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Introduction

Volatility plays an essential role in many financial branches: it is the

main interest in asset pricing and knowing its dynamics could be fundamen-

tal for hedging decisions or satisfactory risk management. Hence, in the last

decades, the literature has been very active in trying to develop new efficient

approaches for volatility measurement, modeling and forecasting.

In 1982, Engle introduced the Autoregressive Conditional Heteroskedas-

ticity model (ARCH), which is still largely used in finance to capture the

volatility behavior of asset returns. However, this model has been thought

to be applied to low frequency data, like daily or weekly returns. Indeed,

traditionally, data were low frequency because of the high costs in collecting

and analyzing the transactions, but today, thanks to the technology evolu-

tion and integration of computers in financial markets, detailed information

about transactions and quotes at a high frequency level are much easier to

obtain. These kind of data show features that are not present in lower fre-

quency and that standard models are not able to reproduce. Then, how can

all this additional information be used to improve the volatility modeling?

A possible approach is to estimate the variance without making any para-

metric assumption on the dynamics of the process of the returns, but relying

instead only on its moments. A recently introduced milestone in financial

econometrics has been the concept of Realized Volatility. Consider the in-

tegrated volatility, which is a natural volatility measure computed as the in-

tegral of the instantaneous volatility over an interval of interest. Andersen,

Bollerslev, Diebold and Labys (2001) proposed to construct the non para-

3
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metric realized volatility, summing the squared intraday high-frequency re-

turns of a stock, in order to get an estimate of the integrated volatility of its

price process. Hence, under specific circumstances, this measure results to

consistently estimate the price volatility over some time interval.

In 2003, Corsi introduced a new class of models : the Heterogeneous

Autoregressive model of Realized Volatility (HAR-RV). His aim was to pro-

pose a conditional volatility model able to account for the typical feature

of financial data and to produce good one-day-ahead forecasts of the real-

ized volatility, relying on past intraday returns. This model has been later

implemented in Andersen et al. (2007) and Corsi (2012), including in the

model components related to the jump and the leverage effects in the real-

ized volatility series.

The HAR class of models will be the focal point of my thesis, which is

divided into four chapters. In Chapter 1, I will explain the main character-

istics of the high-frequency data, as the non-synchronous trading, the effect

of the bid-ask spread, the diurnal patterns and others. In Chapter 2, the con-

cept of volatility is defined and its properties are listed. Moreover, the para-

metric and non parametric approaches in modelling volatility are compared.

Regarding the first type, the Autoregressive Conditional Heteroscedasticity

(ARCH) and the Generalized Autoregressive Conditional Heteroscedastic-

ity (GARCH) are the most used methods to model volatility in a time se-

ries. On the other hand, the non-parametric realized volatility has often lead,

under specific circumstances, to better performances in avoiding the high

frequency data complications, as advocated also in Andersen and Boller-

slev (1998), Andersen, Bollerslev, Diebold and Labys (2001) and Meddhai

(2002). In Chapter 3, the HAR model for the realized volatility is intro-

duced, together with its improvements regarding the jump component and

the leverage effect. Finally, in Chapter 4, I will analyze the high frequency

price series of three stocks from the italian stock exchange: Enel, Generali

and Intesa San Paolo. After computing the returns, I will calculate the re-

alized volatility series for each stock. Then, I will apply to them the HAR
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models to assess their ability in capturing the features of the realized volatil-

ity. Morevorer, their forecasting performances are compared to the ones of

ARMA and ARFIMA models. Data have been downloaded from Bloomberg

and all the analysis have been computed in R.



Chapter 1

Characteristics of high-frequency

data

In finance, by "high frequency data" we mean a collection of observa-

tions taken in an extremely fine time scale. In this chapter, I am going to

explain the most important characteristics of high-frequency data that do not

appear in lower frequencies, such as the nonsynchronous trading, the bid-ask

spread, the diurnal pattern, the movement of trading prices and the trading

intensity.

1.1 Nonsynchronous trading

One of the crucial features that mark intraday data is that the observations

are collected at random time. Indeed, in a limit order market, investors set

the minimum or maximum price at which they are willing to sell or buy, and

the transactions occur as soon as the actual market price falls into the decided

range. It results that the customers’ orders take place at random times and so

the stocks are traded in a non-synchronous manner, meaning that different

stocks do not have the same trading frequency and a single stock’s intensity

could vary during the day. For example, when we consider closing prices,

we incorrectly assume that the values are all equally spaced by an interval
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of 24 hours, while in reality the closing prices do not occur always at the

same instant. This can lead to several problems regarding standard econo-

metric models: the data are seldom identically distributed, periodic effects

are difficult to detect and forecasting is not very straightforward.

In particular, for daily stock returns, the nonsynchronous trading can lead

to:

• cross-correlation at lag 1 between the stock returns;

• serial correlation at lag 1 in a portfolio return;

• sometimes, negative serial correlations of the return series of a single

stock.

Consider two independent stocks A and B and assume that A is traded more

frequently than B. Then, if news affecting the aggregate stock market occurs

a few minutes before the closing time, it is more likely that the effect appears

immediately only on A, while it could be delayed to the next day on B.

The lagged response of B induces lag-1 cross correlation between the stock

returns, no matter if the stocks are independent. Moreover, considering a

portfolio consisting of the securities A and B, a serial dependence would be

exhibited. Regarding the third point, many studies have been computed. As

an example, I am going to introduce a simplified version proposed by Tsay

(2013) of the nonsynchronous trading model of Lo and MacKinlay (1990).

1.1.1 A model of nonsynchronous trading

Being rt the continuously compounded return that represents the changes

in a security’s value at time t, we assume that rt is a sequence of i.i.d. random

variables with mean E[rt] = µ and variance V ar(rt) = σ2, and that r0
t is the

observed return. As we stated earlier, there is the possibility that a security

is not traded during a certain interval of time; then we call π the probability

that this happens. The same can occur in the subsequent period: there is a

chance with probability π that the security is not traded. It is assumed that
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this mechanism is independent and identically distributed, meaning that the

fact that a security is traded or not in period t does not affect its chance of

being traded in the following periods. The observed return at time t + 1

can be considered as the sum of rt+1 and all its virtual returns for the past

consecutive period for which the security has not been traded. Hence, if the

security is traded at time t + 1 and has been traded at time t − k − 1, but

it has not been traded in the period between t − k and t, its observed return

results to be the sum of all the virtual returns from t− k to t+ 1. If no trade

occurs at time t, then the observed return for period t is simply zero, since

there is not information available. We can then summarize the relationship

between rt and r0
t as:

r0
t =



0 with probability π

rt with probability (1− π)2

rt + rt−1 with probability (1− π)2π

rt + rt−1 + rt−2 with probability (1− π)2π2

...
...∑k

i=0 rt−i with probability (1− π)2πk

...
...

Indeed, r0
t = rt + rt−1 if and only if trades occurred at t and t − 1; r0

t =

rt + rt−1 + rt−2 if trades occurred at t and t− 2, but not at t− 1; and so on.

Obviously, the sum of the probabilities is equal to 1:

π + (1− π)2[1 + π + π2 + . . .] = π + (1− π)2 1

1− π
= π + 1− π = 1

The expectation of r0
t results to be:

E(r0
t ) = µ, (1.1)

the variance is:

V ar(r0
t ) = σ2 +

2πµ2

1− π
, (1.2)
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while the autocovariance at lag 1 is equal to:

Cov(r0
t , r

0
t−1) = −πµ2. (1.3)

All the computations leading to 1.1, 1.2 and 1.3 are reported in Appendix

A. It can be noticed that the nonsynchronous trading affects the variance of

r0
t , but not the mean.

Assuming µ 6= 0, the lag-1 autocorrelation induced by the nonsyn-

cronous trading is negative and equal to:

ρ1(r0
t ) =

−(1− π)πµ2

(1− π)σ2 + 2πµ2
.

Extending it generally, we obtain:

Cov(r0
t , r

0
t−j) = −µ2πj, j ≥ 1.

Summing up, provided that µ 6= 0, the nonsyncronous trading causes nega-

tive correlations to observed return series. The same conclusion can be ob-

tained analysing the return series of a portfolio including N securities; see

Campbell et al. (1997). A possible solutions could be the construction of a

series with equally spaced observations outdistanced by intervals of length

∆. Anyway, this requires assumptions: there could be no observed transac-

tions at time i∆, so that in its place it is necessary to put an additional value

(i.e. equal to the previous one). In case of quotes data, the observations are

available continuously, making it simpler to create an equally spaced time

series.

1.2 The bid-ask spread

In the case of an informationally efficient market, with zero trading costs,

all the relevant information are contained in the market price. The price

would change if and only if the market participants receive unanticipated

information. On the other hand, when the transactions are costly, there is

a market maker to compensate. One of the main interests of an investor
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is the liquidity of a market, meaning the capability to trade quickly, anoni-

mously and in big quantities a security, without a substantial price impact.

In some stock exchanges, the trades are facilitated by market makers, who

are individuals that maintain liquidity buying and selling every time some-

body wants to sell or buy a security. Doing so, the market makers update

in an optimal way the bid and the ask prices, so that all public information

and remaining uncertainty are reflected into the prices. In return for the risk

assumed trading against potentially better informed agents, market makers

have the right to buy and sell an asset at two different prices, which are re-

spectively the bid price Pb and the ask price Pa. Being Pa > Pb, the positive

difference is called bid-ask spread, a small region of price which brackets

the underlying value of the security and represents the profit of the market

makers.

The bid-ask spread groups three economic sources:

• order processing costs, meaning the setup and operating costs of trad-

ing and recordkeeping;

• inventory costs, which regard the carrying of risky inventory;

• adverse-selection costs, which arise because of the possibility that the

market maker could be less informed than some investors, and hence

could have a loss.

In an efficient market, the bid-ask average fluctuates randomly. However,

the observed market price changes are no longer identically distributed be-

cause the transactions do not occur at the average value, but either at the bid

or at the ask values. One of the main impacts that the bid-ask spread has on

the asset prices is called bid-ask bounce, which shows a negative lag-1 serial

correlation in the asset return. Indeed, as random buys and sells occur, the

prices move back and forth between the bid price and the ask price, creating

spurious volatility and serial correlation.
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1.2.1 The Roll model

In 1984, Richard Roll developed a simple model in order to infer the

bid-ask spread directly from the time series of market prices.

Assume a frictionless economy; let P ∗t be the value of a security at time t

and s be the bid-ask spread. If no new information occurs and the transaction

at time t−1 was a sale, Figure 1.1 shows the possible equally likely paths of

the observed price. If at t − 1 there was a purchase instead of a selling, the

Figure 1.1: Possible paths for market price from time t− 1 to time t+ 1.

graph would have been similar but asymmetrically opposite. We can define

the observed market price of the security Pt as following:

Pt = P ∗t + It
s

2
,

where

It ∼ IID

 +1 with probability 1
2

(buyer initiated)

−1 with probability 1
2

(seller initiated).

It is defined as an indicator function that establishes whether the random

transaction is executed by a buyer or a seller, i.e. at the ask or at the bid

price. Note that E(It) has to be equal to zero, since P ∗t is the fundamental

price. If there are no new information, and hence no changes in P ∗t , then

P ∗t = P ∗t−1 is true at each t and the price change process is:

∆Pt = ∆P ∗t + (It − It−1)
s

2
= (It − It−1)

s

2
.

Having assumed that It is IID, we have that:

V ar(∆Pt) =
s2

2
, (1.4)
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Cov(∆Pt−1,∆Pt) = −s
2

4
, (1.5)

Cov(∆Pt−k,∆Pt) = 0, k > 1

Corr(∆Pt−1,∆Pt) = −1

2
. (1.6)

Even though ∆P ∗t is fixed through time, we can notice that ∆Pt displays

volatility and negative lag-1 serial correlation. This is due to the bid-ask

bounce. Intuitively, if the fundamental value is fixed, the price can assume

only two values: the bid and the ask price. If, currently, the price is either

the bid or the ask, then the price change between the current value and the

previous value can only be equal to zero or to the value of the spread s, and

the price change between the current and the next price can only be zero

or s. Both the volatility and the covariance depend on the amount of the

spread, so that the bigger the spread, the bigger the variance and the smaller

the autocovariance. Anyway, they change in a proportional way, so that the

correlation remains equal to −1
2
, for every value of s.

Now, let us relax the assumption about P ∗t fixed and consider the case

in which P ∗t follows a random walk, meaning that its increments are not

autocorrelated and are independent of It or, in other words, ∆P ∗t = P ∗t −
P ∗t−1 = εt, where εt ∼ WN(0, σ2). Then, 1.5 still holds, but the variance 1.4

and, therefore, the first-order serial correlation 1.6 changes into:

V ar(∆Pt) = σ2 +
s2

2
,

Corr(∆Pt−1,∆Pt) = − s2/4

(s2/4) + σ2
≤ 0.

For a positive spread, the amount of the autocorrelation is reduced, but it still

remains negative.
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1.3 Other empirical characteristics

Numerous studies have empirically shown that financial data, if recorded

at high frequency, presents some particular features: the returns are usually

leptokurtic or fat tailed, as the frequency gets higher the kurtosis tends to in-

crease, the series shows intra-day volatility clustering, asset returns are usu-

ally serially correlated and volatility has a deterministic intra-day behaviour.

The present section discusses the major empirical properties of high-

frequency data:

1. Discreteness of prices and returns.

Transaction prices are quoted in a discrete way. The variance of a

process over long time horizon is usually quite large if compared to

the magnitude of the minimum change. However, this does not apply

also for high frequency data since, for many data sets, the changes in

price take only a handful of values. The minimum amount at which

a price can move is called tick and the price changes have to be a

multiple of it. Moreover, regulators can set constraints that limit the

price change. As a result, price changes are often limited to only a few

possible outcomes. Therefore, discreteness can affect the computation

of volatility, correlation and other measures that are small relative to

the size of the tick. Furthermore, it can raise the kurtosis of the series

of data. Indeed, high frequency data often show large kurtosis.

2. Multiple transaction at the same second.

It can happen that more than one transaction, not necessarily with the

same price, occur within a single second.

3. The impact of macroeconomic news

When a major macroeconomic announcement occurs, prices modify

very quickly, raising also the volatility and the volume. This causes

volatility clustering, which has been empirically shown to be a typical
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feature of high-frequency data.1 In a perfect market, new information

would be simultaneously acquired by every market participant and the

prices would consequently change, reaching a new equilibrium value.

However, in practice, not all the relevant news are available to every-

one at the same moment and not all the market participants react at the

information at the same speed. This results in variable time lag be-

tween a macroeconomic announcement and its reaction in the market.

4. Correlation and persistency

Apart from return, high frequency trading variables are usually strongly

auto-correlated. On the contrary, " intraday returns from traded assets

are almost uncorrelated, with any important dependence usually re-

stricted to a negative correlation between consecutive returns". (Tay-

lor, 2005). Price discreteness and bid-ask bounce effect are the major

causes of this dependence. Another factor could be the behaviour of

some traders, who carry out many small transactions at the same time

instead of a large one, aspiring to a better price overall. Indeed, this

can cause a sequence of trades that shift the price in the same direction,

leading to positive serial correlations at longer horizon. Being most of

the high frequency characteristics persistent over time, showing de-

pendence over a long range, there is the need of models that allow for

long memory behaviour.

5. Existence of diurnal patterns

Almost all high-frequency financial data exhibit intraday periodicities.

Usually, for the majority of stock markets, the seasonality pattern of

volatility, spreads, volume and the frequency of trades assume a U-

shape. Volatility shows more activity after the opening of the mar-

ket and just prior the closure, while in the lunch hour the intensity

is lower. This cyclical pattern characterizes also the volume and the

spreads. The time between the transactions, i.e. the durations, are usu-
1See, for example, Engle et al (1990) regarding foreign exchange rate returns or Hama

et al (1990) for equity index returns.
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ally shorter near the open and the close time, meaning that the trades

are more frequent in those time zones. The foreign exchange market,

instead, works all day long, every day of the week. There is neither

opening nor closing of this market, but it shows diurnal patterns too,

usually following the more active periods of the day.

As an example, I considered the tick data for Starbucks during a trading

day (2011/07/01). The total number of observations is 9331, spread over 6

hours and a half, since the trading hours go from 9:30 to 16:00. I obtained

these data from the R package "highfrequency". They represent the chang-

ing in the value of the price every time a transaction occurs. I plotted the

data in 1.2. We can notice from the figure that this difference in the price

seems to be stationary around zero.

Then, I considered the number of transactions that occurred every five min-

utes, obtaining a time series of length 78 intervals, shown in figure 1.3. The

plot shows the typical U-shape of high-frequency measures. This means that

the trades are more frequent near the opening and closing times of the mar-

ket, while in the lunch hours the tradings are thinner.

If we, instead focus on the duration, which is the period of time from a trans-

action to another one, we can notice the opposite behavior. In figure 1.4, we

can see that the time interval between two trades is longer during the lunch

hours than during the beginnin or ending hours of the trading day.
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Figure 1.2: Tick data for Starbucks (2011/07/01).

Figure 1.3: Number of transactions every 5-minute time interval for Star-
bucks (2011/07/01).
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Figure 1.4: Time duration between transaction for Starbucks (2011/07/01).



Chapter 2

Volatility of high frequency data

The volatility is a statistical measure of the degree of variability of a

trading price over some time periods: securities with high volatility are con-

sidered riskier. Indeed, a large variability means a large range of values that

the security can potentially assume. Hence, its price can suddenly change

in either directions. On the other hand, when the volatility is low, the value

of the security, is more steady, without many fluctuations. In this case, the

security is considered safer.

When computed using high frequency returns, the amount of the volatility

changes consistently over the trading day and it is correlated with the high

frequency volatility of trading volume and bid-ask spreads.

After recalling the theory about volatility, in this chapter I am going to com-

pare the parametric and non parametric methods used in volatility modeling,

in particular the ARCH and GARCH models for the first type and the Real-

ized Volatility for the second one.

2.1 A recap of fundamental theory

The volatility measures the dispersion of the returns series of a security.

It can be measured through the standard deviation or the variance between

the returns.

18
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Being X a continuous random variable, its expected value is defined as:

µ = E(X) =

∫ ∞
−∞

xf(x)dx (2.1)

with f(x) the probability density function of X .

The variance of the random variable is defined as:

σ2 = Var(X)

= E[(X − µ)2]

=

∫ +∞

−∞
(x− µ)2f(x)dx

= E(X2)− µ2 (2.2)

Important properties of the variance of a random variable are listed below.

Assume that a and b are constants andX and Y are two independent random

variables. Then,

- Var(X) ≥ 0;

- Var(a+ bX) = b2 Var(X);

- Var(X + Y ) = Var(X) + Var(Y ).

Moreover, it can be proved that

Var(X) = E(X2)− [E(X)]2. (2.3)

The standard deviation is the positive square root of the variance and it is

often denoted by σ.

The covariance is a measure of joint variability between two random vari-

ables X and Y . When its value is positive, the two random values show

similar behavior, meaning that X and Y tend to move in the same direction.

On the other hand, if it is negative, the two random variables tends to move

in opposite directions. The covariance between X and Y is defined as:

Cov(X, Y ) = E[(X − µx)(Y − µy)]. (2.4)

Considering the random variables X , Y ,Z and the constant values a, b, c,

and d, the main properties of the covariance are the following:
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- Cov(a+ bX, c+ dY ) = bdCov(X, Y );

- Var(X, Y ) = Var(X) + Var(Y ) + 2Cov(X, Y );

- Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z);

- Cov(X,X) = Var(X);

- Cov(X, Y ) = Cov(Y,X);

- Cov(X, Y ) = 0, if X and Y are independent.

Another statistical measure of the degree of linear dependence between two

variables is the correlation, which is defined as

ρ = Corr(X, Y ) =
Cov(X, Y )√
Var(X)Var(Y )

(2.5)

Its value can vary between −1 (perfect negative linear relationship) and 1

(perfect positive linear reationship); a value near zero indicates weak linear

depencence. For the correlation coefficient it values that

Corr(a+ bX, c+ dY ) = sign(bd)Corr(X, Y ) (2.6)

where sign(bd) =


1 if bd > 0

0 if bd = 0

− 1 if bd < 0.

(2.7)

In time series analysis, data are collected sequentially over time and are

modelled by a stochastic process, which is a sequence of random variables

{Yt : t = 0,±1,±2,±3, . . . }. For a stochastic process, the mean function

µt, the autocovariance function γt,s and the autocorrelation function ρt,s are

respectively:

• µt = E(Yt) for t = 0,±1,±2, . . .

• γt,s = Cov(Yt, Ys)

= E[(Yt − µt)(Ys − µs)]
= E(YtYs)− µtµs for t, s = 0,±1,±2, . . .
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• ρt,s = Corr(Yt, Ys) =
Cov(Yt, Ys)√
V ar(Yt)V ar(Ys)

=
γt,s√
γt,tγs,s

for t, s = 0,±1,±2, . . .

2.2 Parametric methods

Let {Yt} be a time series. Then, the conditional variance of Yt given the

past values (Yt−1,Yt−2,. . . ) corresponds to the measure of the variability of

the deviation of Yt from E(Yt|Yt−1, Yt−2, . . . ), which is its conditional mean.

The conditional variance is not constant, but can change with the current and

past values of Yt, being itself a random process.

In the latest years, the financial econometrics of volatility dynamics has seen

an enormous growth, mainly due to the methodological advances in empir-

ical finance. At first, developments were parametric, but recently literature

has moved towards nonparametric approaches to volatility modeling. Para-

metric approaches rely on explicit models of the expected volatility; the main

examples are the ARCH and GARCH class of models.

2.2.1 The ARCH model

The main assumption of the basic version of linear regression model is

homoskedasticity, meaning that the expected value of the squared error terms

is always constant. In case of heteroskedasticity, the error terms are expected

to be larger in certain points than other. With a least squares regression the

coefficient would still be unbiased, but the standard errors and the confi-

dence intervals would be too restrictive. The Autoregressive Conditional

Heteroscedasticity (ARCH) model, first proposed by Engle in 1982, treats

heteroskedasticity as a variance to be modeled.

Consider a return series {rt}, with E(rt) = 0. Let σ2
t|t−1 be the conditional

variance of rt given past returns until time t − 1. Since rt is observed, we

can use the squared return r2
t as an unbiased estimator of σ2

t|t−1. The ARCH

model can be expressed as a regression with the conditional variance as the
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dependent variable and the lagged squared returns as the regressors. As an

example, the ARCH(1) model is defined as:

rt = σt|t−1εt (2.8)

σ2
t|t−1 = ω + αr2

t−1 (2.9)

where εt is a white noise with zero mean and unit variance, independent of

rt−j , j = 1, 2, . . . , and α and ω are two unknown parameters. In order to

ensure the nonnegativity of the squared returns, the conditions 0 < α < ∞
and 0 < ω <∞ have to be satisfied. The weak stationarity is achieved with

the condition 0 ≤ α < 1 (Ling and McAleer, 2002).1 Since σt|t−1 is known

and εt has unit variance and is independent from past returns, we can show

that:

E(r2|rt−j) = E(σ2
t|t−1ε

2
t |rt−j)

= σ2
t|t−1 E(ε2t |rt−j)

= σ2
t|t−1 E(ε2t )

= σ2
t|t−1 j = 1, 2, . . .

In the ARCH(1) model, the forecast of the future conditional variances only

depend on the most recent squared return. Intuitively, adding more lagged

squared returns in the model could increase the accuracy of the forecasting.

It is then possible to parametrize the conditional volatility as an autoregres-

sive model, in which it is defined as a linear combination of the pmost recent

squared returns, resulting in the ARCH(q) model:

σ2
t|t−1 = ω + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αqr

2
t−q (2.10)

2.2.2 The GARCH model

A more general class of processes was introduced by Bollerslev in 1986

as an extension to the ARCH process: the Generalized Autoregressive Con-
1A process can show conditional heteroscedasticity even if it is weakly stationary.

Indeed, the weak stationarity imply that the mean function is constant over time and
that the autocovariance function, for a fixed lag, remains the same at each point in time
(γt,t−k = γ0,k, for all time t and lag k)
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ditional Heteroskedastic process (GARCH). This class of models manages

to have both a much more flexible lag structure and a longer memory. It is

constructed adding to the ARCH(q) model the p lagged values of the condi-

tional variance, resulting in

rt = σt|t−1εt

σ2
t|t−1 = ω + β1σ

2
t−1|t−2 + · · ·+ βpσ

2
t−p|t−p−1 + α1r

2
t−1 + α2r

2
t−2 + · · ·+ αqr

2
t−q

where p is the number of lags of the conditional variance and q is the ARCH

order. We can notice that, if p = 0, the model reduces to an ARCH(q), while,

if both p and q are null, rt is equal to a white noise. The GARCH(p,q) model

can be re-expressed through the backshift L notation 2 as

(1− β1L− · · · − βpLp)σ2
t|t−1 = ω + (α1L+ · · ·+ αqL

q)r2
t (2.11)

Often the coefficients are restricted to positive values in order to assure a

nonnegative conditional variance. Moreover, a necessary and sufficient con-

dition for the GARCH(p,q) process to be weakly stationary is the following:

max(p,q)∑
i=1

(βi + αi) < 1.

2.3 Nonparametric methods

In contrast to the parametric methods, the nonparametric ones are data-

driven measurements that manage to consistently estimate the volatility with-

out any functional form assumption regarding the stochastic process govern-

ing the return series. The most obvious of these estimates is computed as the

ex-post squared return. Anyway, even though it is unbiased, it also contains

a lot of noise, especially when data are collected at a high frequency. Gen-

erally, under the stationarity and ergodicity assumptions, the nonparametric
2The backshift or lag operator L allows to shift time back of a lag, creating a new time

series, LYt = Yt−1.
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volatility estimates are consistent when obtained as the sample averages of

squared returns, which are sampled at increasingly low frequency. As an

example, I am going to discuss about the Realized Volatility.

2.3.1 The realized volatility

In order to obtain a quite accurate estimation of the volatility, we can rely

on returns collected at high frequency. Anyway, the results assume a con-

tinuous sample path diffusion process, which in practice cannot be satisfied

by the high-frequency return series. The nonparametric realized volatility

has been empirically showed to be able to model volatility avoiding the data

complications, outperforming the results of the Garch model.3

2.3.1.1 Price processes and financial returns

When data are collected over short intervals, the underlying price process

has to be modeled in continuous time. Usually, in the asset pricing theory,

the logarithmic price process is assumed to take the form of an Ito’s semi-

martingale. Let W (t), t ≥ 0, be a brownian motion. Then, an Ito process is

a stochastic process of the form:

X(t) = X(0) +

∫ t

0

∆(u)dW (u) +

∫ t

0

Θ(u)du (2.12)

where X(0) is non random and ∆(u) and Θ(u) are adapted stochastic pro-

cesses. In differential form, it is expressed as

dX(t) = ∆(t)dW (t) + Θ(t)dt (2.13)

A process is said to be a semimartingale when it is the sum of a finite varia-

tion càdlàg drift process and an adapted càdlàg local martingale, where:

• a càdlàg is a function which is everywhere right-continuous and left

bounded;
3As suggested by Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and

Labys (2001), Barndorff-Nielsen and Shephard (2002).
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• a drift is the change of the mean value of a stochastic process;

• a martingale is a process for which the conditional expectation of its

future value is equal to the present value, given the information of all

past values.

Then, the evolution of logarithmic asset price p(t) is assumed to be equal to

dp(t) = µ(t)dt+ σ(t)dW (2.14)

or

p(t)−p(t−1) ≡ r(t) =

∫ t

t−1

µ(s)ds+

∫ t

t−1

σ(s)dW (s) s ≥ 0 (2.15)

where Wt denotes a standard brownian motion, µ(s) is a finite variation

càdlàg drift process and σ(s) is the adapted càdlàg volatility process associ-

ated to p(t).

Let the unit interval be one trading day, T the number of days consid-

ered, t = {1, 2 . . . , T}, m the number of times per day the prices have been

sampled, such thatm ·T is the total number of returns. Then, the asset return

over [τ − 1
m
, τ ] is given by:

rτ = p(τ)− p(τ − 1

m
) τ =

1

m
,

2

m
, . . . , T.

Note that when m is higher than one, the returns are computed at a high-

frequency, while when m is lower than one, we obtain interdaily returns.

2.3.1.2 Quadratic variation and integrated variance

Being X and Y two semimartingales, then the quadratic variation and

covariation are respectively defined as:

[X,X](T ) = lim
‖Π‖→0

n∑
k=1

(X(tk)−X(tk−1))2

[X, Y ](T ) = lim
‖Π‖→0

n∑
k=1

[X(tk)−X(tk−1)][Y (tk)− Y (tk−1)],
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where Π is the full grid containing all the observation points, Π = {t0, t1, . . . , tn},
and 0 = t0 < t1 < · · · < tn = T .

It is well known that:

• for most securities, the drift is close to zero when the time interval is

small;

• considering a Brownian motion W (t), then, its quadratic variation is

equal to [W,W ](T ) = T for all T ≥ 0 almost surely 4

• considering and Ito integral I(t), I(t) =
∫ t

0
∆(u)dW (u), where ∆(t)

is an adapted stochastic process. Then, its quadratic variation is equal

to [I, I](T ) =
∫ t

0
∆2(u)du.

Having assumed that the logarithmic asset price follows the Ito semimartin-

gale of equation 2.15 , we can then conclude that the corresponding quadratic

variation is:

Qvar(t, h) ≡ [p, p](t)− [p, p](t− h) =

∫ t

t−h
σ2(s)ds (2.16)

where h is an arbitrarily fixed positive quantity. Since we consider variables

measured on a daily interval, for notational convenience we suppress the h

subscript (h = 1). Then,

Qvar(t) ≡ [p, p](t)− [p, p](t− 1) =

∫ t

t−1

σ2(s)ds

A natural volatility measure is the integrated volatility, which is com-

puted as the integral of the instantaneous volatility over an interval of inter-

est. Being the return process 2.15 continuous, we can notice that its quadratic

variation 2.16 is equal to the integrated volatility:

IV (t) ≡
∫ t

t−1

σ2(s)ds = Qvar(t).

4The terminology almost surely indicates that there is a chance for the equality to be
not true, but this chance has zero probability.
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2.3.1.3 The realized volatility as an estimator of the quadratic

variation

If we choose an arbitrarily high sampling frequency, we can get the real-

ized volatility summing the intraday squared returns over the period we are

interested. Then, the daily realized volatility is defined as:

RVt =
m−1∑
j=0

r2
t−j· 1

m

where m indicates the number of observations collected in a day. For

any fixed m, the realized volatility is directly observable and, as it follows

by the theory of the quadratic variation 5, as m tends to infinity, it converges

uniformly in probability to the quadratic variation:

lim
m→∞

RVt → Qvar(t),

in the mean square sense. It results that, if we can sample frequently

enough, it is possible to estimate consistently the integrated volatility through

the realized volatility.

Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys

(2001), Barndorff-Nielsen and Shephard (2002a,b), and Meddhai (2002),

among others, suggested using the nonparametric realized volatility in or-

der to avoid high-frequency data complications, keeping however most of the

relevant information useful for measuring, modeling and forecasting volatili-

ties. It has also been empirically shown that simple realized volatility models

perform better than the GARCH models in out-of-sample forecasting.

2.3.1.4 Handling microstructure noise

According to the computations of the previous section, higher the fre-

quency of the data and better is the estimation of the integrated volatility

provided by the realized volatility. On the contrary, in the empirical finance
5See Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001),

Barndorff-Nielsen and Shephard (2002), Comte and Renault (1998)
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literature it is often stated that the return series should not be sampled too

often, in order to avoid that market microstructure noise causes a relevant

bias. Indeed, as the frequency get higher, the returns change less, but the

microstructure noise remains of the same level. It results that the observed

changes in the return process are very contaminated by the noise and the

realized volatility does not converge to the integrated volatility. For this rea-

son, many authors suggest to use data that are sampled over longer time

horizons, so that the impact of microstructure noise is reduced and the esti-

mates obtained are more reasonable. Usually, one selects an arbitrary sparse

sampling frequency, such as one every 5 minutes, but other methods have

been proposed in the literature in order to reduce errors due to microstruc-

ture noise in calculating the realized volatility.

A first method (see Zhang et al., 2005; Bandi and Russel, 2008) consists in

finding the optimal sampling interval that minimizes the mean square error

when estimating the integrated volatility. It is a way to find a compromise in

the trade-off between the accuracy in computing the realized volatility and

the bias created by the microstructure noises. The number of sparse sampling

intervals nsparse should, then, be chosen such that ∂MSE/∂nsparse ≈ 0. If

nsparse results to be higher than the original number of sampling intervals n,

one should simply use n.

Another sampling method is a two-scale procedure proposed in Zhang et al.

(2005). It is shown that it is possible to obtain a consistent and asymptoti-

cally unbiased estimator of the integrated volatility proceeding in two steps:

first, we use sub-sampling and, then, we correct the bias. Sub-sampling

means that, instead of using the entire sample of observations to compute

the high frequency returns (for example, at a 1 second interval), we con-

struct more than one time series of logarithmic returns at a lower frequency

(5 minutes). Then, the first time series starts with the first observation, the

second time series with the second observation and so on. In this way, we

will get K time series of logarithmic returns with the same increment of five

minutes, but different starting points, as we can see in Figure 2.1. Obvi-
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ously, the number of time series K is equal to the number of observations

in the first 5 minutes. We then compute for each of time series the realized

volatility and take a simple average of the estimates obtained. This averaged

realized volatility RV avg
t is then computed as

RV avg
t =

1

K

K∑
k=1

nk∑
j=1

r2
k,j

where K is the number of subsamplings, nk the number of logarithmic re-

turns for the k-th subsampling, rj the logarithmic return for the j-th transac-

tion and rk,j the j-th logarithmic returns of the k-th subsampling. However,

in Zhang et al. (2005) it is shown that RV avg
t is a biased estimator, hence a

correction is needed. Let n be the total number of logarithmic returns, n̄ be

the average number of nk, such that n̄ = n
K

. Define ε as the noise compo-

nent, such that, summed to the efficient price, which is the price governed

by the Ito process, gives out the observed price. Then, the bias of RV avg
t is

equal to 2nE(ε2), which can be consistently approximated through the re-

alized volatility computed using all the data available, RV (all)
t =

∑n
j=1 r

2
j .

Indeed,

E(ε2) ∼ 1

2n
RV

(all)
t .

We can finally obtain a bias-adjusted estimator, named Two Scale Realized

Volatility, as

TSRVt = RV avg
t − n̄

n
RV

(all)
t .

The average of the realized variance is used in order to get a better estimate

since more prices are used, while the quantity n̄
n
RV

(all)
t is needed as a bias

correction. This estimator reduces the impact of microstructure noise and is

consistent even in presence of jumps.



CHAPTER 2. VOLATILITY OF HIGH FREQUENCY DATA 30

Figure 2.1: Construction of the Two Scale Realized Volatility



Chapter 3

Modelling volatility: the HAR

model

The realized volatility provides a model-free measure of the quadratic

variation. Since the purpose of this thesis is to use high-frequency data in-

formation to predict future volatilities, once a realized volatility time series

is obtained we also need a model to be applied to it.

In this chapter I am going to discuss an interesting model that has been

proposed by Fulvio Corsi: the Heterogeneous Autoregressive model of the

Realized Volatility (HAR-RV). Its purpose is to be parsimonious and easy

to estimate, but, at the same time, to reproduce the main characteristics of

high-frequency data, with good out-of-sample forecasting performances.

3.1 The HAR-RV model

The Heterogeneous Autoregressive model for Realized Volatility has been

proposed by Fulvio Corsi in 2003. The motivation for this model stands on

the Heterogeneous Market Hypothesis presented by Müller et al. (1993).

This hypothesis states that "The market is heterogeneous, with a “fractal”

structure of the participants’ time horizons as it consists of short-term, medium-

term and long-term components. Each such component has its own reac-

31
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tion time to news, related to its time horizon and characteristic dealing fre-

quency." Indeed, the market partecipants can be of different kind, like the

foreign exchange dealers or market makers, usually related to high dealing

frequencies, or central banks, commercial organizations and pension funds

investors, who deal with lower frequencies. Hence, Corsi arrived at the

conclusion that "agents with different time horizons perceive, react to, and

cause different types of volatility components. We can identify three primary

volatility components: the short-term traders with daily or higher trading

frequency, the medium-term investors who typically rebalance their posi-

tions weekly, and the long-term agents with a characteristic time of one or

more months." Empirical experience suggests that this heterogeneous mar-

ket structure creates a volatility cascade from lower to higher frequencies.

This is because volatility over long time intervals has more influence on

volatility over short intervals than conversely, showing an asymmetric be-

haviour. From an economic point of view, since long-term volatility affects

the forecasting of trend and risk, its variations change the behaviour of short-

term agents too, generating short-term volatility. To the contrary, long term

agents do not modify their trading strategies according to short-term volatil-

ity changes. This reason has induced Corsi to propose a volatility cascade

model composed by three heterogeneous volatility components.

3.1.1 The model

With this model, the realized volatility is parametrized as a linear com-

bination of the lagged realized volatilities computed over different horizons.

The author proposed a simplified model with only three intervals, one day

(1d), one week (1w) and one month (1m), but more components could be

easily added. The daily, weekly and monthly latent partial volatility, which

is the volatility created by a particular market component, is respectively

σ̃
(d)
t , σ̃(w)

t and σ̃(m)
t .

The high-frequency return process is defined by the component with the
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highest frequency as

rt = σ
(d)
t εt,

where σ(d)
t = σ̃

(d)
t is the integrated volatility and εt ∼ NID(0, 1).

The unobserved partial volatility σ̃(.)
t at each time interval is modelled as a

function of the previous period realized volatility computed at the same time

interval and of the expectation of the next period longer-term partial volatil-

ity. Then, we can say that the partial volatilities follow an "almost AR(1)"

model, meaning that, having on the left-hand side the latent volatility, on the

right-hand side the corresponding realized volatility appears instead. Hence,

the first term regards the AR(1) component, while the second consists in

the hierarchical component. Let RV (d)
t , RV (w)

t and RV (m)
t be respectively

the daily, weekly and monthly realized volatilities. They are defined as the

average of the daily quantities to allow the comparison between them. Then,

RV
(w)
t =

1

5
(RV

(d)
t +RV

(d)
t−1d + · · ·+RV

(d)
t−4d)

RV
(m)
t =

1

22
(RV

(d)
t +RV

(d)
t−1d + · · ·+RV

(d)
t−21d).

The HAR-RV model is defined as

σ
(m)
t+1m = c(m) + φ(m)RV

(m)
t + ω̃

(m)
t+1m,

σ
(w)
t+1w = c(w) + φ(w)RV

(w)
t + γ(w) Et[σ(m)

t+1m] + ω̃
(w)
t+1w, (3.1)

σ
(d)
t+1d = c(d) + φ(d)RV

(d)
t + γ(d) Et[σ(w)

t+1w] + ω̃
(d)
t+1d,

where "the volatility innovations ω̃(m)
t+1m, ω̃(w)

t+1w and ω̃(d)
t+1d are contemporane-

ously and serially independent zero-mean nuisance variates with an appro-

priately truncated left tail to guarantee the positivity of partial volatilities"

(Corsi, 2003). The economical explanation is that each volatility compo-

nent is based on the current realized volatility and on the expectation of the

longer horizon volatility, which, as it has been said before, affects the future

values of the shorter-term volatilities, due to the asymmetric propagation of

the volatility.

Being σ(d)
t = σ̃

(d)
t , by substitution the cascade model 3.1 can be written

as a three-factor stochastic volatility model, with the past realized volatilities
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computed at different frequencies as factors:

σ
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω̃

(d)
t+1d. (3.2)

with c = cd + cw + cm and ω̃(d)
t+1d incorporates all the noises.

We can notice that, ex post, it is possible to define σ(d)
t+1d as

σ
(d)
t+1d = RV

(d)
t+1d + ω

(d)
t+1d, (3.3)

where ω(d)
t+1d includes both the latent daily volatility computation and esti-

mation errors. From equation 3.3, it is clear that the realized volatility is not

considered an error-free estimator. However, in order to ensure that ω(d)
t+1d is

a zero mean nuisance the property of consistency of the realized is not suffi-

cient. Indeed, it values that E[ω
(d)
t+1d] = 0 only if E[σ

(d)
t+1d] = E[RV

(d)
t+1d]. To

make it possible the realized volatility has to be an unbiased estimator of the

integrated volatility, hence it is necessary a correction of the microstructure

effects when computing the realized volatilities. If we substitute 3.3 in 3.2,

we obtain the time series representation

RV
(d)
t+1d = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ωt+1d, (3.4)

with ωt+1d = ω̃
(d)
t+1d−ω

(d)
t+1d. Equation 3.4 can be seen as a particular autore-

gressive model in the realized volatility, that considers realized volatilities

computed over different time intervals. To estimate the parameters, we can

consider as observed the realized volatilities on the right-hand side of eq.

3.4 and apply a simple linear regression. In this way, the consistency of the

resulting OLS regression estimators is ensured. Moreover, they are normally

distributed.

3.2 The jump effect

In economics, the process most used to model prices is the Brownian

motion, which represents a smooth and slowly mean-reverting continuous

sample path process. Anyway, there is no satisfying economic theory that
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proves that prices must follow a process characterized by a continuous sam-

ple path. Indeed, recent parametric studies have proposed to allow for jumps

when estimating stochastic volatility process or when pricing derivatives.1

Hence, in this section, we are going to add a less persistent jump component

to the Brownian semimartingale process.

3.2.1 The jump processes

Let p(t) be a logarithmic asset price at time t and κ(t) ≡ p(t) − p(t−)

the size of the discrete jumps. The stochastic differential equation usually

used to express the continuous-time jump diffusion process is

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dq(t), 0 ≤ t ≤ T,

where "µ(t) is a continuous and locally bounded variation process, σ(t) is a

strictly positive stochastic volatility process with a sample path that is right

continuous and has well-defined left limits (allowing for occasional jumps in

volatility), W (t) is a standard Brownian motion, and q(t) is a counting pro-

cess2 with (possibly) time-varying intensity λ(t)."(Andersen at al. (2007)).

Knowing that the cumulative return process is r(t) ≡ p(t)− p(0), we obtain

its quadratic variation as

[r, r]t =

∫ t

0

σ2(s)ds+
∑

0<s≤t

κ2(s),

We can notice that the summation of the squared jumps that occurred during

the time interval [0, t] equals zero in the case of absence of jumps, so that

the quadratic variation becomes the integrated volatility of the continuous

sample path component.
1See, for example, Andersen, Benzoni, and Lund (2002), Bates (2000), Chan and Ma-

heu (2002), Chernov, Gallant, Ghysels, and Tauchen (2003), Drost, Nijman, and Werker
(1998), Eraker (2004), Eraker, Johannes, and Polson (2003), Johannes (2004), Johannes,
Kumar, and Polson (1999), Maheu and McCurdy (2004), Khalaf, Saphores, and Bilodeau
(2003), and Pan (2002).

2A counting process is a stochastic process with values that are non-negative, integer
and non-decreasing.
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Let ∆ be the length of a high frequency period, such that ∆ = 1
m

, where m

is the number of observations in a day. Then,recall that the realized variance

can be defined as

RVt+1(∆) ≡
1/∆∑
j=1

r2
t+j·∆, (3.5)

where rt ≡ p(t)−p(t−∆) is the discretely sampled ∆-period return at time

t. For ease of notation, the daily time interval is normalized to unity and

1/∆ is assumed to be an integer. Then, for ∆→ 0,

RVt+1(∆)→
∫ t+1

t

σ2(s)ds+
∑

t<s≤t+1

κ2(s). (3.6)

Hence, the realized variance is a consistent estimator of the integrated

variance only in the case of absence of jumps.

3.2.2 The realized bipower variation

In Andersen et al. (2007), the nonparametric realized variance approach

is further advanced by using a procedure that separately considers and mea-

sures the two components of the quadratic variation process: the continu-

ous sample path variation and the jump part. This is possible thanks to the

asymptotic properties proved by Barndorff-Nielsen and Shephard (2004).

This procedure involves the so-called bipower variation, which is a measure

constructed by summing cross products of adjacent high-frequency absolute

returns. The standardized realized bipower variation is defined as

BVt+1(∆) ≡ µ−2
1

1/∆∑
j=2

|rt+j·∆||rt+(j−1)·∆|, (3.7)

where µ1 is the standardization factor corresponding to the mean of the ab-

solute value of Z, which is considered to be a standard normally distributed

random variable: µ1 ≡
√

(2/π) = E(|Z|). As shown in Barndorff-Nielsen

and Shephard (2004), it values that

BVt+1(∆)→
∫ t+1

t

σ2(s)ds, (3.8)
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for ∆→ 0.

Then, we can use the realized bipower variation to solve the consistency

problem of the realized variation in presence of jumps. Indeed, if we com-

bine the results of equations 3.6 and 3.8, we obtain

RVt+1(∆)−BVt+1(∆)→
∑

t<s≤t+1

κ2(s) (3.9)

Hence, the difference between the realized and the bipower variations is a

consistent estimator for the jump component.

We can easily note that, despite the jump component is defined as a summa-

tion of squared variables, the left-hand side of equation 3.9 could be nega-

tive. In order to ensure the non-negativity of the daily estimates, Barndorff-

Nielsen and Shephard (2004) suggested a truncation as follows

Jt+1(∆) ≡ max[RVt+1(∆)−BVt+1(∆), 0]. (3.10)

3.2.3 The HAR-RV-J model

To take into account the jump component, the HAR-RV model for one-

day volatilities, described by equation 3.4, has been modified just by adding

the corresponding time series. Moreover, it can be extended to longer hori-

zons, so that the dependent variable becomes RVt,t+h. Then, the new model

resulting, the so-called HAR-RV-J, is defined as

RV
(d)
t+h = c+β(d)RV

(d)
t +β(w)RV

(w)
t +β(m)RV

(m)
t +β(j)Jt +ωt+h (3.11)

"With observations every period and longer forecast horizons, or h > 1, the

error term will generally be serially correlated up to (at least) order h − 1.

This will not affect the consistency of the regression coefficient estimates,

but the corresponding standard errors of the estimates obviously need to be

adjusted" (Andersen et al. (2007)). To this purpose,the Barlett/Newey-West

heteroskedasticity consistence covariance matrix estimator is used.
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3.2.4 Measurement error correction

Thus far, jumps have been estimated as the difference between the real-

ized variation and the bipower variation, relying on increasingly finer tem-

poral grid (∆ → 0). Practically, a fixed sampling frequency (∆ > 0) is

adopted, hence the measurements are subject to errors. Part of these errors

is eliminated when the nonnegativity truncation of equation 3.10 is applied.

Anyway, there could be some positive nonzero jumps that are so small that

should be considered as measurement errors, or part of the continuous com-

ponent.

In order to achieve this distinction, we can rely on the distributional

results of Barndorff-Nielsen and Shephard (2004, 2006) and of Barndorff-

Nielsen, Graversen, Jacod, et al. (2006). Under regularity, frictionless mar-

ket conditions, they proved that, in case of no jumps, for ∆→ 0,

∆−1/2 RVt+1(∆)−BVt+1(∆)

[(µ−4
1 + 2µ−2

1 − 5)
∫ t+1

t
σ4(s)ds]1/2

⇒ N(0, 1). (3.12)

Then, a large standardized difference between the realized and the bipower

volatility has to be considered as evidence of a significant jump.

We can notice that, in the denominator of the fraction in 3.12, the component∫ t+1

t
σ4(s)ds is the integrated quarticity, which is not observable. It can be

consistently estimated through the realized tripower quarticity, which is the

normalized sum of the product of n subsequent returns, in absolute value,

with n ≥ 3, raised to the power of 4
n

:

TQt+1(∆) ≡ ∆−1µ−3
4/3

1/∆∑
j=3

|rt+j·∆,∆|4/3|rt+(j−1)·∆,∆|4/3|rt+(j−2)·∆,∆|4/3,

(3.13)

with µ4/3 ≡ 22/3 ·Γ(7/6) ·Γ(1/2)−1 = E(|Z|4/3). It is possible to show that

TQt+1(∆)⇒
∫ t+1

t

σ4(s)ds. (3.14)

From equations 3.12, 3.13 and 3.14, we can obtain the test statistic

Wt+1(∆) ≡ ∆−1/2 RVt+1(∆)−BVt+1(∆)

[(µ−4
1 + 2µ−2

1 − 5)TQt+1(∆)]1/2
(3.15)
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to compare to a normal distribution in order to detect the significant jumps.

The null hypothesis is the absence of jumps in the price process, while the

alternative hypothesis is the presence of jumps.

Anyway, this test statistic has a negative side: in Huang and Tauchen (2005),

a Monte Carlo analysis showed that the Wt+1(∆) statistic has a pitfall when

applying the asymptotic approximation over an entire sample. Indeed, the

microstructure noise biases the test against detecting jumps causing a ten-

dency of over-rejecting the null hypothesis. They proposed another statistic

which can be approximated very closely to a standard normal distribution,

defined as

ZT+1(∆) ≡ ∆−1/2 [RVt+1(∆)−BVt+1(∆)]RVt+1(∆)−1

[(µ−4
1 + 2µ−2

1 − 5)max{1, TQt+1(∆)BVt+1(∆)−2}]1/2

As reported in Andersen at al. (2007), "we naturally identify the significant

jumps by the realizations of Zt+1(∆) in excess of some critical value, say

Φα,

Jt+1,α(∆) ≡ I[Zt+1(∆) > Φα] · [RVt+1(∆)−BVt+1(∆)], (3.16)

where I[·] denotes the indicator function". In other words, if the test is higher

than the critical value, the jump is significant and equal to the difference

between the realized volatility and the bipower volatility, otherwise such

difference is considered as part of the continuous component of the price

process. Since the total realized volatility has to converge to the sum of the

continuous and the jump components (3.6), we can obtain the continuous

component as

Ct+1,α(∆) ≡ I[Zt+1(∆) ≤ Φα] ·RVt+1(∆) + I[Zt+1(∆) > Φα] ·BVt+1(∆).

(3.17)

Roughly speaking, this means that when the test Zt+1(∆) is lower than

the critical value Φα we consider the entire amountRVt+1(∆) as the continu-

ous component, while if the test is higher than the critical value, it is assumed



CHAPTER 3. MODELLING VOLATILITY: THE HAR MODEL 40

that there is a significant jump, so the continuous path is composed only by

the bipower variation, which can be thought as the difference between the

realized volatility and the jump.

Market microstructure noise do not only affect the consistency of the re-

alized volatility, as explained in section 2.1.4. Indeed, if ∆ → 0, also the

bipower variation of equation 3.7 is biased. Moreover, the microstructure

effects lead to the presence of first order autocorrelation in the return series,

resulting in another source of bias in 3.7. As reported in Huang and Tauchen

(2005), this implies that the jump test statistic Wt+1(∆) of equation 3.15

will be negatively biased in finding jumps. They proved that, for small val-

ues of ∆, the test tends to under-reject the null hypothesis and this behavior

is worsened by the size of the variance of the noise term v(t).

In Andersen, Bollerslev and Diebold (2007), a way to obviate to the prob-

lem of the presence of spurious autocorrelation in the equation of observed

returns is illustrated. They introduced the use of a modified realized bipower

variation, in which the returns are staggered, leading to the following equa-

tion:

BV1,t+1(∆) ≡ µ−2
1 (1− 2∆)−1

1/∆∑
j=3

|rt+j·∆,∆||rt+(j−2)·∆,∆|, (3.18)

in which (1 − 2∆)−1 is the normalization factor due to the loss of 2 obser-

vations because of the staggering. If we increase the lag length between the

returns, it is possible to break higher-order autocorrelations. Analogously,

the tripower quarticity used to estimate the integrated quarticity can be com-

puted using staggered returns in the following way:

TQ1,t+1(∆) ≡ ∆−1µ−3
4/3(1− 4∆)−1

∑1/∆
j=5 |rt+j·∆,∆|4/3|rt+(j−2)·∆,∆|4/3|rt+(j−4)·∆,∆|4/3.(3.19)

It is shown that these staggered measures, in case of no noise term, are still

consistent estimators, and so, the test statistic Z1,t+1(∆), obtained by substi-

tuting in the equation of Zt+1(∆) the corresponding staggered measures, is

still asymptotically distributed as a standard Normal.
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3.2.5 The HAR-RV-CJ model

It is possible to further extend the HAR-RV-J model 3.11 dividing ex-

plicitly the realized volatilities used as explanatory variables of the regres-

sion into the continuous sample path and the jump components obtained in

eq. 3.17 and 3.16. We can define the multiperiod continuous path and jump

components, over h days, respectively as

C
(h)
t = h−1[Ct+1 + Ct+2 + · · ·+ Ct+h] (3.20)

J
(h)
t = h−1[Jt+1 + Jt+2 + · · ·+ Jt+h] (3.21)

When considering the weekly and monthly components, h is respectively

equal to 5 and 22. Then, the HAR-RV-CJ model is expressed as

RV
(h)
t+h = c+β(d)Ĉt + β(w)Ĉ

(5)
t + β(m)Ĉ

(22)
t +

+α(d)Ĵt + α(w)Ĵ
(5)
t + α(m)Ĵ

(22)
t + ε

(h)
t

(3.22)

with {c, β(d,w,m), α(d,w,m)} real numbers and an IID error term ε
(h)
t .

3.3 The leverage effect

It can be empirically showed that, in equity markets, the volatility of

stock returns rises more after a negative shock in the price than after an

increase of the same magnitude.3 This negative relationship between lagged

negative returns and volatility is known as leverage effect.

3.3.1 The LHAR-CJ model

In Corsi and Renò (2012), a new model has been proposed, which ac-

counts for the leverage effect in order to obtain a better volatility forecast.

It is called the Leverage Heterogeneous Auto-Regressive with Coninuous
3See, for example, Christie (1982), Campbell and Hentschel (1992), Glosten et al.

(1989), Bollerslev et al. (2006), Bollerslev et al. (2009), Martens et al. (2009).
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volatility and Jumps model (LHAR-CJ model) and it is composed by a com-

bination of the three characteristics: volatility, leverage and jumps. The

leverage innovation of the model regards the inclusion as additional explana-

tory variables of lagged negative returns at three different frequencies. To do

so, we define r(h)−
t = min(r

(h)
t , 0), in order to select only the negative re-

turns. Finally, the model results to be:

RV
(h)
t+h = β0+β(d)Ĉt + β(w)Ĉ

(5)
t + β(m)Ĉ

(22)
t +

+α(d)Ĵt + α(w)Ĵ
(5)
t + α(m)Ĵ

(22)
t

+γ(d)r−t + γ(w)r
(5)−
t + γ(m)r

(22)−
t + ε

(h)
t+h. (3.23)

The parameters {c, β(d,w,m), α(d,w,m), γ(d,w,m)} are real numbers and the er-

ror term ε
(h)
t is an IID noise. We can notice that if α(d,w,m) and γ(d,w,m) are

both equal to zero, the model reduces to the HAR of Corsi(2009). Instead, if

only γ(d,w,m) is null, the model consists in the continuous and the discontin-

uous components, resulting in the HAR-CJ model of Andersen et al. (2007).

Lastly, when α(d,w,m) = 0, Ĉt = V̂t and the model is called LHAR model.



Chapter 4

Empirical analysis

In this chapter, I am going to consider three stocks and compute the re-

alized volatilities of their return series. Then, I am going to model them

through the HAR models, in order to perform forecasts. Finally, the fore-

casted values are compared to the ones obtained through ARMA and ARFIMA

models. All the analysis have been computed through R. The most used R

packages have been highfrequency and HARModel.

4.1 Characteristics of the price and return

series

For this analysis, I downloaded from Bloomberg the 5-minutes stock

prices of Enel, Intesa San Paolo and Generali. As suggested in the litera-

ture, a time interval of 5 minutes is often chosen in order to reduce the mi-

crostructure noise. Indeed, lower frequencies risk to be too much affected by

the noises, compromising all the results. Being the italian stock market open

from 9:00 to 17:30, the observations considered are 103 per day. The time

series go from 2017-09-18 9:00 to 2018-12-05 17:30, with a total number of

observations of 32033.

In figure 4.1 the three time series of the prices are plotted. We can notice

that in May 2017 all of the three time series show an important fall. The

43
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Figure 4.1: Plots of the 5-minutes prices of, respectively, Enel, Generali and
Intesa San Paolo.

Prices Enel Generali ISP

Minimum 4.220 13.650 1.871
Median 4.848 15.230 2.796
Mean 4.885 15.190 2.664
Maximum 5.585 17.120 3.227

Table 4.1: Minimum, median, mean and maximum values of the 5-minutes
prices of Enel, Generali and Intesa San Paolo.

minimum and maximum values, the mean and the median of the three series

are summarized in table 4.1.

The exploratory analysis continues with the computation of the logarithmic

returns for each of the series. Being p(t) the price at time t, the logarithmic

return r(t) is defined as

r(t) = ln

[
p(t)

p(t− h)

]
= ln[p(t)]− ln[p(t− h)]

where h = 5 minutes. The plots and the characteristics of the return series

are shown in Figure 4.2 and Table 4.2. From the plots we can see that the

returns are centered around zero, with some volatility clustering, especially
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Returns Enel Generali ISP

Minimum −0.0323 −0.0480 −0.0635
Median 0 0 0
Mean −1.940 · 10−6 −1.354 · 10−6 −1.0710 · 10−5

Maximum 0.0267 0.0258 0.0450
Variance 1.911 · 10−6 1.641 · 10−6 3.207 · 10−6

Std. Deviation 0.0014 0.0012 0.0018
Skewness −1.0172 −1.3987 −0.6361
Kurtosis 51.5780 90.4545 123.2594

Table 4.2: Summary statistics of the 5-minutes returns of Enel, Generali and
Intesa San Paolo.

in the second half of May and September 2017, where also the prices series

saw a fall. The sample mean values are very close to zero for all the three

series.

Figure 4.2: Plots of the 5-minutes returns of, respectively, Enel, Generali
and Intesa San Paolo.

It is possible to deduce from the skewness and kurtosis values that the returns

are not normally distributed, since they are not close respectively to zero and

three, the value that a normal distribution would assume. In particular, the
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Figure 4.3: Plots of the density functions of the return series of Enel, Gen-
erali and Intesa San Paolo, compared to the normal ones, with focuses in the
left and right tails.

very high values of the kurtosis for all the three series is a typical feature

of the high frequency data, denoting a leptokurtic distribution. Figure 4.3

shows for each series the comparison between the density functions of the

returns and the one of the corresponding normal density functions, with also

a zoom on the left and right tails. As the values of the kurtosis suggested, the

three distributions have fatter tails than the one of the normal distribution, as

the ones of high-frequency data usually are.

To improve the exploratory analysis, we can better check for the normal-

ity assumption with a Normal probability plot, which compares the sample

quantiles with the corresponding quantiles of the standard normal distribu-

tion. In Figure 4.4 the Q-Q plots of the three series are represented. The

right and the left parts of the patterns show deviation from the straight lines,

meaning that the two tails are heavier than the normal ones. Hence, from
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Figure 4.4: Q-Q plots of Enel, Generali and Intesa San Paolo.

these graphs, the assumption of normality does not seem to be confirmed.

As stated in Chapter 1, high frequency returns usually display a negative

first-order dependence, which is mainly due to the bid-ask spread and the
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Figure 4.5: Autocorrelation functions of the return series of Enel, Generali
and Intesa San Paolo.

price discreteness. Figure 4.5 confirms this feature, showing for all the three

series a significant negative autocorrelation at the first lag. However, it seems

to be apparently modest. On the other hand, the autocorrelation functions of

the squared returns in Figure 4.6 display a slowly decaying behavior, with

significant values for many lags.
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Figure 4.6: Autocorrelation functions of the absolute return series of Enel,
Generali and Intesa San Paolo.
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RV Mean St. Dev. Skewness Kurtosis

Enel 1.968 · 10−4 1.885 · 10−4 4.0615 21.5831
Generali 1.69 · 10−4 1.941 · 10−4 6.4331 60.9359
ISP 3.30 · 10−4 4.605 · 10−4 4.6050 27.4170

Table 4.3: Summary statistics of the 5-minutes realized volatilities of Enel,
Generali and Intesa San Paolo.

4.2 Characteristics of the realized volatility

series

After analyzing the return series, I obtained the daily realized volatility

(RV) series for each stock, through the computation explained in Chapter 2.

Table 4.3 reports, for each realized volatility series, the sample mean, the

standard deviation, the skewness and the kurtosis, together with the max-

imum and minimum values. This standard summary of statistics helps in

outlining the unconditional distributions of the three realized volatility se-

ries. Overall, the most volatile is the one of Intesa San Paolo, followed by

the one of Generali. Looking at the skewness, it is clear that all the series are

right-skewed. Obviously, the normal distribution is a poor approximation.

In Figure 4.7 all the series are plotted, together with their autocorrelation

functions.

The temporal extent of the autocorrelation is clearly exhibited by the

quantity of significant values in the ACF of each series. This is supported

also by the results of the Ljung-Box test, reported in table 4.4.

This test has been computed for the first twenty lags (K = 20). Being

ρ̂k, k = 1, . . . , K, the sample autocorrelation at lag k, the hypothesis of the

test are the following:

• H0: ρk = 0, k = 1, . . . , K;

• H1: ∃ρk 6= 0, k = 1, . . . , K.
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.7: Plots of the realized volatility series and their corresponding
autocorrelation functions of Enel, Generali and Intesa San Paolo.
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RV LB p-value

Enel 138.79 2.76e-10
Generali 292.66 < 2.2e-16
ISP 308.3 < 2.2e-16

Table 4.4: Test statistics and p-values of the Ljung-Box test computed over
50 lags, for the realized volatility series of Enel, Generali and Intesa San
Paolo.

The test statistic is computed as

Q = n(n+ 2)
( ρ̂2

1

n− 1
+

ρ̂2
2

n− 2
+ · · ·+ ρ̂2

K

n−K
)

where n is the sample size and . Under H0, the test statistic follows a χ2
(K).

The p-values are all very small and the Q-statistics are higher than the critical

value, which, for a significance level of α = 0.05, is equal to 67.50. Hence,

we reject the null hypothesis and the series result to be autocorrelated.

4.3 Estimation of the HAR models

To model the realized volatility through the HAR-RV model, the daily

series have been aggregated to create the weekly and monthly series, as

explained in Chapter 3. In this way, the measures are comparable even if

computed over different horizons. Figures 4.8, 4.9 and 4.10 show, for each

stock, the scatterplots that compare the daily realized volatility to the lagged

weekly and monthly ones. The majority of the points plotted lies on the

lower corner on the left-hand side of the graphs, meaning that to small val-

ues of a variable correspond small values of the other variable. However,

when the comparison is done against the lagged monthly realized volatility,

the dispersion of the points is more evident and the link between the two

variables seems weaker.

Table 4.5 includes all the parameters estimated through a standard OLS

regression of the model:

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + εt+1.
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Enel

Figure 4.8: Scatterplots of the daily realized volatility and the lagged weekly
and monthly realized volatility for Enel.

Generali

Figure 4.9: Scatterplots of the daily realized volatility and the lagged weekly
and monthly realized volatility for Generali.
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Intesa San Paolo

Figure 4.10: Scatterplots of the daily realized volatility and the lagged
weekly and monthly realized volatility for Intesa San Paolo.

HAR-RV Enel Generali ISP

c 1.03 · 10−4 (0.0006) 5.60 · 10−5 (0.0093) 9.66 · 10−5 (0.0237)

β(d) 0.1503 (0.0322) 0.1650 (0.0179) 0.1696 (0.0146)

β(w) 0.3997 (0.0017) 0.3815 (0.0033) 0.3807 (0.0034)

β(m) −0.0565 (0.7299 ) 0.1382 (0.3397 ) 0.1852 (0.1992 )

Table 4.5: Parameter estimation through HAR-RV model. Numbers in
brackets are the corresponding p-values of the significance test. The colored
cells indicate the p-values of non-significant estimates.
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HAR-RV Enel Generali ISP

c 9.57 · 10−5 (5.24 · 10−6) 6.75 · 10−5 (1.62 · 10−4) 1.24 · 10−4 (7.97 · 10−4)

β(d) 0.1523 (0.0292) 0.1616 (0.0201) 0.1659 (0.0169)

β(w) 0.3779 (6.07 · 10−4) 0.4543 (1.68 · 10−5) 0.4821 (3.72 · 10−6)

Table 4.6: Parameter estimation through HAR-RV model, without the
monthly realized volatility. Numbers in brackets are the corresponding p-
values of the significance test.

The numbers reported in brackets are the corresponding values of the t-

statistics. We can notice that the p-values of the monthly realized volatility

estimates, in the grey cells, are all higher than 0.05. Hence, those estimates

are not significant and I can remove them from the regression. The results

from the new model:

RV
(d)
t+1 = c+ β(d)RV

(d)
t + β(w)RV

(w)
t + εt+1

are reported in Table 4.6. In this case, all the parameters are significant.

Economically speaking, this means that the the daily future realized volatil-

ity does not change significantly if the previous monthly realized volatility

changes, but it depends on the behavior of the previous daily and weekly

ones.

If the models are correctly specified and the parameters estimates are suf-

ficiently close to the true values, than we should obtain residuals with be-

haviors similar to the ones of a white noise. From the plots of the residuals

in Figure 4.11, we can notice that for the Generali’s and Intesa San Paolo’s

series, the models seems not to be able to adequately capture the increases of

the volatility. On the other hand, if we look at the autocorrelation functions,

in Figure 4.12 together with the p-values from the Ljung Box, we can no-

tice that the model seems to fit quite well only to the Enel realized volatility

series. Indeed, for Generali and Intesa San Paolo series, the autocorrelation

functions show some significant values and the p-values are lower than the

significance value of 0.05 for many lags..
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.11: Plots of the residuals of the HAR models applied to the realized
volatility series of Enel, Generali and Intesa San Paolo.
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.12: Plots of the autocorrelation functions and the p-values from the
Ljung-Box test on the residuals of the HAR-RV models.
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HAR-CJ Enel Generali ISP

c 9.86 · 10−5 (0.0026) 4.30 · 10−5 (0.168) 5.35 · 10−5 (0.3179)

β(d) 0.3237 (0.015) 0.8269 (9.31 · 10−8) 1.0500 (1.91 · 10−10)

β(w) 0.4878 (0.049) 0.1345 (0.558) 0.0551 (0.8322)

β(m) −0.1719 (0.623) −0.0817 (0.815) −0.0145 (0.9684)

α(d) 0.0164 (0.893) −0.0582 (0.466) −0.1638 (0.0531)

α(w) 0.0886 (0.800) 0.1835 (0.393) 0.2395 (0.2983)

α(m) 0.0058 (0.994) 0.2410 (0.706) 0.1911 (0.7273)

Table 4.7: Parameter estimation through HAR-RV-CJ model. Numbers in
brackets are the corresponding p-values of the t-statitics.

In order to improve the models, after computing the bipower realized

variation, I added to the basic model also the jump component, to check if

the behavior of the future realized volatility of the data could depend on the

series of the jumps. As already explained, the realized volatility can be di-

vided into a continuous component, represented by the bipower variation,

and a jump component. Figure 4.13 show for each stock these two compo-

nents. The jump series have been tested as in Chapter 3, in order to select

only the significant values, i.e.J
(d,w,m)
t = 0 if not significant

J
(d,w,m)
t > 0 if significant.

In Table 4.7 we can find the parameters estimated through the HAR-RV-CJ

models:

RV
(d)
t+1 = c+β(d)C

(d)
t +β(w)C

(w)
t +β(m)C

(m)
t +α(d)J

(d)
t +α(w)J

(w)
t +α(m)J

(m)
t +εt+1.

It resulted that all the jump components are not significant and even remov-

ing them one-by-one from the regression, the situation did not get better.

Moreover, even running an F test to check if the restrictions from an HAR-

RV-CJ to an HAR-RV model were valid, I obtained results lower than the

critical values, leading me to accept the null hypothesis, which states that

the additional coefficients are not jointly significant. Then, I concluded that
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.13: Bipower realized variation and jump component of the return
series of Enel, Generali and Intesa San Paolo.
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the future realized volatilities do not depend on the jump series.

Finally, I tried to insert into the HAR-RV regression the negative past

returns computed through a period of 1, 5 and 22 days, in order to check if

the leverage effect conditions the future realized volatility. However, running

the model:

RV
(d)
t+1 =c+ β(d)RVt + β(w)RV

(w)
t + β(m)RV

(m)
t +

+ γ(d)r−t + γ(w)r
(5)−
t + γ(m)r

(22)−
t + ε

(h)
t+h

and reducing it removing one-by-one the regressors of which the parame-

ters’ estimates were not significant, I obtained exactly the standard HAR-RV

model, without the monthly component, of Table 4.6. This means that nei-

ther the jump or the leverage components have any effect on the daily future

realized volatility.

As I previously showed, it is not possible to state that residuals from the

applied HAR-RV models behave very well. A possible modification to ob-

tain a better fit could consist in transforming the dependent and independent

variables of the HAR regressions through a logarithmic transformation, as

suggested in Andersen et al. (2007). To do so, I recomputed all the OLS

estimations, collecting the significant parameter estimates, with their corre-

sponding p-values from the significance test, in Table 4.8. The logarithmic

jump components resulted to still be not significant for all the three stocks,

hence, the estimates come from the following regression model:

logRV
(d)
t+1 =c+ β(d)logRV

(d)
t + β(w)logRV

(w)
t + β(m)logRV

(m)
t +

+ γ(d)log(r−t ) + γ(w)log(r
(5)−
t ) + γ(m)log(r

(22)−
t ) + εt+1

In Figure 4.14, the residuals of these models are plotted. It is clear the

difference from Figure 4.11: in this case the residuals seems to have a much

more constant variability. Moreover, looking at Figure 4.15, it is easy to

notice that their autocorrelation functions show less significant values and

the p-values obtained from the Ljung-Box test are almost all higher than the
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Log L-HAR Enel Generali ISP

c −3.557 (7.45 · 10−10) −3.291 (9.56 · 10−10) −3.873 (3.14 · 10−8)

β(d) 0.342 (2.45 · 10−6) 0.225 (0.0031) 0.309 (1.84 · 10−5)

β(w) 0.254 (0.0045) 0.417 (8.70 · 10−7) 0.276 (0.0030)

β(m) - - - - - -

γ(d) - - −17.061 (0.0005) −10.486 (0.0014)

γ(w) - - - - - -
γ(m) - - - - −43.598 (0.0032)

Table 4.8: Parameter estimation through LHAR-RV model with the loga-
rithmic transformation of the variables. Numbers in brackets are the corre-
sponding p-values from the significance test.

significance level.

A further proof that the logarithmic transformation lead to residuals that

behave more similarly to a white noise is demonstrated in Figure 4.16 , which

displays the density functions and the Q-Q plots, compared to the ones of the

normal. We can notice that the residuals for each stock have a distribution

quite similar to the one of the normal, apart from the right tails that are still

a little fatter.

4.4 Forecasting performances

From the residual analysis previously computed, the HAR models ap-

plied seemed to not be enough adequate in capturing the behavior of the

realized volatility, with the exception of the Enel series, and I tried to im-

prove the results through the logarithmic transformation of the variables in

the regression.

In this section, I am going to inspect the forecasting performances of the final

models previously estimated. To do so, I am going to compute the one-step-

ahead forecasts, both in-sample and out-of-sample, of the realized volatility

for all the models and compare them with ARMA and ARFIMA models.
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.14: Plots of the residuals of the HAR models applied to the loga-
rithmic realized volatility series of Enel, Generali and Intesa San Paolo.
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.15: Plots of the autocorrelation functions of the residuals from the
HAR models applied to the logarithmic realized volatility series of Enel,
Generali and Intesa San Paolo, together with their corresponding p-values
from the Ljung-Box test.
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(a) Enel

(b) Generali

(c) Intesa San Paolo

Figure 4.16: Density functions and Q-Q plots of the residuals from the log-
arithmic HAR models. The red lines are the corresponding normal ones.
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4.4.1 Model fitting

The fitted values of the final models considered give out the one-step-

ahead in-sample forecasts. Hence, for each type of realized volatility series

of each stock, the model is estimated on the entire sample of data and, every

day, the parameters’ estimates obtained are used to get the realized volatil-

ity value of the day after. Figures 4.17 and 4.18 show a visual comparison

between actual and in-sample forecasted values of, respectively, the HAR

models and the logarithmic HAR models applied to the Enel, Generali and

Intesa San Paolo stocks. The blue straight lines are the forecasted values,

while the red dotted lines are the actual values. Obviously, the deviation be-

tween the blue and red lines are are the residuals inspected in the previous

section.

Then, I computed for each applied model, the Root Mean Square Error

(RMSE) and the Mean Absolute Error (MAE), which are both measures

computed on the difference between the predicted and the actual values.

This means that the smaller are their amounts and the better are considered

the predictions. Let Z be the forecasting period, such that z = 1, 2, . . . , Z.

Denote as yz and ŷz, respectively, the actual and the forecasted values at time

z. Then, the Root Mean Square Error is expressed as:

RMSD =

√∑Z
z=1(ŷz − yz)2

Z

and the Mean Absolute Error is:

MAE =

∑Z
z=1 |ŷz − yz|

Z
.

In Table 4.9 are reported the results of the RMSE and MAE for all the mod-

els. We can notice that the logarithmic transformation lead to better values

in terms of MAE, but not in terms of RMSE.
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(a) Enel

(b) Generali

(c) ISP

Figure 4.17: Comparison between the one-day-ahead in-sample prediction
and actual values (dotted line) of the HAR models applied to the Enel, Gen-
erali and Intesa San Paolo series.
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(a) Enel

(b) Generali

(c) ISP

Figure 4.18: Comparison between the one-day-ahead in-sample prediction
and actual values (dotted line) of the logarithmic HAR models applied to the
Enel, Generali and Intesa San Paolo series.
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Fitted Values
Performances

Levels Logarithmic

RMSE MAE RMSE MAE

Enel 1.810 · 10−4 0.991 · 10−4 1.840 · 10−4 0.894 · 10−4

Generali 1.808 · 10−4 0.865 · 10−4 1.847 · 10−4 0.752 · 10−4

ISP 4.216 · 10−4 1.974 · 10−4 4.251 · 10−4 1.668 · 10−4

Table 4.9: Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE) of the fitted values of the models, in both levels and logarithmic
form, applied to the realized volatilities of Enel, Generali and Intesa San
Paolo.

Another measure representing the goodness-of-fit of an applied model is

the R-squared (or Coefficient of Determination), which is computed as

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

where yi are the observed values of the dependent variable, ŷ is its mean

and ŷi are the values fitted by the model. The numerator corresponds to the

Explained Sum of Squares (ESS), while the denominator is the Total Sum of

Squares (TSS). It indicates the percentage of the variance in the dependent

variable that the independent variables are able to explain. In Table 4.10, the

results obtained for the R-squared of the HAR models are reported. We can

notice that these values are all quite small, revealing a low goodness-of-fit of

the models. The values slightly increase when considering the logarithmic

transformation of the models.

4.4.2 Out-of-sample forecasts

The original samples of the realized volatility series go from 2017-09-

18 to 2018-12-05, with 311 observations each. In order to compute the

rolling out-of-sample forecasts, I considered subsamples ending in 2018-11-

07, which are then composed by 291 values, excluding the last 20 days of
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R2 Levels Logarithmic

Enel 0.1258 0.2551

Generali 0.1799 0.3930

ISP 0.2033 0.5578

Table 4.10: Coefficients of determination for the HAR models, in both levels
and logarithmic forms, applied to the Enel, Generali and Intesa San Paolo
series.

Out-of-sample
Performances

Enel Generali ISP

HAR (Levels)
RMSE 1.236 · 10−4 1.623 · 10−4 5.071 · 10−4

MAE 1.021 · 10−4 1.163 · 10−4 3.002 · 10−4

MAPE 0.7055 0.6390 0.7438

HAR (Logarithmic)
RMSE 1.260 · 10−4 1.681 · 10−4 5.190 · 10−4

MAE 0.963 · 10−4 1.105 · 10−4 2.902 · 10−4

MAPE 0.5814 0.5241 0.6353

Table 4.11: Root Mean Square Error (RMSE), Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) of the 20 days out-of-sample
forecasts of the models, both in levels and in logarithmic form, applied to
the realized volatilities of Enel, Generali and Intesa San Paolo.

observations. The models’ parameters are estimated on the sample given by

the first 291 values of realized volatility and used to forecast the 292nd one.

Then, this resulting value is added into the sample and the regression coeffi-

cient estimates are updated on 292 values, in order to forecast the 293rd one.

This rolling procedure is repeated until all the 20 missing days of observa-

tions are forecasted. Figures 4.19 and 4.20 show the comparison between

actual and out-of-sample forecasted values, and the corresponding errors, of

the HAR models, both in levels and logarithmic form, applied to the Enel,

Generali and Intesa San Paolo realized volatility series, respectively.

Table 4.11 reports the values of the RMSE and the MAE of the out-of-
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(a) Enel

(b) Generali

(c) ISP

Figure 4.19: Comparison between the out-of-sample predictions over 20
days and actual values (dotted line), together with the forecasting residu-
als, of the HAR models applied to the Enel, Generali and Intesa San Paolo
series.
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(a) Enel

(b) Generali

(c) ISP

Figure 4.20: Comparison between the out-of-sample predictions over 20
days and actual values (dotted line), together with the forecasting residu-
als, of the logarithmic HAR models applied to the Enel, Generali and Intesa
San Paolo series.



CHAPTER 4. EMPIRICAL ANALYSIS 72

sample forecasts, together with the Mean Absolute Percentage Error (MAPE).

This measure is computed as following

MAPE =
1

Z

Z∑
z=1

∣∣∣∣yz − ŷzyz

∣∣∣∣
where yz and ŷz are, respectively, the actual and the forecasted values at

time z, z = 1, . . . , Z. We can notice that the models applied to the Enel

series lead to better results in terms of both RMSE and MAE, while, looking

at the MAPE, the model with the better performances is the one applied to

the Generali series. The logarithmic transformation allows improvements

regarding the MAE and MAPE measures, but not the RMSE. The values

taken by the MAPE are generally quite unsatisfactory.

4.5 Comparisons

To check if the HAR is a good model to forecast the realized volatility se-

ries1 I compared its out-of-sample performances with the ones of the ARMA

and ARFIMA models of realized volatility. The features of these models are

better explained in Appendix B.

The order of the ARMA models have been chosen such to be the ones

that minimize the BIC values. For all the three stocks it resulted to be

ARMA(1,1). On the other hand, to find the optimal orders of the ARFIMA

models I used a three-steps procedure. First of all, I estimated the fractional

parameter d for each realized volatility series, using the method of Geweke

and Porter-Hudak (GPH). Then, I differenced the three series with their cor-

responding d. Finally, I searched for the best ARIMA model to apply to the

differenced series. For all the three stocks, the best order of the ARFIMA

model to apply to the realized volatilities resulted to be ARFIMA(1,d,1).

After applying the ARMA(1,1) and ARFIMA(1,d,1) models to the realized
1Note that, from now on, I am not going to consider anymore the realized volatility in

standard deviation and in logarithmic forms, since I found out that the raw realized volatility
lead to models with better forecasting performances.
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Enel Generali ISP

HAR (Levels)
RMSE 1.236 · 10−4 1.623 · 10−4 5.071 · 10−4

MAE 1.021 · 10−4 1.163 · 10−4 3.002 · 10−4

MAPE 0.7055 0.6390 0.7438

HAR (Logarithmic)
RMSE 1.260 · 10−4 1.681 · 10−4 5.190 · 10−4

MAE 0.963 · 10−4 1.105 · 10−4 2.902 · 10−4

MAPE 0.5814 0.52405 0.6353

ARFIMA(1,d,1)
RMSE 1.166 · 10−4 1.589 · 10−4 4.860 · 10−4

MAE 0.947 · 10−4 0.993 · 10−4 0.2561 · 10−4

MAPE 0.6660 0.4269 0.4995

ARMA(1,1)
RMSE 1.275 · 10−4 1.906 · 10−4 5.437 · 10−4

MAE 0.915 · 10−4 1.415 · 10−4 3.525 · 10−4

MAPE 0.7640 0.8969 0.8272

Table 4.12: Root Mean Square Error (RMSE), Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) of the 20 days out-of-sample
forecasts of the HAR (in both levels and logarithmic forms), ARFIMA and
ARMA models applied to the realized volatilities of Enel, Generali and In-
tesa San Paolo.

volatility series of Enel, Generali and Intesa San Paolo, I performed the out-

of-sample forecasts for the last 20 days of the samples, as I did with the HAR

models. Then, I compared the forecasted values to the actual ones and com-

puted the RMSEs, the MAEs and the MAPEs, which are reported in Table

4.12. Overall, the better performances are obtained by the ARFIMA(1,d,1)

model.

4.6 Final remarks

From the results of this chapter, I can conclude that the HAR models do

not fit very well to the data of Enel, Generali and Intesa San Paolo. Indeed,

the residuals of the models applied did not seem to behave like a white noise:

in their plots we could see some changing in the variability and their auto-

correlations showed some significant values for the Generali and Intesa San
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Paolo series. Moreover, the forecasting performances are not very satisfac-

tory. The behavior of the residuals is improved when the models are applied

through the logarithmic transformation. In this case, also the forecasting re-

sults seems to be a little better, since the model is able to capture a bit of

the trend of the actual values. However, these not so accurate results could

derive both from the way the HAR models are constructed, and from the

computation of the realized volatility. As explained in Chapter 2, the real-

ized volatility should ideally be calculated through the intraday returns of the

efficient prices governed by an Ito process. However, this is practically not

possible because the prices are contaminated by some microstructure noise.

This noise component induces the realized volatility to be biased. In order to

reduce this problem, it is commonly used an interval of five minutes to com-

pute the return series, instead of higher frequency. In order to diminish the

microstructure effects, I also tried to reduce the frequency of the data until

30 minutes, obtaining returns not serially correlated and unbiased realized

volatility series. However, this alternative analysis lead to a general worsen-

ing of the results, both in terms of goodness-of-fit and in term of forecasting

performances. Obviously, this procedure allowed me to gain in the unbi-

asedness of the estimator, but not without any drawback. Indeed, sampling

at lower frequencies forced me to renounce to many observations and this

lost of information could have lead to an inefficient estimate of volatility,

compromising the analysis.



Conclusions

In the last decades, the availability of high frequency data has presented

new challenges to econometricians. Indeed, they show features that classical

parametric models are not able to capture.

In this context, one of the most important developments has been the pro-

posal of a new daily volatility estimator, based on high frequency returns: the

realized volatility. The HAR class of model, discussed by Corsi (2003) and

Andersen et al. (2007), attempts to forecast the next day’s realized volatility

relying on high-frequency returns of the past. The purpose was to obtain a

parsimonious model that was easy to estimate, but at the same time able to

reproduce the persistence of the volatility of financial data.

Throughout this thesis, I explained the computation of the realized volatil-

ity estimator and the formulation of the HAR class of models, with its de-

velopments regarding the jump and leverage components. Then, I computed

the realized volatility for the return series of Enel, Generali and Intesa San

Paolo, relying on the returns over intervals of 5 minutes. When applying the

HAR class of models, the results were not as expected: the models did not fit

well the data and, as a consequence, the forecasting performances were not

satisfying. Indeed, the root mean square error and the absolute error of an

ARFIMA model’s forecasts resulted to be lower than the ones obtained from

the forecasts of the HAR models. The non satisfactory goodness-of-fit and

forecasts could be the consequence of the difficulty in finding an equilibrium

in the trade-off between the removal of the microstructure noise (reducing

the frequency) and the goodness of the approximation of the quadratic vari-

75
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ation (that requires a high frequency). However, if we do not aim to get an

accurate estimator, but rather an indicator of the trend of the volatility, the

forecasting results of Figure 4.20 could be helpful.

A possible approach to obtain better results could have been computing

the two scale realized volatility of Zhang et al. (2005). However, this unbi-

ased estimator of volatility need tick-by-tick data to be calculated, which are

difficult to obtain, as well as very expensive.



Appendix A

A model of nonsynchronous trading:

computations.

A well known property, obtained by taking the first derivative of the ge-

ometric series g(π) = 1 + π + π2 + π3 + · · · , is that:

1 + 2π + 3π2 + 4π3 + · · · = 1

(1− π)2

Then, the result of equation 1.1 has been achieved as following:

E(r0
t ) = (1− π)2 E(rt) + (1− π)2π E(rt + rt−1) + · · ·

= (1− π)2µ+ (1− π)2π2µ+ (1− π)2π23µ+ · · ·

= (1− π)2µ[1 + 2π + 3π2 + 4π3 + · · · ]

= (1− π)2µ
1

(1− π)2

= µ.

Regarding the computation of the variance in equation 1.2, assuming that the

returns are serially independent, we need to know the following rules:

E
( k∑

i=0

rt−i

)2

= Var

( k∑
i=0

rt−i

)
+

[
E
( k∑

i=0

rt−i

)]2

= (k + 1)σ2 + [(k + 1)µ]2

and

1 + 4π + 9π2 + 16π3 + · · · = 2

(1− π)3
− 1

(1− π)2
.
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The second rules is derived considering H = 1 + 4π+ 9π2 + 16π3 + · · · and

G = 1 + 3π + 5π2 + 7π3 + · · · .
Then, (1− π)H = G and

(1− π)G = 1 + 2π + 2π2 + 2π3 + · · ·

= 2(1 + π + π2 + · · · )− 1

=
2

(1− π)
− 1.

Hence, we obtain the variance as

Var(r0
t ) = E[(r0

t )
2]− [E(r0

t )]
2

= (1− π)2 E[(rt)
2] + (1− π)2π E[(rt + rt−1)2] + · · · − µ2

= (1− π)2[(σ2 + µ2) + π(2σ2 + 4µ2) + π2(3σ2 + 9µ2) + · · · ]− µ2

= (1− π)2{σ2[1 + 2π + 3π2 + · · · ] + µ2[1 + 4π + 9π2 + · · · ]} − µ2

= σ2 + µ2

[
2

1− π
− 1

]
− µ2

= σ2 +
2πµ2

1− π
.

To compute the covariance at lag one of Equation 1.3, it is useful to

define the product r0
t r

0
t−1 as

r0
t r

0
t−1 =



0 with probability 2π − π2

rtrt−1 with probability (1− π)3

rt(rt−1 + rt−2) with probability (1− π)3π

rt(rt−1 + rt−2 + rt−3) with probability (1− π)3π2

...
...

rt

(∑k
i=0 rt−i

)
with probability (1− π)3πk−1

...
...
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Moreover, for j > 0, we know that E(rtrt−j) = E(rt)E(rt−j) = µ2. Hence,

we obtain that

Cov(r0
t , r

0
t−1) = E(r0

t r
0
t−1)− E(r0

t )(r
0
t−1)

= E(r0
t r

0
t−1)− µ2

= (1− π)3

{
E(rtrt−1) + π E[rt(rt−1 + rt−2)]+

+ π2 E
[
rt

( 3∑
i=1

rt−i

)]
+ · · ·

}
− µ2

= (1− π)3µ2(1 + 2π + 3π2 + · · · )− µ2

= (1− π)µ2 − µ2

= −πµ2.



Appendix B

ARMA and ARFIMA models

The Autoregressive Fractionally Integrated Moving Average, or ARFIMA,

model can be used in modelling the long-run behavior of a time series, since

it is able to capture it without the problems that an ARMA model would

face.

Let {yt} be a discrete time real-valued process, L the lag operator and εt
a process with zero mean and no autocorrelation.

The class of processes mostly used to model time series is the ARMA(p, q)

model, defined as:

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q

or, through the use of the lag operator L:

(1 + φ1L+ φ2L
2 + · · ·+ φpL

p)Yt = (1 + θ1L+ θ2L
2 + · · ·+ θpL

p)εt,

Let Φ(L) and Θ(L) be the following polynomials of respectively order p and

q:

Φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp

Θ(L) = 1− θ1L− θ2L
2 − · · · − φqLq.

Then, we can rewrite the ARMA(p,q) model as:

Φ(L)Yt = Θ(L)εt εt ∼ (0, σ2
ε ) (4.1)
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where the roots of the two polynomials have to stand outside the unit circle

to induce stationarity. Anyway, the long-run behavior of time series is not

well captured by this class of models for many reasons:

• the long-run behavior is captured by parameters that are near the bound-

ary of the parameter space. This means that the sampling distributions

are not well approximated by the asymptotic distributions so that in-

ference is not reliable;

• if a model manage to capture the long-run behavior of the data, it im-

poses restriction on the short-run. Indeed, if an AR’s parameter models

the correlation at high lags, it has to model it also at lower lags.

• the parameter are estimated by MLE in a way such that may sacrifice

the long-run behavior to obtain a better fit for the short-run. Indeed

we can read in Sowell (1992) that "as we pointed out in Cochrane

(1988) maximum likelihood (asymptotically) chooses parameter val-

ues to minimize the difference between the periodogram of the data

and the spectral density of the parametric model weighted at different

frequencies. (. . . ) There is no way to direct the fit of an AR or an

MA parameter to the long-run characteristics of a series, even though

a researcher may be investigating long-run behavior".

When the polynomials in 4.1 have positive and real unit roots, the func-

tion Yt should become stationary if differenced. After defining the backward

difference operator∇ as

∇Yt = Yt − Yt−1 = (1− L)Yt, (4.2)

it is possibile to rewrite eq. 4.1 as

Φ(L)∇dYt = Θ(L)εt. (4.3)

The differenced function ∇Yt is said to be an Autoregressive Integrated

Moving Average (ARIMA) model of order (p − 1, d, q). The number of
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differentiations needed to induce stationarity to the model is specified by the

parameter d:

• when d = 0, Yt results to be stationary and eq. 4.3 results to be equal

to eq. 4.1;

• when d = 1, Yt is non stationary, but its first difference is stationary;

• when d = 2, 3, . . . , Yt has to be differenced d-times to become sta-

tionary;

• when d is a real value, the model becomes an Autoregressive Fraction-

ally Integrated Moving Average, or ARFIMA(p,d,q).

Regarding the fourth case, it is possible to rewrite eq. 4.2 replacing∇Yt with

an infinite order autoregressive process such that

∇dYt = (1− L)dYt =
∞∑
k=0

(−1)k

(
d

k

)
LkYt

Hence, the ARFIMA specification can be defined as

Φ(L)(1− L)dYt = Θ(L)εt (4.4)

The ARFIMA model exhibits an infinite lag order dependence and could be

more suitable to capture the long-run behavior of a time series. To satisfy the

stationarity and invertibility conditions the value of the parameter d has to

be lower in modulus than 0.5. Indeed, when d > −0.5 the process is invert-

ible and has a linear representation (Wold representation); when d < 0.5 the

process is weakly stationary. If d ≥ 0.5, it is proved in Granger and Joyeux

(1980) that the variance of the process is infinite, causing its nonstationarity.

However, as explained in Sowell(1992), "long-range dependence is associ-

ated with all nonzero d>0, which allows capturing the long-run behavior

without being ’close to the boundary’ of the parameter space. This long-

run dependence is achieved with less restrictions on the higher frequency

behavior of the time series."
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When d > 0, the process is said to be long memory because, being ρj the

autocorrelation at lag j, the limit limk→∞
∑

j=−k,k |ρj| is not converging to

a finite number. As stated in Baillie et. al. (1996), "the ARFIMA model es-

sentialy disentangles the short-run and the long-run dynamics, by modelling

the short-run behaviour through the conventional ARMA lag polynomials,

a(L) and b(L), while the long-run characteristic is captured by the fractional

differencing parameter, d."
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