also vulnerable to fragmentation, since it does not relocate data in the

heap.

1.4.2 Mark-compact collection

Using non moving-collectors the heap can be affected by fragmentation.

The available heap space can result insufficient to allocate an object or

an allocation operation requires excessive time to find contiguous free space,

resulting in an overall performance degradation. A first solution is performed

1.4. Algorithms for GC 7

by the allocators, which can store small objects of same size together in

blocks, but with non moving-collects the fragmentation problem still remain

resulting in low system performance. Therefore, we can use a new kind of

algorithms that operate like mark-sweep and also compact live objects in

the heap.

Mark-compact algorithms [10] have more phases than mark-sweep. They

start with a marking phase, as described previously. Then, they compact the

heap relocating objects and updating the references of moved data. They

are moving collectors and the number of compacting phases depend on the

specific algorithm which is used, as well as the way in which the operation is

carried out. The time required to perform the compacting phase is mainly

affected by locality. There are three possible ways in which data may be

arranged in the heap:

� Arbitrary. Objects are relocated without regard for their original or-

der.

� Linearising. Objects are relocated so that they are adjacent to related

objects.

� Sliding. Objects are slid to one end of the heap, squeezing out garbage,

thereby maintaining their original allocation order in the heap.

Compactors with arbitrary order are the most simple to implement, but

modern collectors implement the sliding compaction.

Mark-compact algorithms are suitable when heap is large because the

compaction strategy results in a faster sequential allocation. However, to

have a compacted heap there is a price to pay in terms of additional over-

heads. Since these collectors tend to increase the number of phases, the

resulting throughput is generally worse that of mark-sweep. A common so-

lution is to use mark-sweep collectors as default and switch to mark-compact

collection when there is heap fragmentation (determined by some metrics).

As we will discuss more in details on the next section, Sun Microsystems’

HotSpot Java Virtual Machine uses mark-compact for its old generation

when running Serial Collector.

1.4.3 Copying collection

Copying collection [10] is another tracing garbage collection which improves

the compaction phase reducing the collection times. Unlike mark-compact

collection it requires only a single phase to compact the heap, but reducing

8 Chapter 1. Introduction

heap size by half. In copying collection, the heap is divided into two regions

of equal size called fromsapce and tospace. Objects are allocated in the

fromspace region, until it fills up. When there is no more sufficient space,

the collector explores the region marking and copying reachable objects to

tospace. Then the collector switches the role of the regions and starts to

allocate data in the new fromspace. Old objects can be safely overwritten

during the next round. With this solution free space is always contiguous

and not affected by fragmentation.

Copying collection offers advantages over previous collectors: fast allo-

cation and elimination of fragmentation. However, this costs a lot in terms

of space requirements and it is necessary to sacrifice the half of the heap

size. With two regions to maintain, collectors will perform more garbage

collection cycles and in terms of performance this depends on trade-off be-

tween mutators and collectors, the space available and the characteristics of

the application.

1.4.4 Reference counting

Reference counting [10] operates directly on objects. It maintains a counter

for each objects in the heap to count the number of references. Once the

counter is zero, the corresponding object can be freed and the reference

counts of all its children, which are reachable from the graph of objects,

are decremented. Reference counting distributes the process of memory

management throughout the program. Objects are reclaimed as soon as

there are no references to them, and the process is local to each object.

Heap space is freed faster than tracing collectors, which waits until the

heap is almost full before being invoked. Unfortunately, counters need to

be updated every time a reference changes and this introduces extra work.

Pure reference counting collectors can not deal with cycles. This problem

can be handled by a hybrid system which uses reference counting as default

collector and periodically calls a tracing method to collect cycles.

Reference counting algorithms are particular suitable in programs where

most of the objects are sufficient simple to be managed explicitly. As an

example data like bitmaps will not contain any pointers, so the problem

of reclaiming cycles does not exist. Furthermore, they have good locality

properties and can reclaim the space of an object as soon as the last reference

is removed.

1.4. Algorithms for GC 9

1.4.5 Generational garbage collection

Generational garbage collection is the latest class of algorithm that we de-

scribe and is at the base of the collectors available in Sun Microsystems’

HotSpot Java Virtual Machine, like G1 [6], a new collector available start-

ing from version 7. Previous methods, tracing and copying collectors, are

suitable in presence of few live objects. However, they are inefficient if the

algorithms process repeatedly long-lived objects, e.g, moving from one re-

gion to another. Furthermore, mark-compact collectors tend to accumulate

data in the bottom of the heap and some collectors avoid compacting this

area.

Generational collectors make a distinction between youngest and oldest

objects, privileging reclamation effort on youngest data. This approach is

based on the hypothesis that short-lived objects die young, thus the idea is to

maximise the reclaimed space while minimising the effort. Therefore, heap

space is organized into generations, which are distinct regions containing

objects split by age. Younger generations have priority on collections, which

usually are frequent and fast. Data that survive long enough are promoted

(the technical word is tenured) from the generation being collected to an

older one. Old generation occupancy grows more slowly and is larger than

the young generation. This results in infrequent collections, but significantly

longer to complete.

The performances of this class of algorithms depend on the expected

pause times for collection of a generation. In general, time taken to collect

the youngest generation, usually called nursery, depends on its size. By

tuning its size it is possible to control collection timing. Since collections

are frequent, for a young generation a high speed collector is usually chosen.

Conversely, for old generation a more space efficient algorithm is preferred.

The throughput can be improved by reducing the collection of long-live

objects, though this garbage cannot be reclaimed. We recall thaht tuning

generational collectors, and in general garbage collection algorithms, to meet

throughput and pause-time goals simultaneously is a very difficult task.

10 Chapter 1. Introduction

Chapter 2

Java Hotspot Virtual

Machine

This section introduces the Java HotSpot Virtual Machine, the technology

originally developed by Sun Microsystems, Inc. and now maintained by Or-

acle Corporation. This Java Virtual Machine (JVM) is the core component

of the Java SE platform, which allows programmers to develop and deploy

Java applications on desktops and servers.

According to its official description says, it implements the Java Virtual

Machine specification, and is delivered as a shared library in the Java Run-

time Environment. As the Java bytecode execution engine, it provides Java

runtime facilities, such as thread and object synchronization, on a variety

of operating systems and architectures. It includes dynamic compilers that

adaptively compile Java bytecodes into optimized machine instructions and

efficiently manages the Java heap using garbage collectors, optimized for

both low pause time and throughput. It provides data and information to

profiling, monitoring and debugging tools and applications.

2.1 Memory management

Memory is organized into three generations, as described in [17]. In addition

to a young and an old generation, which we defined on Section 1.4.5, there is

a permanent generation. This space is reserved by the JVM to store useful

data like classes and method descriptions. Young generation is also split

in other small regions: one called Eden and two smaller Survivor spaces.

Initially, objects are allocated in the Eden space. One survivor space is kept

empty at any time, and serves as the destination of any live objects in Eden

11

12 Chapter 2. Java Hotspot Virtual Machine

Figure 2.1: Generations after a minor collection.

and the other survivor space during the next copying collection. Objects are

copied between the survivor spaces in this way until they are old enough to be

tenured to the old generation. In case of collection on the young generation

the operation is called minor collection, while for collection on old generation

the operation is called major collection. If the old generation cannot receive

promoted object, the algorithm used for major collection is performed on

the whole heap. Figure 2.1 shows an example of the generations after a

minor collection, where only one of the survivor space and old generations

contain live objects.

HotSpot can handle multithreaded applications adopting a technique

called Thread-Local Allocation Buffers (TLABs). Multithreadding program-

ming requires particular attention when access a resource and usually this

is done by global locks and thread synchronization. Therefore, allocation

may turn to become in a bottleneck affecting performance. TLABs dedicate

a buffer for each thread, which can be accessed safely improving allocation

throughput. Space wastage is minimized and synchronization is necessary

very infrequently, only when buffers need more space.

2.2 Available collectors

Finding the right garbage collection algorithm is not trivial and we have

already described the performance metrics to chose the right collector on

Section 1.3. The Java HotSpot Virtual Machine implementation provides

multiple garbage collectors, each designed to satisfy different requirements.

This is an important part of meeting the demands of both large and small

2.2. Available collectors 13

applications. In the configuration is also possible to modify some metrics,

e.g., maximum garbage collection pause time and heap size, to reach different

performance goals. However, the tuning is not trivial and can affect seriously

the application performances.

HotSpot includes multiple collectors, each with different performance

characteristics. Collectors are designed to satisfy various system require-

ments and to manage large and small applications. Users can select the

garbage collector that meets their requirements. Otherwise the JVM runs

the collector based on the class of the machine (client or server), considering

also the system specifications. Starting with Java SE version 5.0 a machine

with 2 or more CPU-cores and 2 or more gigabytes of RAM is considered a

server-class machine, otherwise a client-class machine. Distinction regards

also operating systems, e.g., in machines running Microsoft Windows 32-bit

the default runtime compiler is the Client version, independently of system

characteristics. Let see a summary of the available collectors, mainly based

on [17].

2.2.1 Serial Collector

Description

With Serial Collector all the operations, i.e., minor and major collections,

are done serially using a single thread with the adoption of the stop-the-world

policy. For the young generation collections this collector uses the copying

collection algorithm, while for the old generation collection it uses the mark-

compact collection. The compaction is carried out by sliding the live objects

towards the beginning of the old generation (this is also performed for the

permanent generation), leaving contiguous free space at the opposite end.

Performance considerations

The Serial Collector is set as default in client-class machines and is suitable

for most applications that do not have low pause requirements. It is partic-

ularly efficiently on single-core CPUs and with non-trivial applications with

very limited heap size.

14 Chapter 2. Java Hotspot Virtual Machine

2.2.2 Parallel Compacting Collector

Description

Parallel Compacting Collector, as the name said, performs the operation in

parallel using as many threads as the number of CPUs available. Since the

collections are done in parallel exploiting many CPUs, it reduces garbage

collection overheads improving throughput. For this reason it is also called

the throughput collector. Policy adopted is again stop-the world and it uses

a copying collection algorithm to performs minor collection. If Parallel Col-

lector is specified, the early version of the algorithm already selectable, the

old generation collections are performed using mark-compact like for the

Serial Collector. In the last version, the old and permanent generations are

collected using a parallel version of the mark-compact collector with sliding

compaction.

Performance considerations

Usually, when more than two processors are available., this collector per-

forms significantly better than the serial collector. Conversely, with a single

processor the performances are not good as for the serial collector because

of the overhead required for threads synchronization. Parallel Compacting

Collector is particularly suitable for applications with pause time constraints

because it improves the performance of major collections. With tuning is

possible to reach desired performance goals according to the following pri-

ority order: maximum pause time, throughput and minimum footprint.

2.2.3 Concurrent Mark-Sweep Collector

Description

Concurrent Mark-Sweep (CMS) Collector is the right choice when pause

time constraints are more important than overall throughput. Usually,

young generation collections do not require long pauses and to perform this

operations CMS collector works as the Parallel Compacting Collector. In-

stead, for the major collections it carry out the operations concurrently to

the mutator using a mark-sweep collector. Since the collector runs con-

currently with the mutator, objects references may be updated during the

marking phase. To handle this situation, the mutator stops with a short

pause allowing the collector to perform an initial mark phase to identify the

reachable objects. To be sure that all live objects are been marked after

2.2. Available collectors 15

the concurrent marking phase, the mutator stops again for a second pause,

called the remarking phase, which revisits modified objects. To increase

efficiency of remarking phase the operations are carried out in parallel. Fi-

nally, a concurrent sweep phase reclaims space of identified garbage without

compacting generations in order to save time.

Performance considerations

Remarking phase require additional work which increases the overhead. Fur-

thermore, non-compacting spaces on the long-run lead to fragmentation.

This also increases minor collections pauses because finding space to store

the tenured objects requires time. Since the mutator can allocate memory

during collector runs, CMS requires a large heap size than other collec-

tors. Normally it does not provide any benefit on single-core machines as at

least one core performs garbage collection concurrently with the application.

However, there is a special mode for machines with one or two processors,

called incremental mode. The incremental mode divides the work done con-

currently by the collector into small chunks which are scheduled between

minor collections. CMS, unlike others collectors, prevents that old genera-

tion becomes full, trying to start the operations early. In conclusion, it is

a good choice when concurrency is needed and it reaches his performance

goals with costs in terms of throughput and extra heap size requirements.

2.2.4 G1 Garbage Collector

The Garbage-First or G1 garbage collector [6] is available in Java 7 and

is designed to be the long term replacement for the CMS collector. The

G1 collector is a parallel, concurrent, and incrementally compacting low-

pause garbage collector that has quite a different layout from the other

garbage collectors described previously. It is a server-style collector suitable

for multi-processor machines with large memories. It can operate concur-

rently like the CMS collector adding some features to improve performances.

Moreover, it can compact the free space without sacrificing throughput and

it does not require a larger heap. Comparing to CMS the mainly differences

are:

� it is a compacting collector, thus it resolves the fragmentation problem;

� it offers more predictable pauses and allows users to tuning the desired

pause targets.

16 Chapter 2. Java Hotspot Virtual Machine

Chapter 3

Theoretical Background

This chapter recalls the concepts and notions used to model and analyse and

model the performances of garbage collection policies. It starts providing

the definition of Markov process, then it focus on Markov chains. Finally, it

introduces queueing theory with particular attention to the models imple-

mented in this work.

3.1 Markov process

A stochastic process (also called random process) is a sequence of random

variables used to represent the evolution of a system over time [18]. More

formally, a stochastic process is denoted by {X(t), t ∈ T}, where X(t) is a

random variable and the parameter t runs over an index set T .

Stochastic processes are distinguished by their state space S, the index

set T and by the dependence relations between random variables. The state

space is the set of all possible values for the random variables X(t). If the

index set T is countable, X[n] is a discrete stochastic process and n is the

discrete time or a time slot in a computer system. If T is a continuum, X(t) is

a continuous-time stochastic process. For example, the number of customer

arrivals in our system during a certain time interval is a continuous-time

stochastic process.

The statistical characteristics may be dependent on the time t at which

the system is started. A process that is invariant, for an arbitrary shift of

the time origin, is said to be stationary. More formally, for any constant α,

Pr({X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn})
= Pr({X(t1 + α) ≤ x1, X(t2 + α) ≤ x2, . . . , X(tn + α) ≤ xn}) (3.1)

17

18 Chapter 3. Theoretical Background

for all n and all ti and xi with i = 1, 2, . . . , n. Otherwise the process is

said nonstationary. If the transitions depend upon the amount of time

has elapsed, the stochastic process is said to be nonhomogeneous. When the

transitions are independent of the elapsed time, it is said to be homogeneous.

A stochastic process is a Markov process if the conditional probability

distribution function satisfies the Markov or memoryless property. This

means that the future state of the process only depends on the current state

of the process and not on its past history. Discrete-time Markov chains

(DTMCs) are defined as discrete-time Markov processes and continuous-

time Markov chains (CTMCs) are defined as continuous-time Markov pro-

cesses with a discrete state space. Formally, a stochastic process {X(t), t ∈
T} is a continuous-time Markov process if, for all t0 < t1 < · · · < tn+1 of

the index set T and for any set {x0, x1, . . . , xn+1} of the state space, it holds

that

Pr({X(tn+1) = xn+1 | X(tn) = Xn, . . . , X(t0) = x0})
= Pr({X(tn+1) = xn+1 | X(tn) = xn}). (3.2)

Similarly, discrete-time Markov process {Xk, k ∈ T} is a stochastic process

whose state space is a finite or countably infinite set with index set T =

{0, 1, 2, . . .} complying

Pr({Xn+1 = xn+1 | Xn = xn, . . . , X0 = x0})
= Pr({Xn+1 = xn+1 | Xn = xn}). (3.3)

3.2 Discrete-time Markov chains

A discrete-time Markov chain, as we said previously, is a stochastic process

that satisfies the Markov property, has a discrete state space and evolves

according to a discrete time. For simplicity on the notation, we can write

conditional probabilities Pr({Xn+1 = xn+1 | Xn = xn}) as Pr({Xn+1 = j |
Xn = i}) that are called the transition probabilities of the Markov chain.

These probabilities give the conditional probability of making a transition

from state xn = i to state xn+1 = j when the time parameter increases from

n to n+ 1. Transition probabilities are denoted by

pij(n) = Pr({Xn+1 = j | Xn = i}) (3.4)

3.2. Discrete-time Markov chains 19

and they form the transition probability matrix P (n):

P (n) =



p00(n) p01(n) . . . p0j(n) . . .

p10(n) p11(n) . . . p1j(n) . . .
...

...
...

...
...

pi0(n) pi1(n) . . . pij(n) . . .
...

...
...

...
...


(3.5)

If P (n) satisfies the following two properties:

0 ≤ pij(n) ≤ 1,

∀i ∈ S
∑
j∈S

pij(n) = 1,

the matrix is called stochastic matrix or Markov matrix.

A Markov chain is said to be time-homogeneous, usually written simply

as homogeneous, if for all states i and j

Pr({Xn+1 = j | Xn = i}) = Pr({Xn+m+1 = j | Xn+m = i})

for n = 0, 1, . . . and m ≥ 0. Since transitions no longer depend on n, we

can replace pij(n) with pij

pij = Pr({Xn+1 = j | Xn = i}) for all n = 0, 1, 2, . . .

It follows that the stochastic matrix P(n) can be written simply as P .

3.2.1 Irreducible Markov chains

A Markov chain can also be described by a directed graph, where pij , pro-

vided pij > 0, is represented by an edge from state i to j. If every state

is reachable from every other state, the chain is said to be irreducible and

this simplify significantly Markov theory. An irreducible Markov chain is

equivalent to have the associated graph strongly connected. As we know

from graph theory, a directed graph is strongly connected if there is a path

from node i to node j for any pair of distinct nodes (i, j). The most compu-

tationally efficient method to determine irreducibility consists of applying

all-pairs-shortest-path algorithms, like Floyd-Warshall or Johnson, on the

corresponding Markov graph.

20 Chapter 3. Theoretical Background

3.2.2 Communication classes

We said that a state j is reachable from another state i, denoted by i→ j,

if there exist a n ≥ 0 such that pij(n) > 0. This means that starting from

state i, there is a non null probability that the chain will be in state j at

time n. If the two states are reachable from one to each other, they are said

to communicate, denoted by i←→ j. The communication is an equivalence

relation and we recall here the conditions:

� Reflexivity. i←→ i.

� Symmetry. If i←→ j, then j ←→ i.

� Transitivity. If i←→ k, and k ←→ j, then i←→ j.

The state space can be partitioned into disjoint subsets (equivalence classes)

with the property that all states within communicate. Any Markov chain

can be partitioned in this way.

Proposition 3.1 For each Markov chain, there exists a unique decompo-

sition of the state space S into a sequence of disjoint subsets C1, C2, . . .,

S =
⋃∞
i=1Ci, in which each subset in S has the property that all states

within it communicate and is called a communication class of the Markov

chain.

If the partition results into only one communication class the Markov chain

is irreducible and all states communicate.

3.2.3 Classification of states

We proceed characterizing the states and recall some important properties

that define the states of discrete-time Markov chains. States could be dis-

tinguished in recurrent states and transient states. Let rii denote the return

time to state i given X0 = i:

rii = min{n ≥ 1 : Xn = i | X0 = i}, rii
def
= ∞, ifXn 6= i, n ≥ 1.

It represents the number of steps until the chain returns to state i given that

it started from state i. A return occurs if and only if rii < ∞, otherwise

the chain never returns to the state i. We set fi
def
= Pr({rii < ∞}) the

probability of a chain to return to state i given that the chain started in

state i. If a state i has fi = 1, it is visited with the same probability an

3.2. Discrete-time Markov chains 21

infinite number of time. For the Markov property the chain will return to

state i an infinite number of times, independent by the past. In this case

we call the state recurrent. If fi < 1 there is a nonzero probability that the

Markov chain will never return to this state. In this case the state i will

only be visited a finite random number of times and it is call transient.

Proposition 3.2 For any communication class C, all states in C are either

recurrent or all states in C are transient. Thus, if i and j communicate and

i is recurrent, then also j is recurrent. Equivalently if i and j communicate

and i is transient, then also j is transient. In particular, for an irreducible

Markov chain all states are recurrent or all states are transient.

When state j is recurrent we define the mean recurrence time of j as Mjj =∑∞
n=1 nf

(n)
jj . Mjj is the average number of steps taken to return to state

j for the first time after leaving it. If Mjj = ∞, we say that state j is a

null recurrent state. Otherwise if Mjj is finite the state j is called a positive

recurrent state.

Proposition 3.3 In a finite irreducible Markov chain no state is null re-

current. At least one state must be positive recurrent, i.e., not all states can

be transient.

An interesting property of the states in a Markov chain is periodicity. A

state j is periodic with period d if on leaving the state a return is possible

in a number of transitions that is a multiple of d > 1. Thus, given a state j

in a Markov chain with pij(k) > 0 for some k ≥ 1, the period dj is the gcd

(greatest common divisor) of those k for which pij(k) > 0. A state whose

period is d = 1 is said to be aperiodic. A state that is positive recurrent and

aperiodic is said to be ergodic. If all the states of a Markov chain are ergodic,

then also the Markov chain is said to be ergodic. If two states communicate

then their period is the same and all the states in an irreducible Markov

chain have common period d. An irreducible Markov chain is said aperiodic

if d = 1, and a sufficient condition is that pii > 0 for some state i. Most

Markov chains of practical interest are aperiodic and this is also our case as

we shall see on the next chapters.

3.2.4 The steady-state distribution

Of particular interest is the probability that a homogeneous DTMC is in a

given state at a particular time step. We denote by πi(n) the probability

22 Chapter 3. Theoretical Background

that a Markov chain is in state i at step n, i.e.,

πi(n) = Pr({Xn = i})

and in vector notation the resulting row vector is

π(n) = (π1(n), π2(n), . . . , πi(n), . . .).

The state probabilities at any time step n may be obtained from a knowledge

of the initial probability distribution (π(0)) and the matrix of transition

probabilities P . From the law of total probability we have

πi(n) =
∑
k∈S

Pr({Xn = i | X0 = k})πk(0)

=
∑
k∈S

p
(n)
ki πk(0) (3.6)

which in matrix notation becomes

π(n) = π(0)P (n) = π(0)Pn. (3.7)

The probability distribution π is called the transient distribution, since it

gives the probability of being in the various states of the Markov chain at a

particular instant in time.

Definition 3.1 (Limiting distribution) Let P be the transition probabil-

ity matrix of a homogeneous discrete-time Markov chain and let π(0) be an

initial probability distribution. If the limit

lim
n→∞

P (n) = lim
n→∞

Pn

exists, then the probability distribution

π = lim
n→∞

π(n) = π(0) lim
n→∞

Pn

exists and is called the limiting distribution of the Markov chain.

When the Markov chain is ergodic or is finite, irreducible and aperiodic then

the limiting distribution always exists and is unique.

Definition 3.2 (Steady-state distribution) Let π a limiting distribution.

π is a steady-state distribution if it converges, independently of the initial

3.3. Continuous-time Markov chains 23

starting distribution π(0), to a vector whose components are strictly positive

and sum to 1. If a steady-state distribution exists, it is unique.

A component i of a steady-state distribution represents the probability to

find, randomly, the Markov chain in state i after a long period of time.

Steady-state distributions are also called equilibrium distributions and long-

run distributions. If the Markov chain contains a finite number of states and

is irreducible, all the states are positive recurrent and exists a unique sta-

tionary distribution. If the chain is also aperiodic, thanks to the aperiodicity

property, the distribution is also the unique steady-state distribution.

In general there are two ways of computing the stationary distribution

π: via the limiting process or via solving the set of linear equations.

3.3 Continuous-time Markov chains

A continuous-time Markov chain (CTMC), as we said at beginning, is a

stochastic process with continuous time and discrete state space that sat-

isfies the Markov property. This mean that, considering the formal defini-

tion (3.2), the future behaviour of the model depends only on the current

state and not on the historical behaviour. In a CTMC a change of state

may occur at any time and the amount of time already spent in the current

state is also irrelevant as the previously visited states in the chain.

More formally we say that the stochastic process {X(t), t ≥ 0} is a

CTMC if for states i, j, k and for all time instants s, t, u with t ≥ 0, s ≥ 0

and 0 ≤ u ≤ s, we have

Pr({X(s+ t) = k | X(s) = j,X(u) = i})
= Pr({X(s+ t) = k | X(s) = j}). (3.8)

In case the chain is nonhomogeneous, we have

pij(s, t) = Pr({X(t) = j | X(s) = i}),

where X(t) denotes the state of the Markov chain at time t ≥ s. Other-

wise, if the chain is homogeneous the transitions probabilities depend on

the difference τ = t− s and we have

pij(τ) = Pr({X(s+ τ) = j | X(s) = i}) ∀s ≥ 0.

This is the probability that the chain is in state j after an interval of length

24 Chapter 3. Theoretical Background

τ starting from the state i. Since the chain must be at any time in one of

states j, with j ∈ S, we have for all values of τ∑
j∈S

pij(τ) = 1.

For each t ≥ 0 there is a transition matrix

P (t) = (pij(t)),

and P (0) = I, the identity matrix.

Differently from the discrete-time case, in a CTMC there is a continuum

of possible times t. Probability pij(t) could be studied by use of calculus

and differential equations and this make the analysis more difficult than

DTMCs.

3.3.1 Infinitesimal generator

For Continuous-time Markov chain the interactions between states are not

based on transition probabilities like for discrete-time Markov chains, but

depend on the rate qij(t) at which a transition from state i to state j occurs.

While for DTMCs we have the transition probability matrix P (n) at step n,

for CTMCs we have the transition-rate matrix Q(t) at time t. The matrix

Q is called the infinitesimal generator of the chain and contains all the rate

information for the chain. For i 6= j the elements qij are non-negative and

describe the process transition from state i to state j.

Before explain the infinitesimal generator, also called the transition-rate

matrix, we have to discuss the concepts of probability and rate. The prob-

ability that a transition occurs depend not only on the source state i, but

also on the length of the interval of observation. Thus, we consider a period

of observation τ = ∆t and pij(t, t+ ∆t) is the probability that a transition

occurs in the interval [t, t + ∆t] from state i to state j. If this interval is

very small also the observed probability is small, so for i 6= j if ∆t→ 0 then

pij(t, t + ∆t) → 0. We also have for ∆ → 0 that pii(t, t + ∆t) → 1, thanks

to the conservation of probability. Instead, if ∆t is very large also the prob-

ability increases. Interval of observation are chosen sufficiently small that

the probability of observing multiple events in any observation period is of

order o(∆t).

A rate of transition qij(t) denotes the number of transitions per unit

time that occurs from state i to state j at time t and, despite probability,

3.3. Continuous-time Markov chains 25

does not depend on the length of the interval ∆t. More formally, we have

qij(t) = lim
∆t→0

{
pij(t, t+ ∆t)

∆t

}
for i 6= j. (3.9)

And for probabilities it follows that

pij(t, t+ ∆t) = qij(t)∆t+ o(∆t) for i 6= j. (3.10)

Now for the conservation of probability and last results we have

1− pii(t, t+ ∆t) =
∑
j 6=i

pij(t, t+ ∆t)

=
∑
j 6=i

qij(t)∆t+ o(∆t). (3.11)

Taking the limit and dividing by ∆t we find

lim
∆t→0

{∑
j 6=i qij(t)∆t+ o(∆t)

∆t

}
=
∑
j 6=i

qij(t).

In the continuous-time Markov chains the transition rate corresponding to

the system remaining in place is defined by the equation

qii(t) = −
∑
j 6=i

qij(t). (3.12)

This quantity is what we already called the transition rate and it is defined

as a derivative. If state i is an absorbing state, qii(t) = 0. Substituting

Equation (3.12) into Equation (3.11) provides the result we found in Equa-

tion (3.10). Now we rewrite all results together:

pij(t, t+ ∆t) = qij(t)∆t+ o(∆t) for i 6= j,

pii(t, t+ ∆t) = 1 + qii(t)∆t+ o(∆t).

When the CTMC is homogeneous the rate become

qij = lim
∆t→0

(
pij(∆t)

∆t

)
if i 6= j

qij = lim
∆t→0

(
pij(∆t)− 1

∆t

)
. (3.13)

Finally, we have the infinitesimal generator for the CTMC, that is the

26 Chapter 3. Theoretical Background

matrix Q(t) whose ijth element is the rate qij(t):

Q(t) = lim
∆t→0

{
P (t, t+ ∆t)− I

∆t

}
.

P (t, t+∆t) is the transition probability matrix and I is the identity matrix.

Considering Equation (3.12) we note that the sum of rows of Q(t) must be

equal to zero. Furthermore when the CTMC is homogeneous the infinites-

imal generator is written simply as Q because the transitions rates qij are

independent of time.

3.3.2 The steady-state distribution

We consider with π(t) the probability that the system is in state i at time

t, i.e., π(t) = Pr({X(t) = i}). Let ∆t an interval of time, we know for the

Markov property that the probability to observe the system in state i at

time t+ δt must be equal to the probability to observe it in state i at time

t. Furthermore this probability does not change state in the period [t,∆t)

and we have to consider also the probability that the system is in same state

k 6= i at time t and moves to state i in the interval ∆t:

π(t+ ∆t) = π(t)

1−
∑

all j 6=i
qij(t)∆t

+

 ∑
all k 6=i

qki(t)πk(t)

∆t+ o(∆t).

After a simplification and taking the limit

lim
∆t→0

(
πi(t+ ∆t)− πi(t)

∆t

)
= lim

∆t→0

(∑
all k

qki(t)πk(t) +
o(∆t)

∆t

)
,

we have
dπi(t)

dt
=
∑
all k

qki(t)πk(t).

When the chain is homogeneous and in matrix notation it becomes

dπi(t)

dt
= π(t)Q.

This leads to the solution

π(t) = π(0)eQt = π(0)

(
I +

∞∑
n=1

Qntn

n!

)
. (3.14)

3.4. Computation of the stationary distribution 27

This result can be obtained directly from the solution to the Kolmogorov

forward equations
dP (t)

dt
= P (t)Q (3.15)

since, by definition

π(t) = π(0)P (t) = π(0)eQt.

Summarizing, in a homogeneous CTMC the ith element of the distribu-

tion vector π(t) is the probability that the chain is in state i at time t and

the state probabilities are governed by the system of differential equations

dπ(t)

dt
= π(t)Q

Definition 3.3 (Steady-state distribution) A steady-state distribution

exists and is unique when exists the limiting distribution, when all its compo-

nents are strictly positive and when it is independent of the initial probability

vector π(0).

This distribution always exists and is identical to the stationary distribution

of the chain in case the chain is a finite, irreducible, CTMC. The steady-state

distribution may be obtained by solving the system of linear equations

πQ = 0, (3.16)

subject to the condition that ‖π‖1 = 1.

3.4 Computation of the stationary distribution of

a Markov chain

This section discusses the computation of the stationary distribution of

Markov chains. In particular we consider finite, irreducible Markov chains

that have a unique stationary distribution π and, as we previously said,

when a chain is also aperiodic π is the steady-state distribution.

In general we can distinguish two possible cases. In the first case the

number of states of the Markov chain is finite. In this situation the system

28 Chapter 3. Theoretical Background

of equations, for DTMC

πP = π
n∑
i=0

πi = 1

and for CTMC

πQ = 0
n∑
i=0

πi = 1,

can be solved explicitly with direct methods based on Gaussian elimination,

point and block iterative methods such as point and block Gauss-Seidel and

decompositional methods that are especially well suited to Markov chains

that are almost reducible. In the second case when the Markov chain has

an infinite state space the solution may be computed using the matrix ge-

ometric and matrix analytic methods. In our models we have stationary

homogeneous Markov chains with an infinite number of states and we focus

only on matrix geometric method.

3.4.1 Quasi-Birth and Death process

Before introduce the matrix geometric approach we have to define a typical

Markov chain structure that can be efficiently solved using this method.

The model is called Quasi-Birth and Death (QBD) process and the name

comes from his common application to study demographic trends. As in

demography the transitions are births and deaths. When a customer arrives

at the system this event is identified with a birth, when it leaves the system

we say that it departs and the event is referred to as a death. The peculiarity

of this class of Markov chains is that the interactions between states occur

only between nearest neighbors. QBD processes are also known as skip-free

processes since all intermediate states must be visited.

Consider a Markov chain with state space S =
⋃
i≥0
{(i, j) : 1 ≤ j ≤ m}.

The first component i is called the level of the chain, the second component

j is called the phase of the chain and m is an integer that can be finite or

infinite. The Markov chain is a QDB process if the one step transition from

a state is restricted to the same level or to the two adjacent levels. More

formally let (i, j) ∈ S with i ≥ 1, then the Markov chain is a QDB process

3.4. Computation of the stationary distribution 29

Figure 3.1: Quasi-birth and death process state diagram.

if

(i, j)←→ (i, j′); (i− 1, j′)←→ (i, j)←→ (i+ 1, j′′).

The QDB process is an extension of the standard birth and death process

whose state space consists only of the level i as we can see in Figure 3.1.

If the transition rates are level independent, the resulting QBD process is

called homogeneous or level-independent QBD (LIQBD) process; else it is

called inhomogeneous or level-dependent QBD (LDQBD) process [11]. The

process is specified by birth rates, denoted with λi, and death rates, denoted

with µi, with i = 0, 1, . . . ,∞.

This model is defined by the infinitesimal generator matrix

Q =



−λ0 λ0 0 0 0 0 . . .

µ1 −(λ1 + µ1) λ1 0 0 0 . . .

0 µ2 −(λ2 + µ2) λ2 0 0 . . .

0 0 µ3 −(λ3 + µ3) λ3 0 . . .
. . .

. . .
. . .

...
...

...
...

...
...

...


,

a tridiagonal matrix that is irreducible if all λi > 0 and µi > 0.

3.4.2 Matrix geometric/analytic methods

Matrix geometric and matrix analytic methods were introduced by Marcel

F. Neuts [14, 15] and studied by several researches since late seventies. This

methods are suitable for the Markov chains whose transition matrices have

a particular block structure and provide tools to construct and analyse a

wide class of stochastic models, queueing systems in particularly, using a

matrix formalism to develop algorithmically tractable solutions.

In the simplest case, matrices are infinite block tridiagonal matrices in

which the three diagonal blocks repeat after some initial period. We report

30 Chapter 3. Theoretical Background

below the typical transition rate matrix

Q =



B00 B01 0 0 0 0 . . .

B10 A1 A2 0 0 0 . . .

0 A0 A1 A2 0 0 . . .

0 0 A0 A1 A2 0 . . .
. . .

. . .
. . .

...
...

...
...

...
...

...


, (3.17)

where A0, A1, A2 are square matrices with the same dimension; B00 is also a

square matrix, but the dimension could be different than A1; B01 and B10 are

matrices whose sizes are defined in accordance with B00 and A1 respectively.

This particular block structure is exactly the same that we have define for the

QBD processes. In particular, with a block tridiagonal structure the states

are grouped into levels according to their i value and the transitions are

permitted only between neighbors, i.e., the states of the same level (diagonal

blocks) can interact only with states in the adjacent levels (superdiagonal

or subdiagonal blocks). After considered boundary conditions (given by the

initial B submatrices) the transition rates are identical from level to level.

To introduce the method to compute the solution we firstly consider

a special type of QBD process: the M/M/1 queueing system, which has

the submatrices of Q are reduced to a single element. We consider the

probability to move from a state k to a state k+1 as λ
(λ+µ) and the probability

to move from a state k to a state k−1 as µ
(λ+µ) . This is also a typical random

walk problem as defined in [18]. Now from equation πQ = 0 we obtain the

following general equation

λπi−1 − (λ+ µ)πi + µπi+1 = 0 (3.18)

and we proceed by induction to show that

πi+1 =

(
λ

µ

)
πi for i ≥ 1.

The basic case is

π1 =

(
λ

µ

)
π0

3.4. Computation of the stationary distribution 31

and from the inductive hypothesis

πi =

(
λ

µ

)
πi−1,

we have

πi+1 =

(
λ+ µ

µ

)
πi −

(
λ

µ

)
πi−1 =

(
λ

µ

)
πi

which gives the desired result. It follows that

πi = ρiπ0,

where ρ = λ
µ .

The problem now, once π0 is known, is to find πi recursively. When

Q is a QBD process ρ becomes a square matrix R of order m. Let Q the

infinitesimal generator as defined in Matrix (3.17) and π, the stationary

distribution vector obtained from πQ = 0, partitioned conformally with Q

π = (π0, π1, π2, . . .).

Furthermore, the components πi become subvectors of length m, i.e.,

πi = (π(i, 1), π(i, 2), . . . , π(i,m)) i ≥ 0,

where π(i, j) is the probability of finding the system in state (i, j) at steady

state. From πQ = 0 we have the following equations:

π0B00 + π1B10 = 0,

π0B01 + π1A1 + π2A0 = 0,

π1A2 + π2A1 + π3A0 = 0,

...

πi−1A2 + π1A1 + πi+1A0 = 0, i ≥ 2

As we can see there exists a constant matrix R and vector π may be com-

puted with the following scheme

πi = πi−1R i ≥ 2 (3.19)

where π0, π1 and constant matrix R are defined in [14, 15]. Once the rate

matrix R is obtained, the station distribution can be computed. The iter-

32 Chapter 3. Theoretical Background

atively methods proposed by Neuts to compute R may require long time

to converge, but there are other possible choices like the logarithmic reduc-

tion algorithm developed by Latouche and Ramaswami [12], or the cyclic

reduction algorithm [2].

To derive π0 and π1 we rewrite in matrix form the first two equation of

πQ = 0:

(π0, π1) =

(
B00 B01

B10 A1 +RA0

)
= (0, 0). (3.20)

After the system has been solved the distribution vector obtained needs to

be normalized to respect the condition
∑

i πi = 1.

Following steps summarize the procedure to solve a QBD process by the

matrix geometric method:

1. Ensure that the matrix has the requisite block structure.

2. Ensure that the chain is ergodic with the following condition

πAA2e < πAA0e,

where πA is the stationary distribution of the infinitesimal generator

A = A0 +A1 +A2.

3. Compute the rate matrix R.

4. Solve the system of Equations (3.20) for π0 and π1.

5. Normalize π0 and π1.

6. Use Equation (3.19) to compute the remaining components of the sta-

tionary distribution vector π.

To find the stationary distribution for the models presented in this work

we have included SMC-Solver in our matlab code for solving structured

Markov chains. This very useful package contains the most advanced algo-

rithms for solving QBD, M/G/1 and G/M/1 problems [3].

In conclusion this chapter recall all the theoretical concepts that are use-

ful to understand the following chapters. Of particular interest is the last

section in which we have introduced QDB processes, one of the most funda-

mental models that extends the basic M/M/1 queueing systems. We have

discussed also the matrix geometric method to find the numerical solution

of the corresponding Markov chain.

3.5. Queueing theory concepts 33

Figure 3.2: The main processes in a general queueing system.

3.5 Queueing theory concepts

In this section we recall some concepts from queueing theory that will be

useful in later chapters.

Following the Kleinrock’s definition (1975), queueing systems are those

systems in which arrivals place demands upon a finite-capacity resource can

be broadly termed a queueing system. Queueing theory [18, 16] describes

the basic phenomena in a queueing system and Figure 3.2 illustrates its

mainly components: the arriving items (customers), a buffer where items

wait for service, a service center (server) and departures from the system.

This components has a stochastic nature. Let see their characteristics.

3.5.1 The arrival process

The arrival process can be described in two ways:

� the number of arrivals per unit time, called the arrival rate;

� the time between successive arrivals, called the interarrival time.

The mean arrival rate is usually denoted by the variable λ and 1/λ denotes

the mean time between arrivals. If the input process is a stochastic process

there is an associated probability distribution, denoted by A(t). Let τ the

time between arrivals, then the probability distribution between interarrival

time of customers is

A(t) = Pr({τ ≤ t}).

and
1

λ
=

∫ ∞
0

tdA(t),

where dA(t) the probability that the interarrival time is between t and t+dt.

We assume that the interarrival times are i.i.d. (independent and identi-

cally distributed). Otherwise every different class of customers has its own

probability distribution to describe its arrival process.

34 Chapter 3. Theoretical Background

3.5.2 The service process

As for the arrival process, the service process may be described in two ways:

� the number of customers served per unit time, called the service rate;

� the time required to serve a customer.

Usually the variable µ denotes the mean service rate, and hence the mean

service time is denoted by 1/µ. The probability distribution of the demand

placed on the system is denoted by B(x), defined as

B(x) = Pr({servicetime ≤ x})

and
1

µ
=

∫ ∞
0

xdB(x),

where dB(x) is the probability that the service time is between x and x+dx.

It is important to remark that the service time is equal to the length of

time spent in service and does not include the waiting time. Furthermore,

depending on how many servers are available, the service may be batch, in

which several customers can be served simultaneously, or single.

3.5.3 Queuing discipline

There are many ways to select customers from the queue and take them into

service. This ways are usually called scheduling rules and if not specified

they assume that the time spent to select customers is zero. This means

that the customers selection and customers departure are two simultaneously

events. We can distinguish two kinds of scheduling rules: preemptive policies,

that can interrupt the service of the customer in service, and nonpreemptive

policies, that cannot perform this operation. Preemptive policies are useful

in presence of different types of customers, having different service priorities.

Within the context of preemptive and nonpreemptive service, several

scheduling rules exists. The most common and simplest is First-In-First-Out

(FIFO), a nonpreemptive policy that serves the customers in their arrival

order. Another example is Processor Sharing (PS), a preemptive policy in

which the processor is “shared” among processes.

3.5. Queueing theory concepts 35

3.5.4 Kendall’s notation

A useful notation to characterize queueing systems was introduced by Kendall [16].

It is given by A/B/C/X/Y/Z, where

A indicates the interarrival time distribution;

B indicates the service time distribution;

C indicates the number of server;

X indicates the system capacity;

Y indicates the size of the customer population;

Z indicates the queueing discipline.

The first three parameters are always provided and there are different pos-

sible distributions for A and B. As an example, the M/M/1 queue means

that the arrival process and service process are both Markovian (M) and

there is a single server.

3.5.5 Measures of effectiveness

When we analyse a queueing system we are interested to obtain some useful

values that are called measures of effectiveness, like:

� the number of customers in the system;

� the waiting time for a service, i.e., the average response time.

Let N be the random variable that describe the number of customers present

at steady state. The average number of customers in the system is given by

the following formula

E[N] =
∞∑
c=1

cπc, (3.21)

where ‖π‖1 = 1.

We call response time the time that a customer spends in the system,

from the instant of its arrival to the queue to the instant of its departure

from the server [16]. We denote this time by R and its mean value by E[R].

Response time is composed by the waiting time, the time that a customer

spends in the queue, and by service time.

36 Chapter 3. Theoretical Background

The fraction of time in which the server is busy is called system utilization

and we use ρ to denote it. This is a fraction of customer arrival rate and

customer service rate:

ρ =
λ

µ
(3.22)

Formula (3.22) can depend on the number of customers admitted in the

queue.

Finally, we report a very important result, found by Little, that relates

the average waiting time and the average number of customers waiting for

a service [18].

Theorem 3.1 (Little’s Law) The average number of packets (customers)

in the system E[NS] (or in the queue E[Q]) equals the average arrival rate

λ times the average time spent in the system E[T] (or in the queue E[w]),

E[NS] = λE[T], (3.23)

E[NQ] = λE[w].

Chapter 4

A QBD Model for GC

In this chapter we start presenting the queueing models studied to anal-

yse and quantify the performances of a class of garbage collection algo-

rithms. The first model we describe and summarize here was presented at

the ASMTA 2011 Conference [1]. Balsamo et al. propose a queueing model

to analyse a system with a garbage collector, in which customers arrive ac-

cording to a Poisson process and the service time distribution depends on

the amount of free memory. Furthermore, they propose a heuristic based on

this model to derive an appropriate and effective garbage collector activation

rate in order to minimise the average system response time.

4.1 Model description

The system is a client-server architecture in which the garbage collector is

represented as a two-state system {OFF,ON} that adopts a stop-the- world

policy when it is active, i.e., on state ON. A stop the world policy implies

a stop of the applications currently running to allow the garbage collector

to work. Unfortunately, this situation has serious implications on a lot of

applications. As an example we can take the undesired effects that the

activation of a garbage collector with the stop-the-world policy causes on a

video game: nobody would want to be interrupted during a session while

he/she is playing with his/her favourite title. This is just an example of

a possible scenario and the goal of a good policy is to make this events

unlikely.

The goal of software engineers designing a new policy consists in deciding

the frequency of the garbage collections and this choice is quite difficult to

take. There is a clear trade-off in deciding the activation rate of a garbage

37

38 Chapter 4. A QBD Model for GC

Figure 4.1: Single-server queue

collector: on one hand a high frequency causes frequent “interruptions” of

the computations, but on the other hand the system performances tend to

degrade when available memory is finishing due to the swapping, i.e, the

virtual memory usage.

4.1.1 Queueing model

The queueing model is a single-server queue in which customers arrive ac-

cording to a homogeneous Poisson process with exponentially distributed

rate λ, as shown in Figure 4.1. A process activation corresponds to a cus-

tomer arrival. Assuming an empty system with no other customers in the

queue and that the garbage collector does not start, the service time is

exponentially distributed and independent of the arrival time.

4.1.2 Memory assumptions

Memory considerations require particularly attention and are the main dif-

ference from our proposal on the next chapter. The memory is divided into

B blocks and b blocks are occupied when a customer arrive at the system.

This number b is sampled from a discrete random variable with a certain

probability distribution and for simplicity in the article [1] the authors as-

sume b = 1. The memory blocks may be allocated on all the memory, which

includes the physical memory (RAM) and the virtual memory (disk space).

Therefore, the performances of the system, and the service rate in particu-

lar, depend on the memory availability. When the system needs to allocate

the virtual memory, the costs of the swapping activity increase significantly

the service time. The model considers the service rate µi as a function of

the occupied memory blocks i, with 0 ≤ i ≤ B.

4.1. Model description 39

4.1.3 Garbage collector’s role

The task of the garbage collector is to free the unused memory blocks and

to keep low the number of occupied memory blocks in order to improve the

service rate. We assume that the stop-the-world policy is adopted, which

means that during an operation of garbage collection and memory optimiza-

tion the customer service is suspended. The following activation conditions

for the garbage collector have been identified in the paper:

� The system memory is full and a customer arrival event occurs.

� A timer set up with an exponentially distributed delay expires. The

mean duration of these delays is α−1, where α is the activation rate.

The activation rate may be assumed as a function of the occupied memory

blocks, i.e., αi. During the garbage collections there is a random exponen-

tially time necessary to analyse each memory block. The rate of this oper-

ation is γi, with 1 ≤ i ≤ B and it depends on the quantity of the memory

allocated. The rate of the garbage collection operation, called deactivation

rate, is βi with 1 ≤ i ≤ B and is the rate of exponentially distributed

random variable. Finally, if the system is empty and no customer is being

processed the garbage collector can immediately free all the memory. Pa-

rameters αi, βi, γi and µi are set using system statistics and we discuss it

more in details in Chapter 6.

4.1.4 State of the system

The state of the system is defined by a triplet (c, i, g), where c is the number

of customers in the system, i is the number of occupied memory blocks and

g is the state of the garbage collector, e.g., the state (5, 3,ON) means that

there are 5 customers in the system, 3 memory blocks allocated and that

the garbage collector is running. Considering the initial case with the empty

queue and garbage collection not active, the state space of the process is E =

(0, 0,OFF) ∪ {(c, i, g)|c ∈ N>0, i ∈ {1 . . . B}, g ∈ {ON,OFF}}. Figure 4.2

shows the structure of the regular portion of the resulting continuous-time

Markov chain. As we can see it has a regular pattern for every number of

customers c > 1. In particular, we can note that the interactions occur only

between neighbouring states. This is a quasi-birth-death (QBD) process and

we have described it in details in Section 3.4.1.

40 Chapter 4. A QBD Model for GC

Figure 4.2: The regular blocks of the model for b = 1.

4.2 Transition rate matrix

The corresponding transition rate matrix Q of the CTMC is formed by

infinite block tridiagonal matrices with the typical regular block structure:

Q =



B00 B01 0 0 0 0 . . .

B10 A1 A2 0 0 0 . . .

0 A0 A1 A2 0 0 . . .

0 0 A0 A1 A2 0 . . .
. . .

. . .
. . .

...
...

...
...

...
...

...


, (4.1)

where A0, A1, A2 are squared matrices of size 2B and , B00, B01, B10 are

column vector of size 2B. We report below the submatrices as defined in

the article:

4.2. Transition rate matrix 41

A0(i, j) =

{
µ i+1

2
if i = j and i, j are odd

0 otherwise

A1(i, j) =



α i+1
2

if j = i+ 1 ∧ i is odd

β i
2

if j = i− 1 ∧ i is even

γ i
2

if j = i− 2 ∧ i is even

−
∑
∀k 6=i

(A0(i, k) +A1(i, k) +A2(i, k)) if i = j

0 otherwise

(4.2)

A2(i, j) =


λ if j = i+ 2

λ if (i = 2B ∨ i = 2B − 1) ∧ j = 2B

0 otherwise

B00(1) = −λ

B01(j) =

{
λ if j = 1

0 otherwise

B10(i) =

{
µ i+1

2
if i is odd

0 otherwise

We also report the example in case B = 4:

A0 =



µ1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 µ2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 µ3 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 µ4 0

0 0 0 0 0 0 0 0


,

42 Chapter 4. A QBD Model for GC

A1 =



∗ α1 0 0 0 0 0 0

β1 ∗ 0 0 0 0 0 0

0 0 ∗ α2 0 0 0 0

0 γ2 β2 ∗ 0 0 0 0

0 0 0 0 ∗ α3 0 0

0 0 0 γ3 β3 ∗ 0 0

0 0 0 0 0 0 ∗ α4

0 0 0 0 0 γ4 β4 ∗


,

A2 =



0 0 λ 0 0 0 0 0

0 0 0 λ 0 0 0 0

0 0 0 0 λ 0 0 0

0 0 0 0 0 λ 0 0

0 0 0 0 0 0 λ 0

0 0 0 0 0 0 0 λ

0 0 0 0 0 0 0 λ

0 0 0 0 0 0 0 λ


,

where diagonal elements, denoted with ∗, are given by Equation (4.2).

B10 =



µ1

0

µ2

0

µ3

0

µ4

0


, B00 =

(
−λ
)
, B01 =

(
λ 0 0 0 0 0 0 0

)
.

4.3 Numerical Solution of Markov Chain

Since the model has an underlying QBD process we can apply the matrix

geometric method as described in previous chapter. Thanks to SMC-Solver

package we have implemented a MATLAB code of the stochastic model

specifically designed for our test suite. MATLAB is a numerical computing

environment that allows matrix manipulations and it is particularly suitable

for this kind of jobs. We assume that parameters like α, β, γ and µ are given

and obtained from experimental measures. Parameter λ is triggered in order

to test the system under different load conditions. The input matrices are

4.3. Numerical Solution of Markov Chain 43

built as defined in previous equations to form the infinitesimal generator Q

with the requisite block structure to apply the matrix-geometric method.

After verified the condition πAA2e < πAA0e, the rate matrix R is computed

by the QBD FI function. This is the most computationally expensive

operation and in some cases we limit the analysis to a fixed memory size in

order to to obtain the results in a reasonable amount of time. The solution of

the system of equations πQ = 0 is easily computed by the QBD pi, which

returns the stationary distribution vector π and then we partition vector

conformally with Q. Finally, by the closed-matrix-form expression for the

mean number of customers in the system derived in [1]:

E[N] =
∞∑
k=1

k‖πk‖1 = ‖π1(I −R)2‖1,

and by Little’s Law, equation (3.23), we obtain the mean response time

E[R] =
E[N]

λ
.

During the experimental phase we carried out some tuning to the model

and in particular to the construction of the infinitesimal generator subma-

trices. When the system is busy and we are not under stability conditions

with ρ ≥ 1, i.e., when there are no more memory blocks available, there is

no service to the customers. We then considered this situation by setting to

zero the service rate when all memory blocks are occupied.

44 Chapter 4. A QBD Model for GC

Chapter 5

Markov-Modulated Queueing

Model for GC

In this chapter we present our contribution to analyse and quantify the

performances of a class of garbage collection policies. As before, we consider

a single server in which the garbage collector is represented as a simple

two-states system {OFF,ON} that adopt a stop-the-world policy when it is

active, i.e., on state ON. We introduce two queueing models that describe

the garbage collector behaviour.

5.1 Simplest version

The purpose of this work is to obtain a queueing model as simple as possible.

In order to achieve this goal we propose a way to reduce the number of

parameters involved with a reasonable loss of accuracy.

The model proposed here is composed by a server that provides a service

to the clients by answering their requests, as shown in Figure 4.1. It is very

close to the model describe in [1], unless for some conditions that we are

going to describe.

Description and assumptions

� Customers are undistinguishable and part of an infinite set that arrive

at the system according to a homogeneous Poisson process with rate

λ.

� Assuming customer arrivals at an empty system, no other customer

arrivals during service time and garbage collector always inactive. Un-

45

46 Chapter 5. Markov-Modulated Queueing Model for GC

der these conditions the service time is exponentially distributed and

independent of the arrival time.

� The scheduling discipline is Processor Sharing.

� The system service rate, unlike [1], does not depend on the amount of

memory blocks occupied as long as the system does not use the virtual

memory.

� The purpose of the garbage collector is to free the unused memory

blocks. Due to the stop-the-world policy the customer service is sus-

pended during the operation. The garbage collector is activated ac-

cording to the following cases:

(a) The system memory is full and a customer arrival event occurs.

(b) Activation and deactivation depend on a timer expiration, which

is set up with an exponentially distribution. The mean dura-

tion of those delays is α−1, and we call α the activation rate of

the garbage collector. The time taken to the garbage collection

operation is β−1, and we call β the deactivation rate.

� If the system is empty, i.e., no customer is being processed, the garbage

collector can immediately free all the memory blocks.

We proceed by defining the state of the model and the transition dia-

gram. We represent the garbage collector as a switch with two possible states

{OFF,ON}. We adopt the stop-the-world policy, thus when the garbage col-

lector is switched on, all the server activities are suspended. This has the

result that customers cannot be served, i.e., no departures in Figure 4.1.

More formally, the model definition is quite similar to [1], but without con-

sidering the rate of freeing memory blocks.

The state of the system is defined as a pair (c, s), where c is the number

of customers in the system and s is the state of the garbage collector, e.g.,

the state (4,ON) means that there are 4 customers in the system and that

the garbage collector is running. Considering the initial case with the empty

queue and garbage collection not active, the state space of the process is E =

(0,OFF)∪{(c, s)|c ∈ N>0, s ∈ {OFF,ON}}. The corresponding Continuous-

time Markov Chain is shown on Figure 5.1 and as we can see it has a regular

pattern for every number of customers. In particular, we can note that

interactions occur only between neighbouring states. This is a quasi-birth-

death (QBD) process and we have described it in details in Section 3.4.1.

5.1. Simplest version 47

0,OFF ...1,OFF n,OFF n+1,OFF

0,1,ON

λ λ

µ µ µ µ

...

µ

λ λ λ

1,ON n,ON n+1,ON

λ λ λ λ

...

λ

...

α β α β α β α β

Figure 5.1: CTMC transitions for the queue from 0 to ∞ customers.

According to Kendall’s notation, described in Section 3.5.4, this is a

M/G/1 queueing model, where M stay for Markovian interarrival time dis-

tribution, G for General service time distribution and 1 denotes one server.

We omitted the letters that specify the system capacity and we considered

default values, i.e., infinite size for capacity and population. We assume

that all customers who arrive at the server are admitted. Under stability

condition the server cannot be busy all the time and this implies a ρ < 1.

5.1.1 Transition rate matrix

The corresponding transition rate matrix Q of the QBD Markov chain is

formed by infinite block tridiagonal matrices with the following regular block

structure:

Q =



B00 B01 0 0 0 0 . . .

B10 A1 A2 0 0 0 . . .

0 A0 A1 A2 0 0 . . .

0 0 A0 A1 A2 0 . . .
. . .

. . .
. . .

...
...

...
...

...
...

...


, (5.1)

where A0, A1, A2, B00, B01, B10 are square matrices with the same dimension

2. The submatrices are defined as follow:

A0(i, j) = B10(i, j) =

{
µ if i = j = 1

0 otherwise

48 Chapter 5. Markov-Modulated Queueing Model for GC

A1(i, j) =



α if i = 1 ∧ j = 2

β if i = 2 ∧ j = 1

−
∑
∀k 6=i

(A0(i, k) +A1(i, k) + A2(i, k)) if i = j

0 otherwise

(5.2)

A2(i, j) = B01 =

{
λ if i = j

0 otherwise

B00(i, j) =



α if i = 1 ∧ j = 2

β if i = 2 ∧ j = 1

−
∑
∀k 6=i

(B00(i, k) +A2(i, k)) if i = j

0 otherwise

(5.3)

Here we can see an example. Diagonal elements, denoted with ∗, are

given by Equations (5.2, 5.3).

A0 = B10 =

(
µ 0

0 0

)
, A1 =

(
∗ α

β ∗

)
,

A2 = B01 =

(
λ 0

0 λ

)
, B00 =

(
∗ α

β ∗

)
.

5.2 Improved version

Since initial experimental results have shown that the models had not a very

exponential trend, we propose an improved version in which we consider the

times (service, response, activation and deactivation) with a more general

distribution. To reduce the variance and fit better the data we extend

the first model. Until now we have considered the deactivation rate as a

single exponential distribution. We split now the time taken to perform the

garbage collection operation, i.e., the time that a customer spends waiting

for service, into a succession of r exponential phases. These phases are

distributed with the same parameter β, they are independent and r is chosen

according to the experimental measures. When the garbage collector is

active, a client must wait r consecutive interval of time before being served,

i.e, the garbage collection deactivation time. We recall that our system is

composed of a single-queue server, thus there cannot be more than one client

in service at any time.

5.2. Improved version 49

The new distribution is a typical Erlang-r distribution, where r is a

parameter and indicates the number of exponential phases. In an Erlang-r

distribution the random variable has a lower variance than an exponentially

distributed random variable with the same mean, while maintaining the

desirable mathematical properties of the exponential [16].

Formally, the density function of an exponentially distributed random

variable X with parameter λ is given by

fX(x) ≡ dFX(x)

dx
= λe−λx, x ≥ 0,

and has expected value and variance E[X] = 1
λ , σ2

X = 1
λ2

that are the

expectation and variance per phase.

The overall mean and variance of the sum of r independent and identi-

cally distributed random variables are given by the following formula:

E[X] = r

(
1

λ

)
=
r

λ
, σ2

X = r

(
1

λ

)2

=
r

λ2
. (5.4)

For our model we want that the garbage collection operation is dis-

tributed according to an Erlang-r distribution with expected value 1/β. We

can substitute E[X] = 1/β in Equation (5.4) obtaining

1

β
=
r

λ
⇒ λ = rβ.

This means that the long run rate at which events occur in the Erlang-

r distribution is the number of phases r multiplied by β, the reciprocal

of the expected value that is also the rate parameter of the exponentially

distributed random variable with the same expectation.

After these considerations we have to redefine the state of the system

introducing a new parameter for phase representation. This leads to a triplet

(c, i, s) where c is again the number of customers in the system, i, with

(1 ≤ i ≤ r), denotes the current phase in the Erlang-r distribution and s is

the state of the garbage collector. For example the state (4, 3,ON) means

that there are 4 customers in the system, the garbage collector is running

and it is on the third phase. Note that if r = 1 we have the same model

with the same infinitesimal generator as described in previous section.

Figure 5.2 shows the new state transition diagram where the states are

arranged into levels according to the number of deactivation phases and the

number of customers present. From the structure of the state transition

50 Chapter 5. Markov-Modulated Queueing Model for GC

0,0,OFF ...1,0,OFF n,0,OFF n+1,0,OFF

0,1,ON

0,r,ON

...

λ λ

µ µ µ µ

...

µ

λ λ λ

1,1,ON

1,r,ON

...

n,1,ON

n,r,ON

...

n+1,1,ON

n+1,r,ON

...

λ

λ

λ

λ

λ

λ λ

λ

...

...

λ

λ

...

...

α α α α

...

α

rβ

rβ

rβ

rβ

rβ

rβ

rβ

rβ

rβ rβ rβ rβ

rβ

rβ

rβ

λ λ λ λ λ

Figure 5.2: CTMC transitions for the queue from 0 to ∞ customers with r phases.

diagram we can see that the transition rate matrix has the typical block

tridiagonal form and, as the early version, it is again a QBD process.

5.2.1 Transition rate matrix

The corresponding transition rate matrix Q of the QBD Markov chain is

formed by infinite block tridiagonal matrices with the following regular block

structure:

Q =



B00 B01 0 0 0 0 . . .

B10 A1 A2 0 0 0 . . .

0 A0 A1 A2 0 0 . . .

0 0 A0 A1 A2 0 . . .
. . .

. . .
. . .

...
...

...
...

...
...

...


, (5.5)

where A0, A1, A2, B00, B01, B10 are square matrices with the same dimension

r + 1. The submatrices are defined as follow:

A0(i, j) = B10(i, j) =

{
µ if i = j = 1

0 otherwise

5.3. Numerical Solution of Markov Chains 51

A1(i, j) =



α if i = 1 ∧ j = 2

rβ if (i ∈ [2, r] ∧ j = i+ 1)

∨ (i = r + 1 ∧ j = 1)

−
∑
∀k 6=i

(A0(i, k) +A1(i, k) + A2(i, k)) if i = j

0 otherwise

(5.6)

A2(i, j) = B01 =

{
λ if i = j

0 otherwise

B00(i, j) =



α if i = 1 ∧ j = 2

rβ if (i ∈ [2, r] ∧ j = i+ 1)

∨ (i = r + 1 ∧ j = 1)

−
∑
∀k 6=i

(B00(i, k) +A2(i, k)) if i = j

0 otherwise

(5.7)

Here we can see an example with three phases, i.e., r = 3. Diagonal

elements, denoted with ∗, are given by Equations (5.6, 5.7).

A0 = B10 =


µ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , A1 =


∗ α 0 0

0 ∗ rβ 0

0 0 ∗ rβ

rβ 0 0 ∗

 ,

A2 = B01 =


λ 0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

 , B00 =


∗ α 0 0

0 ∗ rβ 0

0 0 ∗ rβ

rβ 0 0 ∗

 .

5.3 Numerical Solution of Markov Chains

The purpose of this work is to obtain a numerically tractable model that

allows us to to predict the performances in terms of throughput and average

response time. Since there is no customer loss or creation in the queue,

under stability conditions the throughput is equal to the arrival rate λ and

by Little’s Law (3.1) we can derive the mean response time of the system:

E[R] =
E[N]

λ
. (5.8)

52 Chapter 5. Markov-Modulated Queueing Model for GC

The average number of customers in the system is given by Formula (3.21).

Our goal is to find the stationary distribution π that is the numerical

solution of the corresponding Markov chain. Furthermore, we know that

both the stochastic models presented here have the typical behaviour of

QBD processes, thus the equations and matrix geometric method described

in Section 3.4.2 can be applied to find the solution.

5.3.1 Assumptions

To build the model and solve the system of equations πQ = 0 we use

MATLAB. Thanks to SMC-Solver [3] (we already mention it on Chapter 3)

we can use a useful package to compute efficiently the rate matrix R and

the stationary vector π.

We assume that parameters α, β and µ are given and in particular they

are obtained from experimental results by a series of tools and scripts specif-

ically designed for this purpose. Parameter λ is given and it is triggered by

us in order to test the system under different load situations. Refer to the

following chapter for validation and technical details.

5.3.2 Matrix geometric approach

We apply the matrix geometric method to the Markov chains of simplified

and improved version of our Markov-modulated queue models. As we al-

ready said the infinitesimal generators Q have the correct QBD structure

and stability conditions can be verified with inequality πAA2e < πAA0e.

We proceed with the computation of rate matrix R and for this opera-

tion we call the QBD FI function provided by SMC-Solver. Once R is

obtained we call the QBD pi function that returns the stationary distribu-

tion vector π. The solution is not yet complete because the components

πi need to be transformed into subvectors of length m (the phase), i.e.,

πi = (π(i, 1), π(i, 2), . . . , π(i,m)). Finally, Equations (3.21, 5.8) are applied

to obtain the mean response time of the system.

The following code show the function for the implementation of the ma-

trix geometric method and as we can see the advantages provided by the

SMC-Solver package are remarkable. We omitted the part for the matrices

creation and the rest of the program.

5.3. Numerical Solution of Markov Chains 53

Code 5.1: Matlab implementation of matrix geometric method

1 function [er] = mean response time(r,A0,A1,A2,B0,B1)

2 % size of subvectors

3 % r is the number of Erlang−r distribution phases

4 dim = r+1;

5 % SMC−Solver package inclusion

6 addpath('QBD');

7 % compute the rate matrix R

8 [G,R] = QBD FI(A0,A1,A2);

9 % system resolution

10 % the stationary distribution vector is returned

11 pigc=QBD pi(B0,B1,R);

12 it=1;

13 jt=1;

14 % new distribution vector

15 %partitioned conformally with Q

16 pig = zeros(1, size(pigc,2)/dim);

17 while (it < size(pigc,2))

18 % sum block probabilities

19 % to have subvectors of length 'dim'

20 for col=it:it+dim−1
21 pig(jt) = pig(jt) + pigc(col);

22 end

23 it = col+1;

24 jt = jt+1;

25 end

26 % average number of customers in the system

27 umean = 0;

28 for it=1:size(pig,2)

29 umean = umean+(it−1)*pig(it);
30 end

31 % mean response time computation

32 er=umean/l;

33 end;

54 Chapter 5. Markov-Modulated Queueing Model for GC

Chapter 6

Model validation

This chapter describes the validation of the models described in Chapter 4

and 5. It starts presenting the architecture of the test environment, then it

shows a comparison between the real data collected from the experiments

and the predictions provided by the numerical solution of QBD Model for

GC and Markov-Modulated Queueing Model for GC.

The presented measurements have twofold purposes. First, they provide

an overview of the mean response time and memory usage of an application

under different workload conditions. Second, part of the values obtained are

used to parametrize the models and to validate them.

6.1 Architecture

To test the data we set a test environment to reproduce a real scenario as far

as possible. The main components are a server and a client located in the

server room of the Department of Environmental Sciences, Informatics and

Statistics (DAIS). Table 6.1 reports their technical specifications of partic-

ular interest for our experiments. The two machines are directly connected

via a point-to-point connection and the client has the role of gateway. This

allows us to connect remotely to the server, but avoiding other network traf-

fic that may be invalidate the measures. Initially the system was connected

through the department LAN and the mean response time resulted higher

than what we expected. After some testing we figured out that the problem

was the network overhead due to the high traffic in the network department,

so we decided to connect directly the server to the client with a dedicated

cable.

55

56 Chapter 6. Model validation

Hardware specifications

CPU Cores RAM

Client Intel(R) Xeon(R) E5410 @ 2.33 GHz 8 16 GB

Server AMD Sempron(tm) Processor 3400+ 1 4 GB

Table 6.1: Client and Server hardware specifications.

6.2 Server overview

6.2.1 Applications

Our purpose is to study the garbage collection policies of the Java technol-

ogy, hence we have looked for a real application that can be reached remotely.

In this way we can physically split the tasks for the client and the server,

allowing us to monitor only the server performances like CPU usage and

memory allocation. The application that satisfied this requirements is Mag-

nolia CMS1, an open-source content management system (CMS) developed

by Magnolia International Ltd.

Magnolia CMS allows companies to orchestrate services, sales and mar-

keting across all digital channels and devices. It is used by many companies

in various sectors like: defense, news channels, insurances, financial services

and much more. Magnolia CMS is based on the Content Repository API

for Java (JCR), a standard that defines a repository for managing content.

Magnolia offers a free Community Edition and a commercial licensed Enter-

prise Edition. While the company will not offer support for the community

edition it is the same code base as the core of Enterprise Edition. The En-

terprise Edition has a more robust feature set aimed at enterprise customers

and is certified to work with different application servers and an alternative

repository. We chose to use the Community Edition (CE) that can be ob-

tained under the GNU General Public License (GPL) and it is sufficient to

validate the analytical models presented here. Application’s configuration

is a huge task that requires some expertises with the environment. Since

we are interested in performance evaluation, we do not require a special-

ized configuration and for our purposes it was sufficient to set up the demo

Website disabling all caching by default.

We also developed a servlet in Java that fill the memory with some ran-

dom squared matrices when a client request occurs. In order to introduce

some computation and not just memory allocation to increase the customer

1Website: http://www.magnolia-cms.com/

http://www.magnolia-cms.com/

6.2. Server overview 57

service time, the servlet also performs the matrix multiplication of two matri-

ces. The product matrix is computed by the Efficient Java Matrix Library

(EJML), a faster single threaded linear algebra library for manipulating

dense matrices released under Apache v2.0 license. With this application

and several matrices we tested the trend of the models under different load

conditions in terms of customer arrivals and memory occupancy.

6.2.2 Configuration

The server is a desktop PC with specifications described in Table 6.1. It

is configured with Ubuntu Server 12.04.3 LTS 64-bit version and Magnolia

CE 5.1 which also include Apache Tomcat 7.0.40, an open source software

implementation of the Java Servlet and JavaServer Pages technologies. To

deploy the Java applications we have installed the OpenJDK Runtime Envi-

ronment (version 7) and to test the models we left the Java Virtual Machine

(JVM) configuration as default without performing any tuning operations.

Tuning a JVM, as we said in Chapter 1, is a very difficult operation and it

is necessary for every single application. We assume that the default con-

figuration sets correctly the parameters to obtain the best performances as

specified in the documentation. In particular, we are interested in measur-

ing the garbage collection frequency, i.e., the activation rate of the garbage

to validate the queueing models analysed. The only changes regard the log

file configuration. As default Java does not log to the disk any informa-

tion about the garbage collection. Accordingly to the Java HotSpot manual

we log every garbage collection event occurred, which includes activation

timestamps, duration, heap size before and after collections. We could use

a profiling software like VisualVM to monitor the JVM, but this would in-

troduce a memory overhead as we noticed with some experimentations and

thus we design a specific solution.

The machine has 4 GB of available RAM and for our tests it can be

excessive, although it is quite limited for modern systems. With less memory

available we can quickly observe the system behaviour when it reach the

memory boundaries. However, as we noticed from experimental results the

system never fills up the heap under stability conditions.

During the parameters acquisition phase we realized there were perfor-

mance problems. The mean response time measured in a queue with many

customers resulted significantly less than service time, i.e, the system per-

formed better with an high arrival rate than a single arrival! Apparently

58 Chapter 6. Model validation

this is very strange, but we forgot to consider that modern computer ar-

chitectures adopt the dynamic frequency scaling, a technique of ramping a

processor’s frequency in order to achieve performance gains. Dynamic fre-

quency scaling reduces the number of instructions a processor can issue in

a given amount of time and modern CPU are strongly optimized for low

power idle state. Thus when we try to measure service time, the mean time

taken by single requests which are sent after a given amount of time, the

system requires more time to process the requests and this results in a rough

measure. Therefore, we disabled this feature.

6.3 Client description and tools

The client is a very powerful machine used to test the server applications and

performs the data analysis (see Table 6.1). It includes the operating system

Ubuntu Server 12.04.3 LTS 64-bit version, the OpenJDK Java software,

MATLAB, and Python 2.7.3.

At the beginning we spent a lot of time in finding out the best way to

test and monitor the server applications. With Java software are included

a series of useful graphical tools, like JConsole and VisualVM, specifically

designed to monitor JVM status. This applications have multiple advantages

like real time profiling and performance analysis. However the fastest and

most lightweight technology to get the data is implemented, there is always a

minimal overhead on monitored applications and they are recommended for

development and prototyping, but not for production environments. Since

we want to simulate a production environment as accurate as possible, we

chose to do only a posteriori performance analysis to not overload the JVM

with others activities.

IBM provides tooling and documentation to assist in the understand-

ing, monitoring, and problem diagnosis of applications and deployments

running IBM Runtime Environments for Java, like the “IBM Monitoring

and Diagnostic Tools for Java - Garbage Collection and Memory Visual-

izer” (GCMV). GCMV is a tool which allow users to visualize and analyse

the memory usage and garbage collection activity. Furthermore, it can also

analyse log file of normal JVM (with specific logging options) that does not

runs on IBM systems. Another possible tool is “gclogviewer”, a free open

source tool to visualize data produced by the JVM logging options. We

tried all this stuff, but we needed something more versatile and we decided

to implement a personalized solution. For the purpose, we developed a series

6.3. Client description and tools 59

of Python and Shell scripts to parse the JVM log file and collect the data

in the practical CSV file format. In this way the client interacts with the

server only for service request, avoiding possible JVM overload and network

overhead.

Once the parser was implemented we looked for a tool for benchmarking

the server applications with the following characteristics:

� support to multithreading HTTP requests;

� requests rate variation;

� number of connections variation;

� mean response time computation.

At the beginning we have developed a Python script to retrieve URLs from

the server application. The code was programmed to use Requests, an el-

egant and simple HTTP library to measure the response time of URL re-

trieval, and “multiprocessing” package which offers concurrency and the

possibility to leverage multiple processors on the client machine (we dis-

carded multithreading because threads are not well supported in Python).

Unfortunately the processes creation requires high resources than we ex-

pected, resulting in an upper bound for the requests rate, i.e., the customer

arrival rate. We tried to reproduce the same code in Java using multithread-

ing programming, but the mean response time measured, resulted very high

compared to Python results. We suppose that the Java code execution in-

troduces some overhead on the measures and we can’t trust them.

Finally we found Httperf2, a tool for measuring web server performances

maintained by Martin Arlitt of HP Research, Mark Nottingham of Yahoo!

and Ted Bullock. Httperf, which is released under GPL v2 license, provides

a flexible facility for generating various HTTP workloads and for measuring

server performances. Its focus is not on implementing one particular bench-

mark but on providing a robust, high-performance tool that facilitates the

construction of both micro- and macro-level benchmarks. The three dis-

tinguishing characteristics of Httperf are its robustness, which includes the

ability to generate and sustain server overload, support for the HTTP/1.1

and SSL protocols, and its extensibility to new workload generators and

performance measurements. Mosberger and Tai [13] describe design and

implementation of Httperf. They also discuss some of the experiences and

2Website: http://www.hpl.hp.com/research/linux/httperf/

http://www.hpl.hp.com/research/linux/httperf/

60 Chapter 6. Model validation

insights gained while realizing this tool. Citing the authors Conclusion:

Httperf has proven useful in a number of web-related measurement tasks

and is believed to be flexible and performant enough that it could provide

a solid foundation to realize macro-level benchmarks such as SPECweb.

We therefore decided to use this tool to test ours server applications.

After checking that there were no problems and limitations as experienced

with our previous solutions, we developed a Python code as a practical

interface to call httperf command and to parse the output. More specifically,

with our script we can specify:

� the test duration or the number of requests;

� the step of the request rates, i.e., customer arrival rates to test;

� the HTTP method to use (GET or POST);

� the server application to benchmark.

All the results, e.g, the mean response time, are collected in a CSV file

format in order to be analysed with MATLAB.

6.4 Experiments

6.4.1 Description

This section explains how we conduct tests and how we analysed the col-

lected data. We simulated a real production environment to validate the

models keeping themselves as simple as possible. Therefore, our architec-

ture is very simple and since the server has a single-core CPU we forced the

JVM to adopt only the serial garbage collection algorithm (see Section 2.2.1

for the Serial Collector’s description).

We proceed now describing typical test execution under stability condi-

tions and without the need of virtual memory usage. We remember that

the application and client caching are disable. The test session starts mea-

suring the mean service time, if not already done, when the application is

up and running. The service time is the time taken to retrieve a Web page

and we repeat this operation whenever the application is started. The mean

service time is computed from a sample of 100 requests every 5 seconds, a

time interval sufficient to be sure that there are no other customers in the

queue. Once the operation complete, we do not perform any request for a

certain time interval, so that the server can wipe the queue and reduce the

6.4. Experiments 61

workload. In the next step the client starts to send requests according to

a homogeneous Poisson process with the starting rate λ for a long time to

allow the application to reach equilibrium. Usually we set the duration of a

single test to 30 minutes, then the client takes a break allowing the server to

rest. Tests continuing on until the ending rate λ is reached at the specified

step.

When the testing session has been completed, the script downloads the

log file from the server, parses it to keep only the events corresponding to

each single task and prepares two CSV files which include all the information

needed for the analysis. The first file contains the results: the arrival rate λi

used for the specific test i, the mean service time and the mean response time

measured. Httperf provides a precision of 10−4 seconds for time measures.

Its output shows this values in units of milliseconds and we decided to store

them in seconds. The second one contains the garbage collection logs:

� the timestamps of events incrementally distributed from the applica-

tion starting time;

� the heap size before the garbage collections;

� the heap size after the garbage collections;

� the max heap size allocated;

� the duration of the garbage collection operations.

The JVM log file represents heap dimensions in kilobytes and garbage col-

lection durations in seconds with a precision of 10−6 seconds. We also stored

a file to match the results with the corresponding garbage collection events

in the log file. The whole process is automated by our Python script.

6.4.2 Analysis of data

All data collected during the testing sessions are processed by a MATLAB

code. At the beginning, a function computes the parameters needed to test

the models. More specifically:

� the service rate, µ, computed with equation

µ =
1

E[T]
,

where E[T] is the mean service time measured;

62 Chapter 6. Model validation

� the activation rate, α, which is the reciprocal of the mean activation

time, a vector of time differences between the timestamp values and

the corresponding previous value;

� the deactivation rate, β, computed with equation

β =
1

E[D]
,

where E[D] is the average of the garbage collection operation durations

of a single test.

In addition, for the QBD Model for GC the following parameters are com-

puted:

� The garbage collection rate, γ. Obtained dividing the average quantity

of memory freed, F , times the block size, B, by E[D] (defined as

before)

γ =
F ×B
E[D]

.

� The size of the memory, S. It is given dividing the max heap size by

the block size B.

The block size B is computed measuring the quantity of memory occupied

to serve a single request. For this operation we used a specific test and a

specific servlet that explicitly call the garbage collector by the Java function

System.gc(). We forced the garbage collections and client requests frequen-

cies at the rate of 1 every 5 seconds. The requests are spaced respect to the

garbage collection activations in order to have a request between two garbage

collection events. More specifically, the test waits to start until a new log line

has been written which means that a garbage collection operation has com-

pleted. This solution allows us to measure the memory allocated necessary

to process a single arrival and this measure is computed as the difference

between the heap size before and after collection. The resulting block size

B is the average value of a sample of 100 measurements. The accuracy of

this value was proven with the Matrices servlet. We know the memory size

needed to store the matrices and we noticed a close result comparing this

value in kilobytes to B.

Java documentation explains that the use of System.gc() function is only

a suggestion to the JVM, which decides by itself the right moment to the

collect garbage. However, after some experiments we noticed that if we

6.5. Results 63

set a deterministic call and the system has a low workload the garbage

operation takes place when invoked. This is not true when we tried to force

the garbage collector activation following a Poisson process, i.e, setting the

activation rate accordingly to an exponential distribution.

The next step of the MATLAB code is the implementation of the two

stochastic models. It builds the matrices according to the equations pre-

sented in the respectively chapters and it computes the stationary distri-

bution vectors π using the SMC-Solver package. The program repeats the

operation until all the tests have been analysed and in the meanwhile it

compiles a report file in the CSV format.

6.5 Results

Results of the testing sessions on Magnolia CMS and Matrices applications

are now presented, including comparisons between the stochastic models

and experimental data. This results are collected and plotted from the

Report files obtained by the MATLAB code. Moreover, every table shows

the following values:

� the customer arrival rate tuned, λ, expressed in requests per second;

� the service rate, µ, which is the same for a whole test session and

expressed in customers served per second;

� the GC activation rate, α, expressed in activations per second;

� the GC deactivation rate, β, expressed in deactivations per second;

� the garbage collection rate, γ, expressed in freed memory blocks per

second;

� the experimental mean response time, R, expressed in seconds;

� the mean response time, Q, given by the QBD Model for GC and

expressed in seconds;

� the mean response time, M , given by the Markov-Modulated Queueing

Model for GC and expressed in seconds;

� the prediction error of the two models, denoted with Error(Q) and

Error(M).

64 Chapter 6. Model validation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140 160 180

A
ct
iv
a
ti
o
n
R
a
te

Customer Arrival Rate

Magnolia CMS - GC Activation Trend

Figure 6.1: α in function of λ, in Magnolia CMS.

6.5.1 Results for Magnolia CMS

The first results we discuss have been collected running several test sessions

with Magnolia CMS and here we report one of these. We remember that

a single test run for about 30 minutes in order to take the measures at

steady-state and consists of several requests at specified rate λ. At the time

we tested the application the available version was Magnolia CE 5.1 which

included Apache Tomcat 7.0.40. We left the default configuration which sets

an heap size of 512 MB and we limit the server’s RAM to 1 GB.

Table 6.2 shows the indices for the models parametrization for each

arrival rate tested. In this session we tested the customer arrival rate

λ ∈ [1; 171] with step k = 5 and for this interval the system is under sta-

bility conditions with ρ < 1. For values of λ > 171 the mean response time

increases significantly and the client can’t maintains the specified customer

arrival rate because the server is unstable, thus the maximum ρ reached is

ρ = 0.84. From the values on Table 6.2 we can observe a relation between

all the parameters, except for µ that is constant for the whole session. We

can see that with the increases of λ increases the frequency of activation of

the garbage collector (α), but the rates of collection (β) and freeing mem-

ory (γ) slow down. The frequency of garbage collection is linear increasing

(Figure 6.1) and it is strictly related to the heap occupancy (Figure 6.2).

Table 6.3 shows the performance indices for each arrival rate tested and

6.5. Results 65

Magnolia CMS - Rates

λ µ α β γ

1.10 204.0816 0.0022 17.5085 2143.3980
6.00 204.0816 0.0117 17.1879 2107.0523

11.10 204.0816 0.0215 17.1066 2097.1198
16.10 204.0816 0.0314 17.0105 2085.3680
21.20 204.0816 0.0414 16.9224 2074.5031
26.10 204.0816 0.0510 16.9275 2075.1714
31.20 204.0816 0.0609 16.8684 2067.9282
36.20 204.0816 0.0707 16.7719 2056.0498
41.30 204.0816 0.0807 16.7539 2053.7907
46.30 204.0816 0.0905 16.7361 2051.6066
51.30 204.0816 0.1003 16.6985 2047.0156
56.40 204.0816 0.1103 16.5526 2029.0483
61.40 204.0816 0.1200 16.5578 2029.6628
66.40 204.0816 0.1299 16.4987 2022.4360
71.40 204.0816 0.1396 16.4862 2020.8798
76.30 204.0816 0.1493 16.4170 2012.3451
81.10 204.0816 0.1586 16.4738 2019.3140
86.00 204.0816 0.1683 14.0150 1722.1657
90.90 204.0816 0.1777 16.3198 2000.3062
95.90 204.0816 0.1875 16.2629 1993.3129

101.00 204.0816 0.1976 16.1638 1981.1060
106.00 204.0816 0.2075 16.1551 1980.0095
111.00 204.0816 0.2172 16.1094 1974.2518
116.00 204.0816 0.2274 13.7558 1691.8825
121.00 204.0816 0.2367 15.9742 1957.4421
126.00 204.0816 0.2468 15.7727 1932.5461
130.90 204.0816 0.2565 15.8374 1940.5389
136.00 204.0816 0.2663 15.6496 1917.1883
140.80 204.0816 0.2763 13.9953 1716.8053
145.80 204.0816 0.2860 14.2170 1746.3696
150.80 204.0816 0.2957 15.2109 1862.7776
155.90 204.0816 0.3059 13.7725 1688.3637
160.90 204.0816 0.3160 13.9119 1707.5468
166.00 204.0816 0.3260 13.3626 1636.8564
171.00 204.0816 0.3362 13.4628 1651.1633

Table 6.2: Rates of Magnolia CMS to parametrise the models.

66 Chapter 6. Model validation

Magnolia CMS - Performance indices

Customer Arrival Rate R (s) Q (s) M (s) Error(Q) Error(M)

1.10 0.0049 0.0049 0.0049 0.01 0.01
6.00 0.0049 0.0051 0.0051 0.03 0.04

11.10 0.0049 0.0052 0.0053 0.06 0.07
16.10 0.0051 0.0053 0.0054 0.05 0.07
21.20 0.0052 0.0055 0.0056 0.06 0.09
26.10 0.0054 0.0057 0.0058 0.05 0.08
31.20 0.0056 0.0058 0.0061 0.04 0.08
36.20 0.0059 0.0060 0.0063 0.02 0.07
41.30 0.0061 0.0063 0.0065 0.03 0.07
46.30 0.0064 0.0065 0.0068 0.01 0.06
51.30 0.0067 0.0067 0.0071 0.00 0.06
56.40 0.0071 0.0070 0.0074 0.02 0.04
61.40 0.0075 0.0073 0.0077 0.03 0.03
66.40 0.0078 0.0076 0.0081 0.03 0.03
71.40 0.0084 0.0079 0.0084 0.06 0.00
76.30 0.0088 0.0083 0.0088 0.06 0.00
81.10 0.0092 0.0086 0.0092 0.06 0.00
86.00 0.0128 0.0093 0.0101 0.28 0.21
90.90 0.0105 0.0096 0.0102 0.09 0.03
95.90 0.0114 0.0101 0.0108 0.12 0.05

101.00 0.0123 0.0107 0.0114 0.13 0.07
106.00 0.0135 0.0113 0.0121 0.16 0.10
111.00 0.0144 0.0121 0.0129 0.16 0.10
116.00 0.0222 0.0134 0.0146 0.40 0.34
121.00 0.0178 0.0139 0.0148 0.22 0.17
126.00 0.0203 0.0150 0.0160 0.26 0.21
130.90 0.0218 0.0162 0.0172 0.26 0.21
136.00 0.0247 0.0177 0.0188 0.28 0.24
140.80 0.0363 0.0202 0.0215 0.44 0.41
145.80 0.0412 0.0223 0.0235 0.46 0.43
150.80 0.0397 0.0244 0.0253 0.39 0.36
155.90 0.0600 0.0299 0.0301 0.50 0.50
160.90 0.0647 0.0366 0.0341 0.43 0.47
166.00 0.0959 0.0561 0.0408 0.41 0.57
171.00 0.1265 0.1243 0.0484 0.02 0.62

Table 6.3: Performance indices of Magnolia CMS. From left to right: Customer Arrival
Rate; Mean Response Time measured, R; Predictions Q and M; Prediction errors of Q
and M.

6.5. Results 67

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180

M
ea
n
M
em

or
y
S
iz
e
(M

B
)

Customer Arrival Rate

Magnolia CMS - Heap Usage

Before GC
After GC

Figure 6.2: Mean memory size before and after garbage collection events, in Magnolia
CMS.

the prediction errors of the two queuing models. Results are quite good,

except for some outliers on the measurements due to possible overhead in-

troduced by the server, and are plotted on Figure 6.3 for a better view. As

we can see, both of the models estimate correctly the mean response time

until the server has a sufficient memory availability and the customer arrival

rate is moderate. When the frequency of garbage collection and the size of

garbage collected increase, also the mean response time and prediction er-

rors increase. In this situation, that happen when ρ > 0.5, the CPU bounds

are noticeable and the server spends time to handle customer arrivals and

to collect a lot of garbage, as we can see on Figure 6.2. QBD Model for GC

fits better the experimental data since it take care of the number of mem-

ory blocks occupied and γ, the rate to free a block of memory. The overall

results are acceptable and both the models predict correctly the mean re-

sponse time as the policy adopted by the JVM in presence of a moderate

workload.

Figure 6.4 compares the two versions of Markov-Modulated Queueing

Model for GC. In particular, it includes the prediction of mean response

time obtained with two Erlang-r distributions of parameters r = 2 and

r = 3. From this result we can conclude that the mean response time

has an exponential trend and the Erlang-r distributions do not add any

68 Chapter 6. Model validation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120 140 160 180

M
ea
n
R
es
p
on

se
T
im

e
(s
)

Customer Arrival Rate

Magnolia CMS - Models vs Experimental Data

R
Q
M

Figure 6.3: Comparison between experimental data R, predictions Q and M .

improvements. Therefore, we also avoided to report the performance indices

obtained with these distributions because the predictions are poor respect

those on Table 6.3.

6.5.2 Results for Matrices

The second and last results we discuss is a test session obtained with our

Matrices servlet. As for Magnolia CMS we run several testing sessions and

every single measurement for about 30 minutes. The application runs under

Apache Tomcat 7.0.42, the last available version at the time we used it.

For this testing phase we limit the server RAM to 1 GB and we sets the

maximum heap size of the JVM to this value. When a customer arrive

at the server the application allocates the memory with some matrices and

perform the matrix multiplication of two squared matrices of dimension 150.

This is a sufficient value to introduces additional computation before serve

a request. The total amount of memory necessary to serve a customer is

about 1.5 MB.

Table 6.4 shows the indices for the models parametrization for each ar-

rival rate tested and again we report only the measurements under stability

conditions with ρ < 1. We tested the customer arrival rate λ ∈ [1; 66] with

step k = 5 and for this session the maximum ρ reached is ρ = 0.80. As

for previous results the parameters trend is the same. When the system

6.5. Results 69

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120 140 160 180

M
ea
n
R
es
p
on

se
T
im

e
(s
)

Customer Arrival Rate

Magnolia CMS - Erlang-r Distributions Comparison

R
M

Er-2
Er-3

Figure 6.4: Comparison between experimental data R, prediction M and two Erlang-r
distributions predictions.

increases the garbage collection frequency to freeing the memory, we notice

also the increase of response times. Figure 6.5 and Figure 6.6 clearly show

this behaviour. We also tried to increase the amount of memory allocated

for each customer arrival, but the server could not handle the workload with

the result of performances significantly degraded.

Table 6.5 shows the performance indices for each arrival rate tested and

the prediction errors of the two queuing models. Again, as for Magnolia

CMS we have good results with ρ < 0.5 and we notice and increasing of

mean response time when the memory usage increases. From Figure 6.7 we

can see the exponential trend of the model predictions and this time without

outliers. The two queueing models are overlapping and provide the same

results for all the customer arrival rates tested. Furthermore, the prediction

error is acceptable and both the models provide the mean response time as

the policy adopted by the JVM in presence of a moderate workload.

Also for Matrices we have compared the prediction obtained with two

Erlang-r distributions of parameters r = 2 and r = 3. Figure 6.8 clearly

shows that the three predictions are overlapping and we can derive that the

Erlang-r distributions do not add any improvements. Even this time we

avoided to report the performance indices obtained with these distributions

because the values are the same of those on Table 6.5.

70 Chapter 6. Model validation

Matrices - Rates

λ µ α β γ

1.10 81.9672 0.0111 171.7992 16195.3701
6.00 81.9672 0.0638 176.1770 16610.8468

11.10 81.9672 0.1179 166.4668 15701.3183
16.10 81.9672 0.1708 171.5742 16180.5551
21.20 81.9672 0.2249 161.0354 15188.0489
26.30 81.9672 0.2792 160.0612 15095.8847
31.30 81.9672 0.3324 152.7656 14406.2771
36.20 81.9672 0.3854 158.7720 14973.9193
41.30 81.9672 0.4390 152.6841 14399.7961
46.40 81.9672 0.4931 138.7065 13080.4519
51.40 81.9672 0.5468 128.3331 12103.6680
56.40 81.9672 0.5998 117.8698 11102.5763
61.50 81.9672 0.6554 99.8260 9398.1063
66.40 81.9672 0.7447 59.5522 5339.4518

Table 6.4: Rates of Matrices to parametrise the models.

Matrices - Performance indices

Customer Arrival Rate R (s) Q (s) M (s) Error(Q) Error(M)

1.10 0.0122 0.0124 0.0124 0.01 0.01
6.00 0.0130 0.0132 0.0132 0.01 0.01

11.10 0.0141 0.0141 0.0141 0.00 0.00
16.10 0.0155 0.0152 0.0152 0.02 0.02
21.20 0.0172 0.0165 0.0165 0.04 0.04
26.30 0.0191 0.0180 0.0180 0.06 0.06
31.30 0.0215 0.0198 0.0198 0.08 0.08
36.20 0.0243 0.0220 0.0220 0.10 0.10
41.30 0.0281 0.0248 0.0248 0.12 0.12
46.40 0.0332 0.0284 0.0284 0.15 0.14
51.40 0.0398 0.0331 0.0332 0.17 0.17
56.40 0.0491 0.0399 0.0399 0.19 0.19
61.50 0.0659 0.0504 0.0504 0.24 0.23
66.40 0.1135 0.0697 0.0699 0.39 0.38

Table 6.5: Performance indices of Matrices. From left to right: Customer Arrival Rate;
Mean Response Time measured, R; Predictions Q and M; Prediction errors of Q and
M.

6.5. Results 71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70

A
ct
iv
at
io
n
R
at
e

Customer Arrival Rate

Matrices - GC Activation Trend

Figure 6.5: α in function of λ.

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70

M
ea
n
M
em

or
y
S
iz
e
(M

B
)

Customer Arrival Rate

Matrices - Heap Usage

Before GC
After GC

Figure 6.6: Mean memory size before and after garbage collection events.

72 Chapter 6. Model validation

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60 70

M
ea
n
R
es
p
on

se
T
im

e
(s
)

Customer Arrival Rate

Matrices - Models vs Experimental Data

R
Q
M

Figure 6.7: Comparison between experimental data R, predictions Q and M .

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60 70

M
ea
n
R
es
p
on

se
T
im

e
(s
)

Customer Arrival Rate

Matrices - Erlang-r Distributions Comparison

R
M

Er-2
Er-3

Figure 6.8: Comparison between experimental data R, prediction M and two Erlang-r
distributions predictions.

Chapter 7

Conclusions

This thesis investigates the automatic memory management in modern pro-

gramming languages focusing on the solutions and garbage collection policies

adopted by HotSpot, the technology at the core of Java Virtual Machine.

It statistically characterises the memory allocation requirements of some

classes of applications, providing numerically tractable models to predict

some performance indices of the system, i.e., throughput and average re-

sponse time. These models are validated through a comparison with exper-

imental results.

7.1 Contributions

After recalling the research effort during the years to quantifying the per-

formances of garbage collection techniques (Chapter 1) and introducing the

schemes at the base of the algorithms implemented by the languages like

Java (Chapter 2), are given the theoretical concepts to understand the an-

alytical models proposed (Chapter 3). QBD Model for GC (Chapter 4)

and the new Markov-Modulated Queuing Model for GC (Chapter 5) pro-

posed, have both an underlying Markov chain with the particular structure

of Quasi-Birth and Death process. This peculiarity allows the application of

the matrix-geometric method to the models to find the numerical solutions

of the Markov chains. The solutions are numerically tractable problems and

can be computed with automatic tools, which provide the steady-state distri-

bution. The queueing models are then used to provide performance indices

of the garbage collection policy analysed. More specifically, the steady-state

distribution is used to derive the mean number of customers and the mean

response time of a system which adopts the stop-the-world policy.

73

74 Chapter 7. Conclusions

Finally, the queueing models for garbage collection are parametrized and

validated through some applications that resemble a real scenario (Chap-

ter 6). Magnolia CMS is an open-source content management system used

to simulate a web application and Matrices is a servlet specifically designed

to observe the behaviour of the system with intensive memory load con-

ditions. For the purpose some tools have been developed to collect and

analyse the measurements on a dedicated testing environment. Several sys-

tem statistics have been collected, which included the frequency of garbage

collections, the time taken to carried out the operations, the time required

to service customers and the status of the memory. The mean response time

prediction provided by the two models is validated comparing values with

experimental results and providing the prediction error.

7.2 Results and Future Works

Results are quite good with moderate workload, then the system boundary

become noticeable and the models prediction tend to diverge from the ex-

perimental results obtained with the JVM activation policy. Comparing the

two queueing models, the QBD Model for GC on some cases fit better than

Markov-Modulated Queuing Model for GC. This is not surprisingly since it

involves more parameters and takes advantage from a more accuracy. How-

ever, also results for our simpler model are acceptable and they overlapping

with the other predictions, especially for moderate workload.

Since the algorithms used by garbage collectors are usually CPU-intense,

they cause a high consumption of CPU-cycles and a consequent waste of en-

ergy. This can be an issue for mobile devices relying on batteries. Therefore,

future research effort should extend the models to predict the performances

of a garbage collection policy also in terms of expected CPU energy con-

sumption. Other efforts should extend the models validation to more com-

plex architecture which make use of parallel and concurrency collectors.

Bibliography

[1] S. Balsamo, G.-L. D. Rossi, and A. Marin. Optimisation of virtual

machine garbage collection policies. In Proceedings of the 18th Inter-

national Conference on Analytical and Stochastic Modeling Techniques

and Applications, ASMTA’11, pages 70–84, Berlin, Heidelberg, 2011.

Springer-Verlag.

[2] D. Bini and B. Meini. On cyclic reduction applied to a class of toeplitz-

like matrices arising in queueing problems. In W. Stewart, editor, Com-

putations with Markov Chains, pages 21–38. Springer US, 1995.

[3] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured markov

chains solver: Software tools. In Proceeding from the 2006 Workshop on

Tools for Solving Structured Markov Chains, SMCtools ’06, New York,

NY, USA, 2006. ACM.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:

The performance impact of garbage collection. In Proceedings of the

Joint International Conference on Measurement and Modeling of Com-

puter Systems, SIGMETRICS ’04/Performance ’04, pages 25–36, New

York, NY, USA, 2004. ACM.

[5] D. Buytaert, K. Venstermans, L. Eeckhout, and K. Bosschere. Trans-

actions on high-performance embedded architectures and compilers i.

chapter GCH: Hints for Triggering Garbage Collections, pages 74–94.

Springer-Verlag, Berlin, Heidelberg, 2007.

[6] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage

collection. In Proceedings of the 4th International Symposium on Mem-

ory Management, ISMM ’04, pages 37–48, New York, NY, USA, 2004.

ACM.

75

76 BIBLIOGRAPHY

[7] A. Diwan, D. Tarditi, and E. Moss. Memory system performance of

programs with intensive heap allocation. ACM Trans. Comput. Syst.,

13(3):244–273, Aug. 1995.

[8] M. Hertz and E. D. Berger. Automatic vs. explicit memory manage-

ment: Settling the performance debate. Technical report, Citeseer,

2004.

[9] M. Hertz and E. D. Berger. Quantifying the performance of garbage

collection vs. explicit memory management. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications, OOPSLA ’05, pages 313–326,

New York, NY, USA, 2005. ACM.

[10] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Handbook:

The Art of Automatic Memory Management. Chapman & Hall/CRC,

1st edition, 2011.

[11] J. P. Kharoufeh. Level-Dependent Quasi-Birth-and-Death Processes.

Wiley Encyclopedia of Operations Research and Management Science,

2011.

[12] G. Latouche and Y. Ramaswami. A logaritmic reduction algorithm for

Quasi Birth and Death processes. J. of Appl. Prob., 30:650–674, 1994.

[13] D. Mosberger and T. Jin. Httperf: a tool for measuring web server

performance. SIGMETRICS Perform. Eval. Rev., 26(3):31–37, Dec.

1998.

[14] M. Neuts. Matrix-geometric Solutions in Stochastic Models: An Al-

gorithmic Approach. Dover books on advanced mathematics. Dover

Publications, 1981.

[15] M. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their

Applications. Probability: Pure and Applied. Taylor & Francis, 1989.

[16] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation:

The Mathematical Basis of Performance Modeling. Princeton Univer-

sity Press, Princeton, NJ, USA, 2009.

[17] Sun Microsystems, Inc. Memory management in the Java

HotSpot�Virtual Machine, 2006.

BIBLIOGRAPHY 77

[18] P. Van Mieghem. Performance Analysis of Communications Networks

and Systems. Cambridge University Press, New York, NY, USA, 1st

edition, 2009.

	Introduction
	Automatic memory management
	State of the Art
	Performance metrics
	Algorithms for GC
	Mark-sweep collection
	Mark-compact collection
	Copying collection
	Reference counting
	Generational garbage collection

	Java Hotspot Virtual Machine
	Memory management
	Available collectors
	Serial Collector
	Parallel Compacting Collector
	Concurrent Mark-Sweep Collector
	G1 Garbage Collector

	Theoretical Background
	Markov process
	Discrete-time Markov chains
	Irreducible Markov chains
	Communication classes
	Classification of states
	The steady-state distribution

	Continuous-time Markov chains
	Infinitesimal generator
	The steady-state distribution

	Computation of the stationary distribution
	Quasi-Birth and Death process
	Matrix geometric/analytic methods

	Queueing theory concepts
	The arrival process
	The service process
	Queuing discipline
	Kendall's notation
	Measures of effectiveness

	A QBD Model for GC
	Model description
	Queueing model
	Memory assumptions
	Garbage collector's role
	State of the system

	Transition rate matrix
	Numerical Solution of Markov Chain

	Markov-Modulated Queueing Model for GC
	Simplest version
	Transition rate matrix

	Improved version
	Transition rate matrix

	Numerical Solution of Markov Chains
	Assumptions
	Matrix geometric approach

	Model validation
	Architecture
	Server overview
	Applications
	Configuration

	Client description and tools
	Experiments
	Description
	Analysis of data

	Results
	Results for Magnolia CMS
	Results for Matrices

	Conclusions
	Contributions
	Results and Future Works

	Bibliography

