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Chapter 1

Introduction

1.1 MEMories and EXperiences for inclusive dig-

ital storytelling

MEMEX H2020 (research and innovation programme under grant agreement No

870743) is a three years European project that will develop artificial intelligence

methods for helping the fragile people in our society to be socially included again

in Europe.

Figure 1.1: Logo MEMEX Project (image from [2])

It will be developed together with the communities at risk of social exclusion living

in Lisbon, Barcelona and Paris. MEMEX’s aim is to create an app that will show

the stories of these people, linked to the place where they live and the cultural

heritage that surrounds them, using augmented reality. In these way MEMEX

project will be able to promote social cohesion through the access to Cultural

Heritage (CH) related tools [2].

1.1.1 Social goal

MEMEX social goal is to encourage social cohesion to promote recognition of

differences through the implementation of best practices for social inclusion and

audience engagement strategies.This objectives will be achieved by throughout:

❼ Social analysis for communities need: The objective will suggest best

practises to understand and study the causes of exclusion.

❼ Guidelines to benchmark social inclusion: Starting from the commu-

nities needs the task is to research and apply best practices for promoting
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inclusion and cohesion with the usage of heritage-related tools given the

cultural background of the community.

❼ Design audience development strategies: throughout the usage of the

storytelling tools, the objective of MEMEX is to increase the interest of

people for cultural events and diversify the audience.

1.1.2 Technologies

MEMEX promotes the usage and creation of new easy to use Information and

communication technology (ICT) tools with the usage of Artificial Intelligence [2].

The main goals are:

❼ Knowledge Graph infrastructure: The objective is to create a novel

KG and retrieval tools to be used in the geolocalised storytelling engine of

MEMEX.

❼ Geolocalization of cultural heritage: The focus will be to develop a

software running on mobile devices with the users knowledge and memories.

❼ Storytelling with Augmented Reality: Through the usage of AR, the

goal is to create a compelling experience of the stories.

Figure 1.2: Example of the main goals (image from [2])

The technological embodiment of MEMEX is an app installed on a smartphone

allowing non-expert users to create and visualise stories related to their personal

memories and experiences digitally linked to the geographical locations of either

intangible (e.g. an event) or a tangible cultural places/object. The user will be

able, using Augmented Reality (AR), to annotate any physical object or location,

with its memories, knowledge or stories about it through textual input, digital

images or videos. Then, the targeted communities, that are thought to be made

up of people who are systematically blocked by various cultural opportunities and
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resources, will be able to connect their experiences and memories with a new

Knowledge Graph (KG), linking CH items and places with stories that are bound

and entangled within the European history [2].

1.2 Stage

1.2.1 University Collaboration with MEMEX

Università Ca’ Foscari Venezia is one of the leading universities in Italy in several

topics like Economics, Management, Humanities, Literature, Languages and Sci-

ence. The University, always devoted to the study of new technologies, is linked

with 17 European public and private research centres, since 2005 with the foun-

dation of the European Centre for Living Technology (ECLT) 1. ECLT has been

coordinator and partner in several FP6, FP7, H2020 and EuropeAid projects,

where several groups are actively developing research collaborations both theoret-

ical and methodological.

Our main focus in this collaboration will be clustering on Knowledge Graphs (KG)

with the usage of Dominant Set [35].

Research and development activities carried out within the MEMEX-KG project

focus to use the knowledge graph framework and related machine learning tech-

nologies to integrate services that can benefit the vulnerable communities targeted

by the pilot program. Regarding the goal of the project, which is to integrate tech-

nological solutions to promote and enrich digital narratives to raise awareness of

the challenges faced by target groups in the process of social integration in the EU,

one important task is to provide meaningful context for the background cultural

heritage and localized information in order to link the memories and experiences of

these communities with the European Union’s cultural reference points. In order

to achieve this overall goal, part of the MEMEX-KG project focuses on a specific

task, which can be expressed as a general machine learning problem: the static

location of graph clustering.

Graphs are used to relate different elements together, this is conceptualised to aid

in the creation of stories around memories, locations or objects. To this end we

can utilise clustering to help the recommendation modality in order then to assist

in the development of stories by end users. Clustering will be used to select nodes

and links based on their potential connections based on the data provided by the

users, such data could be connected due to period, content or other to enable users

to create a narrative with meaningful content.

Clustering process is iterative in nature, so it gains a greater context, as more

1https://www.unive.it/pag/23664/
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parts of the stories are created by the user the results is that the information pro-

vided are more specific to the user needs. The KG will research solutions by using

dominant-set clustering [35] to select a set of nodes to which the user is interested

in. The practice of grouping and combining information with a certain set of pref-

erences is usually known in the literature as constrained clustering. Typically all

the clusters are retrieved and then only the ones that contains the selected nodes

are kept. An additional task of clustering is to consider navigation-based story

creation. This adds an extra parameter for creating the clusters, i.e. the position

of the user in the world. Therefore, when identifying relevant sets of nodes, it is

important to consider their geographical distance as well as similarity.

Alternatively, smarter selection methods exist, like constrained dominant set [27].

Here the user can select dynamically the interesting nodes. The algorithm then

will extract in one shot the relevant information, instead of computing an exten-

sive search.

Finally, it would also be beneficial to guide the user in creating stories that progress

across a space, as jumping back and forth will be a jarring and tiring experience

to users, irrelevant of the excitement of the story. Stories can be easily revisited

and the clustering re-performed to allow increased collaboration as new intangible

elements are added to the graph, truly encapsulating the co-authoring of our shared

heritage narrative [2].

1.3 Thesis outline

The choice of this H2020 project was mainly because of the technologies chosen

for the project. Important for me was the fact that the purposes of the objectives

were practical and noble. Studying arising technologies and new ways to imple-

ment them, would introduce me into the research world as well as applying on the

field concepts of Artificial Intelligence that so far had been mainly theoretical.

This thesis begins with an introduction of all the preliminary concepts required

to understand this work. In the next chapters we hence present the theoretical

knowledge behind the work we performed. We explain concepts related to knowl-

edge bases, graphs, knowledge graphs, multigraphs. Afterwards we focus on some

models used to extract embeddings for the creation of similarity matrices. We

have used this similarities to build simple weighted graphs that we have used for

the main clustering algorithms: Dominant set [35], K-means [21], DBSCAN [16],

Louvain [24] and Spectral clustering [51].

Dominant set will be presented extensively. The theory, general implementations

and a focus on their contribution to knowledge graphs will be discussed. Moreover

in chapter 3 we will present our extension to the algorithm.

In chapter 4 we present the structure of our datasets and the obtained results and
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our analysis of them, focusing on their strengths and what should be improved.

The thesis ends with an overall recap of our work and final considerations.
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Chapter 2

Background Knowledge

In this chapter we will see some basic concepts about graphs to then move into the

concept of knowledge base and knowledge graphs (2.1). Then we will introduce the

graph embedding techniques in 2.2 that can be used to build a pairwise similarity

matrix. The concept of clustering will then be briefly explained (2.3), mainly

focusing on graph clustering. In Subsec. 2.4 we will have a look at the most

commonly used techniques for graph clustering and in 2.5 we present some local

clustering methods. Finally in Subsec. 2.6 we are going to present the chosen

metrics for the evaluation of such techniques.

2.1 Basic concepts to introduce the subject

2.1.1 Types of graphs

Definition 2.1 (Simple graph [9] [55]) A simple graph G is a pair G =

(V,E) where

❼ V is a finite set, called the vertices of G

❼ E ⊆ V × V .

The graph edges could have weights to indicate the strength of the connection

between the nodes.

Definition 2.2 (Directed graph [9] [55]) A directed graph (or digraph)

have edges with direction, which indicate a one-way relationship. Formally,

we can define a directed graph as a triple D = (V,E,Φ) where V and E are

finite sets and Φ is a function with domain E and codomain V × V. We call

E the set of edges of the graph D and V the set of vertices of D.
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Definition 2.3 (Undirected graph [9] [55]) An undirected graph instead

have edges without direction, which indicate a two-way relationship. In other

words is a set of vertices (or nodes) that are connected together by bidirectional

edges.

Multigraph

We can also define a graph with multiple edges with the same nodes and we call it

Definition 2.4 (Multigraph [9] [55]) As for the simple graph, we can define

directed and undirected multigraph, specifically:

❼ directed multigraph (edges without own identity) G : is an ordered

pair G := (V,A) where V is a set of nodes and A a multiset of ordered

pairs of vertices, called directed edges or arcs.

❼ undirected multigraph (edges without own identity) G : is an ordered

pair G := (V,E) where V is a set of nodes and E a multiset of unordered

pairs of vertices, called edges.

Figure 2.1: Example of graphs. From the left: Undirected graph, directed

graph, undirected multigraph, directed multigraph.

Adjacency matrix

Definition 2.5 (Adjacency matrix) The adjacency matrix of a graph G is

the n × n matrix AG := (aij), where aij is the number of edges joining vertices

i and j. Can be described as:

aij =

{

k if (vi, vj) ∈ E

0 otherwise

Using the adjacency matrix we are able to represent information in a graph. The

non-zero entries indicated a edge between two nodes, whose weight is provided by
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the value of the entry. We could have non-zero diagonal elements of an adjacency

matrix only if a node is connected to itself. Also the adjacency matrix of an

undirected graph is symmetrical along the diagonal.

Cosine similarity matrix

A matrix of similarities can be constructed using the feature vectors. Projecting

the vectors into the unit sphere throughout the Euclidean (L2) normalization and

then performing their dot product gives us what it is commonly referred as the

cosine similarity kernel [26]. Therefore the cosine similarity k is defined as:

k(x, y) =
xyT

‖x‖ ‖y‖
(2.1)

where the x and y variables are the rows of the feature vectors. This operation is

the cosine of the angle of the points represented by the vectors.

2.1.2 Knowledge Base

The Knowledge Base (KB) is a database for managing information. Using this

kind of databases makes easier the collection and organization of the knowledge in

a particular area or a general one. Knowledge bases are used in computer science,

in the development of expert systems and artificial intelligence algorithms [45].

Knowledge bases can be distinguish in the following:

❼ Knowledge base of an expert system: it collects and organizes the

main knowledge into a given field of knowledge. For example, a medical,

legal, technical knowledge base, etc. The knowledge of the human expert

or of a group of experts on the subject is organized within it. The same

information can then be used by non-expert users of the expert system [49].

❼ Knowledge base of a logical agent [46]: it has a collection of the

main formulas and directives to allow the logic agent to move and make

autonomous decisions in an external environment. It is the representation

of the reality of the logical agent. Over time the agent assimilates experi-

ence and, through a process of inference, can modify the very content of the

knowledge base.

Representation of knowledge: in the knowledge base, facts are presented in

the form of formulas. Knowledge can be introduced into the knowledge base

through different methods (declarative method, procedural method, neural net-

work, etc.) and is expressed through a special language composed of symbols,

syntax and semantics. For example, in the knowledge bases of the 70s-80s, knowl-

edge was introduced by two primitive instructions: TELL (knowledge input) and

ASK (knowledge query) [46].
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2.1.3 Knowledge Graphs

The concept of knowledge graphs is strictly related to the one of knowledge base.

The main difference is that it can be represented as the names express, by a graph.

The idea of structure knowledge in a graph was proposed by Stokman and Vries

in 1988 [47] , but only in 2012 the concept gained popularity when it was first

launched by Google [14]. Between 1988 and 2012 Resource description framework

(RDF)1 and Web Ontology Language (OWL)2 were released in turn, and became

important standards of the Semantic Web 3.

The Knowledge graph contains a collection of interlinked descriptions of entities,

concepts or events. Data is put in context via linking and this way provides a

framework for data analysis. The KG descriptions have formal semantics that

allow both people and computers to process them in an efficient and unambiguous

manner, where entity descriptions contribute to one another providing context for

easy interpretation.

Definition

Since the concept of a knowledge graph is still a new topic of interest, there is still

not a wide-accepted formal definition. Some experts in the area have given some

possible definitions of a knowledge graph:

Definition 2.6 (Färber.[3]) In the context of the Semantic Web we can define

a knowledge graph G = { ε , R, F} where ε, R, and F are sets of entities,

relations and facts. Facts represent knowledge with the form of triples (head,

relation, tail) using the resource description framework (RDF).

Definition 2.7 (Ehrlinger and Woß [15]) A knowledge graph acquires and

integrates information into an ontology and applies a reasoner to derive new

knowledge.

Definition 2.8 (Wang et al.[39]) A knowledge graph is a multirelational

graph composed of entities and relations which are regarded as nodes and

different types of edges, respectively.

1https://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
2http://w3.org/TR/owl-guide
3http://w3.org/standards/semanticweb
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Definition 2.9 (Paulheim.[19]) A knowledge graph mainly describes real

world entities and their interrelations, organized in a graph. It defines pos-

sible classes and relations of entities in a schema and allows for potentially

interrelating arbitrary entities with each other. It also covers various topical

domains.

2.1.4 MEMEX-KG

Knowledge Graphs (KG), or more familiar in Cultural Heritage as ‘Semantic

Graphs’ are considered as ontologies of connected data. In contrast many KGs

are more organically grown from a priori ontologies.

The definition just mentioned in the previous section helps describe the scope of

operations and research in the context of the knowledge graph, and expresses the

key issues to consider when constructing, analyzing, and applying these frame-

works.

Regarding the activities carried out in the MEMEX project [2], these definitions

reflect the development principles of MEMEX-KG: a flexible data structure that

can integrate information about the European cultural heritage and the history of

the target communities of the project, with clear and consistent insight. For these

reasons, the construction follows a more formal and general definition related to

graph theory.

General structure of the knowledge graph:

Given

❼ Set of E entities (nodes)

❼ Set of K relationships (edges)

Considering that

❼ Each entity e ∈ E contains several attributes that vary from entity to entity;

❼ Each relationship k ∈ K is directed and has a specific type encoding logical

relationships among entities;

❼ Each attribute has a specific data type.

The resulting graph G(E,K) can therefore be defined as an attributed directed

multi-graph.

At its core, a KG is a graph database and consists of a set of interconnected

typed entities (nodes) and their attributes. The distinctive features of KGs lie

in their special combination of knowledge representation structures, information

management processes and search algorithms.
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Following these definitions different Knowledge Graphs have been generated in

the context of the MEMEX-KG, following a specific methodology for crawling the

data from the open source web resources and encoding the necessary knowledge

to be deployed in the different applications of the project within the graph. In

chapter 4 the data acquisition methodology for generating the Knowledge Graphs

will be presented along with the main datasets used. In section 4.2 the activities of

research for the help to creation and enriching relevant stories and the development

will described.
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Figure 2.2: Example of how to utilize the MEMEX’s Knowlege Graph

(Image from [2])

2.2 Graph embedding techniques

In this section we will talk about some of the general machine learning techniques

involving embeddings which will later on be used to build our similarity matrices.

Definition 2.2.1 (Embedding) An embedding [1] is a relatively low-

dimensional space that can be translated to high-dimensional vectors. Em-

beddings facilitate machine learning tasks on large inputs (i.e. sparse vectors

representing words). Embeddings capture some of the semantics of the input

by placing semantically similar inputs close together in the embedding space.

2.2.1 Topology Embeddings

DeepWalk

The idea of DeepWalk [38] is similar to Word2vec [29] [28], using the co-occurrence

relationship between nodes in the graph to learn the vector representation of nodes.

The key question is how to describe the co-occurrence relationship between nodes.

The method given by DeepWalk is to use RandomWalk to sample nodes in the

graph.

RandomWalk is a depth-first traversal algorithm that can repeatedly visit visited

nodes. Given the starting node of the current visit, randomly sample a node from

its neighbors as the next visit node, and repeat this process until the length of the

visit sequence meets the preset condition.

13



Figure 2.3: DeepWalk example. Image from [30]

After getting a sufficient number of node access sequences, it uses skip-gram model

[30] for vector learning.

The DeepWalk algorithm mainly includes two steps. The first step is to sample

the node sequence of random walks, and the second step is to learn the expression

vector using skip-gram model Word2Vec. Briefly:

❼ Construct a homogeneous network, starting by sampling Random Walk sep-

arately from each node in the network to obtain locally associated training

data;

❼ SkipGram training of sampled data, representing discrete network nodes as

direct quantification, maximizing node co-realization, and using Hierarchical

Softmax as a classifier for ultra-large-scale classification.

Node2Vec

Node2vec [18] is a graph method that combines DFS (Depth First Search) neigh-

borhoods with BFS (Breadth First Search) neighborhoods. Simply put, it can be

seen as an extension of deepwalk, which combines DFS and BFS random walk.

Node2vec still uses a random walk method to obtain the nearest neighbor sequence

of a vertex, the difference is that node2vec uses a biased random walk.

Given the current vertex v, the probability x of accessing the next vertex v is

P (ci = x|ci−1 = v) =

{

πvx

Z
if i ∈ E

0 otherwise
(2.2)

where πvx is the probability of transition between vertex v and vertex x, with Z

the normalization constant.

Node2vec introduces two hyper-parameters p and q to control the random walk

strategy.

αpq(t, x) =















1
p

if dtx = 0

1 = if dtx = 1
1
q
= if dtx = 2

(2.3)
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The impact of hyper-parameters p and q on walk-through strategies is discussed

below.

❼ p: Parameter p controls the probability of repeated access to the vertes you

have just visited. If p is higher, the probability of accessing the vertex you

have just visited is lower and, conversely, higher.

❼ q: q Controls whether the walk is outward or inward, and if, q > 1 random

walk tends to access visit and approach the t-close vertices (biased towards

BFS). If q < 1 it tends to access vertes away from t (biased toward DFS).

(a) DFS and BFS (b) Node2Vec

Figure 2.4: Node2Vec example. Image from [18]

Figure 2.5: Node2Vec example. Image from [18]

Struc2Vec

Struc2Vec [40] defines vertices similarity from the perspective of spatial structural

similarity. In fact, in some scenarios, two vertes that are not close neighbors may
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also have high similarities that cannot be captured. Struc2Vec is useful for this

kind of scenarios. Struc2Vec’s paper was presented at the 2017 KDD Conference

[40].

Figure 2.6: Struc2Vec example. Image taken from [40]

Usually when a vertex u and vertex v are not similar in a model based on near-

neighbor similarity, the first observation that can be made is that they are not

directly connected, and the second is that they do not share any neighbor vertex.

In struc2vec’s hypothesis, vertex u and vertex v are spatially similar. Their degrees

are 5 and 4, respectively, connecting 3 and 2 triangular structures and through 2

vertices (d, e; x, w) is connected to the rest of the network.

Intuitively, vertices with the same degrees are structurally similar, and if their

adjacent vertex points still have the same degrees, they are more similar.

2.2.2 Semantics embeddings

Word2Vec

One of the methods to construct efficiently word embeddings is Word2Vec [28]

[29]. Many successful natural language processing tasks have utilized embeddings

learned through the utilization of Word2Vec. The main ideas from the papers [28]

[29] for the learning representations of words are the following:

❼ Continuous Skip-gram. The model considers words into a vector one at

a time. Each word is scanned within a certain range before and after the

current word in the same sentence. The ranges are n-grams, where an n-gram

is a contiguous sequence of n items in a linguistic sequence.

❼ Continuous Bag-of-Words. This model predicts words based on the av-

erage of their vectors. Specifically the distributed representations of the

surrounding words are combined in order to predict the word in the middle

(which is the current one). For this model the order of the words is not

important, since we take the average.

In practice Skip-gram has been shown to have good results since is able to positively

score rare words or phrases, even when the size of the training dataset is relatively
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small. On the other size the computational time in order to train Continuous Bag-

of-Words is way smaller than the skip-gram, and has a slightly better accuracy for

the frequent words.

Figure 2.7: Skip-gram example. Image from [28]

FastText

Facebook research team in 2016 [7] proposed what’s is call bag of tricks for efficient

text classification.

FastText main idea is to incorporate words into the skip-gram model (sub-words).

The final word embedding vector will then be the sum of all the n-grams of the

starting word.

The model in general is very fast, simple and outperforms models that don’t take

into consideration the sub-word information. It also takes into consideration less

common words since increases the probably that other n-grams is more likely.

2.2.3 Translational models

Translational models basically model graph relationships by interpreting them as

translations in the embedding space. They have received a major number of at-

tention, in the link prediction task [42]. Instead we have used them to retrieve the

embeddings to build up our similarity matrix. In section 2.1.3 we have seen that

with definition 2.1.6, a KG can be seen as a set of triples representing each fact in

the graph.

The triplets consist of: (head entity, relationship, tail entity). Even though we

won’t be focusing on the evaluation of the link prediction task, since we are more
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interested in the embeddings themselves, we followed the ranking procedure pro-

posed by the literature on benchmark datasets to know also the quality of the

embeddings themselves.

For each triplet in the test set, the head entity is removed and replaced by each of

the entities of the KG dictionary. The evaluation metrics were: Mean of Predicted

Ranks (MRR) and Hits@10 (hits@N indicates the probability that the correct

reasoning result appears in the first N results, which is similar to the recall rate of

the knowledge reasoning algorithm).

Figure 2.8: TransE and TransH. Image from [52]

TransE

In TransE [10] the relationships are represented as translations in the embedding

space. The main idea is based on the fact that if the triple (h,r,t) is relevant and

holds, then the embedding of the tail entity t and the head h should be close in

the embedding space plus some vector that depends on the relationship r. The

output given by this model are embeddings for entities and relations in R
k with

where k is the hyperparameter of the dimentionality of the embedding.

The downside of this type of model is that is able to handle efficiently only one-to-

one relations but is not able to take care efficiently of many-to-many, one-to-many

and many-to-one relationships.

TransH

TransH [52] model differs from the previous one since it considers the relationship

as a hyperplane where an operation of translation is computed.

In this way, the model is able to handle one-to-many, many-to-one, and many-to-

many which TransE is not capable of, while using almost the same complexity.

18



TransR

In the TransR [25] model the general idea that differentiates itself from the previous

two models is the fact that does not assume that the relation r and the entity e

are in the same semantic space. The embedding construction is done in two steps:

❼ The entities are projected into the entity space and then projected to relation

space according to their relation r;

❼ Once all entities have been projected, translations can be build.

Figure 2.9: TransR. Image from [25]

2.3 Clustering

The purpose of this task is to allow the use of graph clustering techniques to create

narratives around locations or objects. This task is challenging not only because of

the need to merge the heterogeneous structure information (consisting of multiple

types of nodes and edges) of the knowledge graph (KG), but also because of the

need to consider heterogeneous attributes or content (for example, text, pictures,

videos, etc.) associated with each node. In addition, this definition also poses

many challenges in the effective use of data and the effective manipulation of

graph-related structures that have high computing and storage costs.

2.3.1 A general view on Cluster

Part of the research process focused on the specific definition of the task, in fact

clustering falls under multiple areas of research definitions. Clustering is a field of

study which basic idea is rather simple and refers to the task aiming to discover,

group and expose data into maximally coherent clusters in datasets [23].

Depending if the number of groups is already established we have:

❼ Supervised clustering: prior knowledge exists about the subject under

study;
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Figure 2.10: Example of clusters. Image from [36]

❼ Unsupervised clustering: no prior knowledge exists about the subject

under study.

Therefore, part of our analysis focuses on using the information contained in the

knowledge graph to find node partitions or subsets that may be relevant to the

story generation/enriching process of target communities. The specific characteris-

tics of the linguistic expression of stories make the process of formulating standards

and benchmarks for system analysis very complicated. In this thesis, we consider

static location graph clustering as an instance of unsupervised clustering.

For instance we cannot know the number of clusters that have to be found, but

it can only be guessed playing we the hyper-parameters of the clustering technique.

Although there is no universal definition about clusters, generally all agree that a

cluster must satisfy the following criterion:

❼ Internal criterion: objects within a cluster must be as similar as possible

to each other;

❼ External criterion: objects outside a cluster must be as different as possi-

ble from those inside.

So the best clusters to be taken under consideration are the ones with a high in-

ternal homogeneity and a high external inhomogeneity.

Depending on the input provided to the clustering algorithm we have [33] [41]:

❼ Feature-based clustering or central clustering. The objects are rep-

resented by a vector of n features which, in turn, can be seen as a point

in an n-dimensional space. This approach is limited by the fact that not

everything can be represented through feature vectors;

❼ Pairwise clustering or graph-based clustering. The algorithm uses

an adjacency (square and generally symmetrical) matrix between objects.

Objects are represented by a graph not oriented but weighted, with as many

vertices as objects and who among similar objects. Since here it doesn’t
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necessarily work on features vectors, pairwise clustering is a more general

method and flexible than the previous one;

❼ Hierarchical clustering. Provides a representative hierarchical view of the

various clusters. If the scale is fine we have as many singletons as points; if

the scale is coarse we have gradually more numerous sets).

2.3.2 Clustering as a Graph-theoretic problem

When considering clustering as a graph-theoretic problem, we have the following:

❼ Set of n objects;

❼ n x n matrix A of pairwise similarities;

❼ A graph G, edge-weighted.

At this regard we can have several different similarity graphs. As stated in [51]

and [31] we can have:

❼ The binary similarity matrix. This is the simplest similarity matrix,

based on the topology of the graph. If an edge exists between node vi and

node vj then vij equals to 1 and 0 otherwise;

❼ The connection-based similarity matrix. As for the previous one, this

type of similarity matrix, simply corresponds to the number of edges between

node vi and node vj of the graph G;

❼ The ε-neighborhood graph. Given a threshold ε and a set of data points

x1, ..., xn, we connect the points whose pairwise distances are smaller than

ε. This type of graph is typically considered as an unweighted graph since

weighting the edges would not increase the quality of the information [51];

❼ The k-nearest neighbor graph. The similarity matrix is created by con-

necting the node vi to node vj if vj is among the k-nearest neighbors of node

vi. The resultant graph will be a directed one. In order to make the graph

undirected there are mainly two possible ways. We can have a k-nearest

neighbor graph where we simply ignore the directions of the connection, so if

we connected vi and vj with an edge if vi is among the k-nearest neighbors

of vj or the opposite. The second option is the mutual k-nearest neighbor

graph where the connection happens only if both vi and vj are among the

k-nearest neighbors of each other;

❼ The shortest-path connected graph. The suggested approach measures

the similarity between nodes in a graph by using a shortest path algorithm.

Using the shortest path algorithm [12] the final similarity matrix have the

following structure:

Wij = 1/n
∑

k∈P

wk

21



where P is the set of the weights from i to j.

❼ Embedding based similarity graph. As discussed previously embeddings

allow us to place similar inputs close together in the embedding space. The

adjacency matrix of similarities can then be build up using cosine similarity

[26].

2.4 General techniques for graph clustering

2.4.1 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [16] is

a clustering method density based, since it connects regions of points with suffi-

ciently high density.

DBSCAN estimates the density around each point by counting the number of

points in a neighborhood ε specified by the user, and applies thresholds called

minPts to identify the ”core”, ”border” and ”noise” points. In a second step, the

core points are gathered in a cluster, if they are ”density-reachable”, that is, if

there is a chain of core points in which each point falls within the eps-surrounding

of the following. Finally the edge points are assigned to the clusters. The algorithm

requires only the ε and minPts parameters.

We said that minPts identify three types of points which are:

❼ A core point is a point that has around it (within the eps distance) a

number of other points at least equal to minSamples. A core point defines a

cluster.

❼ A border point is a point around which there are fewer points than min-

Samples, but one of them is a core point. For this reason this border point

is assigned to the cluster identified by the core point close to it.

❼ A noise point is a point around which there are fewer points than min-

Samples and none of these is a core point. This means that the noise point

is farther than eps from any core point.

One of the characteristics of DBSCAN is to be able to manage clusters even if

they are not spherical, even if, like many other clustering algorithms, it exploits a

distance (which is therefore calculated on a circular, spherical or in general hyper-

spherical space).

2.4.2 K-means

K-means [21] is the most popular and simplest clustering algorithm. Given a set

of n features vectors x1, ..., xn and the number desired of cluster K, we have that:
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❼ It randomly selects K points representative of the data, called centroids;

❼ It fixes the centroids and assigns all the remaining points to the closest

centroid, using for example the notion of Euclidean distance;

❼ It fixes the assignments and recalculates the centroids on the new clusters

just obtained, by computing the average of all the points of each cluster.

❼ Repeats the last two steps until there are not changes in the locations of the

centroids or until the number of iterations set by the user is reached.

This algorithm final goal is the minimization of the objective function

F =
∑

i∈clusters

(

∑

j∈elements of the i-th cluster

‖xj − ui‖
2

)

(2.4)

where ‖xj − ui‖
2 is the distance measure between the point xj and the centroid

ui.

2.4.3 Spectral Clustering

Spectral clustering [51] is one of the most commonly known techniques for grouping

and partitioning data in fields like machine learning, computer vision or signal

processing. The object of clustering is to divide a given dataset into natural groups.

Spectral clustering doesn’t make any assumption on the form of the clusters and

treats the problem as a graph partitioning one and has significant advantages in

comparison to ”classical algorithms” like k-means. One of the main advantages of

spectral clustering it’s its usage of linear algebra methods to solve efficiently the

problem. In order for this algorithm to work we assume that the graph G = (V,E)

is undirected and weighted. The resulting weighted adjacency matrix of the graph

is the matrix W = (wij) with i, j = 1, . . . , n. As G is undirected then wij = wji

in order to have a symmetric matrix. We need to define as well the degree of a

vertex vi ∈ V :

di =
n

∑

j=1

wij

The degree matrix of the graph G is a diagonal matrix where the off-diagonal

elements have value 0.

Graph Laplacian

One of the main characteristics of spectral clustering are the usage of graph Lapla-

cian matrices. There are several forms of Laplacian matrices. We will describe

them briefly.

23



Unnormalized graph Laplacian

The unnormalized Laplacian matrix L is defined by:

L = D −W

Key fact: the matrix L has the following important property defined as:

∀ vector f ∈ Rn we havef ′Lf = 1/2
n

∑

i,j=1

wij(fi − fj)
2

Where n is the cardinality of v.

❼ L is symmetric and positive semi-definite: f’Lf ≥ 0;

❼ Smallest eigenvalue of L is 0;

❼ Corresponding eigenvector is 1;

❼ Eigenvalues are then: 0 = λ1 ≤ . . . ≤ λn;

❼ f ’ is the derivative of f.

Studying the properties of the eigenvalues and eigenvectors of the laplacian of the

given graph G many properties about the graph itself can be understood. Just to

mention the relation between the eigenvalues and the structure of the graph we

have that:

❼ The multiplicity of eigenvalue λ1 = 0 is the number of connected components

of the graph.

❼ eigenspace is spanned by the characteristic functions of these components

(so all eigenvectors are piecewise constant)

Normalized graph Laplacians

There are two new versions of the laplacian, both normalized with different nor-

malization criteria.

Row sum normalization or random walk normalization [51]:

Lrw = D−1L (2.5)

Symmetric normalization [51]:

Lsym = D−1/2LD−1/2 (2.6)

Both the Lsym and Lrw hold the properties of the unnormalized Laplacian matrix.
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Algorithm

The algorithm’s inputs are a similarity matrix S ∈ R
n×n and a number k of clusters

to construct. The algorithm returns k clusters. It follows these steps:

Algorithm 1 Normalized Spectral clustering [51]

❼ Construct a similarity graph and let W be its weighted adjacency matrix.

❼ Compute the normalized graph Laplacian Lsym.

❼ Embed data points in a low-dimensional space (spectral embedding) com-

puting the k smallest eigenvectors v1, . . . , vk of Lsym.

❼ Let V = [v1, . . . , vk] ∈ R
n×k.

❼ Form the matrix U ∈ R
n×k from V by normalizing the row sums to have

norm 1, that is:

uij =
vij

(
∑

k v
2
ik)

1/2

❼ For i = 1, . . . , n, let yi ∈ R
k be the vector corresponding to the ith row of

U .

❼ Cluster the points yi with i = 1, . . . , n with the k-means algorithm into

clusters C1, . . . , Ck.

2.4.4 Louvain community

Nowadays networks tend to have complex topologies with many interconnected

entities on the scale of millions if not billions. For this purpose the extraction of

useful information from this kind of networks is hugely necessary. The Louvain

method [24] is used for the detection and extraction of the community structure

from large networks throughout the optimization of the modularity. Modularity is

a metric that offers a view on the coherence of the partitions. The modularity [37]

of a partition is defined as a value that goes in range from -1 to 1 and it measures

the density of links inside communities compared to links between communities.

When the graph is weighted, modularity is defined by the following:

Q =
1

2m

∑

ij

[Aij −
kikj
2m

]δ(ci, cj) (2.7)

where Aij represents the edge weights between node gi ∈ G and node gj ∈ G, ki is

the sum of the weights of the edges attaches to gi, ci is the community of the node

gi. The parameter m = 1
2

∑

ij Aij. Finally δ(u, v) is 1 if u = v and 0 otherwise.

Methodology

The objective of the Louvain algorithm is to maximize modularity. It achieves so

by the iterating two phases. In the first step, a different community is assigned to

each node. The second step consists in:
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❼ For each node i ∈ G:

– consider the neighbours j of i

– evaluate the gain of modularity that would result by removing i from

its community and by placing into community j.

The previous statement can be expressed mathematically by the following equation

[24]:

∆Q =

[

∑

in +ki,in
2m

−

(∑

tot +ki
2m

)2
]

−

[

∑

in

2m
−

(∑

tot

2m

)2

−

(

ki
2m

)2
]

(2.8)

where
∑

in is the sum of the edges inside c∈C,
∑

tot is the sum of the edges incident

to nodes in C, ki is the degree of node i, ki,in is the sum of the weights of the edges

from node i to the nodes in C, and m is the sum of all the edges in the graph.

Once the value is calculated, i is placed into the community with the higher score

of modularity. The process is applied until a local maximum is reached.

The second phase consists in building a new graph whose nodes are the communi-

ties found in the first phase. Links between nodes of the same community are now

represented by self-loops. Links from multiple nodes in the same community to

a node in a different community are represented by weighted edges between com-

munities. Every time the second phase finishes, the first phase can be re-applied

until all communities have been found. By construction the number of communi-

ties decreases each time. The advantages of this algorithm are its simplicity and

implementation.

2.4.5 Dominant sets

Introduction

Usual clustering techniques make some strong assumptions:

❼ The clustering problem is the problem of the best partitioning of the data (

by doing so excludes the possibility of overlapping clusterings)

❼ The affinity matrix is symmetric, in order to be able to compute the real

eigenvectors and eigenvalues.

The dominant set approach [35], instead, takes more in consideration what it is

a cluster, how to define the internal criterion of similarity and the external

criterion of similarity.
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Definition

The Dominant Set algorithm is a generalization of the maximum clique problem

where the edges of the graph are weighted.

Definition 2.4.5.1 (A clique [4]) A clique is a maximal complete subgraph

where each couple of nodes is connected between them. Another explanation,

is a subset where the introduction of a new node to the clique makes the clique

incomplete.

As we already discussed, the graph G is presented in the form of its adjacency

matrix A with ai,j = ω(i, j) where ω is the weight of the edge between node i and

j.

If we consider a simple scenario in which the affinity matrix A is binary (containing

1 if two objects are similar and 0 otherwise). We therefore obtain an undirected

and unweighted graph in which we have as many vertices as points and an edge

only when two nodes are connected. In this situation a cluster is in fact exactly the

maximal clique of the graph. Therefore the notion of a clique would be equivalent

to the notion of a cluster in this thesis.

As anticipated in the introduction dominant sets try to answer to the question

what is it a cluster and tries to prove measures of cohesiveness of a cluster and

node participation.

Although there isn’t a well defined definition of cluster, they always have to satisfy

two conditions:

❼ High internal homogeneity. A cluster contains objects highly similar to

each other.

❼ High external inhomogeneity. Different clusters are highly dissimilar

between each other.

To define the dominant set we first need a couple of preparatory concepts. Let us

consider an undirected and weighted graph G = (V, E), where the weights depend

on the affinity matrix A.
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(a) Measure of relative similarity (b) Total weight of S

Figure 2.11: Notation. Images from [36]

Let us take a nonempty subset of S ⊆ V such that the sum of weights of any subset

of S is always positive ( W (T ) > 0 ∀ T ⊂ S). We can then:

Definition 2.9 (Average weighted degree) [36] The average weighted de-

gree quantifies how much an element i ∈ S is related to S by computing the

affinities between the vertex i and the rest of the vertices of S (i. e. normalizing

for the cardinality of S):

awdegS(i) =
1

|S|

∑

j∈S

aij (2.9)

Definition 2.8 gives, if positive, that the similarity between i and j is more relevant,

if negative then the similarity between i and S is more prevalent (figure a 2.11).

Definition 2.10 (Measure of relative similarity) [36] The measure of

relative similarity ϕ, given j /∈ S quantifies if an element i ∈ S is more linked

to S or to a generic element j external to S with respect to the average similarity

between i and its neighbors in S.

ϕS(i, j) = aij − awdegS(i) (2.10)
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Definition 2.11 (Weight of an element) [36] We can define the impact or

the weight of a generic vertex i inside a set of vertices in S:

ws(i) =

{

1 if |S| = 1
∑

j∈S\{i} ϕS\{i}(j, i)wS\{i}(j) otherwise

}

(2.11)

Intuitively, wS(i) represents how similar i is with respect to the entities in S. More

Formally, wS(i) provides a measure of the overall (relative) similarity between the

vertex i and S\{i} with respect to the overall similarity among the vertices of S\{i}.

Finally the total weight of S is defined as:

W (S) =
∑

i∈S

WS(i) (2.12)

W(S) gives a measure of the support that an object i receives from the objects in

WS\{i}. When the value of W(S) in respect to i is positive then i is highly similar

to WS\{i} and should therefore be part of the set S.

We all this information we can now define Dominant set in this way:

Definition 2.12 (Dominant Set) [35] A non-empty subset of vertices S ⊆

V such that W(T) > 0 for any non-empty T ⊆ S, is said to be a dominant

set if:

❼ wS(i) > 0 ∀i ∈ S (internal homogeneity)

❼ wS∪{i}(i) < 0 ∀i /∈ S (external homogeneity)

From the definition of dominant set we can notice how the two conditions are

strictly related to the definition of a cluster. Informally we have that if i is extra-

neous to the set S the weight is negative, otherwise is positive. A dominant set is

therefore a set of vertices that are maximally cohesive with each other.
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Figure 2.12: Example of Dominant Set.

Link to optimization theory

Since the definition dominant set is equivalent to the one of a cluster, in order to

understand why it generalizes the maximal clique problem seen previously, let’s

remember that the cohesion of a cluster is measurable as

f(x) = xTAx (2.13)

where A is the affinity function. It can then be demonstrated that if S is a dominant

set, then its characteristic vector xS belonging to the standard and n-dimensional

simplex, is a strict local maximum of xTAx.

Dominant sets are in fact in one-to-one correspondence to (strict) local solutions

of Standard Quadratic Program [8].

Given a symmetric matrix A, we can now formulate the clustering problem as the

problem of finding the vector x that maximizes f. Therefore we have the following

optimization problem:

maximize f(x) = x′Ax

subject to x ∈ ∆ ⊂ Rn

where

∆ = {x ∈ Rn : xi ≥ 0 ∧
∑

xi = 1∀i ∈ V (2.14)

is the standard simplex of Rn.

We have that x is a strict local solution of the quadratic problem if the sum of all

the components of the simplex is 1 and all its components are non-negative. It’s

important to define the support of a vector σ(x) of x ∈ ∆ which correspond to the

index set of the positive components of x:

σ(x) = {i ∈ V : xi > 0}
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Theorem 1 (Dominant Set) [35] [43] If S is a dominant subset of vertices,

then its weighted characteristic vector xS is a strict local solution of program

2.4.5. Conversely, if x∗ is a strict local solution of program (1), then its

support σ = σ(x∗) is a dominant set.

By the theorem 1 we have that dominant sets correspond to strict local solutions

of the quadratic program seen previously. In particular we have that its weighted

characteristic vector xS is a strict local solution and since x ∈ ∆ belongs to the

standard simplex, then the characteristic vector can be defined as:

Definition. 2.15 (weighted characteristic vector) [35] [43] A dominant

set can be always found in a non-empty subset S ⊆ V . It admits a weighted

characteristic vector xs ∈ ∆ if it has positive total weight W (S), in which we

can set:

xS
i =

{

Ws(i)
W (S)

if i ∈ S

0 otherwise
(2.15)

By construction dominant set always admit a characteristic vector.

The results shown by theorem 1 are different and interesting since solutions are

found by looking at the standard simplex. In contrary many other solutions focused

more into the sphere. Some of the advantages of this approach are the following:

❼ the weighted characteristic vector can be used as a measure of the partici-

pation of the vertices in the cluster;

❼ the value returned by the objective function gives a natural way of defining

the cohesiveness the cluster itself;

❼ avoids the utilization of negative numbers which are not relevant.

Link to Game theory

Dominant Set and evolutionary game theory [54] have a subtle marriage. This

allow us to find dominant sets and optimize the solutions through the utilization

of deterministic game dynamics. Game theory used as an extension of graph the-

ory for the dominant set gives powerful results. The game theory will be shortly

described topic for the thesis background.

Game theory can be described as the science of strategy, also referred as the op-

timal decision-making through the the study of mathematical models of rational
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strategies.

In this section we will see the part of game theory that is needed know to under-

stand the functioning of dominant set with game theory. In particular we need to

specify that the link between dominant set and the optimization theory discussed

before, its possible only in the case of a symmetric matrix. The game theory is

instead more flexible since it works also with asymmetric similarity matrices.

In this sense we can model the classical clustering problem into a new non-

cooperative clustering game with the following properties:

❼ a finite number of players I = {1, . . . , n} with n ≥ 2. The players must be

at least two;

❼ each player has a finite number of said actions pure strategies, Si = {1, . . . ,mi}

with mi ≥ 2. Every player must have at least two pure strategies available;

❼ the Cartesian product of pure strategies forms the strategic profile of the

game, S = S1 × S2 × · · · × Sn.

❼ a payoff function, π, which maps pure strategic profiles a real values, one for

each player.

At this point we can represent a game in normal form as a triplet G = (I, S, π).

Note that the function depends on the actions of all players, not just on the action

of the individual agent; clearly every player wants to maximize their payoff.

Symmetric two-player games

In the special case where there are only 2 players, the payoffs can be represented

by two square matrices, A and B, where:

❼ A contains the payoffs of the first player: aij = π1(i, j) with i ∈ S1, j ∈ S2

❼ B contains the payoffs of the second player: bij = π2(i, j) with with i ∈ S1,

j ∈ S2.

Some historical examples of two-player games are:

❼ Zero-sum games. Studied deeply by Von Neumann, this are games in

which, given a certain pure strategic profile, what player 1 gains is strictly

equal to what player 2 loses. This means that the sum of their respective

payoff matrices is equal to A + B = 0;

❼ Symmetric games. In this games each player’s role can be swapped. A

classic example is rock-scissors-paper. In particular this example is both

symmetric and zero-sum. Formally we have that the transpose of B is equal

to A: A = BT ;
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❼ Doubly-symmetric games. In this games the player’s payoff matrix is

symmetric to itself, such that A = AT = BT .

Let’s imagine that the i-th player plays rock-paper-scissor many times: if in most

cases he chooses rock, the other player can understand his strategy and conse-

quently use paper. In general it is therefore preferable to choose between the

available pure strategies Si based on a probability distribution. A mixed strat-

egy is a probability distribution on the set of pure strategies, indicated by the

vector xi ∈ ∆ with ∆ once again the standard simplex such that:

∆ = {xi ∈ Rn : xi ≥ 0 ∧
∑

xi = 1∀i ∈ V }

This vector is made up of as many components as there are strategies of player i,

each indicating the probability that the corresponding pure strategy will be used

by the player. This probability is always non-negative. The set of pure strategies

with probability different than 0 forms the support of xi. Each player has his own

mixed strategy and the vector containing the mixed strategies of all n players is

called the mixed strategy profile, x = (x1, . . . , xn). The expected payoff is based on

the probability that a certain pure strategy profile s (containing the pure strategy

chosen by each player) is chosen when a mixed strategy profile x is played.

The probability that a pure strategy profile s is used, when a mixed strategy profile

x is played, is given

x(s) =
n
∏

i=1

xisi
(2.16)

Basically the payoff of a player i is therefore the sum, for all possible pure strategies,

of the product of the probability of using strategy s and the payoff obtained using

strategy s. The payoff of player i is therefore given by

ui(x) =
∑

s∈S

x(s)πi(s) (2.17)

We can now modify our definition of a game and define it with mixed strategies.

We now have a triplet G = (I,Θ, u) where I is the players set, Θ is the mixed

strategies space and u is the payoff function for mixed strategies. In the special

case of two-player games, it is possible to represent the payoff function with a pair

of matrices (A, B) where A (B) is the payoff matrix of player 1. We have then

that the expected payoffs for both the players are

u1 = xT
1Ax2

and

u2 = xT
2Ax1

Linking back to dominant set, the stable mixed strategy is the one in which objects

belonging to the same cluster are selected. In this way is possible to maximize the

payoff of both players. In order to make the payoff coincide with the definition of
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a cluster, the desired condition is to have what is called a Nash equilibrium.

A Nash equilibrium is a configuration of mixed strategies (one per player) such

that no player has an incentive to change their strategy. Nash equilibrium assumes

that other players don’t change their strategies either. Formally we have that the

vector x = (x1, . . . , xn) is a Nash equilibrium if it is the best answer to itself.

yT1 Ax2 ≤ xT
1Ax2 yT2 Ax1 ≤ xT

2Ax1 ∀(y1, y2) ∈ (∆×∆).

In the case in which x1 = x2, then we have what is called symmetric Nash

Equilibrium. The previous two conditions can be rewritten as:

yTAx ≤ xTAx

This condition can be seen as a definition of internal homogeneity for the clusters,

and can be reformulated as:

{

(Ax)i = xTAx with i ∈ σ(x)

(Ax)i ≤ xTAx with i /∈ σ(x)

The Nash equilibrium is said to be an Evolutionary Stable Strategy (ESS) if

it satisfies the following condition as well:

yTAx = xTAx =⇒ xTAy < xTAx ∀y ∈ ∆ \ {x}

(Theorem 4) Let A be the similarity matrix of a clustering problem instance

and let Γ be the corresponding clustering game. If S is a dominant set of A

then its characteristic vector xS (see, Eq. (2) ) is an ESS of Γ. Conversely, if

x is an ESS of Γ, then S = σ(x) is a dominant set of A, provided that (Ax)i 6=

xTAx ∀i /∈ S.

In conclusion we can say that:

❼ the notion of evolutionary stable strategies is equivalent to the notion of

dominant set and vice versa;

❼ ESSs are strictly in correspondence to strict local solutions of constrained

quadratic forms.

Clustering using dominant sets

In this section we will focus on how does dominant set perform clustering. The

main advantage that dominant set has it’s the fact that the coding part of it is

very simple. Also, being strictly related to game theory, it should not come as a

surprise that the method used are from a game theoretic notion.
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Replicator dynamics

Replication dynamics are a class of dynamic systems studied in the context of

evolutionary game theory, a discipline born by J. M. Smith [53].

An example of replicator used in context developmental game theory to apply the

Darwinian concept of fitness. The idea is simple: strategies whose payoff is greater

than the average are destined to spread to the population; strategies the whose

payoff is below average are instead destined to disappear over time.

Let’s consider a very large (ideally infinite) population belonging to the same

species competing for a particular set of limited resources, such as food, water,

etc. Suppose as well that each individual is prescheduled to play a particular

pure strategy and the payoff represents reproductive success of the species. This

type of situation can be seen as a game in which two players are randomly chosen

from the population in order to compete with each other. The player who wins

contributes to the survival of the species. The evolution of the dynamics, due to

the principle of natural selection, will show that the stronger individuals (the ones

that adopted the winning strategy), will tend to dominate the weaker individuals,

and as a direct consequent, the weaker will eventually be extincted.

Let x(t) ∈ ∆ be the vector representing the state of the population at time t, then

xi(t) is the amount of the population playing the pure strategy i at time t. If we

have a fixed individual A from the population programmed to play strategy i and

we randomly choose an opponent from the population, and let them participate

in game G. The expected payoff received by A would be equal to:

u(ei, x)

Instead if A is chosen randomly, then the expected payoff would be:

xiu(e
i, x)

Finally, the average payoff of the population is:

u(x, x) =
k

∑

i=1

xiu(e
i, x)

In the theory of evolutionary games, two assumptions are made:

❼ The population plays iteratively generation after generation;

❼ The strategies are not necessary rational, but based on the natural selection

where the stronger survives.

A general class of evolution equations can be described by

ẋi = xigi(x), ∀i, i = 1, . . . , n
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where gi(x) specifies the replication ratio of the pure strategies i, with g= (g1, . . . , gn)

(usually) regular. The regularity g(x)Tx = 0 guarantees the uniqueness of the so-

lution between the simplex ∆.

If we consider

gi(x) = u(ei, x)− u(x, x)

then we get the standard replicator dynamics equations

ẋi = [u(ei, x)− u(x, x)]xi

The replicator dynamics used for the optimization comes from the payoff-monotonic

game where as the name monotonic suggest, prioritizes the rate of replication of

the strategies with a higher payoff, penalizing the ones with a lower one. We can

call payoff-monotonic a regular selection dynamics when:

gi(x) > gj(x) ⇔ (Ax)i > (Ax)j, ∀x ∈ ∆ ∧ i, j ∈ V

As a direct consequence of the previous, a subclass of payoff-monotonic game

dynamics is given by:

ẋi = xi

[

φ((Ax)i)−
∑

j∈V

xjφ((Ax)j)

]

(2.18)

Here the φ((Ax)) is indeed the monotonic function for the value Ax. It is easy to

prove that when φ coincides with the identity function then (number) becomes

ẋi = xi[(Ax)i − xTAx] (2.19)

Linking back to Darwin’s principle of natural selection we have that:

ẋi

xi

∝ payoff of pure strategy i - average population payoff

which yields:

ẋi = [u(ei, x)− u(x, x)]xi = xi[(Ax)i − xTAx] (2.20)

Theorem x (Nachbar, 1990; Taylor and Jonker, 1978) [36] A point

x ∈ ∆ is a Nash equilibrium if and only if x is the limit point of a replicator

dynamics trajectory starting from the interior of ∆.

Furthermore, if x ∈ ∆ is an ESS, then it is an asymptotically stable equilibrium

point for the replicator dynamics.

The ESS are particularly interesting because they can utilize the asymptotic sta-

bility condition. However in this case, unfortunately, we cannot affirm that there
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is a one-to-one correspondence between ESS and asymptotically stable points. In-

stead, an interesting result that links ESS balances to doubly symmetrical games.

We assume that the payoff matrix A is doubly symmetric (A = AT ). Thanks to

this assumption we can derive the following useful properties:

Fundamental Theorem of Natural Selection (Losert and Akin, 1983)

[36] For any doubly symmetric game, the average population payoff

f(x) = xTAx

is strictly increasing along any non-constant trajectory of replicator dynamics,

meaning that df(x(t))
dt

≥ 0 ∀t ≥ 0, with equality if and only if x(t) is a stationary

point.

Characterization of ESS’s (Hofbauer and Sigmund, 1988) For any

doubly symmetric game with payoff matrix A, the following statements are

equivalent:

❼ x ∈ ∆ESS

❼ x ∈ ∆ is a strict local maximizer of f(x) = xTAx over the standard

simplex ∆.

❼ x ∈ ∆ is asymptotically stable in the replicator dynamics.

There are a few ways to implement the extraction of dominant sets. One way is to

apply the Runge-Kutta method, which is a well known numerical iterative method

used for optimization. However this is not easiest way. A straigth fordward way

is the utilization of discrete-time first order replicator equation derived from 2.4.5

and equal to:

xi(t+ 1) = xi(t)
A(xi)− αxi(t)

x(t)′(A− αI)x(t)
(2.21)

where α is a parameter that is has been discovered to be related to the quadratic

program and the maximum clique problem by E.G. Straus and T.S.Motzkin [32].

This intuition was latter on extended by Jagota and Pelillo (1995) where they

found out how the maximal clique problem could be seen as a local maximizer of

the objective function f ∈ ∆. Finally is has been proved by Bomze in 1997 [8] that

by setting the parameter α ∈]0, 1[ the solution to the maximal clique problem of

the graph G is given by the fact that the locals maximizers become characteristic

vectors, where each vector corresponds to a clique. Reminding ourself that the

dominant set is a generalization of the maximal clique problem and setting α = 0

then we have that dominant sets can be found by the implementation of the
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following formula:

xi(t+ 1) = xi(t)
A(x(t))i

x(t)TAx(t)
(2.22)

Finding multiple clusters

The main strategy used in this work thesis to extract dominant sets is what has

been called as peeling-off strategy. The main idea is to iteratively extract domi-

nant dominant sets and removing the vertices from the problem. In this way every

cluster will not have repeated nodes. This implementation is obviously not opti-

mal, since starting from the second iteration dominant sets found are not clusters

of the original problem. However in practice this implementation has been used

many times with promising results and with lack of overlapping clusters.

Extentions to Dominant Set

The concept of Dominant set has been utilized in several different contexts. We

will now introduce them briefly in order to then introduce more in detail one of its

extensions utilized in this work of thesis. In the security field some interesting uti-

lizations are for example anomaly detection for videos and in the internet (Hamid,

Dacier, Pham, Thonnard) [20]. Even in the medical field they have been proved

to work well for brain activity analysis and 3D ultrasound registration (Banerjee,

Adamos) [6].

Finally in computer vision they’ve been utilized for the detection of conversa-

tional groups in images and sequences (Sebastiano Vascon & M. Pelillo) [50], for

Image geo-localization (Eyasu Zemene & M.Pelillo) [56], Person re-identification

and Multi-target tracking (Y. Tariku) [48] and constrained image segmentation

(E.Zemene, L. Tesfaye & M. Pelillo) [27].

The idea of Hierarchical clustering [34] has been further extended in 2016 by E.

Zemene and Pelillo [27].

2.4.6 Comparison of the state of the art techniques

All of the chosen clustering techniques have its own pros and cons. Here we will

resume them.

❼ DBSCAN

– It does not require you to specify the number of clusters in advance.

– Works well with arbitrary shape groups.

– Is robust for outliers and their detection.

– In some cases, determining an appropriate neighborhood distance (eps)

is not easy and requires knowledge of the domain.
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– If the clusters are very different in terms of density within the cluster,

DBSCAN is not suitable for defining clusters.

– The characteristics of the clusters are defined by the combination of the

eps-minPts parameters. Since we pass an eps-minPts combination to

the algorithm, it is not possible to generalize well to clusters with very

different densities.

❼ K-Means

– Fast

– Not very useful on anisotropic data

– Embarrassingly parallel

– The user has to specify k (the number of clusters) in the beginning

– only handles numerical data

– assumes that we deal with spherical clusters and that each cluster has

roughly equal numbers of observations

❼ Spectral Clustering

– Elegant, and well-founded mathematically

– Works quite well when relations are approximately transitive (like sim-

ilarity)

– Very noisy datasets cause problems since “Informative” eigenvectors

need not to be in the top few and performance can drop suddenly from

good to terrible

– Expensive for very large datasets since computing eigenvectors is the

bottleneck

❼ Louvain Community

– Scalability (performs faster on huge graphs than other methods)

– Simple to code

– Iterative process can hide small communities found during intermediate

phases. The result may be a coarse-grained high level representation of

communities, which may not have the granularity needed for analysis.

Hopefully, the nature of the algorithm makes it simple to save interme-

diate phases’ results so we can analyze different communities structures

at different levels

– Heuristic used to initialize phases and find local maximums can lead to

not reproducible and not always optimized results. But this is the same

with all data algorithms relying on heuristic (K-Means for instance)
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Analysis of Dominant set strengths and weaknesses

As we have analysed Dominant Set have a long history of successful implementa-

tions as well as being relatively fast to code and to extract. In this thesis we will

be focusing on their behaviour in knowledge graphs with the implementation of

plain dominant set clustering and constrained dominant set. We are interest to

see their behaviour in comparison to several other clustering techniques.

We can summarize Dominant set properties in the following:

❼ Separation of structure and noise. In situations where there is a large

amount of noisy data, Dominant Set is able to retrieve coherent clusters;

❼ Local solutions. As discussed, dominant sets don’t have to look for global

solutions, since they can be extracted by looking at local solutions;

❼ Clustering generalization. Dominant set can be easily generalized to

– Hypergraph clustering;

– Hierarchical clustering;

– Constrain clustering;

❼ Adjacency matrix. Dominant set can be used with either directed, undi-

rected graphs, positive weights or negative ones. All of this is possible since

it does not make any assumption on the structure of the adjacency matrix

being used.

❼ Number of clusters. In contrast to several other algorithms like K-means

or even Spectral clustering, dominant set does not require an initial param-

eter indicating the number of desired clusters, since it extracts them all in a

sequential way;

❼ Ranking. Dominant sets allows the ranking of the cluster’s elements ac-

cording to their centrality to the cluster itself;

❼ Theory. Dominant Sets formulation have proved to be strictly connected

its theoretical results;

❼ Deterministic. Replicator dynamics used in dominant set are a determin-

istic game dynamic. This gives us a guaranteed of the clusters found each

time with fixed parameters, without the need of wasting computational time;

❼ Parameters. Dominant set needs only a small number of parameters as

input, in particular we have the distance and cutoff. The cut-off is the

threshold value in which below it, values will be considered null. In this way

they no longer belong to the cluster.

On the other side of the medal some negative examples can be found as well:
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❼ The fact of using a deterministic game dynamic, can be also seen as a negative

of this algorithm, since if the quality of a cluster is small, then that same

result will be carried over;

❼ Dominant set, although having a small number of parameters, proved to be

extremely sensible to them, returning in some scenarios, consistent different

results with their alteration;

❼ Depending on the strategy used to find dominant sets, we can have some

advantages and disadvantages. If the strategy used is the peeling-off strategy,

we have that starting from the second iteration dominant sets found are not

clusters of the original problem. Otherwise if the strategy used considers

the possibility of having overlapping clusters, then more significant results

can be found expanding however the computational time for the extraction

of the clusters and the utilization of a pruning techniques to clean-up the

resulting clusters.

We can indeed confirm that the dominant set framework is a really powerful one,

that has proved itself to be relatively flexible. All this things considered make

us curious and to a certain degree, confident about how should behave in the

knowledge graph domain.
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2.5 Graph querying

All the previous examined clustering techniques work on the full graph. However

it is often impractical and meaningless to perform the clustering of all the nodes.

Instead becomes a more challenging and rewarding problem to be able to detect the

communities given as a seed/set of nodes. Here is where local clustering [22] comes

to help and its extremely useful when working on huge datasets where clustering

can definitely become an expensive computational problem. The problem can

be easily formulated as finding the subset S ∈ V , where S is the set of all the

overlapping communities that contain the seed s ∈ S.

Personalized PageRank

The most commonly used technique for local clustering is certainly the Personal-

ized PageRank [5]. Here once again random walk with restart it’s the main core of

the algorithm. Starting from the seeds in the set S it considers the random walk

X0, . . . , Xn. In each step it has probability to move from node u to node v equals

to

α
Au,v

du
(2.23)

where α ∈ (0, 1) and d is the directed edge of u. The probability of the restart is

given by 1− α. Then the walk starts at s and with probability α it continues to a

random neighbor the the current node. In mathematical terms, the PR of a node

is the unique stationary measure of the distribution p for the Markov chain (Xt).

p(v) = (1− α)Ax+ αE (2.24)

The vector p is known as the PPR associated with the seed S.

Constrained Dominant Set clustering

The idea is the following; instead of finding all generic sets, we provide the algo-

rithm a subset S ⊂ V of vertices and we want the system to find the dominant

sets that contains them.

Now the quadratic programs for this dominant set problem becomes:

max
x∈∆

fα
S (x) =x′

(

A− αÎS

)

x x ∈ R
n (2.25)

with α > 0 and where IS is the diagonal matrix whose elements are set to 1 in

correspondence to the vertices outside the subset S and zero otherwise

IS =

(

0 0

0 In−k

)

If α is sufficiently large:

α > λmax (AV rS)
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then all local solutions of the maximization problem will have support containing

at least one element of S. With this extension of the algorithm it should be possible

to retrieve local clusters that might help in the story enriching/creation for the

KG.

Figure 2.13: Example of CDS where the node 5 is chosen as seed node.

Image from [27]
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2.6 Metrics

In this section we present some of the metrics that we used to analyze the goodness

of a cluster.

Community Modularity

The measure of performance we will use for the community detection is the mod-

ularity [37]. Modularity measures the strength of the division of a network into

sub-groups. A network with high modularity has dense intra-connections (within

sub-groups) and sparse inter-connections (between different groups).

The modularity of a partition is a scalar value between -1 and 1 that measures the

density of links inside communities as compared to links between communities. In

the case of weighted networks (weighted networks are networks that have weights

on their links, such as the number of communications between two mobile phone

users), it is defined as:

Q = 1/2m
∑

i,j

[Ai,j − kikj/2m]δ(ci, cj) (2.26)

Where Ai,j represents the edge weight, ki kj are the sum of the weights of the

edges connected to nodes i and j; m is the total sum of all the edge weights in the

graph; ci and cj are the communities of the nodes. Finally δ is the Kronecker delta

that equals to one if i and j belong to the same community and 0 otherwise.

Davies-Bouldin index

When trying to measure the separation of clusters the Davies-Bouldin index [13]

comes to our help, taking into consideration the average similarity of the clusters.

The similarity here is obtained by calculating the distance between clusters with

the size of the clusters themselves.

Silhouette Coefficient

The Silhouette Coefficient [44] is useful when the ground truth is not available.

The Silhouette Coefficient score, similar to Community Modularity, is a scalar

value between -1 and 1, where the higher stands for good defined clusters, the

lower bad ones.

s =
b− a

max(a, b)
(2.27)

Where:

❼ a: mean distance between an element ei ∈ E of the class E and all the other

points e ∈ E.
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❼ b: mean distance between an element ei ∈ E of the class E and all other

points in the nearest cluster.

Calinski-Harabasz index

Another metric for unsupervised clustering is the Calinski-Harabasz index [11].

The C-H index measures the ratio of the sum of squared distances. In this way we

obtain the ration of the between-clusters and within clusters.

45



Chapter 3

Dominant Sets for Knowledge

Graphs

Considering that Dominant set has been successfully used in various scenarios

regarding graph theory, we want to extend it, in order to apply it to the concept

of KG defined in 2.1.

In specific in this thesis work we are trying to find coherent communities starting

from the graph structure and then adding on top of them the other specifications

of the knowledge graph definition. This work will be a preliminary step in order

to explore the concept of KG in all its aspects, starting from each one singularly

until all of them are covered. The whole idea is to be able to apply clustering

techniques in such structures directly, without the need of the preliminary steps.

Considering the criterions that we discussed about in section 2.3, generally well-

behaved clusters can be defined as the ones with a high internal homogeneity and

a high external heterogeneity. When proceeding in defining a methodology for

solving the unsupervised clustering problem stated above we defined limitations

and challenges to be faced:

❼ KG Structure: information stored in the knowledge graph is generated

considering several heterogeneous sources. This creates problems for the

interpretability of the results and the consistency of the data. Several types

can be combined with the very flexible KG design and with more information,

increases as well the complexity of the data analysis and methods considered

to solve this problem;

❼ KG Representations: In order to effectively extract relevant information

from knowledge graphs, methods of feature learning were considered. How-

ever, each different strategies for creating useful and meaningful representa-

tions comes with its own disadvantages, related to limitation of the model

in question and interpretability of the data itself;

❼ Concept of Similarity: The clustering task defines the criterion to group

objects according to certain specific concept of similarity. The choice of
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this criterion is not trivial, since its choice influences the possible various

strategies to acquire the feature vectors. Defining the concept of similarity

becomes even harder with the flexible and heterogeneous structure of the

knowledge graph;

❼ Complexity of the task: In the state of the art the number of examples

where clustering techniques are applied to knowledge graphs are limited.

Generally, the focus for this type of structures is related to their correct

implementation on classic machine learning problems related to graphs. In

addition, trying to enhance storytelling throughout clustering techniques in-

creases the complexity of evaluating models and reaches some of the limita-

tions of the current machine learning models.

Considering the above limitations in the task formulation of the problem research

activities of the MEMEX-KG project, began with the studying and review of lit-

erature on graphs, graph clustering and knowledge graph embedding techniques

for our experiments in order to define a structured theoretical background.

Figure 3.1: Cultural Heritage Knowledge Graph example

Starting from the definition of our KG 2.1.4 we have that a KG can be defined

as a directed multigraph [9] [55]. Figure 3.1 shows a simple KG that we build to

describe the problem, where the blue entities are ”Knowledge” entities and the
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orange ones refer to ”places or people”. We can clearly see how many types of

information is being represented by this data structure. In fact, as we remarked in

section 2.1.3, an entity of the graph can have several types of information. Here

we can see that the entity that refers to Les Demoiselles d’Avignon[17] contains

an image of the art work and a description about the work, while at the same

time the Picasso entity is storing only a description. We can also have many other

types of information, like the date of birth stored in the Braque entity, or an audio

file stored directly into the Analytical Cubism entity.

On top of all this kinds of data, we also have information in the edges. For

example we can see that Picasso made the Les Demoiselles d’Avignon which is

related to the Early-Cubism [17] period. Another example could be the people

that interacted with Braque, which are Picasso and Juan Gris, but if we want to

check on Braque’s friends, then we will only have Picasso. All of this can be easily

described as a multiview of the KG, and in figure 3.2 we can observe it.

Figure 3.2: Multiview of a KG

Since Dominant set has never been used before in the context of Knowledge

Graphs, but has been proved to work very well on graph structures we will try to

extend the algorithm in order to explore its behaviour in the KG field.
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We will begin our investigation starting from the transformation of a KG to a sim-

ple graph. In subsection 2.3.2 we discussed about some general types of similarity

matrices. For example, the simplest case would be to have a binary similarity

matrix A of the graph G, directed or undirected, simply considering that 1 means

that two entities are connected and 0 otherwise.

Therefore, in order to try to capture more information about the amount of edges

that a KG has, we can also consider the transformation of a KG into a un/directed

weighted graph G, by considering the number of edges e ∈ E of each node as the

weight w ∈ W of G, like we show in picture 3.3. In the undirected case, we would

take the maximum number of connections between two entities.

Figure 3.3: KG transformed into a simple weighted directed graph, con-

sidering the number of edges of each node as the weight

However we can clearly see that lots of information stored in the KG is being lost

considering these approaches. We, therefore, thought about generating different

similarity matrices, each one related to a specific aspect of a KG. The adjacency

matrix of similarities can be build up as we said in 2.3.2 from the embeddings
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of each aspect of the KG. We considered the topology, the descriptions and the

translational embeddings and we built of the matrices of similarities using the

cosine similarity [26] that we have seen in section 2.1.1. In figure 3.4 the starting

idea can be observed.

Figure 3.4: General idea for building new similarity matrices for KG and

Dominant Set
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Moreover in Picture 3.5 we extended further the general idea, by applying the

concatenation of the different types of embeddings.

Figure 3.5: Extended idea for building new similarity matrices for KG and

Dominant Set

Now our general approach for extracting Dominant sets that we have seen in 2.22

xi(t+ 1) = xi(t)
A(x(t))i

x(t)TAx(t)
(3.1)

can now be summarized as:

Definition. 3.2 (Dominant Set for Knowledge Graphs) A dominant

set can be always extracted by:

xi(t+ 1) = xi(t)
Aemb(x(t))i

x(t)TAembx(t)
(3.2)

Where Aemb the similarity matrix that we obtained through the embeddings

calculation and concatenation.
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3.1 Approaches for transforming the KG

Mainly four methodologies to build the matrix of similarity for Dominant set have

been considered.

3.1.1 Structural clustering

The first method is to cluster KGs based on the simple graph’s topology/structure

information. In this case we are considering the matrices of similarities obtained

squeezing the KG into simple graphs like we have seen in figure 3.3. More formally

we will have that our new graph is an undirected weighted graph G = (V,E,W)

where W is the set of weigths w ∈ W . In the binary case w will be just 1s and

0s, while instead in the weighted case wij =
∑

k∈P ek where P ⊆ E is the subset

of edges e that go from vi to vj.

3.1.2 Topology - Semantics - Translational

The second approach consists into performing clustering based on graph topology

embedding. From this aspect we start out from the previously built simple graph

and then we apply the topology algorithms that we have seen section 2.2.1 in order

to extract the feature vectors. Therefore we build our graph G = (V,E,W) using

the adjacency matrix returned by the cosine similarity kernel 2.1.1.

The third approach for clustering is performed based on the textual descriptions

stored in the node entities. We proceeded extracting them and for each description,

after the removal of the stop words, we simply computed sum of the embeddings

of each word and then averaging by the number of words in the description. All

of this in order to get a simple semantic representation of the description. After

this preliminary step, we built our graph G using the same metodology as for the

topology.

Finally the fourth step consists in extracting the graph embeddings, where het-

erogeneous edge types can be considered. Then we proceeded applying the cosine

similarity 2.1.1 and building the matrix of similarities. The general approach is

the one seen in figure 3.4.

3.1.3 Embeddings concatenation

This approach comes as a natural progression of the previous step, where the

embeddings extracted have been concatenated in order to try to investigate if

moving the data could gives some good results in the KG’s field, specifically for

the Cultural Heritage content.

Starting out from the previously extracted embeddings, we proceeded with their

concatenation. Then we build our graph G = (V,E,W) using the adjacency matrix

52



returned by the cosine similarity kernel 2.1.1 in order to perform the clustering as

seen in figure 3.5.

These three macro strategies were chosen to solve the limitations on clustering on

KG that we mentioned at the beggining of this chapter, in order to try to expand

the scope of our research activities.

We focus on the research using techniques in the literature to indicate whether the

knowledge graph can benefit from the clustering task on top of them, and we will

consider how our approach behaves as well.

3.1.4 Graph querying

Another extention to Dominant set will be to consider its behaviour by performing

the graph query approach. In fact as seen in figure 3.2, one could easily exploit

the information about the edges to perform graph query. In fact many times KG

have been utilized for the link prediction task [42], however no information about

the entities is utilized in this way. In order to try to explore this path we will

implement the Constrained Dominant Set algorithm [27], and try to improved it

for the KG task. We will start looking into the concept of graph querying, in

order to check if valid and coherent information could be used for enriching stories

creation.
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Chapter 4

Application and Results

In this chapter we will discuss the datasets that we will utilize with our proposed

methods. We will briefly present the preprocessing steps that we accomplished.

Therefore we will analyze some of the problematics that might occur.

4.1 Preprocessing and Datasets

The structure of the Neo4j MEMEX-KG database can handle different types of en-

tities and relations. For each of the pilot cities of the MEMEX project(Barcelona,

Paris and Lisbon) we created a dataset, crawling data with the help of an ingestion

tool. The crawler utilized is a custom ingestion tool that has been developed to

handle CH data from heterogeneous sources: Wikidata 1, Europeana2 and Mapil-

lary3. In particular we focused in the analysis of all the CH objects belonging to

each city utilizing the information retrieved from wikidata.

Briefly the ingestion method works as follows.

For the selected city it looks for the Wikidata items that have GPS coordinates

within at preset range. These represent the starting point of our Places where

related meta-data is downloaded. From each of the identified places, we then

search associated nodes based on all relations, this new set of nodes we refer to

as Knowledge. This could be for example, the painter of an art work. We repeat

this step searching for new relationships a predefined number of times referred to

as hops. For each of the pilot cities we considered both 2-Hops and 3-Hops.

After the crawling each dataset presented 3 type of nodes:

❼ Place: Physical CH places;

❼ Knowledge: Intrinsic information about the node;

❼ WPI (Wikipedia Property Id): Storing information about the nodes,

used by the ingestion method.

1https://www.wikidata.org/wiki/Wikidata:Main_Page
2https://www.europeana.eu/en
3https://www.mapillary.com/
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The first thing to do was to remove the WPI nodes from the Neo4j dataset, since

they where not relevant for task problem, but just for the ingestion part.

At this point some preliminary analysis on the datasets have been done. In par-

ticular we have the following

Dataset Hops Entities (nodes) Relations (edges) Types of relations

Barcelona 2 7908 26705 170

Barcelona 3 15594 43934 394

Lisbon 2 2703 7412 132

Lisbon 3 9923 19900 317

Paris 2 29594 97750 239

Paris 3 62211 192036 562

Table 4.1: Datasets Information

The average node degree and density for each of the datasets is:

Dataset Hops Average Degree Density

Barcelona 2 3.377 0.001

Barcelona 3 2.817 0.0001

Lisbon 2 2.742 0.002

Lisbon 3 2.005 0.0001

Paris 2 3.303 0.001

Paris 3 3.086 0.0001

Table 4.2: Datasets Average Degree and Density

As we can notice since we are dealing with large graphs and their scale increases

as the number of hops considered increases. Evaluating the ratio between the

actual number of connections in the networks and the potential number of connec-

tions resulted in low densities, it reflects the fact that the structures are weakly

connected.

We also examined the top 10 relationships of the KG as well as the nodes with the

most incoming and outgoing relations.
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TOP 10 NODES WITH INCOMING CONNECTIONS

DATASET NAME TYPE OUT IN

B2H

Spain [’Place’] 0 5231

Barcelona [’Place’] 0 3899

building [’Knowledge’] 0 1310

public art in Barcelona [’Knowledge’] 0 1172

sculpture [’Knowledge’] 0 1018

Cultural Asset of Local Interest [’Knowledge’] 0 866

Cultural Asset part of the architectural heritage of Catalonia [’Knowledge’] 0 493

masia [’Knowledge’] 0 300

vernacular architecture [’Knowledge’] 0 288

Art Nouveau [’Knowledge’] 0 281

B3H

Spain [’Place’] 0 5938

Barcelona [’Place’] 0 4442

building [’Knowledge’] 18 1350

public art in Barcelona [’Knowledge’] 6 1169

sculpture [’Knowledge’] 8 1021

Cultural Asset of Local Interest [’Knowledge’] 0 897

Cultural Asset part of the architectural heritage of Catalonia [’Knowledge’] 4 508

human [’Knowledge’] 0 448

male [’Knowledge’] 0 395

Catalan [’Place’] 0 327

L2H

Portugal [’Place’] 0 1374

cultural heritage [’Knowledge’] 0 622

Lisbon [’Place’] 0 357

building [’Knowledge’] 0 177

Immovable Cultural Heritage of Public Interest [’Knowledge’] 0 162

Santa Maria Maior [’Place’] 0 144

Included in protected site [’Knowledge’] 0 136

heritage without legal protection [’Knowledge’] 0 119

Santo António (Lisbon) [’Place’] 0 78

church building [’Knowledge’] 0 72

L3H

Portugal [’Place’] 174 1646

cultural heritage [’Knowledge’] 6 622

Lisbon [’Place’] 0 502

building [’Knowledge’] 0 183

Santa Maria Maior [’Place’] 0 166

Immovable Cultural Heritage of Public Interest [’Knowledge’] 6 156

Included in protected site [’Knowledge’] 0 142

human [’Knowledge’] 0 134

Wikimedia category [’Knowledge’] 0 131

male [’Knowledge’] 0 117

P2H

France [’Place’] 0 17048

Paris [’Place’] 0 3269

RATP [’Knowledge’] 0 2431

bus stop [’Knowledge’] 0 2153

street [’Knowledge’] 0 1806

registered historic monument [’Knowledge’] 0 1621

fountain [’Knowledge’] 0 1494

Smovengo [’Knowledge’] 0 1193

Vélib’ Métropole [’Knowledge’] 0 1193

bicycle-sharing station [’Knowledge’] 0 1193

Table 4.3: Datasets Top 10 Entities with incoming connections
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TOP 10 NODES WITH OUTGOING CONNECTIONS

DATASET NAME TYPE OUT IN

B2H

Institut Ramon Llull [’Place’] 33 0

Cathedral of the Holy Cross and Saint Eulalia [’Place’] 31 0

Passeig de Gràcia [’Place’] 29 0

Gran Enciclopèdia Catalana [’Place’] 26 0

Fundació Jaume Bofill [’Place’] 25 0

Desolation [’Place’] 25 0

Centre de Cultura Contemporània de Barcelona [’Place’] 22 0

Casa Batlló [’Place’] 21 0

Gran Teatre del Liceu [’Place’] 21 0

Park Güell [’Place’] 21 0

B3H

United States of America [’Place’] 389 18

Winston Churchill [’Knowledge’] 188 1

United Arab Emirates [’Place’] 129 2

Nelson Mandela [’Knowledge’] 126 1

Amsterdam [’Place’] 116 1

Ludwig van Beethoven [’Knowledge’] 116 1

FC Barcelona [’Place’] 112 3

IBM [’Knowledge’] 106 1

Spanish National Research Council [’Place’] 104 7

Norman Foster [’Knowledge’] 104 1

L2H

European route E80 [’Place’] 75 0

UEFA Euro 2004 [’Place’] 37 0

Kingdom of Portugal [’Place’] 28 0

Santa Apolónia Station [’Place’] 21 0

Monastery of São Vicente de Fora [’Place’] 20 1

National Library of Portugal [’Place’] 19 1

Cais do Sodré railway station [’Place’] 19 0

Lisbon Cathedral [’Place’] 18 0

Colégio Militar [’Place’] 17 0

Church of Santa Engrácia [’Place’] 16 0

L3H

Nigeria [’Place’] 677 2

Iran [’Place’] 284 2

Norway [’Place’] 251 5

Peru [’Place’] 251 2

Thailand [’Place’] 246 2

Czech Republic [’Place’] 206 7

Algeria [’Place’] 204 2

Ivory Coast [’Place’] 194 2

Ministry of Foreign Affairs of France [’Knowledge’] 183 1

Portugal [’Place’] 174 1646

P2H

Roseraie de Bagatelle [’Place’] 222 0

Institut de chimie [’Place’] 89 0

The Triumph of the Republic [’Place’] 88 0

Court of Appeal of Paris [’Place’] 64 0

Orphanet [’Place’] 53 0

Supinfo [’Place’] 52 0

The Flight into Egypt [’Place’] 44 0

Le Génie de la Liberté [’Place’] 40 0

Wikidata Sandbox 2 [’Place’] 37 0

Fame Fighting [’Place’] 36 0

Table 4.4: Datasets Top 10 Entities with outgoing connections
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TOP 10 RELATIONSHIPS

DATASET NAME TYPE

B2H

instance of 6424

located in the administrative territorial entity 5423

country 5230

heritage designation 2679

architectural style 1326

material used 532

architect 499

part of 372

creator 326

location 214

B3H

instance of 7913

located in the administrative territorial entity 5676

country 5628

heritage designation 2722

architectural style 1363

subclass of 1007

occupation 890

award received 853

topics main category 747

languages spoken written or signed 680

L2H

instance of 2378

country 1320

located in the administrative territorial entity 1235

heritage designation 654

location 288

operator 99

part of 95

located in time zone 73

applies to jurisdiction 70

adjacent station 70

L3H

instance of 3206

country 1637

located in the administrative territorial entity 1403

language used 914

heritage designation 661

subclass of 599

contains administrative territorial entity 593

member of 553

topics main category 501

described by source 490

P2H

located in the administrative territorial entity 19324

instance of 19322

country 16908

located on street 7404

shares border with 6155

operator 3769
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named after 3674

heritage designation 3536

part of 2019

depicts 1455

Table 4.5: Datasets Top 10 Relationship types

We can see that some of the relations could surely introduce some bias in our

knowledge graph, since they are highly connecting every entity of the graph, with-

out really adding meaningful information. Also some entity nodes like the pilot

cities themselves don’t add up much information and, since the crawling data

starts basically from them, the fact that they have many incoming connections its

justified, yet not very useful. However removing this entities and relations would

surely cause data fragmentation, since the average connectivity is around 3 for each

dataset. Therefore this would end up in entities that are not anymore connected to

the main graph, that will have to be removed if they end up without any connec-

tion. In our cluster analysis this will probably result in many more small clusters,

specially for the topology analysis. Having taking care of this considerations, we

proceeded to create some sub-graphs where we removed:

❼ Nodes: Spain, Barcelona, Portugal, Lisbon, France, Paris;

❼ Relations: instance of, country, located in the administrative territorial entity.

After the removal of the relations and the nodes, we clean up the data, removing

the isolated nodes. In the following table we can resume the reduced datasets

statistics.

Dataset Hops Entities (nodes) Relations (edges) Types of relations

Barcelona 2 5799 9449 167

Barcelona 3 13669 23739 391

Lisbon 2 1957 2374 129

Lisbon 3 9278 13080 314

Paris 2 25483 41818 236

Table 4.6: Reduced Datasets information

4.2 Results analysis clustering

In this section we are going to explore our results starting from a general overview

of the topology and the behaviour of the clustering techniques on the data. For a

fluid flow in both the presentation and analysis, we will mainly focus on the modu-

larity metric discussed in section 2.6. Other metrics will be consulted accordingly

when discussing about the concept of clustering in the KG specific context.
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4.2.1 Topology Clustering results

Let us start from our discussion about clustering as a graph theoretic approach.

Like we discussed in section 3.1.1 we started out considering as our similarity ma-

trix, the binary adjacency matrix of the graph in its undirected representation.

However we immediately switched to the weighted representation since results

where not satisfactory and no relevant information could be retrieved from the

binary form.

For each experiment, we chose as the cutoff parameter for Dominant Set 1.0e-4,

1.0e-8, 1.0e-16 and in some cases even 1.0e-12 and 1.0e-30, with fixed epsilon

1.0e-6. For Spectral clustering we have used the top 3 optimized number of clus-

ters, and the same numbers obtained were used for K-Means. Finally DBSCAN

after some testings, a range between 0.3 to 3 has been utilized.

(a) Lisbon 2H (b) Lisbon 3H

Figure 4.1: Modularity Lisbon 2H/3H

(a) Barcelona 2H (b) Barcelona 3H

Figure 4.2: Modularity Barcelona 2H/3H

In figure 4.1 we can see that both dominant set and spectral clustering are quite be-

hind the community dectection algorithm in terms of modularity. This is especially

reflected on both Lisbon and Barcelona 3H. However there are a few explanations

about this poor results, which is strictly related to the database and to the metric

itself.

The first one is due to the fact that the data is very sparse, and as a consequence

Dominant set is not converging properly. We can notice this thanks to the al-

gorithm internal criterion for the quality of the clusters, which are on average
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between 0.6 up to 0.8. More details about the data results can be seen from table

A.1 to A.5. In particular we observed in Dominant set an improvement of the

average coherence of almost 0.10 from Barcelona 2H to 3H, while the reduced form

of the dataset showed an increase of 0.20 of internal coherence. An interesting data

related observation is that the Lisbon datasets behaved in the opposite way. Here,

in fact, we observed an improvement of 0.25 in the base one reaching an average

internal coherence of 0.84. Instead the reduced dataset went from a 0.54 to an

0.60. This behaviour could be determined from the fact that while removing some

relations, we broke the graphs structure.

Figure 4.3: DS - cutoff: 1.0e-8 Figure 4.4: Louvain view

Another data dependant problem with the dataset structure, related to both 2H

and 3H variants of the datasets, are the relations. When analysing the datasets,

we mentioned when commenting tables 4.3 and 4.4, that some problems could

happen when clustering, since many entities of type Place are connected to an

entity of type Knowledge. However most of the time a direct connection between

Place-Place is not present. As a consequence, this results in one entity with many

incoming connections. This can become a limitation somehow, at least in terms of

modularity, since Dominant set clustering strategy, mentioned in 2.4.5, will find

first many small strongly connected clusters and finally the lasts clusters will be

the ones discarded. The problem with modularity metric instead is due to the

fact that its affected negatively by the fragmentation of the data. However we

expected Dominant set to do exactly this. In figure 4.3 and 4.4 we can observe
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that the partition found by our approach is not too dissimilar to the network

analysis algorithm. Although there is clearly some misclustering in the outside

data, overall the algorithm is working as expected. However the chosen metric for

this unsupervised task is not optimal for the algorithm itself, since their view on

what is a cluster diverges.

Comparing Dominant set with Spectral clustering and Louvain Community, the

values obtained put into evidence that our strategy is surely limited by the data and

by the available metric. In contrast to our partition of many micro-communities,

the network algorithm clearly fits the best results and shows that Louvain is more

fitted for the task of find macro-communities on the KG based on the structure/-

topology of the KG.

The choice of the 2H or 3H variant seems to have significant effects on the results

too. In dominant set having a bigger and sparse dataset seems to have a marginal

negative effect, at least in terms of modularity for the limitations just mentioned.

In general the 2H structure performs the best in all of its test regarding modular-

ity. However the algorithm clearly is more ”confident” on the clusters generated

in the 3H variants. Spectral clustering showed small improvements going from

2H to 3H in the base dataset, while the reduced one got better scores in the 2H

form. Finally Louvain community in the base dataset always showed an improve-

ment going to 2H to 3H. Instead the reduced dataset, while getting better scores,

showed no significant difference between the 2H and 3H form.

Overall one last observation is that in both spectral clustering and louvain, going

from the normal dataset to its reduced form, increased the number of clusters

found by the algorithms. This clearly shows that the the removal of the relations

results in the fragmentation of the clusters.
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Figure 4.5: Macro communities found by DS on the graph structure
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4.2.2 Topology Embeddings

After the preliminary step of clustering directly from the graph structure as it is,

we can now continue with the concept of having the similarity matrix of pairwise

similarities, as discussed in the section 3.1.2. For the embedding techniques we

introduced K-Means and DBSCAN, although Louvain couldn’t be utilized it since

no available method was present at the time of testing.

We exploited the Node2Vec [18] and DeepWalk [38] algorithms already configured

with their best hyper parameters as described in their respective papers.

Figure 4.6 shows that DeepWalk is able to retain the graph structure very simi-

larly to Node2Vec, which results in better clusters in term of modularity. This is

interesting being one of the earliest techniques in the state of the art for graph

embedding generation.

(a) Lisbon 2H (b) Lisbon 2H Reduced

Figure 4.6: Modularity of topology embeddings

Taking into consideration the modularity metric, it shows that Spectral clustering

and K-Means had the best results followed by DBSCAN and Dominant Set. One

can notice that even though the number of clusters changed, modularity stayed

mostly the same, specially in the reduced dataset. This is probably due to the al-

gorithms finding different small partitions in each different run. Putting DBSCAN

in comparison to Dominant set, we expected them to have similar results. How-

ever one can notice that Dominant set remain much more stable, even changing

parameters, while DBSCAN had very inconsistent results.

Considering the other quality metrics is important to remind that Silhouette,

Davies Bouldin and Calinski-Harabasz have the tendency to work better a higher

and with convex clusters, therefore with a larger occurrence of singletons we will

still obtain optimal results for these metrics. Overall Silhouette stays around 0.30,

reaching a maximum value of 0.37 with Dominant set when the partitioning is too

high, as one can see in table A.6.

Figure 4.7 shows Dominant set, followed by DBSCAN, Spectral clustering and

K-Means. While Spectral and K-Means are almost identical, we can notice that
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Dominant set is partitioning the data a bit more. DBSCAN in contrast, as ex-

pected, is agglomerating many groups together.

In general some of these partitions clearly have sense, like the ones on the top

left in figure and on the bottom-left, while others, like the big cluster on the top

right doesn’t looks right. Unfortunately the TSNE representation of the data in

the 2D space doesn’t capture how distant the data is between each other in the

embedding space.

(a) Dominant Set cutoff: 1.0e-16 (b) DBSCAN eps: 2.5

(c) Spectral Clustering k: 122 (d) K-Means k: 122

Figure 4.7: DeepWalk Topology embedding clustering

On a practical demonstration we have that the partitioning of the graph with

the help of topology embeddings translate quite well into the application itself.

Mapping the clusters to the graph, shows, as seen in figure 4.8 that Dominant set

is clearly able to find the main communities in the center of the graph, while is

misclustering some of the small data on the sides.
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(a) Dominant Set cutoff: 1.0e-16 (b) DBSCAN eps: 2.5

(c) K-Means k: 122 (d) Spectral Clustering k: 122

Figure 4.8: DeepWalk Topology embedding clustering mapped on the

graph

A different behaviour happens when the number of partitions found is higher. In
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those situations it is able to cluster the small data, while clustering a bit worse

the center of the graph. Obviously this is a trade off that has to be made in order

to improve the first or the later.

In the reduced datasets (A.6) we observed that here Dominant set performed quite

fair reaching up to 0.61 on Lisbon 2H.

Performance wise, Spectral clustering and K-Means performed on average 0.15

more for both the normal and reduced datasets in respect to Dominant set and

DBSCAN. In the other quality metrics, Dominant set is on average almost better

than DBSCAN but worse than the other two algorithms (which are running with

the optimized number of clusters). Some bias can be notice in the Silhouette score

by the considerations raised before. Still though, comparing the communities ob-

tained with the ones found by Louvain community in the structure test, we can

clearly see that the topology embedding is working well for these datasets and the

clustering algorithms are still able define communities with qualitative meaning.

However on the negative side, the partition of the communities is higher in Dom-

inant set and DBSCAN.
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4.2.3 Semantics Embeddings

At this point we can introduce the words embeddings that we described early in

section 2.2.2. We performed clustering based on the semantic meaning of the

description attribute in KG nodes, where the KG is transformed to a graph as

written in section 3.1.2. We exploited Word2Vec [28] [29], Google’s pre-trained

word embeddings and FastText [7] pre-trained as well, using Python’s Gensim

library. Then we apply the different algorithms for clustering on top of the de-

scription embeddings.

(a) FastText (b) Word2Vec

Figure 4.9: T-SNE representation of Word Embeddings, mapped with

Dominant Set clusters

Modularity here doesn’t get good scores, since we noticed that there’s no a real

correlation between elements on the graph and their description. For example we

can have two nodes connected between each other like Antonio Gaud̀ı and Park

Güell. We obviously know for a fact that Gaud̀ı is the architect of the famous

Park Güell in Barcelona, however their respective descriptions are:

❼ Antonio Gaud́ı: Spanish architect;

❼ Park Güell: public park system in Barcelona, Spain.

Here Dominant set (A.14) performed very similarly for both the types of datasets

and the embedding type. Overall we can say that Word2Vec has by very little

some slightly better results based on the Silhouette score. Figure 4.9 shows that

the behaviour of the data is indeed similar in both situations. Figure 4.10 shows

how all the algorithms are able to separate the data based on the silhouette score.
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(a) Lisbon 2H (b) Lisbon 2H Reduced

Figure 4.10: Silhouette of word embeddings

Overall, considering that the descriptions are still very much ”naive”, this early

step shows that grouping the KG related entities together is definitely possible,

and with some improvement on the quality of the descriptions, the precision could

improve extensively.

4.2.4 Translational Embeddings

To explore graph embedding techniques we reviewed in section 2.2.3 we have

the translational models that model graph relationships by interpreting them as

translations in the embedding space. Once again the KG has been transformed into

a simple undirected graph, starting from the embeddings (3.1.2). In the MEMEX

project we have applied and evaluated all of them on the link prediction task [42],

but for summarize this thesis work, only transE will we considered, since is the

best performing method based on our KG. Consequently, we run once again all the

described clustering algorithms on top of the pre-trained embeddings from TransE.

Clustering in this regard shows very little correspondence with the modularity of

the graph for all the algorithms. Some improvements can be seen in the reduced

dataset, where we achieved a maximum of 0.07 and 0.073 with dominant set and

spectral clustering respectively. Not even the other quality metrics (A.22) seem to

have a positive score in this regard.
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(a) Dominant Set

Figure 4.11: TransE embeddings clustering

In general we noticed that the translational embeddings get a lot of overlapping

clusters. When analysing the problem we first though this was mainly happening

in base of the observations made in 4.3, since having many relations that connect

everything in the graph can reduce performance. We also thought that a critical

factor is due the size of the dataset, which is still too small, and the training

is not sufficiently enough to learn qualitatively embeddings. Although all this

observations can surely contribute to the general limitations of the problem, we

we also notice that, looking at entities of the clusters on the tSNE plot in figure

4.11, most of the time coherent data was in the same region of the plot, but

misclassified.

(a) Lisbon 2H (b) Lisbon 2H Reduced

Figure 4.12: Silhouette of translating embeddings
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As a practical example, if we look up closely to the macro community of the

”Metropolitan of Lisbon” in figure 4.13, we can see that the partitioning its quite

high, though very context specific. As we said, most of this entities were very close

in the embedding region. If we look at the problem from another point of view, this

could actually be seen as clustering very context specific information. Reasoning

about what is happening, we could say that entities that share the similar relations

can be found in the same ”x axis”, but the’re being positioned far from each other

if some relations are different or are missing. This explains why, even though close

in the 2D space, they are not actually clustered together.

For this very specific task, translational embeddings might not be useful by them-

selves, however since data is actually located closely, this might improve some of

the results when considering embedding concatenation.
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(a) Dominant Set cutoff: 1.0e-8

Figure 4.13: TransE embeddings clustering mapped to the graph struc-

ture
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4.2.5 Embedding combinations

In section 3.1.3 we introduced the idea of transforming a KG into a graph using

the embeddings combination. In this section we will discuss about the results we

got after the combination of the embeddings, to try to investigate if some useful

data could be obtained. We expect, that if the embeddings are correlated, their

concatenation will move the data in the embedding space, facilitating the discov-

ery of new communities and clustering of the data.

Through the combination of the topology embeddings and the description embed-

dings, we noticed in figure 4.14 that the modularity obtained was worse than the

topology ones A.6, but overall highly better than word embeddings A.14. How-

ever, while Spectral clustering and K-Means showed basically identical results,

DBSCAN performance was significantly worse. Finally here Dominant set is not

able to cluster the data efficiently. Here probably a limitation on clustering on

top of the similarity matrix comes into factor, since its not able to cluster poorly

separated data. Still the performance is not substantially different from DBSCAN

if we look into the Silhouette score. So its probable that due to the nature of DB-

SCAN, some of the data clustered was lucky enough to be also connected. Most

of this behaviors can be noticed in from table A.26 to table A.41. Performance

wise its not that satisfactory, but since we were expecting it, yet some coherent

data has been retrieved. The usage of DeepWalk or Node2Vec embeddings did

not translate into a significant difference, although the best results were achieved

by the combination of DeepWalk with FastText. Considering the silhouette, the

metric is more or less between -0.1 to 0.1 for both DBSCAN and Dominant Set

and between 0.1 to 0.2 for K-Means and Spectral Clustering. The last two put

into evidence that some clusters could be retrieved according to the metric.

This is then confirmed by the results on the tsne representation of clustering on

the embeddings, that can be seen in figure 4.14.

Although the embeddings of the data are still a bit noisy and sparse, they clearly

show that the combination itself has some form of correlation. It is also an im-

provement, especially if we confront if with the previous description embeddings

test.

This is important, since it proves that with improved descriptions and tags, a

clear clustering problem could be definitely solved.

It also puts into evidence our the current limitations of our the description em-

beddings like we clarified before.
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(a) Dominant Set cutoff: 1.0E-16 (b) DBSCAN eps:2.5

(c) Spectral Clustering k: 62 (d) K-Means k: 62

Figure 4.14: Clustering on DeepWalk and FastText embeddings
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(a) L2H (b) L2H R

(c) L2H (d) L2H R

Figure 4.15: Modularity of clustering topology embeddings with word

embeddings

The second combination that we have performed is between the topology’s em-

beddings and the translational embeddings (A.42) and between the translational

embeddings and the word embeddings descriptions (A.50).

Considering textual descriptions with transE embeddings, on a first look on the

tables results A.50 it looks like the scores are barely significant. However looking

at the data separation on figure 4.16 it is evident that some of the data has moved

in the space, making possible the discovery of new partitions. As a matter of fact

here silhouette has scored 0.175 with Dominant set, with only DBSCAN getting

close with a 0.146. Still the data itself is not good, but on some basic level the

combination has some possible positive effects.
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Figure 4.16: DS cutoff: 1.0e-16 - Clustering on FastText + TransE

embeddings

The combination of the topology with the translational embeddings instead shows

some very interesting results (A.42 to A.49). In particular, although all scores

are a bit behind the topology ones in terms of modularity, we can clearly see that

the combination of this two types of embeddings, proves that there’s indeed cor-

relation between them. This also reflects that the observations that we made in

4.2.4 are not completely wrong.

Here Dominant set performance is pretty much on the same level of the seen be-

fore in terms of modularity. Silhouette, Davies and CHI scores instead decreased

marginally. Here Spectral clustering performed the same in the combination of

DeepWalk with TransE and is not drastically different in the Node2Vec - TransE

one.

Generally speaking the combination of translational embeddings with the topol-

ogy embeddings for KG could represent a good solution for the clustering problem,

since, as we can see in figure 4.17, the embeddings look very promising. In fact,

having also the information about the relations of the graph through the translat-

ing embeddings, seems to be helping the data separation problem on the topology

embeddings. In terms of improving modularity it might be scoring a little worse,

however if look at the data, the clusters are definitely separated in a better way

75



and much distant from each other.

(a) DS cutoff: 1.0e-30 (b) DBSCAN eps: 3

(c) Spectral Clustering k: 77 (d) K-Means k: 77

Figure 4.17: Clustering on DeepWalk + TransE embeddings

(a) L2H (b) L2H Reduced

Figure 4.18: Modularity of clustering transE embeddings combined with

topology embeddings
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The final step of this experimental setup shows the combination of all the three

types of embeddings. With this experiment we wanted to check if all the infor-

mation retained in the KGs could be useful if merged together. So far we have

seen how the combination of two embeddings have moved the data in a significant

way in some aspects, especially the just seen one with topology and translational

embeddings. The combination of the Knowledge Graph with the semantics about

CH and the link prediction embeddings still referred to CH is indeed ambitious

and probably difficult to achieve a good data separation.

Results are indeed difficult to understand, since the quality metrics themselves

are not always too useful. Overall we definitely can say that modularity is lost

once again for Dominant set, since we can observe the same behaviour presented in

table A.26. The same can be said about silhouette, but the embeddings themselves

can be considered on the same level of the one obtained with the combination of

the topology with the description embeddings, or the traslantional embeddings

with the description.

In fact, some possible communities can clearly be seen in figure 4.19. One ob-

servation that can be said is that the quality of the embeddings is worse, since

it is more fragmented in certain areas, especially if we compared it to the ones

obtained with the combination of topology with translational embeddings, which

where totally some unexpected results.

Definitely being the task not trivial and usually not performed in Knowledge

Graphs we have seen, that the clustering problem itself, can be formulated in

various combinations, depending on what one is looking for in the data. Fortu-

nately KG are a powerful data structure that if well contextualized and created,

could retrieve very useful information.

Dominant Set clearly has proven to be working quite well and even though some-

times the pealing off strategy leads to the partition of the clusters, in general we

have observed that very useful information can be obtained by this method.

Finally further investigations should be done, due to the nature of the KG. Im-

proving the descriptions of the entities could show some good results. Being the

nodes connected in the graph, more ad hoc information about them might improve

the topology clustering and the modularity. Also, thanks to the observations that

we noticed about the translational embeddings and their performance when con-

catenated with the topology embeddings, we can say that clustering on a graph

with extra added information not only by its structure, but also about its rela-

tions, could become very useful when looking at the task of finding communities

and improving the networks modularity.

In terms of the MEMEX project, this research activity clearly showed some inter-

esting ways in which the KG can be used.
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(a) DS cutoff: 1.0e-16 (b) DBSCAN eps: 3

(c) Spectral Clustering k: 63 (d) KMEANS k: 63

Figure 4.19: Clustering on DeepWalk + FastText + TransE embeddings

(a) L2H (b) L2H R

Figure 4.20: Modularity of clustering topology combined with word em-

beddings and transE

78



4.3 Result Analysis graph querying

Since the aim of the project is to allow the creation of a narrative around CH

places or objects, we utilised local clustering techniques as seen in section 2.5, in

particular Dominant set (section 3.1.4) in comparison with Personalized PageR-

ank [5] for extracting an informative subgraph from the whole KG including the

query/seed nodes provided by the user (which representing CH places or objects).

The subgraph will allow us to explain the relation between the query nodes. In ad-

dition, clustering techniques based on the graph topology and node attributes can

be further applied on top of the subgraph to group the strongly connected or the

semantically similar nodes together in order to facilitate the story creation process.

In this section the works that has been done is still limited to a toy dataset where

we were trying to analyse the concept of querying the graph in a compact way. We

chose for the query the node entity ”Park Güell” and ”University of Barcelona”.

As shown in figure 4.23, the subgraph extracted using Personalized PageRank ex-

plains the relatedness between two query nodes.

Dominant set graph extraction in comparison to Personalized PageRank is a little

more conservative, and fits more the concept of clique, as intended by the algo-

rithm. In fact with a strict choice of the parameters, we can see two clusters:

”Park Güell” connected to Works of Antonio Guad̀ı and the artist itself, and the

University of Barcelona connected to Josep Maria Jujol. This can be revisited as:

“Park Güell” is a work of “Antoni Gaudi”, who also contributed in “Casa Batlló”

with “Josep Maria Jujol”, who was an employer in the “University of Barcelona”.

Instead if we are more loose on the parameters, Dominant set is able to retrieve

much more information, although not necessarily relevant to the story creation/en-

riching.

In both cases the approach seems very promising, since then, if combined with

the clustering work, very different kind of data could be retrieved. Comparing

Dominant set with PageRank we can see that both available methods for local

clustering are quite interesting. PageRank allowed us to extract a bigger subgraph

that includes user CH query nodes, while Dominant set allowed to restrict the

information even further.

Moreover the subgraph can be further clustered based on its topology and/or node

semantics as we experimented before. The Dominant Set clustering technique can

found successfully group similar nodes together based on their location on the

subgraph or their semantic similarity. Each cluster in the subgraph can be used

to write a sentence or a part of the story.
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Figure 4.21: Local Clustering Figure 4.22: Constrained Dominant Set

Figure 4.23: Constrained Dominant Set
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Figure 4.24: Local Clustering detailed view
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Figure 4.25: Constrained Dominant Set Detailed view
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Figure 4.26: Constrained Dominant Set Detailed view

83



Chapter 5

Conclusions

In this thesis, we explored the possibility of extending the Dominant Set algorithm

for the Knowledge Graphs, with the strategies presented in chapter 2 used to build

the pairwise similarity matrices needed to feed our clustering algorithm. We did

that by taking advantage of the various representations that a Knowledge Graph

has, therefore adapting them with the features learning techniques that suited best

the view of the KG.

We first explored how such strategies behave in our idealized scenarios with con-

trolled data to then test them in a production-like environment. By doing so, we

reviewed some of the state-of-the-art for the representational learning on graphs,

word embeddings used for the specific context of cultural heritage and then trans-

lating embeddings for modelling multi-relational data.

We then discussed how we implemented Dominant Set in the context of KG. The

algorithm has never been applied before in this research area and, although it was

not a trivial task, it clearly shows that with more research and refinements, good

clustering can be achieved.

At this point we explored the idea of concatenating the various types of embed-

dings, in order to verify if, being by definition a KG a collection of interlinked data

that can be descriptions, entities and relations, their combination could somehow

extend the concept of modularity of the network itself. Therefore, to stay in line as

well with the project MEMEX goals, we asked ourself how to retrieved efficiently

the entities needed to enrich the stories in the story-telling process. As a direct

consequence we began exploring the concept of querying a graph.

Ultimately we summarized our findings in chapter 4, arriving at the conclusion

that finding communities directly from each of the representations of a KG is a

viable option. Moreover in order to improve modularity, we have seen that each

of the embeddings combinations had it owns trade-offs.

The overall conclusion that we observed from this work is that it is possible to

retrieve different kinds of information from each of the base techniques, in the CH
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context. Specifically in order to improve modularity we observed that, although

with some limitations, the embedding combination indeed retained the topology

informations. In particular the translating embeddings combined with the repre-

sentational learning ones, helped to moved the data in the embedding space in a

way that facilitated the capture of clusters by the techniques we used. Further-

more, it seems plausible to be being able to improve the modularity of the graph

itself taking into consideration the various types of relationships of the graph.

Also, although results were less than satisfactory, an open path remains the topic

of modularity of the graph in regards to the descriptions of the entities each node

contains.

Finally for graph clustering, we have that the combination of all the types of

embeddings, still showed us some coherent clusters according to the metric, al-

though the quality of the embeddings was less enchanting.

On the other side, considering local clustering, one last important consideration is

that all of the clustering on the graph could be effectively replicated into a more

constrained environment thanks to the utilization of these types of techniques.

Here we have seen that Dominant set is perfectly able to retrieve a subgraph,

or more than one, with a low computational cost that ranges from one to only

a couple iterations of the algorithm. This improves the performance drastically

when trying to retrieve information quickly. Furthermore, if compared to the Per-

sonalized Page Rank (PPR) technique that we have used, we have noticed how

our approach gives back more qualitative clusters, with definitely less choice, but

more coherent ones that could help the story creation/enriching process.

For future developments, we would like to investigate further more this approaches.

Specifically we believe that improving the quality of the descriptions into a more

CH oriented model could improve the concept of modularity since like we have

seen, the data connected is generally also semantically connected. Also much

more work can still be done with the translational embeddings and the topology

ones, which proved successfully to cluster communities thanks to the information

of the topology and the information about the relationships.

Finally for the MEMEX project the focus has moved more into the local clus-

tering approach. This last one shares in common many of the requirements of the

project, making it a very promising approach, not only in terms of information

retrieved, but also in terms of performance. Furthermore the research then could

be even more precise introducing the localization coordinates, that we already suc-

cessfully tried with just the descriptions similarity.

While continuing improving our KG, we will start looking into how to integrate

85



better our algorithm into the concept of KGs. Specifically we will start looking

into the multimodal KGs, adding the information of images, audio and videos on

top of the already present structure. This will allow us to focus on answers to our

research strategy results and observe how Dominant set behaves in comparison to

other techniques, for the final goal of improving the story generation process.
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Appendix A

Tables Results

A.1 Graph Clustering

Dominant set clustering

Settings Cut off 1.0e-4 Cut off 1.0e-8

Dataset Hops Clusters Modularity Avg. Coherence Clusters Modularity Avg. Coherence

Barcelona 2 225 0.159 0.592 202 0.146 0.613

Barcelona 3 394 0.081 0.692 355 0.137 0.695

Lisbon 2 99 0.187 0.576 90 0.207 0.594

Lisbon 3 305 0.070 0.836 248 0.133 0.847

Table A.1: Dominant Set clustering with weighted adj. matrix pilot cities

Dominant set clustering

Settings Cut off 1.0e-4 Cut off 1.0e-8

Dataset Hops Clusters Modularity Avg. Coherence Clusters Modularity Avg. Coherence

Barcelona R 2 137 0.322 0.582 127 0.368 0.569

Barcelona R 3 483 0.161 0.795 324 0.218 0.819

Lisbon R 2 56 0.426 0.567 54 0.494 0.548

Lisbon R 3 250 0.058 0.592 250 0.205 0.606

Table A.2: Dominant Set clustering with weighted adj. matrix reduced

pilot cities

Spectral Clustering

Barcelona Lisbon

2 Hops 3 Hops 2 Hops 3 Hops

Clusters Modularity Clusters Modularity Clusters Modularity Clusters Modularity

9 0.134 36 0.209 12 0.177 6 0.326

36 0.281 11 0.118 11 0.304 4 0.008

34 0.299 22 0.166 22 0.256 12 0.384

27 0.217 27 0.316 24 0.228 3 0.072

25 0.209 66 0.292 35 0.272 14 0.468

Table A.3: Spectral clustering with weighted adj. matrix for Barcelona

and Lisbon
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Spectral Clustering

Barcelona R Lisbon R

2 Hops 3 Hops 2 Hops 3 Hops

Clusters Modularity Clusters Modularity Clusters Modularity Clusters Modularity

194 0.399 98 0.366 147 0.511 50 0.372

203 0.605 106 0.484 167 0.564 73 0.483

190 0.239 96 0.502 148 0.434 86 0.473

216 0.283 102 0.326 175 0.421 63 0.496

212 0.217 122 0.290 213 0.403 60 0.412

Table A.4: Spectral clustering with weighted adj. matrix for Barcelona

and Lisbon reduced

Louvain Community

Settings Results

Dataset Hops Clusters Modularity

Barcelona 2 46 0.462

Barcelona 3 32 0.564

Barcelona R 2 243 0.742

Barcelona R 3 147 0.778

Lisbon 2 46 0.479

Lisbon 3 33 0.678

Lisbon R 2 158 0.828

Lisbon R 3 88 0.819

Paris 2 34 0.526

Paris R 2 802 0.766

Table A.5: Louvain community with pilot cities

A.2 Topology Embedding

A.2.1 DeepWalk

Dominant Set - DeepWalk

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 511 0.254 0.224 1.448 16.021 0.0001 282 0.613 0.370 1.336 30.145

1.00E-08 309 0.262 0.131 1.999 14.080 1.00E-08 175 0.610 0.241 1.804 24.301

1.00E-16 133 0.277 -0.009 2.681 11.590 1.00E-16 82 0.619 0.164 2.267 27.885

Table A.6: Dominant Set - DeepWalk

DBSCAN - DeepWalk

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 201 0.174 0.052 1.337 9.969 2 214 0.518 0.269 1.173 13.106

2.5 237 0.278 0.165 1.397 11.714 3 194 0.645 0.253 1.197 14.491

3 101 0.155 0.087 1.464 12.458 3 119 0.495 0.146 1.028 13.063

Table A.7: DBSCAN - DeepWalk
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Spectral Clustering - DeepWalk

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

131 0.362 0.149 1.980 20.919 129 0.717 0.281 1.638 24.947

128 0.378 0.157 2.014 21.444 92 0.754 0.267 1.681 31.889

122 0.391 0.148 2.064 21.022 60 0.777 0.234 1.666 40.257

Table A.8: Spectral Clustering - DeepWalk

K-Means - DeepWalk

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

131 0.395 0.176 1.777 22.908 129 0.763 0.310 1.261 32.469

128 0.402 0.166 1.777 22.882 92 0.781 0.280 1.355 36.683

122 0.394 0.178 1.825 23.368 60 0.787 0.244 1.613 41.662

Table A.9: K-Means - DeepWalk

A.2.2 Node2Vec

Dominant Set -Node2vec

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 479 0.255 0.224 1.587 14.218 0.0001 320 0.579 0.458 1.026 42.475

1.00E-08 285 0.264 0.139 2.046 13.666 1.00E-08 140 0.630 0.227 2.057 22.855

1.00E-16 121 0.309 0.038 2.691 15.313 1.00E-16 60 0.660 0.167 2.465 31.726

Table A.10: Dominant Set -Node2vec

DBSCAN - Node2vec

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

1.5 78 0.044 -0.054 1.187 9.292 1.5 216 0.534 0.291 1.252 14.736

2 316 0.221 0.102 1.444 8.649 2 167 0.683 0.240 1.379 14.532

2.5 126 0.182 -0.001 1.738 7.876 2.5 66 0.215 0.003 1.233 6.884

3 23 0.006 0.019 1.476 8.294 3 54 0.185 0.149 1.196 7.411

Table A.11: DBSCAN - Node2vec

Spectral Clustering - Node2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

96 0.402 0.144 2.060 23.906 91 0.775 0.280 1.493 28.102

85 0.406 0.132 2.196 24.918 65 0.783 0.261 1.719 35.321

78 0.411 0.133 2.277 26.237 59 0.786 0.255 1.807 38.551

Table A.12: Spectral Clustering - Node2Vec

K-Means - Node2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

96 0.412 0.151 2.075 25.231 91 0.763 0.235 1.603 29.741

85 0.422 0.144 2.132 26.129 65 0.773 0.208 1.751 33.196

78 0.426 0.143 2.099 27.317 59 0.785 0.173 1.717 34.209

Table A.13: K-Means - Node2Vec
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A.3 Semantics Embeddings

A.3.1 FastText

Dominant Set -FastText

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 170 -0.049 0.591 2.128 141.434 0.0001 128 0.002 0.631 1.952 149.939

1.00E-08 89 -0.048 0.503 2.510 170.720 1.00E-08 67 0.000 0.552 2.376 170.164

1.00E-12 12 -0.034 0.024 2.954 38.472 1.00E-12 6 -0.014 0.073 2.601 39.136

Table A.14: Dominant Set -FastText

DBSCAN - FastText

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

0.3 73 -0.091 0.540 0.931 162.019 0.3 58 0.028 0.582 0.965 160.381

0.5 71 -0.062 0.546 1.006 176.829 0.5 62 0.026 0.602 1.076 161.543

1 14 -0.062 0.432 1.635 446.672 1 10 -0.009 0.466 1.677 491.663

Table A.15: DBSCAN - FastText

Spectral Clustering - FastText

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

96 -0.026 0.531 2.326 167.700 94 0.030 0.587 1.941 156.779

80 -0.024 0.526 2.235 196.529 84 0.019 0.570 2.121 153.278

69 -0.028 0.524 2.392 217.784 80 0.029 0.583 2.078 168.549

Table A.16: Spectral Clustering - FastText

K-Means - FastText

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

96 -0.047 0.580 1.759 228.115 94 0.004 0.631 1.446 212.980

80 -0.042 0.571 1.719 257.167 84 0.010 0.628 1.503 220.875

69 -0.033 0.572 1.723 283.031 80 0.013 0.628 1.441 233.025

Table A.17: K-Means - FastText

A.3.2 Word2Vec

Dominant Set -Word2Vec

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 186 -0.048 0.609 1.937 133.516 0.0001 137 -0.001 0.650 1.872 149.248

1.00E-08 93 -0.048 0.485 2.379 124.717 1.00E-08 62 0.000 0.526 2.238 138.260

1.00E-12 5 -0.018 0.204 2.376 66.691 1.00E-12 4 -0.017 0.285 1.829 97.108

Table A.18: Dominant Set -Word2Vec

DBSCAN - Word2Vec

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

0.3 75 -0.092 0.542 1.027 155.478 0.3 60 0.030 0.588 1.050 156.006

0.5 76 -0.058 0.544 1.036 156.255 0.5 62 0.026 0.590 1.064 154.229

1 51 -0.068 0.422 1.204 188.684 1 43 0.018 0.482 1.261 183.120

Table A.19: DBSCAN - Word2Vec
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Spectral Clustering - Word2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

102 -0.025 0.538 2.140 159.280 99 0.028 0.600 1.362 202.819

99 -0.031 0.539 2.131 164.173 91 0.031 0.586 1.391 203.067

64 -0.017 0.518 2.243 223.923 74 0.033 0.580 1.355 223.712

Table A.20: Spectral Clustering - Word2Vec

K-Means - Word2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

102 -0.040 0.579 1.536 206.569 99 0.019 0.632 1.893 154.788

99 -0.040 0.575 1.578 210.758 91 0.014 0.617 1.911 157.815

64 -0.039 0.556 1.626 271.303 74 0.029 0.620 2.036 174.170

Table A.21: K-Means - Word2Vec

A.4 Translational Embeddings

Dominant Set -TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 556 0.014 0.107 1.827 5.914 0.0001 451 0.070 0.099 1.850 4.012

1.00E-08 319 0.011 0.057 2.450 6.370 1.00E-08 247 0.053 0.039 2.640 4.111

1.00E-12 174 0.008 0.028 2.917 7.765 1.00E-12 146 0.048 0.010 3.145 4.474

Table A.22: Dominant Set -TransE

DBSCAN - TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

0.3 1 -0.018 None None None 0.3 1 -0.014 None None None

0.5 7 -0.018 -0.056 1.414 3.416 0.5 1 -0.014 None None None

1 45 0.005 -0.070 2.254 3.431 1 118 0.080 -0.025 2.360 3.134

Table A.23: DBSCAN - TransE

Spectral Clustering - TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

107 0.026 0.068 2.789 11.351 103 0.071 0.041 3.087 6.271

105 0.025 0.065 2.784 11.158 101 0.073 0.032 3.132 6.195

103 0.028 0.068 2.742 11.372 100 0.070 0.034 3.203 6.254

Table A.24: Spectral Clustering - TransE

K-Means - TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

107 0.017 0.057 3.025 11.697 103 0.064 0.037 3.288 6.089

105 0.021 0.061 2.983 11.972 101 0.062 0.038 3.278 6.174

103 0.019 0.059 3.092 11.794 100 0.069 0.037 3.288 6.188

Table A.25: K-Means - TransE
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A.5 Embedding Combination

A.5.1 Topology Embeddings and Description Embeddings

DeepWalk and FastText

Dominant Set -DeepWalk + FastText

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 256 0.002 -0.060 2.977 7.512 0.0001 199 0.074 0.000 2.720 9.323

1.00E-08 154 0.006 -0.049 3.525 9.100 1.00E-08 124 0.052 -0.029 3.144 9.087

1.00E-16 66 -0.010 -0.031 4.410 13.650 1.00E-16 51 0.074 -0.030 3.839 12.317

Table A.26: Dominant Set -DeepWalk + FastText

DBSCAN - DeepWalk + FastText

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

1.5 44 -0.011 -0.244 1.618 4.259 1.5 78 0.064 -0.114 1.397 6.592

2 90 0.011 -0.161 1.587 6.843 2 120 0.245 -0.001 1.331 7.932

2.5 143 0.095 -0.004 1.498 9.227 2.5 154 0.402 0.109 1.377 9.761

3 142 0.175 0.051 1.554 10.104 3 145 0.543 0.134 1.300 11.405

Table A.27: DBSCAN - DeepWalk + FastText

Spectral Clustering - DeepWalk + FastText

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

62 0.289 0.058 2.071 24.482 62 0.641 0.145 1.722 33.116

93 0.254 0.076 2.133 21.607 56 0.647 0.136 1.759 34.722

128 0.272 0.101 2.110 19.637 53 0.637 0.124 1.803 33.715

Table A.28: Spectral Clustering - DeepWalk + FastText

K-Means - DeepWalk + FastText

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

62 0.251 0.104 2.207 27.775 62 0.689 0.179 1.781 35.237

93 0.237 0.125 2.090 24.051 56 0.690 0.167 1.801 37.690

128 0.255 0.122 1.938 21.435 53 0.680 0.138 1.859 35.444

Table A.29: K-Means - DeepWalk + FastText

DeepWalk and Word2Vec

Dominant Set -DeepWalk + Word2Vec

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 262 0.010 -0.020 2.726 9.725 0.0001 207 0.067 0.040 2.536 10.565

1.00E-08 170 0.003 -0.026 3.170 11.686 1.00E-08 123 0.085 0.010 2.971 11.207

1.00E-16 66 -0.015 -0.031 4.382 18.210 1.00E-16 57 0.075 0.002 3.446 15.925

Table A.30: Dominant Set -DeepWalk + Word2Vec
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DBSCAN - DeepWalk + Word2Vec

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 79 -0.010 -0.192 1.547 5.727 2 88 0.137 -0.073 1.398 7.029

2.5 98 -0.020 -0.078 1.506 9.141 2.5 110 0.292 0.016 1.422 8.571

3 114 0.121 0.019 1.558 11.881 3 102 0.415 0.058 1.459 10.631

Table A.31: DBSCAN - DeepWalk + Word2Vec

Spectral Clustering - DeepWalk + Word2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

61 0.213 0.032 2.035 26.517 42 0.626 0.120 1.836 34.518

59 0.196 0.031 2.141 27.503 39 0.595 0.116 1.891 35.344

54 0.170 0.029 1.970 29.016 87 0.547 0.162 1.816 28.280

Table A.32: Spectral Clustering - DeepWalk + Word2Vec

K-Means - DeepWalk + Word2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

61 0.175 0.057 2.427 32.013 42 0.548 0.151 2.067 40.153

59 0.167 0.062 2.420 32.076 39 0.544 0.137 2.106 39.997

54 0.175 0.040 2.521 32.763 87 0.542 0.193 1.718 29.536

Table A.33: K-Means - DeepWalk + Word2Vec

Node2Vec and FastText

Dominant Set -Node2Vec + FastText

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 244 0.007 -0.014 2.932 8.732 0.0001 186 0.074 0.042 2.803 10.615

1.00E-08 158 0.001 -0.028 3.345 10.173 1.00E-08 114 0.057 -0.017 3.157 11.418

1.00E-16 60 -0.006 -0.017 4.237 17.776 1.00E-16 60 0.081 -0.025 3.511 14.551

Table A.34: Dominant Set -Node2Vec + FastText

DBSCAN - Node2Vec + FastText

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

1.5 22 -0.014 -0.045 1.177 8.792 1.5 107 0.147 -0.046 1.313 8.265

2 110 0.054 -0.133 1.431 6.732 2 149 0.362 0.100 1.418 10.685

2.5 205 0.100 0.033 1.631 8.951 2.5 103 0.340 0.029 1.530 9.798

3 51 -0.008 -0.058 1.972 6.237 3 56 0.186 0.051 1.492 6.270

Table A.35: DBSCAN - Node2Vec + FastText

Spectral Clustering - Node2Vec + FastText

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

55 0.256 0.055 2.272 26.867 83 0.540 0.138 2.155 24.518

149 0.234 0.106 2.242 18.439 35 0.598 0.111 2.240 37.656

62 0.273 0.054 2.205 24.933 37 0.578 0.111 2.244 36.669

Table A.36: Spectral Clustering - Node2Vec + FastText
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K-Means - Node2Vec + FastText

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

55 0.281 0.079 2.580 31.452 83 0.597 0.194 1.926 29.163

149 0.243 0.120 2.204 19.858 35 0.586 0.114 2.153 40.958

62 0.282 0.095 2.746 29.832 37 0.637 0.154 2.282 42.935

Table A.37: K-Means - Node2Vec + FastText

Node2Vec and Word2Vec

Dominant Set -Node2Vec + Word2Vec

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 264 0.014 0.019 2.672 11.586 0.0001 196 0.076 0.089 2.531 13.501

1.00E-08 170 0.009 0.004 2.974 14.150 1.00E-08 126 0.083 0.024 2.829 14.287

1.00E-16 76 -0.003 0.002 3.646 23.095 1.00E-16 53 0.052 0.037 3.431 22.780

Table A.38: Dominant Set -Node2Vec + Word2Vec

DBSCAN - Node2Vec + Word2Vec

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 85 0.015 -0.192 1.383 5.831 2 104 0.225 -0.001 1.384 9.958

2.5 133 0.040 -0.067 1.624 8.940 2.5 89 0.330 0.035 1.508 12.259

3 93 -0.054 -0.008 1.760 13.345 3 58 0.216 0.040 1.532 14.493

Table A.39: DBSCAN - Node2Vec + Word2Vec

Spectral Clustering - Node2Vec + Word2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

61 0.189 0.058 2.499 33.629 98 0.440 0.129 2.060 24.429

80 0.210 0.062 2.572 29.324 62 0.471 0.123 2.244 30.923

72 0.192 0.059 2.476 31.628 49 0.488 0.129 2.188 35.044

Table A.40: Spectral Clustering - Node2Vec + Word2Vec

K-Means - Node2Vec + Word2Vec

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

61 0.181 0.073 2.761 37.831 98 0.449 0.200 2.100 28.889

80 0.190 0.078 2.510 31.435 62 0.435 0.158 2.203 36.321

72 0.189 0.071 2.755 33.236 49 0.438 0.149 2.496 41.491

Table A.41: K-Means - Node2Vec + Word2Vec
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A.5.2 Topology Embeddings and Translational Embeddings

DeepWalk and TransE

Dominant Set -DeepWalk + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 605 0.139 0.082 1.933 8.124 0.0001 372 0.392 0.171 1.745 17.500

1.00E-08 368 0.128 0.040 2.461 8.065 1.00E-08 231 0.414 0.123 2.139 17.469

1.00E-16 113 0.128 -0.060 3.687 8.083 1.00E-16 106 0.533 0.094 2.480 18.775

Table A.42: Dominant Set -DeepWalk + TransE

DBSCAN - DeepWalk + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 78 0.019 -0.194 1.754 6.191 2 154 0.417 0.091 1.245 10.218

2.5 230 0.198 0.075 1.421 9.492 2.5 217 0.532 0.211 1.269 12.346

3 204 0.260 0.137 1.487 11.015 3 170 0.615 0.190 1.243 13.540

Table A.43: DBSCAN - DeepWalk + TransE

Spectral Clustering - DeepWalk + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

98 0.366 0.097 2.103 20.509 46 0.769 0.176 1.727 37.910

78 0.372 0.091 2.178 21.918 78 0.749 0.182 1.618 32.686

85 0.365 0.092 2.211 21.482 47 0.770 0.178 1.718 37.695

Table A.44: Spectral Clustering - DeepWalk + TransE

K-Means - DeepWalk + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

98 0.432 0.147 1.942 22.439 46 0.794 0.178 1.863 38.776

78 0.415 0.112 2.097 22.868 78 0.775 0.217 1.672 33.325

85 0.405 0.122 2.062 22.068 47 0.795 0.178 1.872 40.400

Table A.45: K-Means - DeepWalk + TransE

Node2Vec and TransE

Dominant Set -Node2Vec + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 587 0.152 0.095 1.921 7.641 0.0001 378 0.436 0.229 1.661 20.060

1.00E-08 355 0.158 0.053 2.406 8.117 1.00E-08 177 0.449 0.079 2.531 14.768

1.00E-16 106 0.172 -0.020 3.296 10.662 1.00E-16 77 0.513 0.059 2.736 19.050

Table A.46: Dominant Set -Node2Vec + TransE

DBSCAN - Node2Vec + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 118 0.071 -0.059 1.330 6.995 2 212 0.518 0.175 1.374 11.867

2.5 316 0.235 0.109 1.618 8.469 2.5 148 0.677 0.114 1.551 10.163

3 54 0.054 -0.042 1.904 6.735 3 60 0.199 0.018 1.384 6.594

Table A.47: DBSCAN - Node2Vec + TransE
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Spectral Clustering - Node2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

69 0.423 0.090 2.350 21.226 75 0.737 0.134 1.997 24.003

57 0.408 0.073 2.219 21.631 68 0.749 0.132 2.024 25.511

64 0.390 0.080 2.206 20.850 60 0.755 0.129 2.080 27.120

Table A.48: Spectral Clustering - Node2Vec + TransE

K-Means - Node2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

69 0.431 0.113 2.393 24.821 75 0.775 0.158 1.820 26.388

57 0.432 0.100 2.486 25.649 68 0.787 0.183 1.922 29.120

64 0.434 0.100 2.499 24.563 60 0.791 0.187 1.960 31.506

Table A.49: K-Means - Node2Vec + TransE

A.5.3 Description Embeddings and Translational Embed-

dings

FastText and TransE

Dominant Set -FastText + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 195 -0.038 0.026 2.788 24.189 0.0001 144 0.012 0.166 2.734 23.390

1.00E-08 128 -0.020 0.026 3.354 34.162 1.00E-08 87 0.009 0.175 3.198 34.925

1.00E-12 87 -0.024 0.036 3.571 46.721 1.00E-12 24 0.006 -0.002 3.403 15.821

Table A.50: Dominant Set -FastText + TransE

DBSCAN - FastText + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

1 66 -0.023 -0.228 1.877 11.695 1 48 -0.012 -0.285 1.553 4.574

1.5 21 -0.046 0.129 2.149 106.503 1.5 25 0.033 0.146 2.029 81.562

2 4 -0.081 0.383 1.990 616.994 2 4 -0.013 0.377 2.337 456.184

Table A.51: DBSCAN - FastText + TransE

Spectral Clustering - FastText + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

186 0.008 -0.011 2.808 21.118 163 0.044 -0.055 1.315 13.202

163 0.006 -0.002 2.857 23.798 159 0.021 -0.051 1.345 13.207

149 -0.001 0.004 2.909 25.774 154 0.011 -0.050 1.365 13.494

Table A.52: Spectral Clustering - FastText + TransE
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K-Means - FastText + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

186 -0.002 0.032 3.135 26.546 163 0.030 0.027 3.027 21.588

163 -0.008 0.039 3.182 29.735 159 0.008 0.027 3.021 22.062

149 -0.004 0.035 3.330 31.583 154 0.011 0.029 3.078 22.716

Table A.53: K-Means - FastText + TransE

Word2Vec and TransE

Dominant Set -Word2Vec + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 205 -0.038 0.069 2.494 39.699 0.0001 149 0.014 0.261 2.371 41.847

1.00E-08 147 -0.019 0.070 2.936 50.541 1.00E-08 98 0.004 0.248 2.724 55.276

1.00E-12 90 -0.025 0.053 3.302 70.204 1.00E-12 52 -0.019 0.132 2.902 31.205

Table A.54: Dominant Set -Word2Vec + TransE

DBSCAN - Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

1 63 -0.022 -0.295 1.841 13.626 1 45 -0.011 -0.372 1.506 5.097

1.5 43 -0.059 0.224 1.596 112.362 1.5 46 0.036 0.229 1.766 85.982

2 15 -0.058 0.294 2.176 255.698 2 13 0.001 0.258 2.237 228.877

Table A.55: DBSCAN - Word2Vec + TransE

Spectral Clustering - Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

159 0.000 0.000 2.744 38.791 188 0.032 0.014 1.574 25.940

151 0.000 0.005 2.801 40.440 157 0.035 0.013 1.2 31.385

78 -0.005 0.078 2.937 76.237 152 0.028 -0.02 1.35 32.068

Table A.56: Spectral Clustering - Word2Vec + TransE

K-Means - Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

159 -0.003 0.049 2.744 51.041 188 0.018 0.046 2.443 36.126

151 -0.006 0.049 2.777 53.313 157 0.021 0.051 2.560 41.253

78 0.001 0.054 2.915 90.111 152 0.015 0.044 2.578 42.050

Table A.57: K-Means - Word2Vec + TransE
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A.5.4 Topology - Description - Translational

DeepWalk - FastText - TransE

Dominant Set - DeepWalk + FastText + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 264 0.006 -0.056 3.050 6.865 0.0001 202 0.078 0.001 2.775 8.767

1.00E-08 168 0.006 -0.056 3.532 8.219 1.00E-08 132 0.066 -0.036 3.189 8.541

1.00E-16 67 -0.011 -0.061 4.871 11.354 1.00E-16 59 0.080 -0.038 3.959 11.951

Table A.58: Dominant Set - DeepWalk + FastText + TransE

DBSCAN - DeepWalk + FastText + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 52 -0.011 -0.224 1.713 4.632 2 72 0.085 -0.125 1.492 6.790

2.5 105 0.022 -0.120 1.655 7.180 2.5 130 0.289 -0.006 1.432 7.845

3 171 0.140 0.031 1.540 9.302 3 149 0.495 0.098 1.422 9.982

Table A.59: DBSCAN - DeepWalk + FastText + TransE

Spectral Clustering - DeepWalk + FastText + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

193 0.244 0.122 2.057 15.628 137 0.563 0.201 1.763 24.169

52 0.213 0.061 2.011 25.034 52 0.630 0.113 1.933 31.902

63 0.255 0.049 2.162 22.855 70 0.616 0.137 1.900 29.334

Table A.60: Spectral Clustering - DeepWalk + FastText + TransE

K-Means - DeepWalk + FastText + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

193 0.251 0.136 1.875 16.893 137 0.627 0.215 1.517 25.155

52 0.266 0.042 2.648 25.894 52 0.659 0.166 1.872 35.420

63 0.255 0.071 2.556 24.628 70 0.689 0.177 1.901 31.043

Table A.61: K-Means - DeepWalk + FastText + TransE

DeepWalk - Node2Vec - TransE

Dominant Set - DeepWalk + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 282 0.012 -0.024 2.786 8.612 0.0001 211 0.073 0.028 2.553 9.922

1.00E-08 181 0.010 -0.038 3.226 10.281 1.00E-08 125 0.082 0.004 2.887 11.184

1.00E-16 92 0.005 -0.039 4.049 14.169 1.00E-16 60 0.088 -0.024 3.591 15.130

Table A.62: Dominant Set - DeepWalk + Word2Vec + TransE

DBSCAN - DeepWalk + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 49 -0.011 -0.245 1.623 3.752 2 64 0.031 -0.151 1.486 6.164

2.5 88 0.004 -0.166 1.615 6.425 2.5 91 0.198 -0.080 1.480 6.996

3 113 0.071 -0.052 1.592 9.182 3 104 0.328 0.005 1.485 8.956

Table A.63: DBSCAN - DeepWalk + Word2Vec + TransE
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Spectral Clustering - DeepWalk + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

96 0.233 0.058 2.400 21.453 70 0.559 0.122 1.937 28.687

66 0.177 0.027 2.154 24.492 61 0.583 0.117 1.886 29.574

50 0.169 0.037 2.094 28.138 145 0.53 0.187 1.713 21.91

Table A.64: Spectral Clustering - DeepWalk + Word2Vec + TransE

K-Means - DeepWalk + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

96 0.194 0.077 2.350 23.339 70 0.520 0.129 2.009 28.623

66 0.173 0.044 2.626 26.672 61 0.527 0.143 1.998 32.398

50 0.185 0.048 2.652 33.057 145 0.506 0.202 1.643 22.290

Table A.65: K-Means - DeepWalk + Word2Vec + TransE

Node2Vec - FastText - TransE

Dominant Set - Node2Vec + FastText + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 254 0.009 -0.017 3.039 7.603 0.0001 192 0.068 0.005 2.881 9.028

1.00E-08 162 0.004 -0.032 3.539 8.998 1.00E-08 120 0.070 -0.005 3.175 10.392

1.00E-16 65 0.007 -0.033 4.395 15.764 1.00E-16 55 0.084 -0.001 3.853 16.071

Table A.66: Dominant Set - Node2Vec + FastText + TransE

DBSCAN - Node2Vec + FastText + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 26 -0.014 -0.128 1.403 8.186 2 99 0.155 -0.062 1.419 8.039

2.5 158 0.085 -0.084 1.573 6.066 2.5 155 0.411 0.099 1.567 10.752

3 173 0.092 0.028 1.793 9.255 3 74 0.304 -0.023 1.598 6.678

Table A.67: DBSCAN - Node2Vec + FastText + TransE

Spectral Clustering - Node2Vec + FastText + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

46 0.248 0.056 2.263 26.912 58 0.570 0.108 2.267 25.431

73 0.225 0.065 2.537 22.006 68 0.559 0.111 2.195 23.666

65 0.280 0.055 2.483 22.203 81 0.545 0.111 2.283 21.845

Table A.68: Spectral Clustering - Node2Vec + FastText + TransE

K-Means - Node2Vec + FastText + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

46 0.252 0.072 3.182 30.373 58 0.584 0.135 2.186 28.982

73 0.248 0.085 2.655 24.195 68 0.575 0.152 2.152 28.300

65 0.231 0.072 2.748 25.363 81 0.598 0.158 2.072 25.438

Table A.69: K-Means - Node2Vec + FastText + TransE
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Node2Vec - Word2Vec - TransE

Dominant Set -Node2Vec + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

cutoff Clusters Modularity Silhouette Davies CHI cutoff Clusters Modularity Silhouette Davies CHI

0.0001 274 0.016 0.011 2.730 9.998 0.0001 203 0.080 0.048 2.550 11.616

1.00E-08 179 0.012 -0.008 3.212 12.218 1.00E-08 122 0.080 0.038 3.011 14.586

1.00E-16 81 -0.005 -0.025 3.769 19.727 1.00E-16 50 0.068 0.011 3.543 23.641

Table A.70: Dominant Set -Node2Vec + Word2Vec + TransE

DBSCAN - Node2Vec + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Epsilon Clusters Modularity Silhouette Davies CHI Epsilon Clusters Modularity Silhouette Davies CHI

2 21 -0.016 -0.161 1.254 6.512 2 78 0.056 -0.117 1.412 7.825

2.5 96 0.024 -0.160 1.568 5.931 2.5 100 0.258 -0.003 1.524 10.369

3 149 0.021 -0.023 1.764 9.301 3 83 0.267 0.010 1.620 10.739

Table A.71: DBSCAN - Node2Vec + Word2Vec + TransE

Spectral Clustering - Node2Vec + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

72 0.220 0.054 2.735 28.115 51 0.485 0.092 2.288 30.270

67 0.204 0.050 2.620 27.686 53 0.471 0.096 2.326 29.763

64 0.203 0.058 2.634 29.641 144 0.418 0.132 2.084 17.928

Table A.72: Spectral Clustering - Node2Vec + Word2Vec + TransE

K-Means - Node2Vec + Word2Vec + TransE

Lisbon 2H Lisbon 2HR

Clusters Modularity Silhouette Davies CHI Clusters Modularity Silhouette Davies CHI

72 0.192 0.066 2.921 29.283 51 0.434 0.121 2.455 35.427

67 0.189 0.069 2.896 30.917 53 0.429 0.116 2.497 34.515

64 0.179 0.057 2.960 32.143 144 0.449 0.162 1.913 20.301

Table A.73: K-Means - Node2Vec + Word2Vec + TransE
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